
Daytona And The Fourth-Generation Language Cymbal

Rick Greer
AT&T Labs - Research

Florham Park, NJ 07932
rxga@research.att.com

Abstract

The DaytonaTM data management system is used by AT&T
to solve a wide spectrum of data management problems.
For example, Daytona is managing a 4 terabyte data
warehouse whose largest table contains over 10 billion rows.
Daytona’s architecture is based on translating its high-level
query language Cymbal (which includes SQL as a subset)
completely into C and then compiling that C into object
code. The system resulting from this architecture is fast,
powerful, easy to use and administer, reliable and open to
UNIXTM tools. In particular, two forms of data compression
plus robust horizontal partitioning enable Daytona to handle
terabytes with ease.

1 Daytona

The DaytonaTM data management system is used by
AT&T to solve a wide spectrum of data management
problems. On the tiny end, Daytona provides the data
manager for the DACS VI switch which only had 64MB
of memory at the time. Since DACS VI used a real-
time UNIX operating system, virtual memory could
not be paged to swap disk. Consequently, the entire
application, including the 15% that was allocated to
the database, had to fit into the rather small amount
of physical memory at all times. At the high end,
SCAMP, the Security Call Analysis And Monitoring
Platform, uses the same Daytona as DACS VI to
manage sequential and direct access to 9 weeks of
all of AT&T’s call detail data, comprising more than
10 billion records in a single table (plus four other
large collections of call detail and summary data).
SCAMP is used to analyze and detect fraud perpetrated
against the company and to fulfill (often emergency)
information requests from law enforcement. SCAMP

Permission to make digital or hard topics ofall or part of this pork for
personal or clwroom use is granted without fee provided that copies
are not made or distributed for protit or commercial advantage and tllat
topics bw Ihis notice and the lirll citaliotl ou the first page. To copy
othcrwisc, to republish, to post on scrvcrs c)r to rcdistributc to lists.
requires prior specific permission and’or a fee.

SIGblOD ‘99 Philadelphia PA

Copyright ACM 1999 l-581 13-084-8/99/05...$5.00

handles more than 70,000 queries a month.
Daytona offers all the essentials of data management

including a high-level query language, B-tree indexing,
locking, transactions, logging, and recovery. Users
are pleased with Daytona’s speed, its powerful query
language, its ability to easily manage large amounts
of data in minimal space, its simplicity, its ease of
administration, and its openness to other tools.

In contrast to Daytona, other DBMS are much larger
and tend to be closed systems (relatively speaking):
they have chosen to implement their own (server-baaed)
operating system, their own networking, user/login
administration, performance monitoring, source code
control and stored procedure management, and so on,
and in some cases, even mail and cron job handling.
Instead, Daytona reuses and leverages the software in
its working environment. This makes it much smaller,
simpler, and more open; in particular, Daytona users
can work with Daytona using many of the tools they
already have and know. Let’s see how Daytona’s low-
overhead architecture and its query language lead to
these several benefits.

2 Daytona Architecture
Daytona revolves around Cymbal, its multiparadigm
query language. Cymbal is processed by translating it
completely into C (and a makefile). It is this unusual
code-generation-based architecture that enables one
and the same Daytona to handle with ease problems
ranging from doing embedded data management on
small real-time systems to managing the 4 terabyte
SCAMP call detail warehouse (with its 16 gigabytes of
memory and 32 250MHz processors).

2.1 Three Modes Of Use

This architecture supports three modes of use:

l Ad Hoc Queries. The simplest mode occurs when
the Daytona user asks the system to translate, C-
compile and run a Cymbal query.

l Pre-compiled. Applications also have the option of
pre-compiling parameterized queries. The applica-

525

tion’s GUI collects the parameters needed to invoke
the previously compiled executables, whose output
is returned to the GUI. This is the analog of SQL-
based stored procedures.

