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Abstract 
The proliferation of text databases within large organiza- 
tions and on the Internet makes it difficult for a person to 
know which databases to search. Given language models 
that describe the contents of each database, a database se- 
lection algorithm such as GlOSS can provide assistance by 
automatically selecting appropriate databases for an infor- 
mation need. Current practice is that each database pro- 
vides its language model upon request, but this cooperative 
approach has important limitations. 

This paper demonstrates that cooperation is not required. 
Instead, the database selection service can construct its own 
language models by sampling database contents via the nor- 
mal process of running queries and retrieving documents. 
Although random sampling is not possible, it can be ap- 
proximated with carefully selected queries. This sampling 
approach avoids the limitations that characterize the coop- 
erative approach, and also enables additional capabilities. 
Experimental results demonstrate that accurate language 
models can be learned from a relatively small number of 
queries and documents. 

1 Introduction 

The proliferation of text databases within large orga- 
nizations and on the Internet can make it difficult to 
know which databases to search for desired information. 
Large corporate networks can provide access to several 
thousand Lotus Notes databases, Oracle databases, and 
other corporate document management systems, each 
containing many text documents. The Internet, via 
the WorldWideWeb, also provides access to thousands 
of searchable text databases. How does a person who 
needs information know where to search? 

Content-based database selection algorithms such as 
GlOSS have been proposed as one solution [i’, 6, 1, 
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141. A content-based database selection algorithm 
(‘database selection algorithm’) automatically ranks 
each text database according to its likelihood of sat- 
isfying a given query. Database selection algorithms 
require no manual effort, scale efficiently to millions 
of databases, and handle unforseen information needs. 
They are an appealing solution in many respects. 

Database selection algorithms do not interact directly 
with the databases they rank. Instead, the algorithms 
interact with an index containing language models that 
describe the contents of each database. The contents 
of the language models vary according to the selection 
algorithm, but in general a language model describes 
the words or indexing terms that occur in the database, 
and frequency information indicating how often each 
term occurs. 

Language models are perhaps the most essential 
element of database selection. Significant research 
activity is directed at studying what they should 
contain, but that is not our concern in this paper. 
Instead, we are interested in how a database selection 
service acquires language models for each database. 

The state-of-the-art until now was for each database 
to provide its language model upon request. We call this 
the cooperative approach, because it assumes that all 
parties are willing and able to provide the information 
needed by other parties. The cooperative model turns 
out to be a weak solution in environments containing 
many databases managed by different parties. 

This paper presents query-based sampling, a new 
method of acquiring language models that requires no 
special cooperation. Query-based sampling assumes 
only that the database selection service can run simple 
queries on each database to retrieve a small number 
of full-text documents. Language models are built 
automatically from these documents. 

Query-based sampling was tested in a series of 
experiments. The results demonstrate that accurate 
language models can be learned, and that they can be 
learned with a reasonably small number of queries and 
documents. Query-based sampling is robust, and avoids 
many of the problems associated with cooperative 
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approaches. It also enables additional capabilities not 
supported by cooperative methods. 

The next section describes content-based database 
selection in more detail, including the state-of-the- 
art in language models and their acquisition. Query- 
based sampling, our new approach to language model 
acquisition, is described in Section 3. Our experimental 
methodology and results are described in Sections 4, 
5, and 6. Sections 7 and 8 discuss how query- 
based sampling enables additional capabilities related 
to database selection, and Section 9 concludes. 

2 Content-IBased Database Selection 

People who use commercial search services such as 
Dialog, Westlaw, or Lexis-Nexis have always faced the 
database selection problem. People must either search 
all databases or select a subset. The simplest choice is 
to search all of the available databases, but this choice is 
neither available nor practical in all environments (e.g., 
the Internet). 

Some commercial services group databases into sets 
with common themes, for example newspaper collec- 
tions or appellate court decisions. Such grouping was 
a manual process for many years, but automatic meth- 
ods are becoming more common [ll, 2, 141. Database 
grouping is an effective solution for information needs 
or information access patterns that can be anticipated. 

When information needs are diverse, content-based 
database selection is a more effective solution. Content- 
based database selection algorithms rank databases by 
their similarity to a query [7,6, 1, 141. Each query yields 
a ranking that is tailored for that particular query. 
Typically the top n databases or all databases exceeding 
some threshold similiarity are selected for search. 

Content-based database selection algorithms are ap- 
pealing because they handle a diverse range of queries, 
are automatic, and have moderate computational re- 
quirements (i.e., comparable to ordinary full text In- 
formation Retrieval systems). Their effectiveness has 
been demonstrated on O(100) databases [15], and re- 
searchers are currently studying their effectiveness on 
O(l,OOO) databases. 

