
A Layered Architecture for Querying Dynamic Web Content

Hasan Davulcu* Juliana Freire
University at Stony Brook Bell Laboratories

davulcu@cs.sunysb.edu juliana@research.bell-labscorn

Abstract
The design of webbases, database systems for supporting Web-
based applications, is currently an active area of research. In this
paper, we propose a 3-layer architecture for designing and imple-
menting webbases for querying dynamic Web content (i.e., data
that can only be extracted by filling out multiple forms). The low-
est layer, virtual physical layer, provides navigation independence
by shielding the user from the complexities associated with retriev-
ing data from raw Web sources. Next, the traditional logical layer
supports site independence. The top layer is analogous to the exter-
nal schema layer in traditional databases.

Within this architectural framework we address two problems
unique to webbases - retrieving dynamic Web content in the
virtual physical layer and querying of the external schema by the
end user. The layered architecture makes it possible to automate
data extraction to a much greater degree than in existing proposals.
Wrappers for the virtual physical schema can be created semi-
automatically, by asking the webbase designer to navigate through
the sites of interest - we call this approach mapping by example.
Thus, the webbase designer need not have expertise in the language
that maps the physical schema to the raw Web (this should be
contrasted to other approaches, which require expertise in various
Web-enabled flavors of SQL). For the external schema layer, we
propose a semantic extension of the universal relation interface.
This interface provides powerful, yet reasonably simple, ad hoc
querying capabilities for the end user compared to the currently
prevailing “canned” form-based interfaces on the one hand or
complex Web-enabling extensions of SQL on the other. Finally,
we discuss the implementation of the proposed architecture.

1 Introduction
The trend of using the World Wide Web as the medium
for electronic commerce continues to grow. Web users
need to obtain information in ways that cannot be directly
accomplished by the current generation of Web search
engines. It is typical for a user to obtain information by

*This work was done while the author was at Bell Laboratories.
t Supported in part by NSF grant IRI-9404629.
tsupported in part by NSF grants CCR-9705998,9711386.

Permission to make digital or hard topics of all or part of this work fog
personal or classroom use is granted without fee provided that copies
are not made or distributed Ibr profit or commercial advantage and that
copies hear this notice and the l’ull citation on the first page. To copy
othcrwisc, to republish, to post on servers or to rcdistrihutc to lists.
requires prior specific permission andior a t&z.

SIGMOD ‘99 Philadelphia PA
Copyright ACM 1999 l-58113-084-8/99/05...$5.00

Michael Kifert
University at Stony Brook

kifer@cs.sunysb.edu

I.V. Ramakrishnad
University at Stony Brook

ram@cs.sunysb.edu

filling out HTML forms (e.g., to retrieve product information
at a vendor’s site or classified ads in newspaper sites). This
process can become rather tedious when users need to make
complex queries against information at multiple sites, e.g.,
make a list of used Jaguars advertised in New York City area,
such that each car is a 1993 or later model, has good safety
ratings, and its selling price is less than its Blue Book value.
Answering such complex queries is quite involved, requiring
the user to visit several related sites, follow a number of
links and fill out several HTML forms. Thus the problem
of developing tools and techniques for creating Web-based
applications that allow end users to shop around for products
and services on the Web without having to tediously fill out
multiple forms manually, is both interesting and challenging.
It is also of considerable importance in view of a recent
survey that contends that 80% of all the data in the Web can
only be accessed via forms [181.

Not surprisingly, the design of database systems for man-
aging and querying data on the Web, called webbases (e.g.,
in [25]), is an active area of current database research. A sig-
nificant body of research covering a broad spectrum of topics
including modeling and querying the Web, information ex-
traction and integration continues to be developed (see [8]
for a survey). Nevertheless research on the design of tools
and techniques for managing and querying the dynamic Web
content (i.e., data that can only be extracted by filling out
one or more forms) is still in a nascent stage.

There are several problems in designing webbases for
dealing with dynamic Web content. Firstly, there is the
problem of navigation complexity. For instance, while there
has been a number of works that propose query languages
for Web navigation [27,17,16,4], they are only beginning to
address the difficult problem of querying sites in which most
of the information is dynamically generated. Navigating
such complex sites requires repeated filling out of forms
many of which themselves are dynamically generated by
CGI scripts as a result of previous user inputs. Furthermore,
the decision regarding which form to fill out next and how,
or which link to follow might depend on the contents of a
dynamically generated page.

Secondly, given the dynamic nature of the Web, in
order to build a practical tool to retrieve dynamic content

491

from Web sites, one needs to devise automatic ways to
extract and maintain navigation processes from the site
structure. Lastly, once navigation processes have been
derived, one needs to query the information they represent.
Although traditional ‘databases also provide sophisticated
query languages, such as SQL or QBE, these interfaces
are rarely exposed to the casual user, since they are still
considered too complex. Naive users are usually given
canned queries needed to perform a set of specific tasks.
These canned interfaces served well in the case of fairly
structured corporate environments, but they are too limiting
for the wide audience of Web users. A webbase would
certainly benefit from a query language that is flexible
enough to support interesting types of ad-hoc querying and
yet is simple and natural to use.

To address these problems, we propose a layered architec-
ture, analogous to the traditional layering of database sys-
tems, for designing and implementing webbases for query-
ing dynamic Web content. In our architecture, the lowest
layer, which we call the virtual physical layer, provides nav-
igation independence because it shields the user from the
complexities associated with retrieving data from raw Web
sources. Next up, the logical layer, which is akin to the tra-
ditional logical database layer, provides site independence.
Finally, the external schema layer is functionally analogous
to the corresponding layer in traditional databases.

This analogy in teirms of layering allows us to focus
on developing techni’ques for problems that are unique
to webbases, and for problems that are common to both
webbases and traditional databases we can directly use the
already known techniques. Based on the databases analogy,
we can readily identify that the problem of mapping the
logical to the physical layer in traditional databases is similar
to what needs to be done in webbases with respect to the
corresponding logical and the virtual physical layer. Thus
all of the techniques developed in traditional databases for
this mapping, such as schema integration and mediators, can
all be directly applied 1.0 webbases.

On the other hand, retrieving the dynamic Web content in
the virtual physical layer is a problem unique to webbases.
Unlike the physical layer in traditional databases, we have
no control over the data sources in the Web. Automating re-
trieval of data from such sources, especially those generated
by forms, is difficult. Similarly, there are important differ-
ences at the external sc:hema layer. Indeed, Web users form
a far larger audience a:nd generally with much wider varia-
tion of skill levels than corporate databases users. For them,
traditional query languages such as SQL are too complex.
At the same time, the diverse nature of the audience makes
it difficult to prepare satisfactory canned queries in many ar-
eas. Also, preparing canned interfaces for each domain can
be expensive. Thus, it is desirable to have a query interface
that permits both ad ho,c querying and is simple to use.

