
Versions and Workspaces in Microsoft Repository
Thomas Bergstraesser Philip A. Bernstein Shankar Pal David Shutt

Microsoft Corporation

ABSTRACT
This paper describes the version and workspace features of Micro-
soft Repository, a layer that implements fine-grained objects and
relationships on top of Microsoft SQL Server. It supports branch-
ing and merging of versions, delta storage, checkout-checkin, and
single-version views for version-unaware applications.

1. INTRODUCTION
Microsoft Repository is an object-oriented layer implemented on
Microsoft SQL Server. Version 1 of Microsoft Repository (Vl)
supported ob,jects, relationships, and model extensibility, exposed
through Microsoft’s Component Object Model (COM). Version 2
(V2), described here, adds version and workspace support and
ships in Microscft SQL Server 7.0. Additional details are in [2,5].

Microsoft Repository is intended primarily for managing meta-
data consisting of fine-grained objects linked by arbitrary relation-
ships. To be usable in a design environment and sharable by
teams, objects must be versioned and managed using checkout-
checkin. Since we cannot anticipate all usage scenarios of our
diverse user community, the versioning model must be rich and
flexible. To satisfy the needs of both shrink-wrapped and custom
applications, it must also be easy-to-use, easy-to-customize, and
efficient in time and space. Finally, since V2 extends a shipping
product, interfaces must be backward compatible with V 1.

While versioning techniques are well known, not many products
or prototypes support all of the above requirements. Often, only
coarse-grained objects can be versioned (e.g., files or
configurations), only hierarchical relationships are allowed
between versions, or all applications must be version-aware. We
present our system as a case study that has none of these
restrictions. Other interesting models are described in [3,4,7].

2. VERSION MODEL
The main goal of versioning is to enable the reconstruction of old
states of an object. In contrast to VI, where a repository object
has one state, in V2 a repository object can have many versions,
each representing one of the object’s historical states. Versions of
an object are related by successor relationships, indicating the
order in which the states arose. Each version has a globally unique
version id and its own property and collection values. Collection
values in our COM-based architecture represent relationships
between objects or, in V’2, versions of objects. Type definitions

Permission to make digital or hard topics ofall or part ofthis work for
personal or classroom use is granted without fee provided that copies
arc: not made or distributed Ibr profit or commercial advantage and that
topics hear thih notice and the l’ull civation on the lirst page. To copy
otherwise, to republish, to post on scrvcrs or tco rcdistributc to lists.
requires prior specitic permission and/or a fee.

SIGMOD ‘9!) Philadelphia PA
Copyright ACM 1999 l-581 13-084-8/99/05...$5.00

are ordinary repository objects, so in principle they could be
versioned; however, this is not supported in the V2 release.

In V2, a version isfrozen or unfrozen. The CreateObject operation
creates the first version of a new repository object, initially
unfrozen. As in Vl, each object has single-valued scalar
properties and collections of relationships [l]. Properties and
collections of an unfrozen version are updatable, but those of a
frozen one are not. The Freeze operation freezes a version.

Given a frozen version FV of object 0, the Create-Version
method returns a new version NV of 0, where NV is a successor
of FV. Requiring a version to be frozen before creating a
successor allows the repository engine to use delta storage, I:hat
is, store only values of a version that differ from its predecessor. If
a sequence of N versions has the same value of some properties,
then we store one row, not N rows, and tag it by a version range.

The successor relationship between versions induces a directed
acyclic graph as follows: Multiple invocations of CreateVersion
on the same version, V, cause V to have multiple successors; after
the first, each successor starts a new brunch. Later, two versions
of an object may be merged using the MergeVersion method.
Methods are available to traverse the version graph by getting a
version’s successors and predecessors.

MergeVersion on an unfrozen version V of object 0 takes two
parameters: a frozen version FV of 0 and a flag that identities
either V or FV as primary. It makes FV a predecessor of V iand
merges the state of FV into V as follows: It finds a least common
ancestor of V and FV, called the basis version, BV, and compares
V and FV to BV. For each property P of 0, if only one of V or
FV has updated P since BV, then the updated value is assigned to
P in V. If both V and FV updated P, then the value of the primary
is assigned to P in V. The same is true for collections, except that
the rule is applied to the whole collection or to each relationship
within the collection. A flag on each collection’s type definition
drives this choice. For example, if a collection has maximum
cardinality 1, then merging the whole collection is more
appropriate (e.g., consider merging two collections each with one
member). One can override the semantics of this built-in merge
algorithm in a wrapper, using COM aggregation [6].

3. VERSIONS AND RELATIONSHIPS
For power and flexibility, it is important to support relationships
between individual versions of objects. For ease-of-use and
backward compatibility with Vl, single-version views are
important too, which we describe in Section 5.

In V 1, each relationship object connects a source object to a target
object. In V2, each relationship object connects a source version
to a set of target versions. More precisely, each relationship
supports a method TargetVersions that returns a collection of all
versions of the target object that are related to the source version.
Version-to-version relationships are added and removed by
adding and removing items in the TargetVersions collection. E.g.,
Fig. 1 shows a relationship from version 5 of X to versions 1 a.nd

532

2 of Y. To add a relationship from version 5 of X to version 3 of interface for backward compatibility, so an application written for
Y, one adds version 3 of Y to the collection. Like properties, VI will continue to run on V2. This also allows tools to avoid the
relationships use delta storage, tagging rows by version ranges. versioning model, if they don’t need it.

