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1 Introduction 
With the advent of GIS, multi-media, and warehousing 
technologies, database systems have started focusing 
on storage and access of multi-dimensional data such 
as spatial, OLAP, image, audio, and video attributes. 
As a step in this direction, Oracle% launched the 
interMedia product to support spatial and image data, 
and Materialized Views (MV) to support warehousing 
applications. Although 2-dimensional spatial data is 
efficiently indexed using OracleBi Spatial, and high- 
dimensional image data using a combination of bitmap 
indexing and the Visual Information Retrieval (VIR) 
product, there is still a need for efficient indexing 
mechanisms for medium-dimensionality data such as 
OLAP, and CAD/CAM applications. In this paper, 
we describe the implementation of a new indextype, 
called the R-tree, to support medium-dimensionality 
data (i.e., data whose dimensionality is in the range of 3- 
10) using the extensible indexing framework [DDSS95] 
of OracleSi. This indextype combines some of the best 
features of existing R-tree variants [Gut84, BKSSSO, 
WJ96, LLE97, RKV95]. 

2 Framework 

The new indextype is implemented using the extensible 
indexing framework of Oracle8i (referred to as cooper- 
ative indexing in [DDSS95]). This framework allows 
easy creation and maintenance of domain-specific in- 
dex structures on top of the server layer while reaping 
the full benefits of operating within a database frame- 
work. As a consequence, the new index structure inher- 
its features such as transactional semantics, integrated 
backup and recovery, security, and replication from the 
underlying database. 

3 Storage 

The R-tree indextype being defined in Oracle8i can 
index two datatypes: an sdo-mbr type, which is a d- 
dimensional rectangle specified by the lower-left and the 
upper-right corners, or an sdo-geomety type, which is 
an Oracle8i object type that allows for the specification 
of complex geometries (as defined by OGC). 

Data items are stored in a relational table, which we 
refer to as the base table. The R-tree constructed for the 
data items is stored in the database using a metadata 
table storing the information about the root of the R- 
tree, its dimensionality and fanout, and an index table 
storing the nodes of the R-tree. 

4 Index Creation and Update 

4.1 Bulk Creation 

The user can specify one of two creation strategies: 
one using the sort-tile-recursive approach [LLE97], and 
another using the VAMSplit R-tree approach [WJ96]. 
The first one has fast creation times whereas the second 
approach obtains good query response times [WJ96]. 

4.2 Inserts and deletes 

Inserts and deletes (referred to as updates) are pro- 
cessed in two phases: a locate phase, and an update 
phase. In the locate phase, updates propagate from the 
root to a leaf node wherein the update is to be per- 
formed. During the update phase, the update is pro- 
cessed in the identified leaf node and the changes of the 
update are propagated up the tree. Note that unlike 
a B+-tree, the update may propagate up even when 
there is no split of the leaf node. This happens when 
the MBRs of the nodes on the update path need to be 
adjusted due to update of the lower-level nodes. Ora- 
cle read-consistency model ensures that node accesses 
either during queries or during the locate phase of an 
update are never blocked. Node accesses are blocked 
only during the update phase. 

Although reads in a query do not observe committed 
tree changes performed after the start of the query 
due to Oracle read-consistency model, node-updates 
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in an update operation do see the latest committed 
versions of the updlated nodes. As a result, node- 
splits and node-deletes may lead to inconsistencies 
during concurrent updates. To ensure good concurrency 
without sacrificing tree integrity, we adopt the following 
strategy. First, we do not allow updates to delete nodes: 
empty and under-filled nodes are reclaimed during a 
separate tree reorganization operation that locks the 
entire tree. Next, for detecting nodes-splits during 
concurrent updates, we use the nodeid information of 
the nodes. 

4.3 Altering the Index 

In this operation, the user is allowed to either recon- 
struct the entire tree from scratch, or to reorganize the 
tree by first eliminating empty, and under-filled nodes, 
and then improving the quality of the tree by doing 
forced reinsertion. 

5 Query Operations 

The R-tree indextype supports three types of opera- 
tions: window queries, nearest-neighbor queries, and 
intersection joins. Window queries specify a query win- 
dow and retrieve data whose MBRs interact with the 
query window in one of 4 ways: intersection, contain- 
ment, enclosure and exact-match. Nearest-neighbor 
queries specify a query point and retrieve the k clos- 
est data MBRs. Joins identify the data items of two 
different datasets that intersect with each other. Note 
that these queries are processed using the MBRs. For 
some applications such as GIS data where the bound- 
ing rectangles only represent first-level approximations 
of the data items, the query result may have to be post- 
processed using the complete extents of the data items 
to obtain the final result. 

All queries are implemented as operators in Oracle8i 
extensible indexing framework. The operators are 
evaluated using start, fetch, and close routines of the 
extensible indexing interface. The query is set up in 
the start routine (for instance, a stack is initialized with 
just the root node on top for window queries). It is 
incrementally processed in the fetch routine, and the 
associated stacks and queues are cleaned up in the close 
routine. 

Note that to ensure limited memory usage, the 
queries are processed in a depth-first manner. Con- 
sequently the query algorithms for window, nearest- 
neighbor, and join queries [BKSSSO, BKS93, HJR97] 
are adapted appropriately. For instance, a spatial join 
operation on two nodes R and S (each corresponding 
to a different R-tree11 identifies a pair of child entries, 
and propagates to the corresponding pair of child nodes, 
without identifying the other pairs of entries of R and 
S that need to be processed later. To facilitate on-the- 
lly identification of t:he pair of child entries to process 

next, the nodes R and S are stored on a stack along 
with appropriate information. As a result, the memory 
requirement reduces from O(n2) (corresponding to all 
pairs of entries of R and S as in [HJR97]) to 0(2 * n) 
(corresponding to storing R and S), where n is number 
of entries in each node. 

6 Extensions 
In addition to indexing inherently multi-dimensional 
columns, R-trees can also be used to index multiple 
columns so as to answer queries on multiple columns 
efficiently. Such extensions are being considered lfor 
future versions. 
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