2.1 Language Models 

It would be prohibitively expensive in computation and 
communication costs to compare each query to each 
database. Instead, content-based database selection 
algorithms compare each query to an index that only 
partially represents the contents of each database. We 
call this partial representation of a full-text database its 
language model. 

Language models can be arbitrarily complex and 
detailed, but they have so far tended to be simple, for 
example, consisting of a list of the terms that occur 
in the database, and their frequencies of occurrence 

[7, 1, 14, 6, 4, 151. More complex language models 
might include information about phrases or other term 
co-occurrence information, but this type of information 
is less common, and its value unclear [l5]. 

2.2 Acquiring Language Models 
Cooperatively: The STARTS Protocol 

One technique for acquiring language models is the 
STARTS Protocol proposed by Gravano, et al. [5], .and 
considered for inclusion in the ISO’s 239.50 standard, in- 
terface for Information Retrieval systems [13]. STAFlTS 
is a protocol that allows the exchange of language mod- 
els for full-text databases. 

Although the protocol is detailed, the basic ide,a is 
simple. Each database provides a list of its index 
terms, along with information about their frequencies 
of occurrence. A small amount of corpus information is 
also included, for example, the number of documents 
contained, whether suffixes have been stripped from 
words (“stemming”), and whether extremely frequent 
words have been removed (“stopword removal”). 

The STARTS Protocol is an excellent solution when 
a single party controls all of the databases. However, it 
relies upon cooperation, which makes it a poor solution 
when databases are controlled by many parties. It 
can fail when database providers can’t cooperate, won’t 
cooperate, or lie (misrepresent their contents). 

Databases that can’t cooperate are often older, or 
“legacy” systems that have not been upgraded. These 
are inaccessible to systems that rely on cooperative 
solutions such as STARTS. 

Cooperative protocols enable a database provider to 
choose not to cooperate with some database selection 
services. A database provider might be hostile to 
some selection services, for example based on corporate 
alliances, or it might simply have no incentive to 
cooperate with every selection service. 

It is not uncommon for information providers on 
the Internet to misrepresent their services, in order 
to increase the number of people visiting their sites. 
The STARTS Protocol offers no protection against 
misrepresentation. 

Although these problems are serious, perhaps the 
most serious problem is the assumption that vocabu- 
lary and frequency information provided by different 
databases is in some way comparable. In practice, it is 
difficult to know how a database containing 1,000 oc- 
currences of ‘apple’ compares to databases containing 
2,000 occurrences of ‘apple ’ or no occurrences of ‘@p- 
pie ‘. Full-text IR systems use a variety of word stem- 
ming algorithms, stopword lists, and case-conversion 
techniques, as well as specialized indexing for common 
phrases, names, locations, and dates. A database selec- 
tion algorithm would find it nearly impossible to com- 
pensate for these differences among systems. 
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The STARTS Protocol is ideally suited to environ- 
ments controlled by a single party, because coopera- 
tion can be enforced, deliberate misrepresentation is 
not a problem, and databases can be indexed uniformly. 
These characteristics are common, for example, within 
small and medium-sized organizations. However, within 
large organizations, and on the Internet, another ap- 
proach is required. 

3 Acquiring Language Models By 
Sampling 

A database selection service recommends which 
databases should be searched to find documents that 
satisfy an information need. This observation implies 
that each database is capable of running queries and 
returning documents that match the queries. These 
are minimal criterion that we assume any database can 
satisfy.’ 

If queries can be run and documents retrieved, 
then it is possible to sample the contents of each 
database. Documents returned in response to a query 
necessarily constitute a biased sample, so we call 
this technique query-based sampling. It is well-known 
that the characteristics of a large population can be 
estimated from a relatively small random sample of 
the population. Our hypothesis is that query-based 
sampling can provide a sample of documents sufficiently 
random for learning an accurate language model of the 
entire database. 

It is an open question how large a sample is required 
to construct language models of a specified accuracy. 
Word occurrences follow a highly skewed distribution, 
with a few words occurring very often, and most words 
occurring rarely [16]. Words in the middle of the 
frequency range are thought to be the most useful 
for distinguishing among documents within a single 
database [lo]. There is also evidence that highly 
frequent words may be useful for distinguishing among 
databases [3]. These bits of evidence suggest that the 
important vocabulary occurs frequently in a database, 
and might therefore be acquired by sampling. The 
resource requirements, measured in queries run and 
documents examined, are likely to be reasonable. 

