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Abstract 
The design of webbases, database systems for supporting Web- 
based applications, is currently an active area of research. In this 
paper, we propose a 3-layer architecture for designing and imple- 
menting webbases for querying dynamic Web content (i.e., data 
that can only be extracted by filling out multiple forms). The low- 
est layer, virtual physical layer, provides navigation independence 
by shielding the user from the complexities associated with retriev- 
ing data from raw Web sources. Next, the traditional logical layer 
supports site independence. The top layer is analogous to the exter- 
nal schema layer in traditional databases. 

Within this architectural framework we address two problems 
unique to webbases - retrieving dynamic Web content in the 
virtual physical layer and querying of the external schema by the 
end user. The layered architecture makes it possible to automate 
data extraction to a much greater degree than in existing proposals. 
Wrappers for the virtual physical schema can be created semi- 
automatically, by asking the webbase designer to navigate through 
the sites of interest - we call this approach mapping by example. 
Thus, the webbase designer need not have expertise in the language 
that maps the physical schema to the raw Web (this should be 
contrasted to other approaches, which require expertise in various 
Web-enabled flavors of SQL). For the external schema layer, we 
propose a semantic extension of the universal relation interface. 
This interface provides powerful, yet reasonably simple, ad hoc 
querying capabilities for the end user compared to the currently 
prevailing “canned” form-based interfaces on the one hand or 
complex Web-enabling extensions of SQL on the other. Finally, 
we discuss the implementation of the proposed architecture. 

1 Introduction 
The trend of using the World Wide Web as the medium 
for electronic commerce continues to grow. Web users 
need to obtain information in ways that cannot be directly 
accomplished by the current generation of Web search 
engines. It is typical for a user to obtain information by 
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filling out HTML forms (e.g., to retrieve product information 
at a vendor’s site or classified ads in newspaper sites). This 
process can become rather tedious when users need to make 
complex queries against information at multiple sites, e.g., 
make a list of used Jaguars advertised in New York City area, 
such that each car is a 1993 or later model, has good safety 
ratings, and its selling price is less than its Blue Book value. 
Answering such complex queries is quite involved, requiring 
the user to visit several related sites, follow a number of 
links and fill out several HTML forms. Thus the problem 
of developing tools and techniques for creating Web-based 
applications that allow end users to shop around for products 
and services on the Web without having to tediously fill out 
multiple forms manually, is both interesting and challenging. 
It is also of considerable importance in view of a recent 
survey that contends that 80% of all the data in the Web can 
only be accessed via forms [ 181. 

Not surprisingly, the design of database systems for man- 
aging and querying data on the Web, called webbases (e.g., 
in [25]), is an active area of current database research. A sig- 
nificant body of research covering a broad spectrum of topics 
including modeling and querying the Web, information ex- 
traction and integration continues to be developed (see [8] 
for a survey). Nevertheless research on the design of tools 
and techniques for managing and querying the dynamic Web 
content (i.e., data that can only be extracted by filling out 
one or more forms) is still in a nascent stage. 

There are several problems in designing webbases for 
dealing with dynamic Web content. Firstly, there is the 
problem of navigation complexity. For instance, while there 
has been a number of works that propose query languages 
for Web navigation [27,17,16,4], they are only beginning to 
address the difficult problem of querying sites in which most 
of the information is dynamically generated. Navigating 
such complex sites requires repeated filling out of forms 
many of which themselves are dynamically generated by 
CGI scripts as a result of previous user inputs. Furthermore, 
the decision regarding which form to fill out next and how, 
or which link to follow might depend on the contents of a 
dynamically generated page. 

Secondly, given the dynamic nature of the Web, in 
order to build a practical tool to retrieve dynamic content 
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from Web sites, one needs to devise automatic ways to 
extract and maintain navigation processes from the site 
structure. Lastly, once navigation processes have been 
derived, one needs to query the information they represent. 
Although traditional ‘databases also provide sophisticated 
query languages, such as SQL or QBE, these interfaces 
are rarely exposed to the casual user, since they are still 
considered too complex. Naive users are usually given 
canned queries needed to perform a set of specific tasks. 
These canned interfaces served well in the case of fairly 
structured corporate environments, but they are too limiting 
for the wide audience of Web users. A webbase would 
certainly benefit from a query language that is flexible 
enough to support interesting types of ad-hoc querying and 
yet is simple and natural to use. 

To address these problems, we propose a layered architec- 
ture, analogous to the traditional layering of database sys- 
tems, for designing and implementing webbases for query- 
ing dynamic Web content. In our architecture, the lowest 
layer, which we call the virtual physical layer, provides nav- 
igation independence because it shields the user from the 
complexities associated with retrieving data from raw Web 
sources. Next up, the logical layer, which is akin to the tra- 
ditional logical database layer, provides site independence. 
Finally, the external schema layer is functionally analogous 
to the corresponding layer in traditional databases. 

This analogy in teirms of layering allows us to focus 
on developing techni’ques for problems that are unique 
to webbases, and for problems that are common to both 
webbases and traditional databases we can directly use the 
already known techniques. Based on the databases analogy, 
we can readily identify that the problem of mapping the 
logical to the physical layer in traditional databases is similar 
to what needs to be done in webbases with respect to the 
corresponding logical and the virtual physical layer. Thus 
all of the techniques developed in traditional databases for 
this mapping, such as schema integration and mediators, can 
all be directly applied 1.0 webbases. 

On the other hand, retrieving the dynamic Web content in 
the virtual physical layer is a problem unique to webbases. 
Unlike the physical layer in traditional databases, we have 
no control over the data sources in the Web. Automating re- 
trieval of data from such sources, especially those generated 
by forms, is difficult. Similarly, there are important differ- 
ences at the external sc:hema layer. Indeed, Web users form 
a far larger audience a:nd generally with much wider varia- 
tion of skill levels than corporate databases users. For them, 
traditional query languages such as SQL are too complex. 
At the same time, the diverse nature of the audience makes 
it difficult to prepare satisfactory canned queries in many ar- 
eas. Also, preparing canned interfaces for each domain can 
be expensive. Thus, it is desirable to have a query interface 
that permits both ad ho,c querying and is simple to use. 

In brief, our approach to both of the above problems 
is as follows. Mapping the relational schema onto the 

raw Web requires a calculus or algebra of some sort to 
specify navigation expressions that “populate” the schema 
with data. This part is not new as other projects attempted 
the same (see e.g., [5]). However, these approaches 
have shortcomings. The webbase designer is required to 
have expertise in the underlying calculus, which is usually 
some Web-enabling extension of SQL or relational algebra. 
Reported experiments [26] suggest that users resist this idea, 
because the underlying navigation languages are hard to 
master. In addition, given that Web sites change frequently, 
maintaining manually generated navigation expressions (can 
be an arduous task. 

