
Implementing the Spirit of SQL-99
Paul Brown

INFORMIX Software
201h Floor, 300 Lakeside Drive.

OAKLAND, CA, 94612. USA.
01-51 O-628-3765

brown@informix.com

ABSTRACT
This paper describes the current INFORMIX IDS/UD release (9.2
or Centaur) and compares and contrasts its functionality with the
features of the SQL-99 language standard. INFORMIX and
Illustra have been shipping DBMSs implementing the spirit of the
SQL-99 standard for five years. In this paper, we review our
experience working with ORDBMS technology, and argue that
while SQL-99 is a huge improvement over SQL-92, substantial
further work is necessary to make object-relational DBMSs truly
useful. Specifically, we describe several interesting pieces of
functionality unique to IDSAJD, and several dilemmas our
customers have encountered that the standard does not address.

Keywords
INFORMIX, object-relational database, SQL, language standards.

1. INTRODUCTION
Release 9.2 of the INFORMIX Dynamic Server with Universal
Data option (IDSKJD) implements most of the data model and
query language features standardized in the SQL-99 language
specification. In this presentation we provide an overview of this
functionality.

However, the more interesting lesson of our first five years
shipping an object-relational DBMS has been that SQL-99 style
development presents a series of quite different challenges from
what was encountered with SQL-92. These difficulties indicate
that the SQL-99 standard can and should be improved upon. We
include brief descriptions of why, and how, several useful non-
standard features of our engine are implemented, and describe
several areas where further standardization effort is required.

2. INFORMIX IDS/UD
The following table presents a partial list of the interesting SQL-
99 features supported by IDSAJD. INFORMIX was among the
first vendors to provide extensibility and an object-relational data
model as features of its DBMS. This list reflects the functionality
of the currently shipping ORDBMS product.

hmission (0 make digital or hard topics ofall or [,art ofthis work +-“,
wonal Or cfassroom use is granted without fee provided that copies
are not made or dislributed lbr profit (jr colnm&a] acjvantage and tt,at
c()Pies hear this mticc and Ihe fill1 citatioll orI the first pagc, ~~~ copy
othcl~~is% to wAdish, t0 pOSt on servers 01’ to redistribute to lists,
rewires prior specific permission and/or a fee,

SIGMOD ‘99 Philadelphia PA
Wyrkht ACM 1999 1-58 113-084-8/99/05...$5.00

.

.

.

.

.

.

.

.

.

.

.

.

.

User-defined Types (UDTs)

SQL-92 Built-in Types and Expressions

ROW Type

COLLECTION Type

DISTINCT Type

User-defined Routines (UDRs)

EXTERNAL Routines in ‘C’, Java (SQLJ Part 1) and C++’

Internal routines in INFORMIX Stored Procedure
Language(SPL)

Mutator, Observer, Operator, Constructor expressions

UDR Overloading

Inheritance and Polymorphism

ROW TYPE Inheritance

Table Inheritance

Polymorphic Queries

Query Language Features

COLLECTION Derived Tables

Closed Query Expressions

Figure 1. Partial List of SQL-99 Features in INFORMIX 9.2

Many of the non-core aspects of the standard, like the SQLA4M
spatial data types and functions, or the T-SQL extensions can be
implemented using these features. For example, the Period data
type that represents a fixed interval in the time-line can be
handled as a UDT. In order to support these features efficiently
IDSlUD provides interfaces that let extension developers overload
our data management services like sorting, indexing, replication
and so on. In addition INFORMIX has been very aggressive in
adopting API standards as they emerge: JDBC, SGML and OLE-
DB.

3. BEYOND THE STANDARD
INFORMIX’s IDSlUD includes functionality that goes beyond
the standard in several areas. Therefore, INFORMIX is working
to affect the direction of the standard as it evolves. In this section,
we describe several IDYLJD specific technologies, explaining
briefly why they are necessary and describing how they are
implemented. We also describe several problems encountered by
developers using ORDBMS technology. Taken collectively, these

’ On Microsoft platforms only.

515

issues indicate that in order to remain inter-galactic database
speak, SQL-99 requires substantial further work.

The intention of what follows is not to diminish the achievement
of SQL-99. The standard is a thorough, rigorous document: the
product of an enormous and well-intentioned effort. Also, it is
quite possible that ORDBMSs can be viewed as slightly more
general RDBMS systems; i.e. the advantages of SQL-99 are the
modularity and re-use that can be attributed to features like ROW
TYPES and inheritance and the extended types defined in SQL-
99/MM. What these aspects of the standard do not address
however, is the diverse data ecology that must be addressed by
modem application developers.

