An XML-based Wrapper Generator
for Web Information Extraction

Ling Liu, Wei Han, David Buttler, Calton Pu, Wei Tang

Oregon Graduate Institute of Science and Technology

Department of Computer Science and Engineering
P.O.Box 91000 Portland, Oregon 97291-1000 USA

{lingliu,weihan,buttler,calton,wtang}Qcse.ogi.edu

1 Introduction

There has been tremendous interest in information integra-
tion systems that automatically gather, manipulate, and in-
tegrate data from multiple information sources on a user’s
behalf. Unfortunately, web sites are primarily designed for
human browsing rather than for use by a computer pro-
gram. Mechanically extracting their content is in general a
rather difficult job if not impossible [4]. Software systems
using such web information sources typically use hand-coded
wrappers to extract information content of interest from web
sources and translate query responses to a more structured
format (e.g., relational form) before unifying them into an
integrated answer to a user’s query. The most recent gen-
eration of information mediator systems (e.g., Ariadne (3],
CQ [5, 7], Internet Softbots [4], TSIMMIS [2]) addresses this
problem by enabling a pre-wrapped set of web sources to be
accessed via database-like queries.

However, hand-coding a wrapper is time consuming and
error-prone. We have also observed that, by using a good
design methodology, only a relatively small part of the code
deals with the source-specific access details, the rest of the
code is either common among wrappers or can be expressed
in a high level, more structured fashion. As the Web grows,
maintaining a reasonable number of wrappers becomes im-
practical. First, the number of information sources of inter-
est to a user query can be quite large, even within a particu-
lar domain. Second, new information sources are constantly
added on the Web. Thirdly, the content and presentation
format of the existing information sources may change fre-
quently and autonomously.

With these observations in mind, we have developed a
wrapper generation system, called X Wrap, for semi-automatic
construction of wiappers for Web information sources. The
system contains a library of commonly used functions, such

as receiving queries frorm applications, handling of filter queries,

and packaging results. It also contains some source-specific
facilities that are in charge of mapping a mediator query
to a remote connection call to fetch the relevant pages and
translating the retrieved page(s) into a more structured for-
mat (such as XML documents or relational tables). A dis-
tinct feature of our wrapper generator is its ability to pro-

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on scrvers or to redistribute to lists.
requires prior specific permission and/or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

vide an XML-enabled, feedback-based, interactive wrapper
construction facility for Internet information sources. By
XML-enabled we mean that the extraction of information
content from the Web pages will be captured in XML form
and the process of filter queries is performed against XML
documents. By feedback-based we mean that the wrapper
construction process will be revisited and tuned according
to the feedback received by the wrapper manager.

2 Methodology

The philosophy behind our “XML-enabled” wrapper gener-
ation methodology is to develop mechanisms that provides
a clean separation of the semantic knowledge of informa-
tion extraction from the wrapper code generation using a
rule-based approach. More concretely, the wrapper gener-
ator first exploits formatting information in Web pages to
hypothesize the underlying semantic structure of a page,
and then encode the hypothetical structure and the infor-
mation extraction knowledge of the web pages in a rule-
based declarative language designed specifically for X Wrap
information extraction. From the set of information extrac-
tion rules and the XML-templates derived throughout the
XWrap walkthrough sessions, the system constructs a wrap-
per program that facilitates both the tasks of querying of a
semi-structured Web source and integrating it with other
Web information sources. We partition the wrapper gen-
eration process into a series of sub-processes called phases,
as shown in Figure 1. A phase is a logically cohesive oper-
ation that takes as input one representation of the source
document and produces as output another representation.

The first phase is called the structure analysis. It per-
forms the encoding of information extraction knowledge into
a set of implementation-independent information extraction
rules. It involves three tasks: (1) fetching a Web page from
a remote site and generating a tree-like structure for the
page, (2) identifying regions and tokens that are key com-
ponents or key element templates for extracting information
content from the page, and (3) inferring the nesting hier-
archy of sections, which represents the syntactic structure
of the page. For a Web page in HTML, this phase builds
a source-specific HTML parser that wraps the page into a
tree structure, annotates content tokens in comma-delimited
format and nesting hierarchy in an XML-template file (see
Section 3 for an example).

The second phase is called the source-specific XML gen-
eration. It involves two steps: (1) Generate a source-specific
XML template file based on the content tokens and the nest-
ing hierarchy specification obtained in the structure analysis

540

Source Documents (e.g., a Web page)

{ Mediator Queries
N
‘The Wrapper Generstor System
XWrap
content jokens
nestimg hierarchy
tree struciure
Wrapper
Program
Bookk Source-specific Error
Routine XML Generator Handler
i XML document
XM, store
XML-based T Query Answers
ilter quenres .
Content Filter g in XML
1* -
Wrapper Program

Figure 1: Phases of an XML-enabled Wrapper Generator

phase; and (2) Construct a source-specific XML generator
using the template-based XML generator. An XML tem-
plate is a well-formed XML document. In addition to con-
structs that one would normally expect in an XML file, it
also contains a small set of processing instructions and spe-
cial placeholders defined by the XML generator.