What is different in our approach is that by separating 
the virtual physical layer from the logical layer we (can 
create navigation expressions semi-automatically, through 
an interactive process that does not require the user to have 
any expertise in the formalism underlying the navigation 
calculus, and the webbase designer does not even need to 
see what the navigation expressions look like. To support 
such degree of automation and be able to represent complex 
navigation processes, the underlying formalism must h,ave 
these properties: 

l It must be high level and declarative, as it is much easie:r to 
create high-level specifications of navigation processes. 

l It must be compatible with the formalism that underlies 
databases query languages (i.e., with relational calculus), so 
that it is possible to compose user queries with navigation 
expressions in order to create a single expression that would 
ultimately fetch the desired answer to the query. This is akin 
to the process of answering queries against views, where 
view definition is substituted into the query. If the resulting 
expression is still part of some declarative formalism, then 
the entire query can be optimized using techniques that are 
akin to relational algebra transformations (but we do :not 
discuss such techniques here). 

l Due to the nature of the processes being modeled, .the 
navigation calculus must support procedural and declarative 
in the same formalism. For instance, at a high level, lthe 
calculus should support statements such as “do this after 
doing that” or “do this provided that”. 

l The high-level specification formalism must be object- 
oriented. Web navigation has to deal with complex struc- 
tures such as Web pages and forms in a declarative environ- 
ment, and these structures are best represented as objects. 

o Navigation calculus expressions should be executable spec- 
ifications themselves. 

In our system, we chose a subset of Transaction F- 
logic [12], which to the best of our knowledge, is the only 
language that supports all the above features in a uniform 
fashion. Transaction F-logic is an amalgamation of two 
other well-known formalisms: F-logic [ 141 and Transaction 
Logic [6]. Although our navigation calculus is much more 
powerful (and complex) than other proposed languages for 
Web navigation, the Web designer does not need to know 

492 



External Schema CJiews) 

SQL, QBE. 

Logical Schema 

Relational algebra 
I 

I Physical Schema 1 
Virtual Physical Schema 

r 

. Navigation calculus 
-Data exlratim 
.WC?bserVM 

External Schema OJiews) 

Lc~lcal Schema 
I 

Traditional Database Architecture Wehbase Architecture 

Figure 1: Traditional database architecture vs. webbase 
architecture 

anything about it. Our approach makes it possible to create 
all necessary wrappers for the virtual physical schema semi- 
automatically, by simply asking the webbase designer to 
navigate through the sites of interest. We call this approach 
mapping by example. The virtual physical layer and the 
navigation calculus are described in Sections 3 and 4. 

For the external schema layer, we propose a semantic 
extension of the universal relation interface [24, 231, which 
we call structured universal relation. We argue that this 
interface provides powerful, yet reasonably simple ad hoc 
querying capabilities for the end user (e.g., a Web shopper) 
compared to the currently prevailing canned, form-based 
interfaces on the one hand and complex Web-enabled 
extensions of SQL on the other. The external schema layer 
is described in Section 6. 

Apart from the aforesaid sections, Section 2 introduces 
our layered architecture. Section 5 discusses the problems 
associated with the logical layer of a webbase; our imple- 
mentation effort of the proposed architecture is described in 
Section 7; related work appears in Section 8; and concluding 
remarks in Section 9. 

2 Architecture for the WebBase 
The most significant difference between a webbase and a 
database is the absence of the physical level in the traditional 
sense. Indeed, actual data is the exclusive domain of the Web 
server, and the only way the webbase can access the data is 
through filing requests to the server by following links or by 
filling out forms. 

Therefore, we introduce the notion of the virtual physical 
database schema (W’S), which represents all the data there 
is to see by filing requests to the server. In many cases, 
the VPS layer cannot be constructed completely (or we 
might never know whether the known part of the VPS 

is complete). While the role of the physical layer in 
databases is to describe data storage, the role of VPS in 
webbases is to specify how to navigate to the various sources 
of information in the Web. In this way, VPS provides 
navigation independence for webbase systems and presents 
a database view of the Web to the upper layers of the 
webbase. In this paper, we use the relational model to 
represent data in webbases. More details on the VPS layer 
appear in Sections 3 and 4. 

We remark that, since the main focus in this paper is 
querying and navigation, we do not discuss updates and 
methods for data extraction from HTML pages. To the best 
of our knowledge, the former issue has not received much 
attention, while the latter has been researched extensively. 

At the VPS layer, data collected from different sources 
resides in different relations, thus semantic and representa- 
tional discrepancies are likely to exist between these rela- 
tions. For instance, prices could be represented using differ- 
ent currencies and semantically identical attributes can have 
different names. These differences are smoothed out at the 
logical layer of the webbase architecture, which provides 
site independence, i.e., independence from the specifics of 
the data sources that supply data to the webbase. Further de- 
tails on the logical schema are presented in Section 5. We 
should note that resolution of semantic and representational 
differences between sites is not the subject of this paper. 
There is a vast body of research dedicated to this topic, and 
we could use the techniques developed there. 

The top level in the webbase architecture is the external 
schema layer, which targets specific application domains 
(e.g., used car ads, computer equipment, etc.) and is 
supported by a user interface that permits a high degree of 
ad hoc querying by naive Web users. As mentioned earlier, 
for such users traditional query interfaces are either too 
complex (SQL, QBE) or too rigid (canned and form-based). 
Thus, we need a query language that is flexible enough 
to support interesting types of ad-hoc querying and yet is 
simple to use. In search of such a language, we resurrected 
the Universal Relation (VR) query interface. The details of 
our implementation of the UR are presented in Section 6. 

The following example illustrates the distinctions among 
different levels of abstraction in a dynamic webbase. 
Example 2.1 (Used Cars) A webbase for used car shop- 
ping in the metropolitan New York area might access the 
several sites, such as newspapers (Newsday’ and New York 
Times), new car buying services (Car Point and Auto Web), 
blue book price references (Kelly’s), reliability information 
(Car and Driver) and finance (Car Finance). We present a 
possible set of VPS relations that can be extracted from these 
sites.2 To make the tables more compact, we use Car as a 
shorthand for the attributes Make, Model, Year. 

‘Newsday is a regional newspaper with circulation in Long Island and 
New York City. 

