
The Need for Distributed Asynchronous Transactions 
Lyman Do, Prabhu Ram, and Pamela Drew 

Boeing Phantom Works, Mathematics and Computing Technologies 
The Boeing Company 

P.O. Box 3707, M/S 7L-70, Seattle, WA 98124-2207, USA 
{lyman.s.do, prabhuxam, pamela.a.drew}Oboeing.com 

ABSTRACT 
The theme of the paper is to promote research on asynchronous 
transactions. We discuss our experience of executing synchronous 
transactions on a large d.istributed production system in The Boeing 
Company. Due to the poor performance of synchronous 
transactions in our environment, it motivated the exploration of 
asynchronous transactions as an alternate solution. This paper 
presents the requirements and benefits/limitations of asynchronous 
transaction:;. Open issues related to large scale deployments of 
asynchronous transactions are also discussed. 

1. INTRODUCTION 
Boeing has a system that maintains configuration control of 
airplanes which maintains information such as which parts are used 
in a particular instance of an airplane. This system supports 60,000 
users and has a service level agreement (SLA) of 2 minutes. The 
SLA is a contract between the system users and implementers, and, 
defines the maximum ,transaction response time. The system is 
composed of eight distributed databases, six of which are on a LAN 
and the another two are on WAN. Part of the data is replicated and 
global transactions are implemented to guarantee data consistency. 
Two phase commit (2PC) [l] protocol has been used to guarantee 
global atomicity. 

We have conducted experiments on our production environment to 
evaluate the performance and scalability of the system. The result 
shows that the SLA c.annot be met when a global transadion 
accesses two or more databases through the WAN. For example, 
the transaction that acctases five databases, three of which are on 
the LAN and the others are on the WAN, takes nine minutes to 
complete. Further investigations [7] show that the 2PC component 
of the transaction response time is constant and insignificant but the 
blocking nature of the synchronous communication that 
implements 2PC contributes most to the poor performance. 

Extended transaction mcdels (ETMs) have been researched for well 
over a decade and g,enerally attempt to exploit application 
semantics to increase concurrency and reduce synchronization 
latency. Several well known ETMs are summarized in [4]. Most 
of the efforts have focused on isolation relaxation to allow more 
concurrency in multidat.abases and other environments, to support 
for long lived transactions, and to support for non-traditional 

Copyright The Boeing Co. 

database applications (such as CAD/CAM and collaborative work:). 
It should be noted that none of these ETM implementations are 
commercially available (with the exception of nested transactions 
[5] in some transaotion processing monitors). It is also interesting 
to note that overall system performance issues are rarely addressed 
in ETMs. Beyond functionality, system performance is the key 
measure of success in industrial deployments. From the commercial 
side, some DBMS, middleware, and collaborative tool vendors 
provide tools such as persistent queues, message oriented 
middleware, etc., but the traditional transaction issues of providing 
concurrency control between transactions and transaction atomicity 
are left to the application to manage. 

Given these reasons, we have been investigating asynchronous 
transaction technology to improve transaction response time 
without compromising data consistency. We describe the 
requirements, benefits, and limitations of using asynchronous 
transactions in Section 2. In Section 3, we raise open issues that 
deserve additional research attention in order to make 
asynchronous transaction a practical alternative. 

2. Asynchronous Transactions 
An asynchronous transaction is a distributed composite transaction 
that is composed of sub-transactions. Similar to traditional 
synchronous transactions, these sub-transactions will reach the 
same termination decision. However, the termination of these sub- 
transactions is asynchronous, i.e., some of the sub-transactions may 
have been committed while others may be still executing or have 
not yet executed. One significant characteristic of asynchronous 
transactions is they are guaranteed to be propagated to the target 
systems once and only once. Once an update at the source is 
committed, it will commit and expect that the update will be 
propagated to the target appropriately. The “once” part guarantees 
this expectation, and the “only once” part guarantees that update 
propagation will not be duplicated. It should be noted that 
asynchronous transactions are not only applicable in tradition.al 
database application domains. It is an infrastructure component 
whose presence can benefit asynchronous information sharinlg 
environments in the collaborative work area and asymmetric 
replication environments such as data warehouses [2,6]. 

2.1 Requirements 
The candidate distributed environments that are suitable to deploy 
asynchronous transactions must have two important characteristics: 

1. Temporarily out-of-sync information: Using asynchronous 
transactions, there will be a time gap between the update at the 
source and the update at the target. Hence, the source and targl:t 
databases are temporarily out-of-sync until the entire asynchronous 
transaction is completed. The system (application designer) has to 
be aware of this characteristic and be able to tolerate thle 
temporarily out-of-sync information. 

534 



2. unidirectional update propagation: Asynchronous transactions 
are particularly suitable to environments that require unidirectional 
update propagation, i.e., the update will be propagated from a 
source to one or more targets, but not vice versa. If the computing 
environment implements bi-directional concurrent update 
propagation, the asynchronous nature of transaction may result in 
an incompatible execution sequence of transactions in the globa! 
perspective and may require manual reconciliation. The transaction 
management technology must be capable of detecting and flagging 
such inconsistencies to assist in the reconciliation process. 