In brief, our approach to both of the above problems
is as follows. Mapping the relational schema onto the

raw Web requires a calculus or algebra of some sort to
specify navigation expressions that “populate” the schema
with data. This part is not new as other projects attempted
the same (see e.g., [5]). However, these approaches
have shortcomings. The webbase designer is required to
have expertise in the underlying calculus, which is usually
some Web-enabling extension of SQL or relational algebra.
Reported experiments [26] suggest that users resist this idea,
because the underlying navigation languages are hard to
master. In addition, given that Web sites change frequently,
maintaining manually generated navigation expressions (can
be an arduous task.

What is different in our approach is that by separating
the virtual physical layer from the logical layer we (can
create navigation expressions semi-automatically, through
an interactive process that does not require the user to have
any expertise in the formalism underlying the navigation
calculus, and the webbase designer does not even need to
see what the navigation expressions look like. To support
such degree of automation and be able to represent complex
navigation processes, the underlying formalism must h,ave
these properties:

l It must be high level and declarative, as it is much easie:r to
create high-level specifications of navigation processes.

l It must be compatible with the formalism that underlies
databases query languages (i.e., with relational calculus), so
that it is possible to compose user queries with navigation
expressions in order to create a single expression that would
ultimately fetch the desired answer to the query. This is akin
to the process of answering queries against views, where
view definition is substituted into the query. If the resulting
expression is still part of some declarative formalism, then
the entire query can be optimized using techniques that are
akin to relational algebra transformations (but we do :not
discuss such techniques here).

l Due to the nature of the processes being modeled, .the
navigation calculus must support procedural and declarative
in the same formalism. For instance, at a high level, lthe
calculus should support statements such as “do this after
doing that” or “do this provided that”.

l The high-level specification formalism must be object-
oriented. Web navigation has to deal with complex struc-
tures such as Web pages and forms in a declarative environ-
ment, and these structures are best represented as objects.

o Navigation calculus expressions should be executable spec-
ifications themselves.

In our system, we chose a subset of Transaction F-
logic [12], which to the best of our knowledge, is the only
language that supports all the above features in a uniform
fashion. Transaction F-logic is an amalgamation of two
other well-known formalisms: F-logic [141 and Transaction
Logic [6]. Although our navigation calculus is much more
powerful (and complex) than other proposed languages for
Web navigation, the Web designer does not need to know

492

External Schema CJiews)

SQL, QBE.

Logical Schema

Relational algebra
I

I Physical Schema 1
Virtual Physical Schema

r

. Navigation calculus
-Data exlratim
.WC?bserVM

External Schema OJiews)

Lc~lcal Schema
I

Traditional Database Architecture Wehbase Architecture

Figure 1: Traditional database architecture vs. webbase
architecture

anything about it. Our approach makes it possible to create
all necessary wrappers for the virtual physical schema semi-
automatically, by simply asking the webbase designer to
navigate through the sites of interest. We call this approach
mapping by example. The virtual physical layer and the
navigation calculus are described in Sections 3 and 4.

For the external schema layer, we propose a semantic
extension of the universal relation interface [24, 231, which
we call structured universal relation. We argue that this
interface provides powerful, yet reasonably simple ad hoc
querying capabilities for the end user (e.g., a Web shopper)
compared to the currently prevailing canned, form-based
interfaces on the one hand and complex Web-enabled
extensions of SQL on the other. The external schema layer
is described in Section 6.

Apart from the aforesaid sections, Section 2 introduces
our layered architecture. Section 5 discusses the problems
associated with the logical layer of a webbase; our imple-
mentation effort of the proposed architecture is described in
Section 7; related work appears in Section 8; and concluding
remarks in Section 9.

2 Architecture for the WebBase
The most significant difference between a webbase and a
database is the absence of the physical level in the traditional
sense. Indeed, actual data is the exclusive domain of the Web
server, and the only way the webbase can access the data is
through filing requests to the server by following links or by
filling out forms.

Therefore, we introduce the notion of the virtual physical
database schema (W’S), which represents all the data there
is to see by filing requests to the server. In many cases,
the VPS layer cannot be constructed completely (or we
might never know whether the known part of the VPS

is complete). While the role of the physical layer in
databases is to describe data storage, the role of VPS in
webbases is to specify how to navigate to the various sources
of information in the Web. In this way, VPS provides
navigation independence for webbase systems and presents
a database view of the Web to the upper layers of the
webbase. In this paper, we use the relational model to
represent data in webbases. More details on the VPS layer
appear in Sections 3 and 4.

We remark that, since the main focus in this paper is
querying and navigation, we do not discuss updates and
methods for data extraction from HTML pages. To the best
of our knowledge, the former issue has not received much
attention, while the latter has been researched extensively.

At the VPS layer, data collected from different sources
resides in different relations, thus semantic and representa-
tional discrepancies are likely to exist between these rela-
tions. For instance, prices could be represented using differ-
ent currencies and semantically identical attributes can have
different names. These differences are smoothed out at the
logical layer of the webbase architecture, which provides
site independence, i.e., independence from the specifics of
the data sources that supply data to the webbase. Further de-
tails on the logical schema are presented in Section 5. We
should note that resolution of semantic and representational
differences between sites is not the subject of this paper.
There is a vast body of research dedicated to this topic, and
we could use the techniques developed there.

The top level in the webbase architecture is the external
schema layer, which targets specific application domains
(e.g., used car ads, computer equipment, etc.) and is
supported by a user interface that permits a high degree of
ad hoc querying by naive Web users. As mentioned earlier,
for such users traditional query interfaces are either too
complex (SQL, QBE) or too rigid (canned and form-based).
Thus, we need a query language that is flexible enough
to support interesting types of ad-hoc querying and yet is
simple to use. In search of such a language, we resurrected
the Universal Relation (VR) query interface. The details of
our implementation of the UR are presented in Section 6.

The following example illustrates the distinctions among
different levels of abstraction in a dynamic webbase.
Example 2.1 (Used Cars) A webbase for used car shop-
ping in the metropolitan New York area might access the
several sites, such as newspapers (Newsday’ and New York
Times), new car buying services (Car Point and Auto Web),
blue book price references (Kelly’s), reliability information
(Car and Driver) and finance (Car Finance). We present a
possible set of VPS relations that can be extracted from these
sites.2 To make the tables more compact, we use Car as a
shorthand for the attributes Make, Model, Year.

‘Newsday is a regional newspaper with circulation in Long Island and
New York City.

2Although this example describes these sites fairly accurately. for
illustration purposes we introduce simplifications as well as bnng in
features found in other sites.

493

Iftion 1 VPS Level Relations 1

t%%&;kds
I - -- ~~~
1 neusday(Car,Price,Contact,Url),

I neusdayCarFeatures(Url,Features,Picture) 1

t-

nyTimes(Car,Features,Price,Contact)
Dealer Cars carPoint(Car,Price,Features,ZipCode,Contact)

autoWeb(Car,Price,Features,ZipCode,Contact)
Blue Book Prices kellvs(Car,Condition,BBPrice)

carAndJ&ver(Car,Safhy) '
carFinauce(Car,ZipCode,Duration,Rate)

Table 1: VPS Level Relations

Table 1 shows examples of VPS relations for various Web
sites. The first line in the table illustrates that data for the
Newsday’s site might be presented in multiple hyper-linked
pages, and depending on the user’s request, data extraction
might require navigating multiple pages. e.g., new&y and
newsdayCarFeutures.