Code Synthesis. The application writer can also
use Daytona as .a silicon programmer to generate
C code according to high-level (meaning Cymbal)
specifications. The corresponding object modules
are then linked with the application’s own object
modules (and Daytona’s libraries) into a single
executable. In this synthesis of user and Daytona-
generated code, user routines may call Daytona-
generated routines which, in turn, may call user-
coded C routines. This is an extremely efhcient way
to include data management in an application since
Daytona is only a C function call away from the
application code.

2.2 One Operating System Is Enough

Another implication of this architecture is that Daytona
has no database server processes! In fact, it has no
daemon processes of any kind. Every query executable
is on its own to run. and produce its answers. Most
other DBMS have invested quite a bit of effort into
creating database server processes, which provide many
services including proprietary file systems, scheduling,
caching, locking, parallelization, security, networking,
and of course, query optimization and execution.
Notice that with the exception of the last two, all of
these services are provided by modern day operating
systems to one degree/flavor or another. Instead
of implementing another operating system, Daytona
cuts out the middleman and in effect, uses the UNIX
operating system itself as Daytona’s server process.

Daytona’s approach has several advantages. First,
the same services are not being implemented twice and
furthermore, one does not encounter the interference
risks of “too many cooks spoiling the broth”. Thus,
Daytona is a far smaller DBMS than most. Conse-
quently, it can fit on smaller machines and there is much
less code to maintain (and correspondingly, much less
opportunity for thing:s to go wrong). As a result, Day-
tona has much easier OA&M (Operations, Administra-
tion, And Maintenance) requirements than most. As
just one in.dicator, instead of the dozens of processes
some other DBMS need to invoke on startup and keep
healthy, Daytona has none at all; if your computer is
up, Daytona is up.

2.3 Filesystem Issues

Daytona not only uses UNIX filesystems to store its
data but the user even has the option of storing
their data in the awk/Perl-compatible ASCII format of
delimiter-separated fields, new-line terminated records.
The use of this open format is reassuring to many users

because they can actually see their data in their favorite
text editor and because they can use standard UNIX
tools on their data in the same form that is used by
Daytona. Contrast this instead with storing data in a
binary, proprietary format in 2K blocks, each containing
a directory of pointers to slots within the block.

Daytona’s data format can also optionally include
field- and record-level compression. At the field level,
various tricks are used such as eliding default values
and using special ASCII code bytes to represent pairs
of digits. At the record level, a static dictionary
of strings is computed for the table in question and
the table is compressed record-by-record by replacing
dictionary strings with 8 bit codes. (The advantage of
compressing each record individually is that B-trees can
still point to the first bytes of (compressed) records and
consequently, there is no need to decompress an entire
file in order to read out a particular record of interest.)
Each of these compression levels has proven capable of
50% reduction. When needing to store a terabyte, it is
better to store 250 gigabytes.

3 The Cymbal Query Language
Cymbal is a multiparadigm, fourth generation language
that seamlessly integrates a procedural dialect with a
first-order logic subset, ANSI 89 SQL, a sublanguage
having to do with (declarative) set/list-formers and an-
other one for describing database records. The proce-
dural dialect includes assignments, conditionals, loops,
function definitions, and compilation units called task:s.
The first-order logic component is a domain calculus
that employs the full assortment of connectives and
quantifiers in unconstrained first-order combinations
and is treated in a model-theoretic manner. The proceiss
of finding all values for the free variables in an asser-
tion is handled in a backtracking manner reminiscent
of Prolog but without using Horn clauses or being urn-

duly sensitive to the order of the conjuncts. Cymbal.‘s
SQL dialect is implemented by translating it into the
first-order logic component. A fluent Cymbal program-
mer freely intermixes all of the dialects in their query
programs according to which is the most convenient,
powerful, or concise at the time.

4 Pointers
Much more on Daytona appears in the electronic pro-
ceedings of this conference. See also
http://www.research.att.com/projects/daytona. Day-
tona can be obtained through Global Technologies,
Ltd., an AT&T VAR. See http://www.gtlinc.com.

526