2.2 Benefits and Implications 
We refer readers to [3] for a detailed discussion on the benefits and 
implications of deploying asynchronous transactions. Briefly here 
are the benefits of deploying asynchronous transactions: 

1. Asynchronous transactions improve response time and system 
throughput by eliminating synchronous interactions between its 
components. After submitting a request, the client is free to remain 
active or it can terminate successfully, without waiting for a 
collective consensus. The system throughput is also improved since 
extended resource locking is reduced to a minimum. 

2. As asynchronous transactions guarantee once-and-only-once 
execution semantics, a failed sub-transaction can be re-tried once 
the problem is fixed, thereby facilitating forward recovery. 

3. Since asynchronous transactions allow participating 
transactions to commit unilaterally, it eliminates the lock-and-wan 
scenario, i.e., the global deadlock, prevalent in strict synchronous 
transactions. 

Beyond the two important environment characteristics discussed in 
Section 2.1, additional implications of deploying asynchronous 
transactions technology include: 

1. Additional resources have to be committed to implement 
asynchronous transactions in order to guarantee the once-and-only- 
once execution semantic. A typical example of such a resource is a 
transactional queue which incurs additional I/O overhead. 

2. Since sub-transactions of an asynchronous transaction can be 
committed unilaterally, some scenarios may require rolling back of 
a committed sub-transaction. The application may need to support 
compensation or equivalent logic in order to rollback unilaterally 
committed sub-transactions. 

3. Open Issues and Conclusions 
While synchronous transactions clearly have their place, we have 
discussed the need for asynchronous transactions to support 
distributed applications. In this section, we discuss several issues 
that need to be addressed if asynchronous transactions are to be 
widely deployed and used. In general, there needs to be a better 
theoretical foundation developed for asynchronous transactions 
(just as it has been done for synchronous technology) and has to be 
grounded by implementations that deliver on overall system 
performance. 

1. There needs to be ways of managing the temporal inconsistency 
as discussed in Section 2.1. The methods used to manage 
asynchronous transactions must allow control and quantification of 
propagation delays so that applications can function with some 
temporal guarantees. Fundamental research into this area has been 
done in efforts such as Epsilon serializability [8]. However, ETMs 
need to address additional implementation and performance issues. 

2. The environment we discussed in Section 1 is a sub-system that 
is part of an integrated system composed of other commercial off- 
the-shelf (COTS) software. In fact, a typical transaction indeed 
spans several COTS software, each of which has their own 
encapsulated databases. Integrated systems such as these need 
asynchronous transactions so that one application in a COTS 
software does not get “tied down” by synchronous interactions with 
another application in a different COTS software. If asynchronous 
transactions are to be used in such integrated environments, the 
following issues need to be addressed: 

- It is very likely that in such systems, information will flow from 
multiple COTS sources to multiple COTS targets concurrently. 
Additionally, data in these COTS sources will have inter- 
relationships amongst them. Given these restrictions, how can 
redundant update propagations be consolidated before 
submitting them to the targets? 

- Design issues such as how many asynchronous transactions 
mechanisms (persistent queues for example) are required to 
support large environments for load balancing and performance 
improvement reasons needs to be explored. 

3. Most large scale systems will cause bi-directional conflicting 
updates. How are the concurrency and isolations issues handled in 
the presence of bidirectional conflicting updates propagated 
through multiple asynchronous transaction mechanisms? 

4. How the forward recovery of failed update propagations are 
handled? Significant research effort has gone generally into failure 
handling in similar environments and we would like to see these 
research grounded with implementations. Issues including 
requirements on applications (for example, the interactions between 
applications and the asynchronous transaction mechanism may 
need to be idempotent), if and how the asynchronous transaction 
mechanism stores state changes relevant to the application, etc., 
need to be investigated further. 

5. How the involvement of an additional component in the system, 
namely, the asynchronous transactions mechanism, improves and 
does not deteriorate overall system performance due to the 
mechanisms’ own overheads? 

To meet the needs of our own enterprise, we have been working on 
prototypes that extend vendor provided tools to address the issues 
discussed above. 

4. 

PI 

PI 

[31 

r41 

151 

@I 

[71 

[81 

References 
Bernstein, P., Hadzilacos, V., and Goodman, N., Concurrency 
Control and Recovery in Databases, Addison-Wesley, 1987. 
Do, L., et.al., Issues on Developing Very Large Data 
Warehouses. In Proc. of the 24th VLDB, 1998. 
Do, L., and Ram, P., State of the Art of Asynchronous 
Transaction Mgt., Boeing Tech. Report SSGTECH 98016. 
Elmagarmid, A., Editor, Database Transaction Models for 
Advanced Applications, Morgan Kauffman, 1990. 
Moss, E., Nested Transactions: An Approach to Reliable 
Distributed Computing, MIT Press, 1985. 
Ram, P. and Do, L., Delta Extraction for Incremental Data 
Warehouse Maintenance. Boeing Phantom Works M&CT 
Tech. Report 99-003. Manuscript submitted for publication. 
Ram, P., Do, L., and Drew, P., Distributed Transactions in 
Practice. Submitted for publication. 
Ramamritham, K., and Pu, C., A Formal Characterization of 
Epsilon Serializability, IEEE TKDE, 7(6), 1995. 

535 