2Although this example describes these sites fairly accurately. for 
illustration purposes we introduce simplifications as well as bnng in 
features found in other sites. 
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Iftion 1 VPS Level Relations 1 

t%%&;kds 
I - -- ~~~ 
1 neusday(Car,Price,Contact,Url), 

I neusdayCarFeatures(Url,Features,Picture) 1 

t- 

nyTimes(Car,Features,Price,Contact) 
Dealer Cars carPoint(Car,Price,Features,ZipCode,Contact) 

autoWeb(Car,Price,Features,ZipCode,Contact) 
Blue Book Prices kellvs(Car,Condition,BBPrice) 

carAndJ&ver(Car,Safhy) ' 
carFinauce(Car,ZipCode,Duration,Rate) 

Table 1: VPS Level Relations 

Table 1 shows examples of VPS relations for various Web 
sites. The first line in the table illustrates that data for the 
Newsday’s site might be presented in multiple hyper-linked 
pages, and depending on the user’s request, data extraction 
might require navigating multiple pages. e.g., new&y and 
newsdayCarFeutures. 

The logical level relations for our webbase and their 
associated relational schemas are presented in Table 2, along 
with the corresponding mappings to the VPS layer. 

The external schema layer is represented by the following 
universal relation, Used.CarUR, which contains the union of 
all the attributes of the logical layer: 

UsedCarUR(Car,Price,Features,Contact, 
BBPrice,Safety,ZipCode,Duration,Rate) 

The mapping between external and the logical layer in 
the Universal Relation model is a rather subtle issue. In 
Section 6, we show that the known approaches (e.g., [23]) 
are not suitable for Web applications and discuss a possible 
solution. 

Now, the query posed in Section 1, “make a list of used 
Jaguars advertised in New York City area sites such that 
each car is a 1993 or later model, has good safety ratings, 
and its selling price is less than its Blue Book value”, can be 
expressed against our webbase as follows: 

UsedCarUR(jaguar,Mdl,Year,Price,Featrs, 
Contact,BBPrice,good,ZipCode,Duration,Rate), 

Year >1993,13BPrice > Price 0 

3 Virtual Physical Schema 

An important difference between webbases and traditional 
databases is that webbases do not control the physical 
data and there are limited ways in which this data can be 
retrieved. Given a virtual physical schema (VPS) for a 
relation, the corresponding data can usually be obtained only 
by filling out a form, which requires that the user specify 
values for a certain selection of attributes, some of which 
might be mandatory and some optional. In fact, there might 
be several alternative sets of optional/mandatory attributes 
per relation that limit the scope of data to be retrieved. 

In addition, we must specify the navigation process that 
needs to be executed in order to get the data. This process is 
represented using Navigation Calculus, which is described 
in the next section. Tiherefore, for each relation schema 

R in the VPS layer, there is a quadruple, called a handle, 
represented as follows: 

H = (mandatory-attrs, selection-attrs, R, expression) 
The set of mandatory attributes specifies the minimum infor- 
mation that the handle needs in order to invoke the naviga- 
tion calculus expression (the fourth component) and retrieve 
the requisite data. The set of selection attributes specifies the 
additional attributes that might be also specified. These aid- 
ditional attributes are used by the expression and are eventu- 
ally passed to the various Web servers who, presumably, use 
these attributes to return more specific answers. For conve- 
nience, we assume that mandatory-attrs C selection-attrs. 

There can be several handles for the same relation. 
Different handles for the same relation must use different 
sets of mandatory attributes. However, different handles 
can have the same sets of selection attributes and the same 
navigation expression (for instance, the same HTML form 
might have two alternative sets of attributes; at least one of 
them must be filled in order to get a result). 

We assume that all handles for the same relation agree 
with each other: if Hr = (Ml, 5’1, R, El) and HZ = (Mi, 
S’s, R, Ez) are two handles for the same relation and we 
specify concrete values for a set of attributes S such that 
Ml U MZ C S C Sl fl Ss. then handles HI and Hz return 
the same result. 

Table 3 shows the sets of mandatory and selection 
attributes for some relations in the VPS of Example 2.1. The 
first column in the table lists relation schemas, the second 
column shows mandatory attributes for each schema, and 
the third shows the optional attributes (= selection-attrs - 
mandatory-attrs). 

4 Navigation Calculus 

Navigation maps. The basic data structure that enables 
automated access to virtual relations residing in the VPS of a 
webbase are the navigation maps for the participating sites. 
Intuitively, a navigation map codifies all possible acce.ss 
paths that a site presents for populating a virtual relation. 
A navigation map is a labeled directed graph (see Figure 2) 
where the nodes represent the structure of static or dynamic 
Web pages, and the labeled edges represent possible actions 
(i.e., following a link or filling out a form) that can be 
executed from a dynamic page. Our navigation maps are 
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1 Lo&Cal Level Relations 1 Definitions 

I 

classifieds(Car,Price,Contact,Features) ~car,Pr~c~,cont~ct,P~atur~~ (newsday W 
newsdayCarFeatures) 

dealers(Car,Price,Contact,Features) 

blue-price(Car,Condition,BBPrice) 
reliability(Car,Safety) 
interest(Car,ZipCode,Duration,Rate) 

U BCsr,Pric~,Contact,F*at~roa (nyTimes) 
~car,Pris.,contact,s..tur.,(carpoint) 
U ‘ITCu,Pr~c.,contact,~~atur~s (autoWeb) 

~Car,Condition,BBPric*(kellys) 

carAndDriver 
carFinance 

Table 2: Logical Level Relations 

VPS 
newsday(Make,Model,Price,Contact,Url) 

) Mandatov ) Optional 
) Make ] Model 

newsda&rFeatures(Url,Features,kc&re) Url 
nyTimes(Make,Model,Features,Price,Contact) Make I 
kellys(Make, Model, Condition, BBPrice) Make, Model Condition 

Table 3: Virtual Physical Schema 

closely related to the Web schemes of the Araneus project 
[25, 51, but our modeling of the Web is process-oriented, 
which facilitates creation of the navigation expressions from 
navigation maps. 