The logical level relations for our webbase and their
associated relational schemas are presented in Table 2, along
with the corresponding mappings to the VPS layer.

The external schema layer is represented by the following
universal relation, Used.CarUR, which contains the union of
all the attributes of the logical layer:

UsedCarUR(Car,Price,Features,Contact,
BBPrice,Safety,ZipCode,Duration,Rate)

The mapping between external and the logical layer in
the Universal Relation model is a rather subtle issue. In
Section 6, we show that the known approaches (e.g., [23])
are not suitable for Web applications and discuss a possible
solution.

Now, the query posed in Section 1, “make a list of used
Jaguars advertised in New York City area sites such that
each car is a 1993 or later model, has good safety ratings,
and its selling price is less than its Blue Book value”, can be
expressed against our webbase as follows:

UsedCarUR(jaguar,Mdl,Year,Price,Featrs,
Contact,BBPrice,good,ZipCode,Duration,Rate),

Year >1993,13BPrice > Price 0

3 Virtual Physical Schema

An important difference between webbases and traditional
databases is that webbases do not control the physical
data and there are limited ways in which this data can be
retrieved. Given a virtual physical schema (VPS) for a
relation, the corresponding data can usually be obtained only
by filling out a form, which requires that the user specify
values for a certain selection of attributes, some of which
might be mandatory and some optional. In fact, there might
be several alternative sets of optional/mandatory attributes
per relation that limit the scope of data to be retrieved.

In addition, we must specify the navigation process that
needs to be executed in order to get the data. This process is
represented using Navigation Calculus, which is described
in the next section. Tiherefore, for each relation schema

R in the VPS layer, there is a quadruple, called a handle,
represented as follows:

H = (mandatory-attrs, selection-attrs, R, expression)
The set of mandatory attributes specifies the minimum infor-
mation that the handle needs in order to invoke the naviga-
tion calculus expression (the fourth component) and retrieve
the requisite data. The set of selection attributes specifies the
additional attributes that might be also specified. These aid-
ditional attributes are used by the expression and are eventu-
ally passed to the various Web servers who, presumably, use
these attributes to return more specific answers. For conve-
nience, we assume that mandatory-attrs C selection-attrs.

There can be several handles for the same relation.
Different handles for the same relation must use different
sets of mandatory attributes. However, different handles
can have the same sets of selection attributes and the same
navigation expression (for instance, the same HTML form
might have two alternative sets of attributes; at least one of
them must be filled in order to get a result).

We assume that all handles for the same relation agree
with each other: if Hr = (Ml, 5’1, R, El) and HZ = (Mi,
S’s, R, Ez) are two handles for the same relation and we
specify concrete values for a set of attributes S such that
Ml U MZ C S C Sl fl Ss. then handles HI and Hz return
the same result.

Table 3 shows the sets of mandatory and selection
attributes for some relations in the VPS of Example 2.1. The
first column in the table lists relation schemas, the second
column shows mandatory attributes for each schema, and
the third shows the optional attributes (= selection-attrs -
mandatory-attrs).

4 Navigation Calculus

Navigation maps. The basic data structure that enables
automated access to virtual relations residing in the VPS of a
webbase are the navigation maps for the participating sites.
Intuitively, a navigation map codifies all possible acce.ss
paths that a site presents for populating a virtual relation.
A navigation map is a labeled directed graph (see Figure 2)
where the nodes represent the structure of static or dynamic
Web pages, and the labeled edges represent possible actions
(i.e., following a link or filling out a form) that can be
executed from a dynamic page. Our navigation maps are

494

1 Lo&Cal Level Relations 1 Definitions

I

classifieds(Car,Price,Contact,Features) ~car,Pr~c~,cont~ct,P~atur~~ (newsday W
newsdayCarFeatures)

dealers(Car,Price,Contact,Features)

blue-price(Car,Condition,BBPrice)
reliability(Car,Safety)
interest(Car,ZipCode,Duration,Rate)

U BCsr,Pric~,Contact,F*at~roa (nyTimes)
~car,Pris.,contact,s..tur.,(carpoint)
U ‘ITCu,Pr~c.,contact,~~atur~s (autoWeb)

~Car,Condition,BBPric*(kellys)

carAndDriver
carFinance

Table 2: Logical Level Relations

VPS
newsday(Make,Model,Price,Contact,Url)

) Mandatov) Optional
) Make] Model

newsda&rFeatures(Url,Features,kc&re) Url
nyTimes(Make,Model,Features,Price,Contact) Make I
kellys(Make, Model, Condition, BBPrice) Make, Model Condition

Table 3: Virtual Physical Schema

closely related to the Web schemes of the Araneus project
[25, 51, but our modeling of the Web is process-oriented,
which facilitates creation of the navigation expressions from
navigation maps.

Mapping the virtual physical schema onto the raw Web re-
quires a calculus of some sort. One obvious candidate would
be the relational calculus or algebra, extended with Web-
specific primitives (and some other known extensions, like
the unnesting operator of Ulixes [5]). The Araneus and the
Ariadne projects [5, 151 take this approach. However, these
formalisms are not powerful enough to express complex nav-
igation processes on the Web. For instance, as shown in Fig-
ure 2, a navigation process to access the used car ads in the
classified section at the site www.newsday.com requires fol-
lowing a link (linkfauto)), filling out a form @rmfl(make)),
then making an if-then-else choice depending on the result-
ing page - if the page is not a data page, another form (form
fl(model,$eatrs)) will have to be filled out. The length of the
sequence is not fixed. It is usually one or two, depending
on the number of answers that match the initial query. Once
the final data page is reached, an iteration to collect data is
needed (repeatedly hitting the “More” button).

Examples like this and our experience with other, more
complex, sites shows that navigation processes are best
represented using a calculus that allows recursion and has
the notion of ordering of events. In addition, the calculus
must deal with complex structures, such as Web pages,
forms, etc., which are best represented as objects.3

Unlike other projects that deal with navigation processes
on the Web, we do not invent yet another, new navigation
algebra or calculus. The calculus that satisfies all the
requirements stated above is actually well-known: it is a

30bserve that the user-level view of the database is represented using
the relational model. However, the underlying navigation process (which is
invisible to the end user) is based on the object model, since it has to deal
with Web pages and other objects, which are not part of the user view.

newsday

new-car-dealer UsedC

link(more)

(3

‘Q collectible-cars sport-utility

link(llsting)
i

carPg

link(car f eatures)

newdayCarFeatures(features, picture)

Figure 2: Navigation map for Newsday Classified Car Ads

subset of serial-Horn Transaction F-logic [121, a natural
cross between Transaction Logic [6] and F-logic [14]. In
fact, the Florid system [9], based on F-logic, has proved
to be very successful for Web applications. Because Florid
lacks the Transaction Logic component, it is not suitable to
be used as a calculus for encoding navigation processes.

