Improving OLTP Data Quality Using Data Warehouse Mechanisms

Matthias Jarke, Christoph Quix
Informatik V, RWTH Aachen, D-52056 Aachen, Germany
{jarke,quix } @informatik.rwth-aachen.de

Guido Blees, Dirk Lehmann, Gunter Michalk, Stefan Stierl
Team4 Systemhaus GmbH, D-52134 Herzogenrath, Germany
firstname.lastname @team4.de

Abstract

Research and products for the integration of heterogeneous legacy
source databases in data warehousing have addressed numerous
data quality problems in or between the sources. Such a solution
is marketed by Team4 for the decision support of mobile sales
representatives, using advanced view maintenance and replication
management techniques in an environment based on relational
data warehouse technology and Lotus Notes-based client systems.
However, considering total information supply chain management,
the capture of poor operational data, to be cleaned later in the
data warehouse, appears sub-optimal. Based on the observation
that decision support clients are often closely linked to operational
data entry, we have addressed the problem of mapping the
data warehouse data quality techniques back to data quality
measures for improving OLTP data. The solution requires a
warehouse-to-OLTP workflow which employs a combination of
view maintenance and view update techniques.

1

Team4 is a software house specialised on sales force automa-
tion solutions (SFA) for medium and large enterprises, cen-
tering around customized data warehouses for typically 50
to more than 1000 users. Customers include, among oth-
ers, the chemical giant Bayer and Siemens. The company
was started in 1996 by four people, partially from industry,
partially from research, and has since grown to almost 100
employees. Based on the experience gained in specific cus-
tomer solutions, the company has for the last few years also
been developing a line of tools for data warehouse develop-
ment and data quality.

The basic product strategy of Team4 involves a solution
where you have arbitrary legacy sources, a relational data
warehouse kernel and data marts/client caches replicated
via Lotus Notes/Domino (cf. figure 1). Methods and tools
have been developed to manage the usual stream of data,
in particular focusing on aspects of data quality as required

Introduction

Permission to make digital or hard copies of all or part of this WO!‘]:(for
personal or classroom use is granted without fee provided that copics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the 1?1rst.page. TQ copy
otherwise, to republish, to post on servers or o redistribute to lists.
requires prior specific permission and/or a fee.

SIGMOD '99 Philadeiphia PA

Copyright ACM 1999 1-581 13-084-8/99/05...85.00

536

by sales personnel. There are also methods and tools for
the rapid set-up of data warehouse solutions. These tools
were developed based on research results of the IS group at
RWTH Aachen [SJ96] and have been used by the company
since late 1997. A short description is given in section 2.

The positive impact of improved data quality gained from
these usage experiences led to the approach described in the
present paper. The observation is the following: Based on
the cleaned, integrated and often aggregated materialized
views in the client data caches, the sales people make
decisions which lead to operational activities such as orders
or sales forecasts. However, these orders are again made
to the legacy operational systems with all the traditional
usability hassle and quality problems. So, the question was:
can we somehow re-use the data cleaning mechanisms of
the data warehouse to avoid the pollution of the sources, and
to use the much more user-friendly data warehouse client
front-end to support the update of operational sources? To
our surprise, we did not find this problem discussed in the
research literature.

The new tool combines ideas from view update technol-
ogy with the data integration, data replication and data clean-
ing concepts from data warehousing. A prototype of the tool
has been completed in late 1998 and it is currently undergo-
ing beta testing in some applications.

2

The first tool to be developed was a data warehouse
design tool at the relational level, aiming at several data
warehouse quality goals [JJQV99]: reusability of solutions,
the reduction of telephone costs on the client side, sufficient
and flexible freshness of data, ability for evolution of source
or data warehouse schemas, and clear process definitions for
data integration and refreshment. Prior to the development
of this tool, especially the goal of flexibility was hampered
by the need to re-program scripts whenever schema or policy
changes happened.

Source data are typically stored in distributed data sources.
First, the data is extracted from the sources and then pre-
aggregated in the warehouse. Further aggregations can be
made inside a Notes document. The relational views in the
warehouse are designed for use in the Lotus Notes docu-

Data integration and maintenance

Notes Client
(Sales Repr.)