Mapping the virtual physical schema onto the raw Web re- 
quires a calculus of some sort. One obvious candidate would 
be the relational calculus or algebra, extended with Web- 
specific primitives (and some other known extensions, like 
the unnesting operator of Ulixes [5]). The Araneus and the 
Ariadne projects [5, 151 take this approach. However, these 
formalisms are not powerful enough to express complex nav- 
igation processes on the Web. For instance, as shown in Fig- 
ure 2, a navigation process to access the used car ads in the 
classified section at the site www.newsday.com requires fol- 
lowing a link (linkfauto)), filling out a form @rmfl(make)), 
then making an if-then-else choice depending on the result- 
ing page - if the page is not a data page, another form (form 
fl(model,$eatrs)) will have to be filled out. The length of the 
sequence is not fixed. It is usually one or two, depending 
on the number of answers that match the initial query. Once 
the final data page is reached, an iteration to collect data is 
needed (repeatedly hitting the “More” button). 

Examples like this and our experience with other, more 
complex, sites shows that navigation processes are best 
represented using a calculus that allows recursion and has 
the notion of ordering of events. In addition, the calculus 
must deal with complex structures, such as Web pages, 
forms, etc., which are best represented as objects.3 

Unlike other projects that deal with navigation processes 
on the Web, we do not invent yet another, new navigation 
algebra or calculus. The calculus that satisfies all the 
requirements stated above is actually well-known: it is a 

30bserve that the user-level view of the database is represented using 
the relational model. However, the underlying navigation process (which is 
invisible to the end user) is based on the object model, since it has to deal 
with Web pages and other objects, which are not part of the user view. 

newsday 

new-car-dealer UsedC 

link(more) 

(3 

‘Q collectible-cars sport-utility 

link(llsting) 
i 

carPg 

link(car f eatures) 

newdayCarFeatures(features, picture) 

Figure 2: Navigation map for Newsday Classified Car Ads 

subset of serial-Horn Transaction F-logic [ 121, a natural 
cross between Transaction Logic [6] and F-logic [14]. In 
fact, the Florid system [9], based on F-logic, has proved 
to be very successful for Web applications. Because Florid 
lacks the Transaction Logic component, it is not suitable to 
be used as a calculus for encoding navigation processes. 

The object model. F-logic extends classical logic by 
making it possible to represent complex objects on a par with 
traditional flat relations. A navigation map is a collection of 
F-logic objects, such as the following object that represents 
one of the forms to be filled out at the Newsday’s site: 

submit-form : action[f orm + f ormOl[cgi + 
"/cgi - bin/nclassyNDD.x/"; 
method + “post.“; 

mandatory--i+{make,model}; 
optional+{year}]; 

source + www.newsday.com] 
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currentUrl(pid, url) 

action[ 
object~{link,form} 
source*url; 
targets=%%web-page; 
doi?&JattrValPair+web-page] 

submit-form : action 
follow-link : action 

web-page[ 
address+url; 
titlejstring; 
contents*string; 
act,ions=D{action}] 

data-page :: web-page 
data-page[extract+relation] 

link[ 
name*string; 
add.ress*url] 

form[ 
cgi.*url; 
methodjmeth; 
mandatorywattribute; 
opt ionalwattribute; 
sta.teWattrValPair] 

attrValPair[ 
attrlame-sstring; 
type+widget; 
default+Object; 
value+Object] 

Current URL of browsing process PID 

Declaration of Class Action 
Action can apply to a form or a link 
Page where the action belongs 
Where this could lead us 
Method to execute action 

Form fillout is an action 
Following a link is an action 

Declaration of Class WebPage 
URL of page 
Title of the page 
HTML contents of page 
List of actions found in the page 

The class of data Web pages is a subclass of web-page 
Data pages have a data extraction method 

Declaration of Class Link 
Name of link 
URL of link 

Declaration of Class Form 
CGI script’s URL associated with this form 
CGI invocation method 
Mandatory attributes of this form 
Optional attributes of this form 
State of form (set of attribute-value pairs) 

Declaration of Class AttrValPair 
Name of the attribute part 
Checkbox, select, radio, text etc. 
Default value of the attribute 
The value part 

Figure 3: Common WWW Data Structures Represented in Navigation Calculus 

newsday(Make, Model,Price,Contact,Url) +- 
newsdayPg.actions : follow-link[object + link(auto); 

doitO()+UsedCarPg] 
@3 UsedCarPg.actions :submit-form[object +form(fl); 

doit@(Make)-XarPgl] 
8 (CarlPgl : data-page[extract+tuple(Contact,Price,Url)] 

V(CarPgl.actions : submit_form[object-+form(f2); 
doit@(Model)+CarPgZ] 

@ CarPg2 :data-page[extract+tuple(Contact,Price, WI 

Find car ads at Newsday: 
Follow link(auto) 
to used car ads; 

Fill form(f1) using M&e; 
Either extract data, 
or fill form@) 
using Model, 
then extract data 

Figure 4: The Navigation Process of Retrieving Used Car Advertisements from Newsday Site 

In the first line, submit-form:action says that the object 
submit-form belongs to class action. It has attributes 
form and source. The attribute form has the value formO1, 
which represents the form to be filled out. form01 is itself 
a complex object with four attributes: cgi and method are 
single-valued, and mandatory and optional are multi-valued. 
The attribute source of the object submitform represents the 
page to which the action belongs. In addition, the object has 
a method, doit (defined below), whose purpose is to execute 
the action. 

Figure 3 presents the schemas (called signatures) of some 
of the objects we use to model navigation maps. The double- 
shafted arrows =+ and =++ (as opposed to + and + in the 

previous example) signify that these expressions declare the 
types of the attributes and methods rather than their states. 

Navigation expressions. F-logic provides a declarative 
calculus for representing complex objects on the Web, but 
to model navigation processes one needs a formalism for the 
representation and sequencing of actions. These facilities 
are provided by Transaction Logic [6], a conservative ex- 
tension of classical logic, which is suitable for representing 
complex declarative processes that both query the underl,y- 
ing database state and update it. The following subset of 
serial-Horn Transaction Logic complements the subset of F- 
logic described above and provides an expressive navigation 
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calculus for enabling access to raw Web data. 
For the purpose of this paper, it suffices to explain the 

informal, procedural reading of some of the connectives of 
Transaction Logic. Underlying the logic and its semantics 
is a set of database states and a collection of paths. A path 
is a finite sequence of database states. For instance, if ~1, 
s2, “‘, s,, are database states, then (~1, ~2, . . . . s,) is a path 
of length 7~. Just as in classical logic, Transaction Logic 
formulas assume truth values. However, unlike classical 
logic, the truth of these formulas is determined over paths, 
not at states. If a formula, 4, is true over a path (~1, . . . . sn), 
it means that $ can execute starting at state ~1. During the 
execution, the current state will change to ~2, ss, . . . . etc., and 
the execution terminates at state sn. 