3.1 Open Storage Manager
The IDSKJD product supports an open storage manager, called
the Virtual Table Interface or VTI. This provides the means
whereby external or remote data sources may be integrated within
the ORDBMS and presented to developers as tables. Such an
interface is considerably more sophisticated than an interface like
OLE-DB; it needs (optional) interfaces to logging and locking
facilities, cost estimators for query planning and more
sophisticated metadata handling. For example, VTl allows us to
create interfaces to XML documents, ERP middleware and even
distributed components with transient data (a JINI toaster, for
example). This means that we can use SQL to place orders in the
ERP system to buy toasters from e-commerce vendors as
replacements for currently broken ones.

INSERT INTO ERP-Orders
(Vendor, Product, Quantity)
SELECT W.Vendor-Id,

T.Product-.Part-Id,
I

FROM Web-X&Z-Suppliers W, JINI-Toasters T
WHERE T.IsBusted

AND T.Product-.Part-Id IN
W.Products-Supplied;

Figure 2. Query Involving Three Eternal Data Sources

Standards for supporting this kind of multi-database integration
are sorely needed, and we strongly endorse the work of the
SQUMED (Management of External Data) sub-committee in this
area.

3.2 Language Mamager Extensibility
Developers using IDSKID can implement extensions using a
variety of procedural languages: INFORMIX’s proprietary stored
procedure language, a semi-compiled language like Java, or ‘C’
compiled into shared library binaries. What is common to all of
these extensibility alternatives is that the user-defined code runs
within the same memory address space as the DBMS process.
This design achieves optimal performance because it minimizes
the overhead incurred when the ORDBMS invokes the user-
defined code. Vendors failing to adopt this architectural mode1
will be at a significant performance disadvantage [9].

Early in our design process we decided that the engine needed an
abstracted interface that would support the addition of multiple
language environments. This generalized extension mechanism
consists of a set of procedure calls - which must be implemented
in ‘C’ - to handle argument marshaling, procedure invocation,

return values and exceptions. Developers integrating fully ‘sand-
boxed’ environments like Java or Visual Basic must also map
system calls - requests for resources like memory, I/O and thread
management - to their IDS/UD equivalents.

The mechanism is general enough that it allows us to link the
JAVA. LIB library shipping with various Java distributions into
the DBMS executable’s address space. We are repeating the
process for COM interfaces on WindowsTM systems.

SQL-99 does not include a standard way to integrate new
language environments. It would be a tremendous boon to
language vendors like Borland, Franz Inc., and Lucent to integrate
Delphi, LISP and Inferno into DBMSs in a standard way.

3.3 OPAQUE Types
Managing variable length data types presents some difficult
problems. For example, one of the data types we manage in the
server is the SQL-99/MM stqolygon. In our implementation,
polygons representing US state and territory boundaries vary in
length by several orders of magnitude. Boundaries for square
states like Colorado and New Mexico are 72 bytes long, while
boundaries for states like Texas and Maine can take up hundreds
of kilobytes

The solution requires what we call a multi-representational type,
which is made possible through the INFORMIX OPAQUE ‘type
mechanism. Developers implementing an OPAQUE type: in
IDS/UD can use interfaces provided by the server to specify a
threshold value, and when the object exceeds this limit the
object’s data is moved to large-object storage. In the
s t-polygon example we always store the bound-box and
some meta-data in the record, and optionally page the polygon
data into large-object storage, depending on its size.

Efficient processing of queries involving spatial data requires a
two-phase approach. In phase one, we use an approximation -
usually a bounding rectangle - for a rough check to excl.ude
obviously false matches. Then we perform an exhaustive check on
the approximate matches in phase two. Storing data for polygons
like Texas in the table’s row multiplies scan times for the entire
data set. But storing all polygon data separately also implies
significant overhead, as the DBMS must visit the large object
storage to retrieve several smaller objects. In the general case,
variable length objects like stqolygon, or digital signal dlata,
and many business objects, are best handled using the (non-
standard) OPAQUE type representation.

Therefore, in our opinion, an OPAQUE type or encapsulated
component interface is a highly desirable feature missing from the
current standard.

3.4 User-defined Aggregates
Among our most successful ORDBMS customers are several
using the ORDBMS as an analytical engine. The kinds of analysis
they perform are poorly supported by SQL-92 systems. For
example, they want to perform spatial aggregates like ConvexHull
or problem domain specific analysis like ValueAtRisk. In the
general case such customers need user-defined aggrega.tes:
extension mechanisms that permit them to efficiently (i.e. with
parallelism) scan a large number of data objects and compute
some result. The requirements for such an interface are quite well
understood [6] although at this time only INFORMIX has
implemented one.