The object model. F-logic extends classical logic by
making it possible to represent complex objects on a par with
traditional flat relations. A navigation map is a collection of
F-logic objects, such as the following object that represents
one of the forms to be filled out at the Newsday’s site:

submit-form : action[f orm + f ormOl[cgi +
"/cgi - bin/nclassyNDD.x/";
method + “post.“;

mandatory--i+{make,model};
optional+{year}];

source + www.newsday.com]

495

currentUrl(pid, url)

action[
object~{link,form}
source*url;
targets=%%web-page;
doi?&JattrValPair+web-page]

submit-form : action
follow-link : action

web-page[
address+url;
titlejstring;
contents*string;
act,ions=D{action}]

data-page :: web-page
data-page[extract+relation]

link[
name*string;
add.ress*url]

form[
cgi.*url;
methodjmeth;
mandatorywattribute;
opt ionalwattribute;
sta.teWattrValPair]

attrValPair[
attrlame-sstring;
type+widget;
default+Object;
value+Object]

Current URL of browsing process PID

Declaration of Class Action
Action can apply to a form or a link
Page where the action belongs
Where this could lead us
Method to execute action

Form fillout is an action
Following a link is an action

Declaration of Class WebPage
URL of page
Title of the page
HTML contents of page
List of actions found in the page

The class of data Web pages is a subclass of web-page
Data pages have a data extraction method

Declaration of Class Link
Name of link
URL of link

Declaration of Class Form
CGI script’s URL associated with this form
CGI invocation method
Mandatory attributes of this form
Optional attributes of this form
State of form (set of attribute-value pairs)

Declaration of Class AttrValPair
Name of the attribute part
Checkbox, select, radio, text etc.
Default value of the attribute
The value part

Figure 3: Common WWW Data Structures Represented in Navigation Calculus

newsday(Make, Model,Price,Contact,Url) +-
newsdayPg.actions : follow-link[object + link(auto);

doitO()+UsedCarPg]
@3 UsedCarPg.actions :submit-form[object +form(fl);

doit@(Make)-XarPgl]
8 (CarlPgl : data-page[extract+tuple(Contact,Price,Url)]

V(CarPgl.actions : submit_form[object-+form(f2);
doit@(Model)+CarPgZ]

@ CarPg2 :data-page[extract+tuple(Contact,Price, WI

Find car ads at Newsday:
Follow link(auto)
to used car ads;

Fill form(f1) using M&e;
Either extract data,
or fill form@)
using Model,
then extract data

Figure 4: The Navigation Process of Retrieving Used Car Advertisements from Newsday Site

In the first line, submit-form:action says that the object
submit-form belongs to class action. It has attributes
form and source. The attribute form has the value formO1,
which represents the form to be filled out. form01 is itself
a complex object with four attributes: cgi and method are
single-valued, and mandatory and optional are multi-valued.
The attribute source of the object submitform represents the
page to which the action belongs. In addition, the object has
a method, doit (defined below), whose purpose is to execute
the action.

Figure 3 presents the schemas (called signatures) of some
of the objects we use to model navigation maps. The double-
shafted arrows =+ and =++ (as opposed to + and + in the

previous example) signify that these expressions declare the
types of the attributes and methods rather than their states.

Navigation expressions. F-logic provides a declarative
calculus for representing complex objects on the Web, but
to model navigation processes one needs a formalism for the
representation and sequencing of actions. These facilities
are provided by Transaction Logic [6], a conservative ex-
tension of classical logic, which is suitable for representing
complex declarative processes that both query the underl,y-
ing database state and update it. The following subset of
serial-Horn Transaction Logic complements the subset of F-
logic described above and provides an expressive navigation

496

calculus for enabling access to raw Web data.
For the purpose of this paper, it suffices to explain the

informal, procedural reading of some of the connectives of
Transaction Logic. Underlying the logic and its semantics
is a set of database states and a collection of paths. A path
is a finite sequence of database states. For instance, if ~1,
s2, “‘, s,, are database states, then (~1, ~2, s,) is a path
of length 7~. Just as in classical logic, Transaction Logic
formulas assume truth values. However, unlike classical
logic, the truth of these formulas is determined over paths,
not at states. If a formula, 4, is true over a path (~1, sn),
it means that $ can execute starting at state ~1. During the
execution, the current state will change to ~2, ss, etc., and
the execution terminates at state sn.

Procedurally, a Transaction Logic formula can be under-
stood as a transaction or a query (depending on whether it
changes the database state or not). Semantically (and pro-
cedurally) these formulas have several common attributes of
database transactions, such as atomicity and isolation. With
this in mind, the intended meaning of the new connectives
of Transaction Logic can be summarized as follows:

l I$ @ 1c, means: execute 4 then execute $.
l q5V $ means: execute 4 or execute 11, non-deterministically.
This connective is useful for specifying alternative execution
branches in a navigation process.

Figure 4 shows the navigation process to extract car ads
from the Newsday site. Here we use path expressions
as shortcuts for longer F-logic expressions, as described
in [14, 131. For the benefit of the reader who is not
fluent in Transaction F-logic, we annotated each clause in
Figure 4, so the meaning of the navigation expression should
be self-explanatory. Navigation expressions do not always
need to be that complex. For instance, navigating to the
NewsdayCarFeatures page, which is part of our VPS, can
be achieved using the much simpler expression:

newsdayCarFeatures(Url,Features,Picture) +
(DataPg : data-page).actions[object +

link(-)[name -+ “CarFeatures”];
doit@I() -+ -[address + Url;
extract + tuple(Features, Picture)]]

This expression says that to get to a car features page,
we must first get to a data page (DataPg) that has a link
called “Car Features”, follow this link, and then extract the
features from the page. Of course, in a bigger system, we
would have to qualify this initial page even further to avoid
mis-navigation. The interesting point here is that the page
denoted as DataPg is not an entry point to any navigation
process that a regular Web user might perform. Indeed, as
seen in Figure 4, one has fill out one or two forms to reach
this page. However, this is not a concern at the VPS layer. It
is a job of the logical layer, described in Section 5, to order
joins in such a way that the relation newsday of Figure 4 is
computed first (to retrieve the desired page, DataPg).

Even if the above Transaction F-logic expressions look
a bit complex to the reader, the most important aspect of
our webbase architecture is that nobody, except the system

builder, needs to ever see these expressions. It is easy to see
that the above expressions closely mimic the structure of the
navigation map in Figure 2 and, in fact, they can be derived
automatically directly from that map in linear time in the
size of the map. Due to space limitation, we do not present
the translation algorithm, because this would require that we
spell out the structure of the navigation maps in much greater
detail. Details are given in the full version of this paper.4

It is important to realize that the translation from the map
to the calculus expression has been greatly facilitated by:

l our process-oriented object model, whose objects corre-
spond to nodes and links of the navigation map;

l the fact that the F-logic component of our navigation
calculus naturally supports this object model; and

l the Transaction Logic component that represents the pro-
cess structure encoded in the navigation map.