Procedurally, a Transaction Logic formula can be under- 
stood as a transaction or a query (depending on whether it 
changes the database state or not). Semantically (and pro- 
cedurally) these formulas have several common attributes of 
database transactions, such as atomicity and isolation. With 
this in mind, the intended meaning of the new connectives 
of Transaction Logic can be summarized as follows: 

l I$ @ 1c, means: execute 4 then execute $. 
l q5V $ means: execute 4 or execute 11, non-deterministically. 
This connective is useful for specifying alternative execution 
branches in a navigation process. 

Figure 4 shows the navigation process to extract car ads 
from the Newsday site. Here we use path expressions 
as shortcuts for longer F-logic expressions, as described 
in [14, 131. For the benefit of the reader who is not 
fluent in Transaction F-logic, we annotated each clause in 
Figure 4, so the meaning of the navigation expression should 
be self-explanatory. Navigation expressions do not always 
need to be that complex. For instance, navigating to the 
NewsdayCarFeatures page, which is part of our VPS, can 
be achieved using the much simpler expression: 

newsdayCarFeatures(Url,Features,Picture) + 
(DataPg : data-page).actions[object + 

link(-)[name -+ “CarFeatures”]; 
doit@I() -+ -[address + Url; 
extract + tuple(Features, Picture)]] 

This expression says that to get to a car features page, 
we must first get to a data page (DataPg) that has a link 
called “Car Features”, follow this link, and then extract the 
features from the page. Of course, in a bigger system, we 
would have to qualify this initial page even further to avoid 
mis-navigation. The interesting point here is that the page 
denoted as DataPg is not an entry point to any navigation 
process that a regular Web user might perform. Indeed, as 
seen in Figure 4, one has fill out one or two forms to reach 
this page. However, this is not a concern at the VPS layer. It 
is a job of the logical layer, described in Section 5, to order 
joins in such a way that the relation newsday of Figure 4 is 
computed first (to retrieve the desired page, DataPg). 

Even if the above Transaction F-logic expressions look 
a bit complex to the reader, the most important aspect of 
our webbase architecture is that nobody, except the system 

builder, needs to ever see these expressions. It is easy to see 
that the above expressions closely mimic the structure of the 
navigation map in Figure 2 and, in fact, they can be derived 
automatically directly from that map in linear time in the 
size of the map. Due to space limitation, we do not present 
the translation algorithm, because this would require that we 
spell out the structure of the navigation maps in much greater 
detail. Details are given in the full version of this paper.4 

It is important to realize that the translation from the map 
to the calculus expression has been greatly facilitated by: 

l our process-oriented object model, whose objects corre- 
spond to nodes and links of the navigation map; 

l the fact that the F-logic component of our navigation 
calculus naturally supports this object model; and 

l the Transaction Logic component that represents the pro- 
cess structure encoded in the navigation map. 

Finally, once the translation is done, the resulting navigation 
expressions can be directly executed by a Transaction F- 
logic interpreter when user queries posed against the external 
schema level of the webbase eventually turn into queries 
against the VPS layer. 

5 Logical Layer 
The VPS layer provides a relational view of data that can 
be retrieved from a Web site, thereby hiding navigation 
details. In contrast to this, we use a logical layer to provide a 
uniform interface to data arriving from multiple sources. By 
separating these layers, we achieve site independence. This 
means both independence from the differences in vocabulary 
and representation used by different sites as well as complete 
transparency with respect to where the data is coming from. 

Table 2 shows a possible mapping of Logical relations 
into VPS relations. While VPS layer has eight relations 
that shield the user from navigation details, the five logical 
relations in the example show a view of the Web data that 
is completely transparent with respect to the location of the 
data source. 

In this paper, we are not concerned with the issues 
pertaining the mapping of the logical layer onto VPS. This 
mapping can be done using conventional techniques (e.g., 
relational algebra, or Datalog rules) or we could use more 
advanced techniques, which might offer certain advantages 
in the Web environment (e.g., [8, 191). 

However, one issue related to this mapping must be 
addressed. The problem is that unlike traditional databases, 
VPS relations can only be accessed by supplying values for 
certain sets of mandatory attributes. Since logical relations 
are mapped onto the physical ones, it is clear that they 
also can be accessed only by providing values for certain 
attributes. The process of determining these sets of attributes 
is called binding propagation (because, in abstract terms, 

4The full-version of this paper available at http://www-db.reseah.bell- 
labs.com/users/juliaa. 
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sets of mandatory attri’butes in HTML forms correspond to 
variable bindings in programming languages). 

The problem of binding propagation has been well- 
studied in the literature (see e.g., 17,291). In the following, 
we propose a much simpler description, which also differs 
from other works in two respects: (1) it handles not only 
conjunctive queries, but also all relational algebraic queries; 
and (2) instead of deri.ving bindings for a given query on 
the fly, it statically determines all allowed bindings for each 
logical relation. 

Let CY denote a relational algebraic expression over VPS 
relations, and we need1 to determine the bindings (or sets 
of mandatory attributes) for the resulting relation of this 
expression. The binding propagation algorithm can be 
described by the following rules, each corresponding to one 
of the allowed re1ationa.l operators: 

l Let (I! = V, where V is a VPS relation, if M is a binding 
for V, then M is also a binding for CX. 

l Leta = El U Ez or (2 = El - Ez, where El and E2 are 
relational expressions over VPS relations, if Ml is a binding 
for El and Mz is a bind.ing for Ez, then MI UMz is a binding 
for (Y.~ 

l Let (Y = XX (E) or Q = a+(E), if M is a binding for E 
then M is also a bindiqg for CY. 

l Let CS = E>l W E2, if MI, MZ are bindings for El, Ez, 
respectively, then Ml U (Mz - (El n Ez)) and M2 U (Ml - 
(El fl E2)) are both bindings for cr. Here El FU Ez denotes 
the set of common attributes of the relation schemas for El 
and Ez. 

From these rules, it is also easy to derive an algorithm for 
join ordering under the given set of bindings, i.e., an ordering 
RI, . . . . R, that guarantees that for each i (1 5 i 5. n), all 
mandatory attributes of Ri belong to the union Uizi Rj. 
Clearly, the existence of such an ordering is necessary 
and sufficient for a join to be computable under the given 
set of mandatory attributes. However, in the presence of 
multiple sets of mandatory attributes per VPS relation, such 
an algorithm would be exponential. In fact, [29] shows that 
the problem is NP complete in this case. 