516

For SQL to be successful in decision support applications, a user-
defined aggregate standard is necessary.

3.5 The Problem of Multiple Extensions
In SQL-92 databases the schema consists of a collection of inter-
dependent tables, each of which consists of a set of columns. The
SQL-92 language standardizes a simple type system for these
columns and a set of expressions for the query language. All that
the SQL-92 developer needs to know is their schema design and a
few hundred pages of a SQL textbook[2][7]. But in an ORDBMS,
the database includes a great many types and functions. For
example, the GIS extensions provided by INFORMIX’s partners
include about fifty data types, and perhaps one thousand
functions. A SQL-92 style developer using an extensible DBMS
is obliged to remember the correct spelling of each of these
function’s identifiers, their argument order, and when several
functions are combined into a single query expression they also
need to know the function’s return type.

As a result, working with SQL-99 is very hard. Developers using
the INFORMIX ORDBMS commonly request that we provide
some kind of schema browser that presents the database’s schema
objects - tables, columns, types and functions - in a GUI. For
example, consider developing a system that mixes geographic
types, digitized microscope image data and pattern recognition
functions in a single database. Queries against such a system
might be crafted by hand, but a far more efficient alternative is for
the ORDBMS vendor to provide a tool to do so instead. This
diminishes the utility of the standard for application developers
and vendors. Developers no longer need to rely on their
knowledge of what the standard says to write queries, and vendors
no longer need to adhere to it in order to be useful to developers.

A variety of commercial and research systems have demonstrated
how graphical techniques can support much of the functionality of
a query language.[l][8] In these systems, and in tools like
INFORMIX-Visionary@,, the interface generates queries and
displays their results without the user being aware what SQL
expressions are involved.

SQL would benefit from a standard graphical schema browser and
query builder, and standard exchange format for graphical queries.

3.6 The Problem of the API
The current state of the art application programming interfaces
(APIs) are either embedded language approaches - ESQVC,
embedded Java (SQW Part 0) - or call level interface APIs -
SQL-99/CL1[5], ODBC, JDBC. Either style is really only useful
when the type system of the DBMS has a close correspondence to
the type system of the host language program. With SQL-92 this
is almost always true. Historically, the SQL language was
intended for embedding within COBOL or ‘C’, and more recently
4GLs. The small number of exceptions - SQL’s DECIMAL type
has no obvious equivalent in ‘C’, for example -- are handled by
the vendor’s client libraries.

But with SQL-99, the host language program may not know the
return types from a query until the ORDBMS executes it, and the
external programming language will almost certainly not know
what to do with the kinds of data that are returned by the
ORDBMS. For example, consider the following query, in which a
His togram user-defined aggregate returns a complex data type.

SELECT Histogram (E.Salary),

E. Department

FR.OM Employees E

GROUP BY E.Department;

Figure 3. SQL-99 Style Query

The problem with embedding this query into any host language is
that the data type returned by the aggregate may change between
invocations. For example, this aggregate may be part of a package
of statistical or analytic extensions that must be upgraded
occasionally. To achieve the same physical and logical abstraction
that was possible in SQL-92, every ORDBMS query needs to be
treated as a dynamic query. Dynamic queries are less of an issue
with SQL-92 systems because every expression has standardized
properties, and every data type has its host language equivalent.

All of the standard APIs are data-centric. That is, they are
designed to manage data values. But this is not enough with an
extensible DBMS. There needs to be a mechanism for the
ORDBMS to pass entire interfaces back to the host language: that
is, the means to manipulate query result objects on the client side
without the external program knowing a-priori what the return
results will be. The JDBC 2.0 standard provides the means to map
server-side objects into pre-existing client-side objects. But for
tools vendors who will need to provide access to databases
containing user-defined types with arbitrary data structures - and
arbitrary visualization algorithms -- such mapping does not solve
the problem.

To be useful, the SQL-99 APIs should evolve into component or
object-centric interfaces.

3.7 The Problem of Porting SQL-99 Queries
A primary objective of a language standard is to provide
portability of applications and skill-sets between products. With
the same data set on two RDBMSs, the same queries will return
the same results. But our experience has been that even porting
applications between different extension libraries with our own
ORDBMS poses significant challenges.

The problem is more semantics than syntax. Queries that return
one result with one set of text extensions return different results
on another, even though the syntax is identical. For example,
given a library of medical articles, when one vendor’s extension
functions are asked to return all articles containing the concept
‘hypertension’ it might return 100 unordered articles in a few
seconds. The same query expression, using another vendor’s
extensions, may return 200 articles ordered by the degree of
conceptual relevance in a minute or two. Neither answer is wrong.
Both queries are - to the extent that they can be - compliant with
the stzmdard.