Lotus Notes
Replication

Transfer/
Maintenance

Sources
OLTP Systems

Figure 1: Architecture of the Team4 system

ments, the transfer to the Domino server is therefore straight-
forward. The documents are typically replicated once per
day between the Notes clients and the server.

Direct access to the sources by the extract programs can
not be guaranteed, sometimes only snapshots of the source
relations are available. The maintenance process must
therefore be able to detect changes between two snapshots.
The views are decomposed into several self-maintainable
views [HZ96]. To deal with this, the view maintenance
algorithm of [SJ96] has been extended to cover aggregations.

One goal of the initial project was the easy maintenance
of the system. Therefore, a design tool was created to
record the schema definitions of the source systems and
the view definitions of the warehouse. Most importantly,
the design tool automatically creates the SQL statements
to initialize and incrementally maintain the views and
the transfer program between the data warehouse and the
Lotus Notes server. The mobile sales representatives get
the relevant and updated documents by using the built-in
replication mechanism of Lotus Notes. The results show,
that the view maintenance is more efficient than reloading
the full replicated views, as long as less than 20% of the
source data is updated, which is usually the case.

3 Updating data sources using data
warehouse technology

We made the observation, that data warehouse users often
make updates on OLTP data while looking at data warehouse
data. Traditional systems require that users switch from their
data warehouse front-end to another data entry program.
The disadvantages of this method are that this manual
entry process enforces data quality problems, the semantic
information is lost and the relationship with other data in the
client views is not recorded.

In our system, sales representatives update their docu-
ments in a Notes client. The updates are transferred to the
Domino server with the built-in replication mechanism of
Notes. This mechanism handles the typical replication con-

flicts if different users make changes on the same document.
The updates in the documents are detected by a Notes script
and written to a log. Another program reads the log, and
translates updates into updates on the source relations and
transfers them to the source databases.

View updates are only possible for a restricted set of
views, and often the designer has to resolve conflicts in the
translation of view updates to base relation updates [Kel85).
The design tool developed for the view maintenance process
was thus extended to deal also with view updates. Because
of the complexity and the distribution of the data warehouse
system, a transaction control mechanism for the whole
system controls the update process between Lotus Notes
server, data warehouse and source databases. Any conflicts
in the update process are written to the log, and reported to
the administrator and user by a Notes document. If an update
is rejected by the sources, the update must be canceled, and
the already committed transactions in the warehouse and
Lotus Notes must be undone. Restrictions in access rights
are handled either in the translation programs for updates or
already in the design of a Notes document. The behavior of
the whole update and maintenance system can be configured
at design-time in the design tool and at run-time with a
general control document in Notes.

The approach can also be used for adding manual esti-
mates to data warehouse views during the decision support
task itself, such as the sales forecast for a company leading
to internal order operations. Based on the orders in the past
months and some knowledge on the production plan of the
customer, a sales representative enters the expected orders
into his document. The information is then transferred to
the central warehouse, where the expected orders of all cus-
tomers are aggregated and the plant utilization for the next
months can be predicted.

4 Conclusions

Data warehouse research has contributed significantly to-
wards improved data quality for decision makers [JJQV99],
cleaning data as they flow from sources towards clients.
However, a global optimization of information flows might
be at least equally well reached by cleaning data already be-
fore they reach the sources. The Team4 solution sketched in
this short paper is a first step towards this goal.

References

{HZ96] R. Hull, G. Zhou. A framework for supporting data
integration using the materialize and virtual approaches.
Proc. ACM SIGMOD Inil. Conf. Management of Data,
Montreal, Canada, 1996.

[JJQV99] M. Jarke, M. Jeusfeld, C. Quix, P. Vassiliadis. Architec-
ture and quality in data warehouses: An extended reposi-
tory approach. Inform. Sys. 24:4, 1999.

[Kel85] AM. Keller. Updating Relational Databases Through
Views. PhD. dissertation, Stanford University, 1985.

[SJ96] M. Staudt, M. Jarke. Incremental maintenance of exter-
nally materialized views. Proc. 22nd Conf. Very Large
Data Bases, Bombay, India, 1996.

537