To illustrate the above binding propagation algorithm, 
consider the logical level relation classzjieds from Exam- 
ple 2.1. Since Make is the only mandatory attribute of 
the relation newsday and Url is the only mandatory at- 
tribute of newsdayCarFeatures, by the join rule above, 
{Make} turns out also to be the only mandatory binding for 
newsday W newsdayCarFeatures. Similarly, Make is 

the only mandatory attribute of nyTimes. Therefore, by the 
union and projection rules, {Make} is the only mandatory 
binding for classifieds. 

‘Here we assume that the user wants all available answers to the query. 
If the user is willing to accept only some available answers because she does 
not want or care to fill out all the required attributes in a form, then we could 
define a relared union. In a relaxed union, both A41 and A42 (separately) 
would be acceptable bindings for a. 

6 External Schema 
Casual users query the webbase through the external schema. 
Traditionally, end users have been given access to limited in- 
terfaces that allow only a fixed set of canned queries. These 
canned interfaces served well in the case of fairly structured 
business environments, but, as remarked earlier, they are too 
limiting for a casual Web user. On the other hand, more flex- 
ible query languages, such as SQL or QBE, are too complex. 
In search of a suitable query interface for webbases, we res- 
urrected the idea of the Universal Relation (UR) [24]. 

The basic idea is simple and appealing. The user is 
presented with a list of all attributes that might be of interest 
for a particular application domain. To pose a query, the 
user simply points to a set of output attributes and imposes 
conditions on some other attributes. This is it: no joins, sheer 
simplicity. Of course, to realize such an agenda, the system 
(and the user) must know what such a query exactly means, 
and the understanding of that meaning by both the system 
and the user must coincide. 

Simplistically, the semantics of a universal relation query 
is explained as a natural join of the underlying relations at 
the logical layer, which cover the output and the selection 
attributes specified in the query. Moreover, the join must be 
lossless. Losslessness is required because this is a formal 
analog of the common sense idea of connections between 
concepts that “make sense”. 

Underlying this idea are two basic assumptions: 

1. The unique relationship assumption: The relationshlir. 
between any given subset of attributes in the universal 
relation schema is unambiguous and unique; and 
2. The unique role assumption: The name of an attribute 
unambiguously determines the role of that attribute. 

The first problem arises even in very simple schemas 
that contain just four attributes. For instance, a customer 
and a bank might be connected because the customer has 
an account in the bank, a loan, or both. Which one 
did the user have in mind when she selected Bank and 
Customer as output attributes? A number of solutions were 
proposed to address the first problem, which range from 
restricting the topology of the underlying logical schema 
(e.g., acyclicity [2 11) to additional layers of semantics (e.g., 
Maximal Objects, Window Functions [23,22]). 

Unfortunately, on the Web, we cannot assume the very 
basic lossless join semantics for UR, since we cannot even 
assume any dependencies (join, functional, or multivalued) 
on which the very idea of losslessness is based. Nor can 
we use most of the approaches to enforcing or relaxing the 
unique relationship assumption, because these approaches 
rely heavily on the use of constraints. 

The second problem, the unique role assumption, was 
assumed to be solvable by simple renaming of attributes. 
However, this solution was never thought to be practical 
and may have been responsible for the general lack of 
enthusiasm for the UR approach. 
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In our attempt to adapt the UR as a Web interface, we kept 
the basic idea of a simple query interface, but rejected the 
lossless join semantics and the two uniqueness assumptions. 
We call this approach structured universal relation. The 
basic idea is to replace losslessness and constraints with 
compatibility rules. A compatibility rule has either the form 
RI, . . . . Rk+R or the form RI, . . . . R~+TR. In the first 
case, the rule says that if you already joined RI, . . . . Rk 
then joining with R also “makes sense”. This is our 
“poor man’s lossless join requirement”. The second rule is 
really a constraint. It says that if we have already joined 
RI, ..-, Rk, then joining with R would create an incorrect 
relationship (in the UR model, such connections are known 
as “navigation traps”). 

With these constraints, we can formulate the semantics of 
a query as follows: Let Q be a query that mentions the set 
of attributes A = Al, . . . . A,. Then the semantics of this 
query is said to be the join R = RI C4 . . . W R,, where 
Rl , . . . . R, is a minimal (with respect to inclusion) subset of 
logical relations that satisfy the compatibility rules, and R 
contains all attributes in A.6 This is essentially our analogue 
of the maximal objects approach [23]. If there are several 
maximal objects covering the query attributes then we take 
the union of results obtained from each object. Depending 
on the exact structure of the compatibility rules, algorithms 
with various efficiency can be constructed. For instance, if 
the rules are of the form R+Q, then we have a restricted 
join-ordering problem mentioned in Section 5. 

To address the problem of unique name assumption, we 
propose to organize the attributes in the UR into a hierarchy 
of concepts. Each concept is a relation schema whose 
attributes are concepts of a lower layer. As shown in 
Figure 5, the top layer in this hierarchy is the universal 
relation itself, and the concepts are the attributes of that 
relation. 

Full Retail 
Dealers Classitieds Lease 

UsedCariCar, Price, Contact) BlueBwk(Car. BBPrice) 

UsedCuUR ( Car. Price, BBF’rice, Rate, Contact. Cost) 

Figure 5: Concept Hierarchy for the Used Cars UR 

Example 6.1 (Concept Hierarchy) The concept hierar- 
chy describes the following: (1) A used car is either adver- 
tised at a dealer site or it is in the classified section of a news- 
paper site; (2) The blue book price of a car can either be its 
trade-in price or its selling price; (3) The interest rate for a 
used car depends on whether it will be financed or leased; 
and (4) the insurance rate depends on whether it provides 

‘%ompatible means that for every 1 < i 5 n, there is a rule Left-t R; 
such that Left E {RI , . . . . Ri-1); and there is no rule Left-t-R such 
that LeftU {R} E {RI,...,&}. 

full or liability coverage. 0 
The idea behind concept hierarchies is that the user 

starts by selecting top-level concepts and then proceeds 
to subconcepts. This makes it possible to build queries 
incrementally, by restricting the search to various sub- 
concepts and to specific ranges for attributes at the leaf 
level. The unique name assumption is not an issue here - 
for the user or the system - since both can see the entire 
concept hierarchy to which the attributes belong, and the 
relationships among concepts and attributes are defined by 
the compatibility rules. 