Finally, once the translation is done, the resulting navigation
expressions can be directly executed by a Transaction F-
logic interpreter when user queries posed against the external
schema level of the webbase eventually turn into queries
against the VPS layer.

5 Logical Layer
The VPS layer provides a relational view of data that can
be retrieved from a Web site, thereby hiding navigation
details. In contrast to this, we use a logical layer to provide a
uniform interface to data arriving from multiple sources. By
separating these layers, we achieve site independence. This
means both independence from the differences in vocabulary
and representation used by different sites as well as complete
transparency with respect to where the data is coming from.

Table 2 shows a possible mapping of Logical relations
into VPS relations. While VPS layer has eight relations
that shield the user from navigation details, the five logical
relations in the example show a view of the Web data that
is completely transparent with respect to the location of the
data source.

In this paper, we are not concerned with the issues
pertaining the mapping of the logical layer onto VPS. This
mapping can be done using conventional techniques (e.g.,
relational algebra, or Datalog rules) or we could use more
advanced techniques, which might offer certain advantages
in the Web environment (e.g., [8, 191).

However, one issue related to this mapping must be
addressed. The problem is that unlike traditional databases,
VPS relations can only be accessed by supplying values for
certain sets of mandatory attributes. Since logical relations
are mapped onto the physical ones, it is clear that they
also can be accessed only by providing values for certain
attributes. The process of determining these sets of attributes
is called binding propagation (because, in abstract terms,

4The full-version of this paper available at http://www-db.reseah.bell-
labs.com/users/juliaa.

497

sets of mandatory attri’butes in HTML forms correspond to
variable bindings in programming languages).

The problem of binding propagation has been well-
studied in the literature (see e.g., 17,291). In the following,
we propose a much simpler description, which also differs
from other works in two respects: (1) it handles not only
conjunctive queries, but also all relational algebraic queries;
and (2) instead of deri.ving bindings for a given query on
the fly, it statically determines all allowed bindings for each
logical relation.

Let CY denote a relational algebraic expression over VPS
relations, and we need1 to determine the bindings (or sets
of mandatory attributes) for the resulting relation of this
expression. The binding propagation algorithm can be
described by the following rules, each corresponding to one
of the allowed re1ationa.l operators:

l Let (I! = V, where V is a VPS relation, if M is a binding
for V, then M is also a binding for CX.

l Leta = El U Ez or (2 = El - Ez, where El and E2 are
relational expressions over VPS relations, if Ml is a binding
for El and Mz is a bind.ing for Ez, then MI UMz is a binding
for (Y.~

l Let (Y = XX (E) or Q = a+(E), if M is a binding for E
then M is also a bindiqg for CY.

l Let CS = E>l W E2, if MI, MZ are bindings for El, Ez,
respectively, then Ml U (Mz - (El n Ez)) and M2 U (Ml -
(El fl E2)) are both bindings for cr. Here El FU Ez denotes
the set of common attributes of the relation schemas for El
and Ez.

From these rules, it is also easy to derive an algorithm for
join ordering under the given set of bindings, i.e., an ordering
RI, R, that guarantees that for each i (1 5 i 5. n), all
mandatory attributes of Ri belong to the union Uizi Rj.
Clearly, the existence of such an ordering is necessary
and sufficient for a join to be computable under the given
set of mandatory attributes. However, in the presence of
multiple sets of mandatory attributes per VPS relation, such
an algorithm would be exponential. In fact, [29] shows that
the problem is NP complete in this case.

To illustrate the above binding propagation algorithm,
consider the logical level relation classzjieds from Exam-
ple 2.1. Since Make is the only mandatory attribute of
the relation newsday and Url is the only mandatory at-
tribute of newsdayCarFeatures, by the join rule above,
{Make} turns out also to be the only mandatory binding for
newsday W newsdayCarFeatures. Similarly, Make is

the only mandatory attribute of nyTimes. Therefore, by the
union and projection rules, {Make} is the only mandatory
binding for classifieds.

‘Here we assume that the user wants all available answers to the query.
If the user is willing to accept only some available answers because she does
not want or care to fill out all the required attributes in a form, then we could
define a relared union. In a relaxed union, both A41 and A42 (separately)
would be acceptable bindings for a.

6 External Schema
Casual users query the webbase through the external schema.
Traditionally, end users have been given access to limited in-
terfaces that allow only a fixed set of canned queries. These
canned interfaces served well in the case of fairly structured
business environments, but, as remarked earlier, they are too
limiting for a casual Web user. On the other hand, more flex-
ible query languages, such as SQL or QBE, are too complex.
In search of a suitable query interface for webbases, we res-
urrected the idea of the Universal Relation (UR) [24].

The basic idea is simple and appealing. The user is
presented with a list of all attributes that might be of interest
for a particular application domain. To pose a query, the
user simply points to a set of output attributes and imposes
conditions on some other attributes. This is it: no joins, sheer
simplicity. Of course, to realize such an agenda, the system
(and the user) must know what such a query exactly means,
and the understanding of that meaning by both the system
and the user must coincide.

Simplistically, the semantics of a universal relation query
is explained as a natural join of the underlying relations at
the logical layer, which cover the output and the selection
attributes specified in the query. Moreover, the join must be
lossless. Losslessness is required because this is a formal
analog of the common sense idea of connections between
concepts that “make sense”.

Underlying this idea are two basic assumptions:

1. The unique relationship assumption: The relationshlir.
between any given subset of attributes in the universal
relation schema is unambiguous and unique; and
2. The unique role assumption: The name of an attribute
unambiguously determines the role of that attribute.

The first problem arises even in very simple schemas
that contain just four attributes. For instance, a customer
and a bank might be connected because the customer has
an account in the bank, a loan, or both. Which one
did the user have in mind when she selected Bank and
Customer as output attributes? A number of solutions were
proposed to address the first problem, which range from
restricting the topology of the underlying logical schema
(e.g., acyclicity [2 11) to additional layers of semantics (e.g.,
Maximal Objects, Window Functions [23,22]).

Unfortunately, on the Web, we cannot assume the very
basic lossless join semantics for UR, since we cannot even
assume any dependencies (join, functional, or multivalued)
on which the very idea of losslessness is based. Nor can
we use most of the approaches to enforcing or relaxing the
unique relationship assumption, because these approaches
rely heavily on the use of constraints.

The second problem, the unique role assumption, was
assumed to be solvable by simple renaming of attributes.
However, this solution was never thought to be practical
and may have been responsible for the general lack of
enthusiasm for the UR approach.

