DataBlitz Storage Manager: Main-Memory
Database Performance for Critical Applications

J. Baulier
H. Korth P. Mcilroy J. Miller
S. Seshadri

P. Bohannon S. Gogate C. Gupta S. Haldar

S. Joshi A. Khivesera

P.P. S. Narayan M. Nemeth R. Rastogi

A. Silberschatz S. Sudarshan* M. Wilder

C. Wei

Bell Laboratories, Murray Hill

1 Introduction

General-purpose commercial disk-based database sys-
tems, though widely employed in practice, have failed to
meet the performance requirements of applications re-
quiring short, predictable response times, and extremely
high throughput rates. Main memory is the only tech-

nology capable of these characteristics.

DataBlitz! is a main-memory storage manager prod-
uct that supports the development of high-performance
and fault-resilient applications requiring concurrent ac-
cess to shared data. In DataBlitz, core algorithms for
concurrency, recovery, index management and space

management are optimized for the case that data
memory resident.

2 DataBlitz Architecture and Features

is

In this section, we give a high-level overview of the ar-
chitecture and features of the DataBlitz Storage Man-
ager product implemented at Bell Laboratories (for

more details, see [1]).

Direct Access to Data. DataBlitz is designed to allow
direct access to data in shared memory, without over-
head for interprocess communication. Applications map
the entire database as well as logging and locking in-
formation into their virtual address space (see Figure 1).
Thus, unlike disk-based databases, accesses in DataBlitz

Current address: Department of Computer Science, IIT

Bombay.

'A commercially available production software platform
which has evolved from the Dali research project at Bell

Laboratories. (See http://www.bell-labs.com/project/dali/).

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first pagcﬁT() copy
otherwise, 1o republish, to post on scrvers or to redistribute to lists.
requires prior specitic permission and‘or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

519

Shared Memory

q Shemed Hemery
virtual |l | Locks \l' Vircual
Memory o Logs Memory of
Process - I{ Process 2
b -
- System DB ™ L
' o ri [
Cl T i
[l-— -7
| :

User Process 1 | DB File 1 1| yger Process 2
=T S SR [e s
Sty \ < ! v
~.Datablitz lib ool '1\. ~ Da:a‘micz,m;

f— c1 U } ’ ;J "
d Lo
DB File N
: e :“\
rD} [
S— \1,_/

Checkpoints and Logs

Figure 1: Architecture of the DataBlitz System

do not incur network latency or buffer manager over-
head. This is an important reason for the superior per-
formance of DataBlitz over commercial disk-based sys-
tems.

Configurable, Multi-level API, Data organization is
supported in DataBlitz with persistent space manage-
ment, and concurrent index management based on both
hashing and tree structures. An important principle that
has guided the implementation of DataBlitz has been a
toolkit approach and support for multiple interface lev-
els. The former implies, for example, that logging facil-
ities can be turned off for data that need not be persis-
tent, and locking can be turned off if data is private to a
process. The latter principle means that low-level index
components are exposed to the user so that critical appli-
cation components can be optimized with special imple-
mentations. Although application developers are likely
to prefer the high-level relational interface for its ease
of use, our experiments indicate that substantial perfor-
mance gains can be realized by using the low-level inter-
faces. For instance, for a simple phone number lookup
application, DataBlitz outperformed a commercial disk-
based database system by almost a factor of 40! Also,

exporting the low-level interfaces enables DataBlitz to
be customized to meet specific application needs such
as a small footprint (that is, executable size).

Resilience to Failures. A key design requirement for
DataBlitz has been resilience to software and hardware
faults. To this end, features to protect data from corrup-
tion (due to stray application pointers) using codewords,
and to recover synchronization abstractions (latches)
from process failure have been developed. In addition,
tools for auditing internal data structures, space usage
and database structures like indices are currently being
developed. Further, an advanced multi-level transaction
model designed for main-memory provides for highly
concurrent index access while allowing recovery from
system halting failures. Also, applications can avail of
the hot standby feature which provides high reliabil-
ity and availability via redundancy on a secondary ma-
chine. This is a crucial requirement in telecom and other
mission-critical applications for whom overall down-
time (including the time spent recovering from failures)
must be no more than a few minutes per year. Other
features being driven by such applications (that will be
supported in the future) include on-line schema evolu-
tion and on-line software upgrades.

Scalable and Performance-driven Architecture. In
order to ensure predictability of response times for user
applications and their scalability in symmetric multi-
processor environments, DataBlitz provides support for
fine-grained concurrency control at both the lock (e.g.,
record level locking) and latch levels (e.g., for protecting
system structures like the lock table), and fuzzy check-
points that minimally interfere with transaction process-
ing. In the absence of disk I/0O, the performance of a
database query is governed by the number of CPU in-
structions necessary to execute it. To minimize CPU cy-
cles, DataBlitz relies heavily on caching plans and other
structures (e.g., iterators, cursors) between consecutive
queries. In a main-memory environment, since locking
and latching overheads constitute almost 50% of the ex-
ecution time for a simple lookup, special attention has
been paid in DataBlitz to reducing their cost. Latches
are implemented in user space as spin locks (since sys-
tern semaphores can be very expensive), while locking
performance is optimized by statically allocating lock
structures as opposed to conventional implementations
based on a dynamic lock table.

Minimizing Storage Overhead. In order to reduce
storage space overhead and the path length for data ac-
ccesses, and since the database resides entirely in main-
memory, DataBlitz does not employ a traditional storage
architecture that is based on slotted pages. Instead, free

520

lists keep track of free space for the entire database, and
direct physical pointers to objects are permitted. Note
that direct physical pointers improve the speed of ac-
cess for objects at the cost of complicating the task of
relocating/compacting them. Further space savings are
achieved by not storing keys in indices; instead, indices
only store pointers to objects and the objects themselves
are used to extract key information when the index is
traversed.

3

Applications in financial trading, electronic commerce
and real-time billing are among those well-suited for
DataBlitz’s features, as well as traditional telecommu-
nications applications like switching and call routing.
Redesigning Special-Purpose Systems. For several
decades, the practice in main-memory systems has been
to code special-purpose, custom systems. This practice
mainly arises from the lack (until recently) of viable
commercial alternatives. Recently, we have seen in-
creasing interest in employing general-purpose storage
managers in place of existing legacy systems. Examples
of these systems include military systems and switching
in telecommunications. In the telecommunications envi-
ronment, transactions are mostly read-only and involve
looking up switch configuration information (connec-
tions between incoming and outgoing trunks), routing
tables and information related to services subscribed by
users (e.g., call waiting, call forwarding). The lookups
require sub-millisecond response times since the switch-
ing and routing functions are performed during call
setup whose duration is typically a few tens of millisec-
onds.

Re-Inventing Traditional Applications. Traditional
batch systems are continually subject to reinvention as
on-line processes. For instance, real-time event aggre-
gation is used to turn formerly batch-based applications
such as telecommunication billing into real-time appli-
cations. This capability is the key enabler of pre-paid ac-
counts, where it must be determined as part of the set-up
of a call (whose duration is a few milliseconds) whether
the account has sufficient funds for the call, and if so,
for how long the call can be allowed to continue. An-
other application enabled by real-time event aggregation
is fraud prevention.

Applications

References

[1] P. Bohannon, D. Lieuwen, R. Rastogi, S. Seshadri,
A. Silberschatz, and S. Sudarshan. The architecture
of the Dali main-memory storage manager. Multi-
media Tools and Applications, 1997.