We believe that webbases will be designed for application 
domains (such as cars, jobs, houses) by the experts in those 
domains, and designing concept hierarchies and compatibil- 
ity constraints is a feasible task for them. We illustrate these 
ideas with an example, leaving out the details due to space 
limitation. 
Example 6.2 (Structured UR in Action) The following 
compatibility constraints specify the meaningful connec- 
tions for the UsedCarUR of Example 6.1. 

Compatibility Constraints 
Classifieds + 7 Lease 

Lease + Full-Coverage 

Semantics 
We cannot lease a car 
from its owner 
Leased cars have to be 

1 fully insured 
Used-Cars + 7 TradeIn-Value 1 Trade-in values are not 

applicable 

Consider the following query: make a list of used Jaguars 
advertised in New York City area sites such that each car’s 
monthly payments are less than 1,000 dollars, and its 
selling price is less than its Blue Book price. This query can 
be expressed as: 

Used-Car-UR(jaguar, Model, Year, Price, BBPrice, 
Rate, Ins-Cost), Price < BBPrice, 
(Price X Rate + Ins-Cost) + 12 < $1000 

Using compatibility constraints, our algorithm generates the 
following maximal objects and the corresponding relational 
expressions: 

Dealers W Lease W Full W Retail-Val 
U Dealers W Loan W Full W Retail-Val 
U Dealers W Loan W Liability W Retail-Val 
U Classif ieds W Loan W Liability W Retail-Val 
U Classif ieds W Loan W Full W Retail-Val 0 

Now assuming the existence of a mapping function from 
external schema relations to the logical level, maximal 
objects made up from the UR relations can be translated 
into conjunctive queries over logical level relations. Once 
translated, these queries can be optimized and evaluated by 
standard query evaluation techniques. 

7 Implementation and Experiences 
We have implemented the most essential components of two 
of the modules in our webbase architecture: the navigation 
map builder and the query evaluator. In what follows we 
describe the ideas underlying our implementation. 
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Navigation Map Builder. We use the methodology of 
mapping by example to extract the navigation maps from 
Web sites. The main idea behind mapping by example is 
to discover the structure (or schema) of a site while the 
webbase designer moves from page to page, filling forms 
and following links. There are two key components to this 
methodology: (1) discovery of access paths to the data of 
interest; and (2) extraction of action objects (see Figure 2). 

In order to build a practical tool, there are two important 
requirements: the mapping process should be as transpar- 
ent as possible to the webbase designer (its operation should 
closely mimic the browsing experience); and the mapping 
tool must be portable (e.g., it should not require modifica- 
tions to the browser). 

The navigation map builder achieves these goals by using 
JavaScript events to ciipture browsing actions. Actions are 
dynamically intercepted by JavaScript handlers (inserted 
into the retrieved pages by the map builder), and are added 
as edges of the navigation map. When a new page is 
loaded into the browser, it is parsed, and a new node 
corresponding to the page is inserted into the navigation 
map.7 In order to guide the designer, an applet displays a 
graphical representation of the navigation map as it is being 
constructed, highlighting in the map the node corresponding 
to the page displayed in the browser. 

The map builder parses an HTML page and generates 
a set of F-logic objects (as detailed in Section 4). It 
extends PiLLoW’, a publicly available Prolog-based system, 
to extract all necessary information for following links and 
submitting forms found inside the page. Since not all 
information is stored in the HTML object structure (e.g., 
labels denoting the domain values of some attributes and 
attributes defined through a set of links) we take advantage 
of HTML tags and anchors and other structuring primitives 
(e.g., tables, enumeration) to extract such information. For 
forms, the extractor is also able to infer which attributes 
are mandatory from .their widget (i.e., if an attribute is 
represented by a radio button we can safely assume it 
is mandatory), as well as other information such as the 
domain of attributes (e.g., from the values of a selection 
list), maximum length (e.g., for a text field), default value, 
to name a few. For data pages, as described in Figure 3, we 
assume that the design,er provides an extraction script. 

Of course there are instances where input from the 
designer is needed. For instance, the designer has to indicate 
whether a text field is mandatory. Also, it is not uncommon 
in forms for attributes to have rather cryptic symbolic names 
- in these cases (to fa,cilitate subsequent querying) the user 
might want to provide a more informative name. There are 
also instances where attributes are implicitly defined through 
a set of links (e.g., a list of links with car models). Since this 
kind of attributes is not part of a form, the designer has to 
specify a name as well as the set of links that relate to this 

‘Since building maps is anincremental process, our tool checks whether 
actions and Web page object,5 are new before adding them to a map. 

8h~p://www.clip.dia.fi.upm.es/Software/pillow/pillow.htm~ 

attribute. It is worth pointing out that in many instances our 
parser is able to find these links by considering their HTML 
environment (e.g., a table), or the user can provide additional 
hints. We are cuirently building a graphical user interface to 
simplify the input of such information by the designer. 

We used our initial prototype of the map builder to map 
various sites. To give an idea of the degree of automation 
achieved, for the Newsday site depicted in Figure 2, all 
objects that describe the navigation map (85 objects with 
over 600 attributes in total) were automatically extracted. 
Less than 5% of the information in the map was added 
manually, which consisted of 10 to 12 facts to standardize 
attribute and domain value names. For other sites such as 
New York Times and Daily News, the ratio was similar. The 
process of mapping each of these sites took on average 30 
minutes. It is worth pointing out that the main problem we 
face while mapping sites is the presence of faulty HTML, in 
which case the parser needs to be able to recover from the 
ill-formed documents. 

Some points are worthy of note with respect to the 
maintenance of such maps. Modifications to Web sites 
can be automatically detected by periodically comparing 
the navigation map against its corresponding site, or when 
the corresponding navigation process fails. Whereas certain 
structural changes such as the addition of a new form 
attribute require manual intervention, others can be applied 
automatically (e.g., the addition of a cell in a selection list). 
Since we first built navigation maps for car-related sites, 
we have noticed quite a few changes to these sites. For 
example, in Kelly’s Blue Book (www.kbb.com) new links 
with information about 1999 cars have been added. In order 
to update navigation map, we only had to navigate through 
the modified pages, a process that took a few minutes. 

Query Evaluator. As described in Section 4, once a map 
is built, navigation expressions are automatically generated. 
This process requires a simple traversal of the navigation 
map, and thus can be done in linear time in the size of the 
map. Individually, each expression can be seen as a shortcut 
to retrieve data from a Web site. Instead of filling forms and 
following links, one can simply specify a set of attributes 
and execute the appropriate navigation expression (e.g., for 
the query SELECT make,model,yeal;price,contact WHERE 
make=ford AND model=escort), execute newsday{ford,es- 
tort, Year; Price, Contact) (described in Figure 4). It is worth 
pointing out that as a byproduct, the process of retriev.ing 
such data is made faster since during the execution of a 
navigation process no extraneous objects such as figures and 
Java animations are retrieved. 