What this indicates is that even developers who manage to meet
their application requirements while sticking religiously to the
letter of the standard will Iind their system exhibits different
functionality in different DBMSs. What seems to be needed are
SQUMM style efforts for a multitude of other domains: financial
data, audio, video, digital signal data, currency, etc.

4. DBMS INTERFACE DIRECTIONS
Over time, DBMS products have evolved considerably beyond
their original purpose, which was to store data and respond to
external queries. Modem RDBMSs include sophisticated active

517

DBMS facilities and can host procedural logic implementing
complex business proceases. ORDBMS technology continues this
trend. It turns the DBMS into a component framework. The fact
that an ORDBMS includes scaleable, transactional data storage
functionality can be seen as entirely incidental. For example, we
are beginning to see our customers use the ORDBMSs as a
middleware server. In these circumstances, the query language is
simply a high-level notation for reasoning about the components
the system manages.

The problems cataloged in Section 3 are all low-level
development issues. In our opinion, the correct way to address all
of them is to step back and rethink the nature of the DBMS
interface. Perhaps the major problem with SQL-99 is that textual
query languages and procedural APIs - which were conceived in
the days of character terminals -- are no longer the most
appropriate model to use when addressing complex object
management in an era dominated by graphical user interfaces.

The alternative to a textual query language is a more abstracted
interface that presents developers and even end-users with
conceptual-level information system objects. They then combine
and manipulate these objects in a graphical user-interface. The
interface is component-centric, and when it receives objects from
the DBMS, these objec:ts include interfaces letting the client
system render the object on the screen.

All of the logical principles that have guided DBMS interface
design; i.e. the emphasis on dynamic programming and
declarative expressions and supporting technologies like query
processing and optimizati.on, remain relevant. The important point
is that the syntactical notation used to express these queries is
entirely hidden. It might well be based on SQL-99, but it need not
be. A precedent for this kind of usage pattern can be seen in
CASE tools that generate DDL for different RDBMSs, and report-
writer tools that generate DML. What matters to the developer or
end-user is the functionality of the interface. Less important is the
syntax of the SQL it generates.

5. CONCLUSION
In this paper we have briefly described the extent of
INFORMIX’s support for the SQL-99 language standard. The
IDS/UD product supports most of the innovative features of SQL-
99: user-defined types and functions, object features like
inheritance and polymorphism, and new query language features

like closure. Although INFORMIX’s syntax is a slight variation
on the standard’s syntax, we anticipate adapting to the standard
quite quickly.

The second part of this paper discussed several observations about
how developers are using SQL-99 style features. We concluded
that the language standard, while a great leap forward, still needs
considerable work before it can be as widely used as the database
community would like it to be.

6. ACKNOWLEDGMENTS
Thanks to Mike Ubell and Charles Campbell, INFORMIX’s
representatives on the SQL standard committee, for their
comments and clarifications on the standard, Mike Stonebraker
for his advice on an earlier draft, and Caroline Cleaves.

7. REFERENCES
[l] Bloesch, Anthony. C. and Halpin, Terry A. “ConQuer: A
Conceptual Query Language.” lSh Int. Conf. on Conceptual
Modelling. Berlin, Germany. 1996.

[2] Date, C. J. and Darwen, Hugh. A Guide to The SOL Stancm
Third Edition. Addison-Wesley Publishing Company. Menlo
Park, CA. 1994.

[3] IS0 Draft International Standard Database Lanrmage SQL
Part 2: Foundation December, 1998.

[4] IS0 Working Draft SOL Multimedia and Aoolication
Packages: Part 2: Full-Text September 1995.

[S] IS0 Working Draft Database Language SOL - Part 3: Ca&
Level Interface July, 1998.

[6] Jaedicke, Michael. and Mitschang, Bernhard. “On Parallel
Processing of Aggregate and Scalar Functions in Obj,ect-
Relational DBMS” Proc. of SIGMOD 97. Seattle, USA. 1997.

[7] Melton, Jim and Simon, Alan R. Understanding the New St&
A Complete Guide Morgan Kaufmann Publishers. San Francisco,
CA. 1993.

[8] Microsoft Access Version 97. Microsoft Corporation.
Redmond, Washington. 1997.

[9] Stonebraker M, and Brown, P. Object-Relational DBBAS:
Tracking the Next Great Wave. Morgan Kaufmann. San Meteo,
CA. 1998.

518