IVersionRelationship IRelationship
-3

Figure 1 Versioned Relationship

4. WORKSPACE MODEL
To support team-oriented activities, a repository needs support for
long-lived design transactions, to let users isolate their working
versions from each other and make updated versions sharable later
in a controlled way. V2 uses the time-tested approach to these
requirements: checkout-checkin to and from private workspaces.

A workspace is a virtual repository that contains a subset of the
objects and versions in the gIoba1 repository. Each workspace is
represented by an ordinary repository object, so workspaces can
be grouped into collections and have custom relationships.

There is a collection of all the versions in a workspace. Standard
collection operations are used to explicitly add/remove versions
to/from a workspace, thereby making them visible/invisible in the
workspace. A version can be added to many workspaces, but at
most one version of an object is in each workspace. Thus, a
workspace is a single-version view of a subset of the repository.

After a client opens a repository session, S, its context includes
the entire repository. A client can access a workspace W in S.
Workspaces support the session interfaces, so a client can use W
as a logical repository session. By executing operations in the
context of W instead of S, the client only sees objects in W, rela-
tionships on such objects, and those relationships’ target objects
in W. The client uses S instead of W to see the entire repository.

A workspace’s support of session interfaces enhances backward
compatibility. A Vl application accesses (non-versioned) objects
using a repository session as its context. By replacing its session
references by workspace references, the application can still use
session interfaces on those workspace objects, so no other
changes are needed. The resulting application only accesses
objects that are in the workspace. A common usage scenario
might be to populate, a workspace and use it for a long period,
during which many short transactions can be run.

A short transaction is associated with a session, not a workspace.
So it can include operations on many workspaces, allowing
complex models of sharing to be built with workspace primitives.
For example, a transaction could checkin a version in the “test”
workspace, freeze it, and then add it to the “released” workspace.

5. SINGLE-VERSION MODEL
Objects can be accessed without referring to specific versions,
using the Vl API. V2 continues to support this non-version

V2 automatically resolves versions when accessed via non-version
operations. For the object of interest, version resolution returns
the version contained in the current workspace context. Or, if
there is no workspace context, it returns the most recently created
version of the object. E.g., executing get-Object(objID) in the
context of a workspace W returns the version of that object
currently in W, or null if no version of that object is in W. If
accessed in the context of the whole repository, it returns the
latest (most recently created) version of the object. Similarly,
when traversing a relationship in the context of the repository, it
gets either the pinned (i.e. default) version in the relationship, if
there is one (the dashed arrow in Fig. l), or the latest one, if not.

Notice that an application written for Vl is oblivious to the new
versioning and workspace features of V2. Since it is written for
VI, it creates one version of each object and only views the
objects in the context of the whole repository, so version
resolution is unnecessary. Even if a V2-aware application creates
new versions and moves them in and out of workspaces, the Vl
application only sees the latest or pinned version of every object.

6. CONCLUSION
At first, versioning seems like a straightforward addition to a
database system. Our experience is the opposite. It is much harder
than it looks to get simple and powerful versioning interfaces with
good performance. Complexity arises from the combination of
features: branching/merging, version-to-version relationships, and
workspace scoping. These features have richer semantics than
linear version sequences with containment-only relationships.
Given this semantic richness, some extra performance cost seems
unavoidable. There is an execution cost, mainly for version reso-
lution and workspace scoping. We reduced these costs by careful
interface design, so that version resolution semantics translates
into acceptably efficient SQL calls, and by custom storage
structures, such as an optimized table for workspace containment
relationships. There is also storage cost, which we reduced by
using delta storage.

7. ACKNOWLEDGMENTS
We’re grateful to the entire Microsoft Repository team for their
effort in turning these ideas into a product, especially Jason
Carlson, Murat Ersan, Jayaram Mulupuru, and Ragini Narasimhan

8.
[II

121

[31

I41

151

[61
[71

REFERENCES
Bernstein, P., B. Harry, P. Sanders, D. Shutt, J. Zander, “The
Microsoft Repository,” Proc. 23rd VLDE, 1997, pp. 3-12
Bernstein, P.A., T. Bergstraesser, J. Carlson, Shankar Pal, P.
Sanders, D. Shutt, “Microsoft Repository Version 2 and the Open
lnfonnation Model,” Infonnafion Sysfems 24(2), 1999.

Chou, H.-T. and W. Kim, “A Unifying Framework for Version
Control in a CAD Environment,” Proc 12”’ VLDB, 1986, pp 336-344
Katz, R.H. “Toward a Unified Framework for Version Modeling in
Engineering Databases,” ACM Computing Surveys 22, 4 (Dec. ‘90).
Microsoft Repository, http:Nwww.microsoft.com/repository.
Rogerson, D., Inside COM, Microsoft Press, 1997

Sciore, E., “Versioning and Configuration Management in an
Object-Oriented Data Model,” VLDB Journal 3,2994, pp. 77-106.

533