Navigation expressions are processed by the Transact.lon 
F-logic interpreter, which translates them into logic pro- 
grams that are executed by a deductive engine, the XSB 
system.g On top of XSB, we use the HTTP library provicled 
by PiLLoW to follow links, submit forms and retrieve docu- 
ments from the Web. 
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In order to combine information from different sites 
(or maps), the attribute names and their domains must be 
standardized. In our current implementation, one must 
manually specify these mappings. If a mapping is not 
provided for a certain attribute name, we employ fuzzy 
matching techniques, which evidently are not full-proof and 
may lead to errors. We intend to incorporate techniques from 
mediator systems such as [ 10,301 to address this problem. 

We have built navigation maps for a number of sites. 
To give an idea of the complexity of the sites and query 
execution times, below we show the number of pages 
navigated and (some of the best) evaluation times for the 
query SELECT make,model,yeal;price WHERE make=ford 
AND model= escort over 10 car-related sites. These 
timings lo indicate that to ensure acceptable response times 
when querying a large number of sites, we may need to use 
techniques such as parallelization and caching. It is worth 
pointing out that a significant portion of the time in querying 
is spent not only in fetching, but also parsing the Web pages. 
We believe these times can be greatly improved if a faster 
uarser is used. 
I 

I , 

AutoConnect 3 1 7.26 1 14.70 

Newsdav I 4 I 1.01 I 4.77 

YahooCars 5 3.12 10.48 

Kelly’s 5 2.54 7.63 

8 Related Work 
The problem of retrieving data from and querying Web 
sources has received considerable attention in the database 
literature (see [8] for a survey). Managing information on 
the Web encompasses several tasks that include locating in- 
teresting data, modeling Web sites, extracting and integrat- 
ing related information from multiple sites. 

Web query languages such as W3QL [16], WebSQL [3], 
WebLog [17], and Florid [9] address the problem of finding 
and retrieving data from the Web. They improve on search 
engines by combining textual retrieval with structure and 
topology-based queries. These languages view the Web 
as a collection of unstructured documents organized as a 
graph, and users can declaratively express how to navigate 
portions of the Web to find documents with certain features. 
Conceptually, these languages are equivalent to various 
subsets of our navigation calculus. More importantly, 
however, these are fairly sophisticated query interfaces 
designed to be used by a fairly sophisticated user. In 
contrast, even though our navigation calculus requires an 

loThe times were collected on a Sun Ultra workstation, with dual 330 
MHz processors, I GB of memory, and Solaris 5.6 operating system. 

even greater degree of programming expertise, it is not 
designed to be used by a programmer. Instead, navigation 
expressions are generated automatically from the map. 

Web information integration systems [20, 5, 2, lo] arc 
more closely related to our work in that they try to present 
the Web through a unified database interface. The Araneus 
project [5] provides a rich model (ADM) to describe both 
the topology and the contents of Web sites. Their concept 
of the ADM scheme is analogous in many respects to our 
navigation maps. Navigation processes to populate database 
views are expressed in a newly developed declarative al- 
gebra, called Ulixes. Ulixes is intended to be used by a 
database designer to create Web views for the end user. In 
contrast to this, we use a well-known, existing formalism 
(Transaction F-logic [12]), which functionally is a super- 
set of Ulixes. However, as mentioned earlier, it is not in- 
tended to be used by a designer or an end user. Instead, 
navigation expressions that use this language are generated 
automatically from the navigation map. The interpreter than 
simply executes these expressions when user queries need 
to be evaluated. This is possible in our architecture due to 
the clear separation between the VPS and the logical lay- 
ers of the database and also due to the use of our process- 
oriented object model. It is worth pointing out that main- 
tenance of navigation expressions in our approach is much 
simpler, since the navigation maps from which the processes 
are generated, can be updated semi-automatically (through 
mapping by example). 

Ariadne [15] is a system for extracting and integrating 
data from semi-structured Web sources. Ariadne has two 
foci: data extraction from unstructured Web pages and what 
in our architecture amounts to mapping from the logical 
layer to the virtual physical layer. Both of these issues 
are orthogonal to our work. For instance, Ariadne’s data 
extraction facilities as well as the body of techniques for 
extracting information from semi-structured data [31] could 
be used in our system. 

From the perspective of our architecture, the focus of 
the work in the Information Manifold (IM) [20, 191 project 
can be viewed as mapping the logical layer to VPS. IM 
approaches the problem by first specifying the reverse 
(physical-to-logical) mapping, which they call source de- 
scription. The required logical-to-physical mapping is then 
generated automatically. The benefit of this indirect ap- 
proach is claimed to be the ease of maintenance of the 
logical-to-physical mapping in view of adding or deleting 
the Web sources. In this way, IM is complementary to our 
work, since our focus is on building the VPS and the con- 
ceptual layers of the webbase. 

There is a large body of work on information mediators, 
such as TSIMMIS [IO], Hermes [I] and Garlic [30], which 
help smooth the semantic and syntactic differences between 
heterogeneous information sources. Techniques developed 
for information integration systems such as these can be used 
in our architecture for semantic integration of VPS relations 
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that come from different sources. On the other hand, these 
systems could use our VPS automation techniques to gain 
access to dynamic Welb content. 

Finally, ‘we should lnote the growing commercial interest 
in integration of information from diverse Web sources (e.g., 
Junglee, Center Stage [11,28]). Techniques described in this 
paper can facilitate rapid development of such services. 

9 Conclusions and Future Directions 
In this paper we described a layered architecture for design- 
ing webbases. The separation of layers, which is analo- 
gous to traditional databases, simplifies the creation, mainte- 
nance, and use of webibases for retrieving information avail- 
able on the Web. We have implemented the main compo- 
nents of a prototype implementation of our architecture and 
reported on some preliminary experimental results. 

We have shown that navigation maps can be created semi- 
automatically as the webbase designer browses sites, and 
that navigation expressions can be automatically derived 
from these maps. These expressions are executed when 
evaluating a query, and thus optimizing such expressions is 
an important problem that needs to be studied. 

Our experiments suggest that parallelization of query 
evaluation is crucial for obtaining acceptable response times. 
Finally, while the idea of structured UR as a query interface 
seems to be promising in the context of webbases, more ex- 
perimental work needs to be done to evaluate the practicality 
of the idea. 
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