498

In our attempt to adapt the UR as a Web interface, we kept
the basic idea of a simple query interface, but rejected the
lossless join semantics and the two uniqueness assumptions.
We call this approach structured universal relation. The
basic idea is to replace losslessness and constraints with
compatibility rules. A compatibility rule has either the form
RI, Rk+R or the form RI, R~+TR. In the first
case, the rule says that if you already joined RI, Rk
then joining with R also “makes sense”. This is our
“poor man’s lossless join requirement”. The second rule is
really a constraint. It says that if we have already joined
RI, ..-, Rk, then joining with R would create an incorrect
relationship (in the UR model, such connections are known
as “navigation traps”).

With these constraints, we can formulate the semantics of
a query as follows: Let Q be a query that mentions the set
of attributes A = Al, A,. Then the semantics of this
query is said to be the join R = RI C4 . . . W R,, where
Rl , R, is a minimal (with respect to inclusion) subset of
logical relations that satisfy the compatibility rules, and R
contains all attributes in A.6 This is essentially our analogue
of the maximal objects approach [23]. If there are several
maximal objects covering the query attributes then we take
the union of results obtained from each object. Depending
on the exact structure of the compatibility rules, algorithms
with various efficiency can be constructed. For instance, if
the rules are of the form R+Q, then we have a restricted
join-ordering problem mentioned in Section 5.

To address the problem of unique name assumption, we
propose to organize the attributes in the UR into a hierarchy
of concepts. Each concept is a relation schema whose
attributes are concepts of a lower layer. As shown in
Figure 5, the top layer in this hierarchy is the universal
relation itself, and the concepts are the attributes of that
relation.

Full Retail
Dealers Classitieds Lease

UsedCariCar, Price, Contact) BlueBwk(Car. BBPrice)

UsedCuUR (Car. Price, BBF’rice, Rate, Contact. Cost)

Figure 5: Concept Hierarchy for the Used Cars UR

Example 6.1 (Concept Hierarchy) The concept hierar-
chy describes the following: (1) A used car is either adver-
tised at a dealer site or it is in the classified section of a news-
paper site; (2) The blue book price of a car can either be its
trade-in price or its selling price; (3) The interest rate for a
used car depends on whether it will be financed or leased;
and (4) the insurance rate depends on whether it provides

‘%ompatible means that for every 1 < i 5 n, there is a rule Left-t R;
such that Left E {RI , Ri-1); and there is no rule Left-t-R such
that LeftU {R} E {RI,...,&}.

full or liability coverage. 0
The idea behind concept hierarchies is that the user

starts by selecting top-level concepts and then proceeds
to subconcepts. This makes it possible to build queries
incrementally, by restricting the search to various sub-
concepts and to specific ranges for attributes at the leaf
level. The unique name assumption is not an issue here -
for the user or the system - since both can see the entire
concept hierarchy to which the attributes belong, and the
relationships among concepts and attributes are defined by
the compatibility rules.

We believe that webbases will be designed for application
domains (such as cars, jobs, houses) by the experts in those
domains, and designing concept hierarchies and compatibil-
ity constraints is a feasible task for them. We illustrate these
ideas with an example, leaving out the details due to space
limitation.
Example 6.2 (Structured UR in Action) The following
compatibility constraints specify the meaningful connec-
tions for the UsedCarUR of Example 6.1.

Compatibility Constraints
Classifieds + 7 Lease

Lease + Full-Coverage

Semantics
We cannot lease a car
from its owner
Leased cars have to be

1 fully insured
Used-Cars + 7 TradeIn-Value 1 Trade-in values are not

applicable

Consider the following query: make a list of used Jaguars
advertised in New York City area sites such that each car’s
monthly payments are less than 1,000 dollars, and its
selling price is less than its Blue Book price. This query can
be expressed as:

Used-Car-UR(jaguar, Model, Year, Price, BBPrice,
Rate, Ins-Cost), Price < BBPrice,
(Price X Rate + Ins-Cost) + 12 < $1000

Using compatibility constraints, our algorithm generates the
following maximal objects and the corresponding relational
expressions:

Dealers W Lease W Full W Retail-Val
U Dealers W Loan W Full W Retail-Val
U Dealers W Loan W Liability W Retail-Val
U Classif ieds W Loan W Liability W Retail-Val
U Classif ieds W Loan W Full W Retail-Val 0

Now assuming the existence of a mapping function from
external schema relations to the logical level, maximal
objects made up from the UR relations can be translated
into conjunctive queries over logical level relations. Once
translated, these queries can be optimized and evaluated by
standard query evaluation techniques.

7 Implementation and Experiences
We have implemented the most essential components of two
of the modules in our webbase architecture: the navigation
map builder and the query evaluator. In what follows we
describe the ideas underlying our implementation.

499

Navigation Map Builder. We use the methodology of
mapping by example to extract the navigation maps from
Web sites. The main idea behind mapping by example is
to discover the structure (or schema) of a site while the
webbase designer moves from page to page, filling forms
and following links. There are two key components to this
methodology: (1) discovery of access paths to the data of
interest; and (2) extraction of action objects (see Figure 2).

In order to build a practical tool, there are two important
requirements: the mapping process should be as transpar-
ent as possible to the webbase designer (its operation should
closely mimic the browsing experience); and the mapping
tool must be portable (e.g., it should not require modifica-
tions to the browser).

The navigation map builder achieves these goals by using
JavaScript events to ciipture browsing actions. Actions are
dynamically intercepted by JavaScript handlers (inserted
into the retrieved pages by the map builder), and are added
as edges of the navigation map. When a new page is
loaded into the browser, it is parsed, and a new node
corresponding to the page is inserted into the navigation
map.7 In order to guide the designer, an applet displays a
graphical representation of the navigation map as it is being
constructed, highlighting in the map the node corresponding
to the page displayed in the browser.

The map builder parses an HTML page and generates
a set of F-logic objects (as detailed in Section 4). It
extends PiLLoW’, a publicly available Prolog-based system,
to extract all necessary information for following links and
submitting forms found inside the page. Since not all
information is stored in the HTML object structure (e.g.,
labels denoting the domain values of some attributes and
attributes defined through a set of links) we take advantage
of HTML tags and anchors and other structuring primitives
(e.g., tables, enumeration) to extract such information. For
forms, the extractor is also able to infer which attributes
are mandatory from .their widget (i.e., if an attribute is
represented by a radio button we can safely assume it
is mandatory), as well as other information such as the
domain of attributes (e.g., from the values of a selection
list), maximum length (e.g., for a text field), default value,
to name a few. For data pages, as described in Figure 3, we
assume that the design,er provides an extraction script.

Of course there are instances where input from the
designer is needed. For instance, the designer has to indicate
whether a text field is mandatory. Also, it is not uncommon
in forms for attributes to have rather cryptic symbolic names
- in these cases (to fa,cilitate subsequent querying) the user
might want to provide a more informative name. There are
also instances where attributes are implicitly defined through
a set of links (e.g., a list of links with car models). Since this
kind of attributes is not part of a form, the designer has to
specify a name as well as the set of links that relate to this

‘Since building maps is anincremental process, our tool checks whether
actions and Web page object,5 are new before adding them to a map.