The third phase is called the generic XML-based content
filter (content extraction controller). After wrapping a Web
source in an XML format, we build a generic XML-based
content filter that is capable of handling complex conjunc-
tive or disjunctive queries handed over by various mediator
applications.

The bookkeepingroutine of the wrapper collects informa-
tion about all the data objects that appear in the source
document, keeps track of the names used by the program,
and records essential information about each. For example,
a wrapper needs to know how many arguments a tag ex-
pects, whether an element represents a string or an integer.

The error handler is designed for the detection and re-
porting errors in the source document. It is invoked when a
flaw in the source document is detected. It must warn the
wrapper developer by issuing a diagnostic, and adjust the
information being passed from phase to phase so that each
phase can proceed. It is desirable that wrapper construction
be completed on flawed source documents, at least through
the structure-analysis phase, so that as many errors as pos-
sible can be detected in one construction pass. The error
messages should allow the wrapper developer to determine
exactly where the errors have occurred. Both the bookkeep-
ing and error handling routines interact with all phases of
the wrapper generator.

3 A Walk Through Example

3.1

Consider the weather report page for Savannah, GA at the
national weather service site, and a fragment of HTML doc-
ument for this page in Figure 2.

Figure 3 shows a portion of the HTML tree structure,
corresponding to the above HTML fragment, which is gen-
erated by running a source-specific parser on the Savannah
weather source page. In this portion of the HTML tree,
we have the following six types of tag nodes: TABLE, TR,
TD, B, H3, FONT, and a number of semantic token nodes

Information Extraction

541

at leaf node level, such as Maximum Tempature, Minimum
Tempature, 84.9(29.4), 64.0(17.8), etc.

In the current implementation, the structure analyzer
sets up three panels in an information extraction window.
The two top level panels displays the web page and its
HTML tree structure, and the bottom panel is used to dis-
play the information extraction rules and the comma delim-
ited file generated.

Based on the interaction with the wrapper developer,
the region extractor identifies four semantic regions of in-
terest for extraction, each is a table in the nws.noaa.gov
web page. The semantic-token extractor infers that the leaf
node Maximum and Minimum Temperaturesis the heading of
a table section, the string Maximum Tempature F(C) is a se-
mantic token with the string itself as the token name and
the string 84.9 (29.4) as the token value, and so forth.
By traversing the entire tree structure, the semantic-token
extractor produces as output, a set of information extrac-
tion rules for extracting the semantic tokens into a comma-
delimited file and the hierarchical structure into an XML-
tamplate file for each of the nws.noaa.gov current weather
report page. Consider the fragment of the tree structure
given in Figure 3. By walking through the left most branch
of the tree with the user’s feedback, XWrap can infer that
Maximum and Minimum Temperatures is the table name be-
cause it is in between a pair of header tags <H3> and </H3>.
Also based on the observation that all the rest of children
nodes of TABLE are of the same type TR, and each again has
three children nodes. The leaf node Maximum and Minimum
Temperatures of the first branch of TABLE is marked as the
table name, the leaf nodes Maximum Temperature, Minimum
Temperature of the second branch of TABLE as column names,
and each of the rest of the branches of TABLE as an instance
of the second TR node type. We develop an algorithm that,
given a page with all regions (tables and text sections, and
headings identified, outputs an XML template for the page.
Figure 4 shows the fragment of the XML template file corre-
sponding to the part of a NWS weather report page shown
in Figure 3.

Due to the fact that the heuristics used for identifying
sections and headings may have exceptions for some infor-
mation sources, it is possible for the system to make mis-
takes when trying to identify the hierarchical structure of a
new page. For example, based on the heuristic on font size,
the system may identify some words or phrases as head-
ings when they are not, or fail to identify phrases that are
headings, but do not conform to any of the pre-defined reg-
ular expressions. We have provided a facility for the user to
interactively correct the system’s guesses. Through a graph-
ical interface the user can highlight tokens that the system
misses, or delete tokens that the system chooses erroneously.
Similarly, the user can correct errors in the system-generated
XML-template that describes the structure of the page.