8h~p://www.clip.dia.fi.upm.es/Software/pillow/pillow.htm~

attribute. It is worth pointing out that in many instances our
parser is able to find these links by considering their HTML
environment (e.g., a table), or the user can provide additional
hints. We are cuirently building a graphical user interface to
simplify the input of such information by the designer.

We used our initial prototype of the map builder to map
various sites. To give an idea of the degree of automation
achieved, for the Newsday site depicted in Figure 2, all
objects that describe the navigation map (85 objects with
over 600 attributes in total) were automatically extracted.
Less than 5% of the information in the map was added
manually, which consisted of 10 to 12 facts to standardize
attribute and domain value names. For other sites such as
New York Times and Daily News, the ratio was similar. The
process of mapping each of these sites took on average 30
minutes. It is worth pointing out that the main problem we
face while mapping sites is the presence of faulty HTML, in
which case the parser needs to be able to recover from the
ill-formed documents.

Some points are worthy of note with respect to the
maintenance of such maps. Modifications to Web sites
can be automatically detected by periodically comparing
the navigation map against its corresponding site, or when
the corresponding navigation process fails. Whereas certain
structural changes such as the addition of a new form
attribute require manual intervention, others can be applied
automatically (e.g., the addition of a cell in a selection list).
Since we first built navigation maps for car-related sites,
we have noticed quite a few changes to these sites. For
example, in Kelly’s Blue Book (www.kbb.com) new links
with information about 1999 cars have been added. In order
to update navigation map, we only had to navigate through
the modified pages, a process that took a few minutes.

Query Evaluator. As described in Section 4, once a map
is built, navigation expressions are automatically generated.
This process requires a simple traversal of the navigation
map, and thus can be done in linear time in the size of the
map. Individually, each expression can be seen as a shortcut
to retrieve data from a Web site. Instead of filling forms and
following links, one can simply specify a set of attributes
and execute the appropriate navigation expression (e.g., for
the query SELECT make,model,yeal;price,contact WHERE
make=ford AND model=escort), execute newsday{ford,es-
tort, Year; Price, Contact) (described in Figure 4). It is worth
pointing out that as a byproduct, the process of retriev.ing
such data is made faster since during the execution of a
navigation process no extraneous objects such as figures and
Java animations are retrieved.

Navigation expressions are processed by the Transact.lon
F-logic interpreter, which translates them into logic pro-
grams that are executed by a deductive engine, the XSB
system.g On top of XSB, we use the HTTP library provicled
by PiLLoW to follow links, submit forms and retrieve docu-
ments from the Web.

500

In order to combine information from different sites
(or maps), the attribute names and their domains must be
standardized. In our current implementation, one must
manually specify these mappings. If a mapping is not
provided for a certain attribute name, we employ fuzzy
matching techniques, which evidently are not full-proof and
may lead to errors. We intend to incorporate techniques from
mediator systems such as [10,301 to address this problem.

We have built navigation maps for a number of sites.
To give an idea of the complexity of the sites and query
execution times, below we show the number of pages
navigated and (some of the best) evaluation times for the
query SELECT make,model,yeal;price WHERE make=ford
AND model= escort over 10 car-related sites. These
timings lo indicate that to ensure acceptable response times
when querying a large number of sites, we may need to use
techniques such as parallelization and caching. It is worth
pointing out that a significant portion of the time in querying
is spent not only in fetching, but also parsing the Web pages.
We believe these times can be greatly improved if a faster
uarser is used.
I

I ,

AutoConnect 3 1 7.26 1 14.70

Newsdav I 4 I 1.01 I 4.77

YahooCars 5 3.12 10.48

Kelly’s 5 2.54 7.63

8 Related Work
The problem of retrieving data from and querying Web
sources has received considerable attention in the database
literature (see [8] for a survey). Managing information on
the Web encompasses several tasks that include locating in-
teresting data, modeling Web sites, extracting and integrat-
ing related information from multiple sites.

Web query languages such as W3QL [16], WebSQL [3],
WebLog [17], and Florid [9] address the problem of finding
and retrieving data from the Web. They improve on search
engines by combining textual retrieval with structure and
topology-based queries. These languages view the Web
as a collection of unstructured documents organized as a
graph, and users can declaratively express how to navigate
portions of the Web to find documents with certain features.
Conceptually, these languages are equivalent to various
subsets of our navigation calculus. More importantly,
however, these are fairly sophisticated query interfaces
designed to be used by a fairly sophisticated user. In
contrast, even though our navigation calculus requires an

loThe times were collected on a Sun Ultra workstation, with dual 330
MHz processors, I GB of memory, and Solaris 5.6 operating system.

even greater degree of programming expertise, it is not
designed to be used by a programmer. Instead, navigation
expressions are generated automatically from the map.

Web information integration systems [20, 5, 2, lo] arc
more closely related to our work in that they try to present
the Web through a unified database interface. The Araneus
project [5] provides a rich model (ADM) to describe both
the topology and the contents of Web sites. Their concept
of the ADM scheme is analogous in many respects to our
navigation maps. Navigation processes to populate database
views are expressed in a newly developed declarative al-
gebra, called Ulixes. Ulixes is intended to be used by a
database designer to create Web views for the end user. In
contrast to this, we use a well-known, existing formalism
(Transaction F-logic [12]), which functionally is a super-
set of Ulixes. However, as mentioned earlier, it is not in-
tended to be used by a designer or an end user. Instead,
navigation expressions that use this language are generated
automatically from the navigation map. The interpreter than
simply executes these expressions when user queries need
to be evaluated. This is possible in our architecture due to
the clear separation between the VPS and the logical lay-
ers of the database and also due to the use of our process-
oriented object model. It is worth pointing out that main-
tenance of navigation expressions in our approach is much
simpler, since the navigation maps from which the processes
are generated, can be updated semi-automatically (through
mapping by example).

Ariadne [15] is a system for extracting and integrating
data from semi-structured Web sources. Ariadne has two
foci: data extraction from unstructured Web pages and what
in our architecture amounts to mapping from the logical
layer to the virtual physical layer. Both of these issues
are orthogonal to our work. For instance, Ariadne’s data
extraction facilities as well as the body of techniques for
extracting information from semi-structured data [31] could
be used in our system.

From the perspective of our architecture, the focus of
the work in the Information Manifold (IM) [20, 191 project
can be viewed as mapping the logical layer to VPS. IM
approaches the problem by first specifying the reverse
(physical-to-logical) mapping, which they call source de-
scription. The required logical-to-physical mapping is then
generated automatically. The benefit of this indirect ap-
proach is claimed to be the ease of maintenance of the
logical-to-physical mapping in view of adding or deleting
the Web sources. In this way, IM is complementary to our
work, since our focus is on building the VPS and the con-
ceptual layers of the webbase.

There is a large body of work on information mediators,
such as TSIMMIS [IO], Hermes [I] and Garlic [30], which
help smooth the semantic and syntactic differences between
heterogeneous information sources. Techniques developed
for information integration systems such as these can be used
in our architecture for semantic integration of VPS relations

501

that come from different sources. On the other hand, these
systems could use our VPS automation techniques to gain
access to dynamic Welb content.

Finally, ‘we should lnote the growing commercial interest
in integration of information from diverse Web sources (e.g.,
Junglee, Center Stage [11,28]). Techniques described in this
paper can facilitate rapid development of such services.

9 Conclusions and Future Directions
In this paper we described a layered architecture for design-
ing webbases. The separation of layers, which is analo-
gous to traditional databases, simplifies the creation, mainte-
nance, and use of webibases for retrieving information avail-
able on the Web. We have implemented the main compo-
nents of a prototype implementation of our architecture and
reported on some preliminary experimental results.

We have shown that navigation maps can be created semi-
automatically as the webbase designer browses sites, and
that navigation expressions can be automatically derived
from these maps. These expressions are executed when
evaluating a query, and thus optimizing such expressions is
an important problem that needs to be studied.

Our experiments suggest that parallelization of query
evaluation is crucial for obtaining acceptable response times.
Finally, while the idea of structured UR as a query interface
seems to be promising in the context of webbases, more ex-
perimental work needs to be done to evaluate the practicality
of the idea.
Acknowledgements: We would like to thank various peo-
ple that contributed to this work: Vinod Anupam for sugges-
tions on how to imple.ment navigation by example; Daniel
Lieuwen and C.R. Ramakrishnan, for carefully reading this
manuscript; and Narain Gehani, David Warren and Guizhen
Yang for valuable discussions.

References
[l] S. Adali, K. Canda-n, Y. Papakonstantinou, and VS. Subrah-

manian. Query caching and optimization in distributed medi-
ator systems. In Proc. of SIGMOD, pages 137-148, 1996.

[2] J.L. Ambite, N. AshJsh, G. Barish, CA. Knoblock, S. Minton,
P.J. Modi, I. Muslea, A. Philpot, and S. Tejada. Ariadne:
A system for constructing mediators for intemet sources. In
Proc. of SIGMOD, 1998.

[3] G. Arocena, A. Mendelzon, and G. Mihaila. Applications of a
Web query language. In Proceedings of the 6th International
WWW Conference, April 1997.

[4] P. Atze.ni, G. Mecca, and P. Merialdo. Semistructured und
structured data in the web: Going back and forth. SIGMOD
Record, 26(4):16-23, 1997.

[S] P. Atzeni, G. Mecca, and P. Merialdo. To weave the web. In
Proc. of VLDB, pages 206-215, 1997.

[6] A.J. Bonner and M. Kifer. An overview of transaction logic.
Theoretical Computer Science, 133:205-265, October 1994.

[7] O.M. Duschka and A.Y. Levy. Recursive plans for informa-
tion gathering. In Proc. of IJCAI, 1997.

[8] D. Florescu, A.Y. Levy, and A.O. Mendelzon. Database
techniques for the world-wide web: A survey. SIGMOD
Record, 27(3):59-74, 1998.

502

I91 J. Frohn. R. Himmeroeder, P.-Th. Kandzia. G. Lausen. - -
and C. Schlepphorst. Florid - a prototype for F-logic:
In 12th German Workshop on Logic Programming, 1997.
http:Nwww.informatik.uni-freiburg.de/idbis/floridf.

[lo] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Ra-
jaraman, Y. Sagiv, J. D. Ullman, V. Vassalos, and J. Widom.
The tsimmis approach to mediation: Data models and lan-
guages. Journal of Intelligent Information Systems, 8(2): 117-
132, 1997.

[l l] http://www.junglee.com. Junglee Corporation.

[121 M. Kifer. Deductive and object-oriented data languages: A
quest for integration. In Proc. of DOOD, pages 187-212,
1995.

131 M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented
databases. In Proc. of SIGMOD, pages 393-402, 1992.

141 M. Kifer, G. Lausen, and J. Wu. Logical foundations of
object-oriented and frame-based languages. Journal of ACM,
42:741-843, July 1995.

[15] C.A. Knoblock, S. Minton, J.L. Ambite, N. Ashish, P.J. Modi,
I. Muslea, A.G. Philpot, and S. Tejada. Modeling web sources
for information integration. In Proc. of AAAI, 1998.

[16] D. Konopnicki and 0. Shmueli. W3QS: A query system for
the World-Wide Web. In Proc. of VLDB, pages 54-65, 1995.

[17] L.V.S. Lakshmanan, F. Sadri, and IN. Subramanian. A
declarative language for querying and restructuring the WEB.
In Workshop on Research Issues in Data Engineering, pa.ges
12-21, 1996.

[18] S. Lawrence and C.L. Giles. Searching the world wide web.
Science, 280(4):98-100, 1998.

[19] A.Y. Levy, A. Rajaraman, and J.J. Ordille. Query-answering
algorithms for information agents. In Proc. of AAAI, pa.ges
40-47, 1996.

[20] A.Y. Levy, A. Rajaraman, and J.J. Ordille. Querying
heterogeneous information sources using source descriptions.
In Proc. of VLDB, pages 251-262, 1996.

[21] D. Maier. The Theory of Relational Databases. Computer
Science Press, 1983.

[22] D. Maier, D. Rozenshtein, and D.S. Warren. Windows on the
world. In Proc. of SIGMOD, pages 68-78, 1983.

[23] D. Maier and J.D. Ullman. Maximal objects and the
semantics of universal relation databases. ACM TO.DS,
8(1):1-14, 1983.

[24] D. Maier, J.D. Ullman, and M.Y. Vardi. On the foundations
of the universal relation model. ACM TODS, 9(2):283-3’08,
1984.

[25] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni.
The araneus web-base management system. In Proc. of
SIGMOD, pages 544-546, 1998.

[26] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni.
From databases to web-bases: The araneus experience.
Technical Report n. 34-1998, May 1998.

[27] A.O. Mendelzon, G.A. Mihaila, and T. Milo. Querying the
World Wide Web. International Journal on Digital Libraries,
1(1):54-67, 1997.

[28] http://www.ondisplay.com. OnDisplay Corporation.
[29] A. Rajaraman, Y. Sagiv, and J.D. Ullman. Answering queries

using templates with binding patterns. In Proc. of PODS,
pages 105-l 12, 1995.

[30] M.T. Roth, M. Arya, L.M. Haas, M.J. Carey, W.F. Cody,
R. Fagin, P.M. Schwarz, J. Thomas II, and E.L. Wimm~ers.
The garlic project. In Proc. of SIGMOD, page 557, 1996.

[31] D. Suciu, editor. Proc. of the SIGMOD Workshop on
Management of Semistructured Data, 1997.