3.2 Source-specific XML generator

The source-specific XML generator consists of an XML Tem-
plate Engine and an XML parser. The XML template engine
generates XML statements using both the comma-delimited
file and the XML template parsed by the XML parser. Com-
paring with the normal XML documents, XML templates
are well-formed XML files that contain processing instruc-
tions. Such instructions are used to direct the template
engine to the special placeholders where data fields should
be inserted into the template. For instance, the processing
instruction XG-InsertField-XG has the canonical form of

<TD ALIGN=CENTER><FONT FACE="Arial,

CTABLE><TR><TD COLSPAN=3><H3>Maximum and Minimum Temperatures
</H3> </TD></TR><TR><TD ALIGN=CENTER BGCOLOR="'#FFFFFF"><FONT FACE=

"Arial ,Helvetica">Maximum
Temperature
F(C)</TD><TD ALIGN=CENTER BGCOLOR=
“"$FFFFFF">Minimum
Temperature
F(C)
</TD><TD></TD></TR><TR><TD ALIGN=CENTER>82.0(27.8)
</TD><TD ALIGN=CENTER><FONT FACE="Arial, Helvetica'"»62.1(16.7)</TD><TD><FONT FACE=
"Arial, Helvetica">In the 6 hours preceding Oct 29, 1998 - 06:53 PM EST / 1998.10.29 2353
UTC</TD></TR><TR><TD ALIGN=CENTER>80.1(26.7)</TD>
Helvetica''»45.0(7.2) </TD><TD><FONT FACE="Arial,
Helvetica">In the 24 hours preceding Oct 28, 1998 - 11:53 PM EST / 1998.10.28 0453 UTC
</TD></TR><TR><TD COLSPAN=3><HR SIZE=1 NOSHADE WIDTH='"100%"></TD></TR></TABLE>

Figure 2: An HTML fragment of the weather report page at nws.noaa.gov site

TABLE[2]

TRI0]

T ™

TD

i

FONT
w2 B FACE
PONT FACE FONT empty
COLOR string o
FONT 82.0 62.1 In preceding
Oct 29
i FACE 27.8 16.7 h ’
Maximun an () |) the 1998-06.53
Minimm 000 NN NN, 0 T
Temperatures O BROBR 6 hours
Minimum

Tempature F(C)

Tempature p(c)

Figure 3: Another fragment of the HTML tree for the Savannah weather report page

<?XG-InsertField-XG ¢ ‘FieldName"?>. It looks for a field
with a specified name “FieldName” in the comma-delimited
file and inserts that data at the point of the processing in-
struction.

An XML template also contains a repetitive part. The
XG-Iteration-XG processing instruction determines the be-
ginning and the end of a repetitive part. A repetition can
be seen as a loop in classical programming languages. After
the template engine reaches the “End” position in a repeti-
tion, it takes a new record from the delimited file and goes
back to the “Start” position to create the same set of XML
tags as in the previous pass. New data is inserted into the

resulting XML file.

3.3 XML-based Content Filter

The XML-based Content Filter is the interface between the
mediator application and the wrapper. The main tasks of
the content filter include

e Accept a mediator query, identify network locations
of the pages needed to answer the query, and call the
data wrapper manager to wrap the source page(s) into
the XML format;

e Translate the complex content-sensitive mediator queries

over the given Web pages to SQL-like XML queries.

For single-document sources, this is straightforward, i.e.,
the URL for that page is known to the wrapper. For sources

542

with multiple documents of the same type, a mapping be-
tween a query and the URL of the relevant page may be
required. To provide the capability of determining the net-
work location of the page relevant to a query, the wrapper
developer specifies a mapping function which takes neces-
sary arguments from a query (e.g., the city name and its
four-character code on the NWS weather source) and con-
structs a URL pointing to the page to be fetched. For in-
stance, in the NWS weather report site there is a one to one
mapping between the city name and the URL of the page
for that city. This mapping can be obtained by querying
the city from either the US weather report home page or
the world weather report home page. Currently we use Java
programs for the purpose of making HTTP connections to
the Web information sources and retrieving data from them.

To support information filtering over XML documents,
we would need to understand the data structure used to
hold the XML documents and the types of query operators
a system would like to support. One popular approach is to
use XML-QL style of query languages [1]. The main prob-
lems with this proposal is the availability of the software to
support such an XML-QL based system. Another approach
is to transform an XML document into a collection of rela-
tional tables or a class of complex objects. There are two
main challenges in transforming an XML document to a col-
lection of relational tables {or object classes). First, given
an XML document, we need to decide how many relational
tables are needed to capture the nesting structure of the
XML file. Second, for multi-document sources, the XML

<Maximum.and.Kinumum.Temperatures>

<Description>Maximum and Minimum Temperatures</Description>

<!-- Start of the repetition -->

<?XG-Iteration-XG ‘‘Start"?>

<Max imum..and.Minimum_Temperatures_-Child>

<Maximum_Temperature>
<Description>MaximumTemperature F(C)</Description>
<Value><?XG-InsertField-XG ‘‘Maximum Tempature'></Value>
</Maximum_Temperature>

<Minimum_Temperature>

<Description>MinimumTemperature F(C)</Description>
<Value»<?XG-InsertField~XG ‘‘Minimum Temperature'></Value>
</Minimum_Temperature>

<TD>
<Description></Description>
<Value><?XG-InsertField-XG *‘TD"></Value>
</TD
</Maximum_and_Minumum_Temperatures.Child»
<?XG~Iteration-XG ‘‘End"?>
<!-~ End of the repetition -->
</Maximum_and Minumum_Temperatures>

Figure 4: An Example XML template for a portion of the
NWS current weather report page

document generated at Phase two is only an instance of the
corresponding source. Quite often it may have some miss-
ing sections, or missing columns of a table section. Thus,
the relational tables that capture the given XML document
may not be generic enough to capture other instance pages
of the same source. For example, consider the NWS current
weather report source. For some cities in US, the weather
report at a given time point may include the Precipitation
Accumulation section, although at other times this section
is not available. Another example is the case when some col-
umn or sub-section (such as the Dew Point field) is missing
in one document instance but appeared in another instance
document. Therefore, instead of using a pre-defined num-
ber of relational tables and pre-defined table formats, the
design of the content filter should determine the number of
relational tables to use and the table formats at run-time.

4 Description of Demo

We demonstrate the latest version of our wrapper toolkit
as described in the previous sections. Specifically we show
how to use our wrapper generator toolkit to construct wrap-
pers for the following three classes of Internet information
sources.

1. Web sources that are multiple-instance sources (i.e.,
multiple documents of the same type), and organize
their content information in multiple two-dimensional
tables, such as the current weather report source at the
national weather service site, the stock quote informa-
tion source at stockmaster.com or Yahoo investment
site.

2. Web sources that are multiple-instance sources, and
organize the content information in multiple nesting
sections, such as the CIA factbook web site or the Sun
Site Web Museum site.

3. Web sources that are single-instance sources, such as
SIGMOD’99, ICDE’99 or VLDB’99 conference web

sites.

Although all three classes of Web sources support differ-
ent search and access methods, the wrappers generated hide
all source specific details from the applications and end-users
by providing a common interface to the underlying data in-
dependently of where and how it is stored. Furthermore, we
demonstrate the filter query processing capabilities of our
Wrappers.

As part of the Continual Queries project, we have also
developed a graphical browsing tool that lets users submit
queries to wrappers, navigate through the XML files gener-
ated for the Web pages that have been wrapped, and zoom
in on the CQ answer objects and their nested hierarchies as
necessary.

Acknowledgement

This research is partially supported by DARPA contract
MDA972-97-1-0016, Intel, and Boeing. Qur thanks are also
due to the Master students involved in the CQ and XWrap
projects at OGI, especially Divya Kumar, Shujing Liu, Jaya
Shrivastav, and Iffath Zofishan.

References

[1] A. Deutsch, M. Fernandez, D. Florescu, A. Levy,
and D. Suciu. XML-QL: A Query Language
for XML. http://www.w3c.org/TR/1998/NOTE-zmi-qgl-
19980819, 1998.

[2] J. Hammer, M. Brennig, H. Garcia-Molina, S. Nesterov,
V. Vassalos, and R. Yerneni. Template-based wrappers
in the tsimmis system. In Proceedings of ACM SIGMOD
Conference, 1997.

[3] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, P. J.
Modi, I. Muslea, A. Philpot, and S. Tejada. Modeling
web sources for information integration. In Proceedings of
AAAI Conference, 1998.

[4] N. Kushmerick, D. Weil, and R. Doorenbos. Wrapper
induction for information extraction. In Proceedings of
Int. Joint Conference on Artifical Intelligence (IJCAI),
1997.

[5] L. Liu, C. Pu, and W. Tang. Continual queries for
internet-scale event-driven information delivery. IEEFE
Knowledge and Data Engineering, 1999. Special Issue on
Web Technology.

[6] L. Liu, C. Pu, W. Tang, and W. Han. CONQUER: A
Continual Query System for Update Monitoring on the
WWW. International Journal of Computer Systems, Sci-
ence and Engineering, 1999. Special Issue on WWW Se-
mantics, edited by Dan Suciu and Letizia Tanca.

[7] L. Liu, C. Pu, W. Tang, J. Biggs, D. Buttler, W. Han,
P. Benninghoff, and Fenghua. CQ: A Personalized Update
Monitoring Toolkit. In Proceedings of ACM SIGMOD
Conference, 1998.