The algorithm for query-based sampling is simple. 

1. Select an initial query term. 
2. Run a one-term query on the database. 
3. Retrieve the top N documents returned by the 

database. 
4. Update the language model based on the charac- 

teristics of the retrieved documents. 

‘We do not assume that every database will necessarily run 
queries and return documents for free. There could be a financial 
cost to acquiring language models for some databases, but that 
issue lies outside the scope of this paper. 

5. If a stopping criterion has not been reached yet, 
(a) Select a new query term; and 
(b) Go to Step 2. 

The algorithm involves a number of specific choices, for 
example how query terms are selected, how many docu- 
ments to examine per query, and when to stop sampling 
the database. We defer discussion of these choices to 
later sections of the paper. 

Query-based sampling has a number of advantages 
as a technique for learning language models. It requires 
no special cooperation from a database beyond running 
queries and retrieving documents, which we assume is 
a minimum level of service required for a database to 
be useful. The absence of special cooperation enables 
query-based sampling to be used for learning language 
models from databases that can’t or won’t cooperate. 
It also makes misrepresenting database contents more 
difficult, because language models are learned as a 
consequence of normal database behavior. 

Building language models directly from sampled doc- 
uments also provides the database selection service with 
control over the content of the language model. It frees 
the selection service from the nearly impossible task 
of reconciling the different approaches to text index- 
ing (word stemming, stopword removal, case conversion, 
name recognition, etc) taken in each database. The se- 
lection service can determine the degree of sophistica- 
tion and detail applied in creating language models, is 
able to enforce consistency among language models, and 
is able to match the details of the language models to 
the characteristics of the selection algorithm. 

Document samples sr, sz, . . ., s, taken from 
databases dl, d2, . . ., d, are also a rich resource that 
enables the selection service to provide additional ca- 
pabilities beyond database selection. It enables more 
complex analysis of the contents of each database, for 
example to drive browsing or visualization aids (Section 
7). The union of samples sr, sg, . . ., s, is a sample of 
the universe of databases served by the selection algo- 
rithm, which enables a different set of capabilities, such 
as co-occurrence-based query expansion (Section 8). 

One important piece of information that appears 
difficult to acquire by sampling is the size of the 
database. Zipf’s law and empirical evidence show 
that vocabulary growth slows, but does not stop, as 
additional documents are seen j16, 91, and that this rate 
is independent of database size. Hence it is unclear how 
to estimate database size by sampling. 

Database size is primarily used by selection algo- 
rithms to scale the word frequencies in language models 
provided for databases of varying sizes. It is likely that a 
similar effect can be obtained by scaling the frequencies 
in learned language models by the sizes of the samples 
they are based upon. This would make database size 
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Size, Size, Site, Size, 
Name in bytes in documents in unique terms in total terms Variety 

I------ WSJ88 TREC-123 CACM 104MB 3.2GB 2MB 1,078,166 39,904 3,204 1,134,099 122,807 6,468 274,198,901 9,723,528 117,473 heterogeneous very homogeneous heterogenenous 

Table 1: Test corpora. 

a less necessary piece of information, although it would 
still be desirable. 

4 Experimental Methodology 
The hypothesis motivating our work was that accurate 
language models can be learned by sampling a text 
database with simple ‘free-text’ queries. This hypothe- 
sis was tested by comparing language models learned by 
sampling known databases ( ‘learned language models ‘) 
with the actual language models for those databases. 
We also recorded the number of queries and documents 
required for the learned language models to achieve a 
given level of accuracy. 

4.1 Language Models 

Experiments were conducted on language models con- 
sisting of index terms (usually words) and their frequen- 
cies. Frequency was measured as the number of docu- 
ments containing a term (‘document frequency’ or dj). 

Stopwords were not discarded when language models 
were constructed. During controlled testing, learned 
and actual language models were compared only on 
words that appeared in both language models, which ef- 
fectively discarded from the learned language model any 
word that was considered a stopword by the database. 
The databases each used the default stopword list of the 
Inquery IR system, which contained 418 very frequent 
and/or closed-class words. 

Suffixes were not removed from words (‘stemming’) 
when language models were constructed. During con- 
trolled testing, suffixes were removed prior to compar- 
ison to the actual language model, because the actual 
language models (the database indexes) were stemmed. 

These choices are consistent with the language mod- 
els explored most often in the research literature on 
database selection [7, 1, 6, 5, 4, 151. 

4.2 Databases 

Three full-text databases were used to test the effects 
of corpus characteristics and size on how quickly and 
accurately language models are learned. They were: 

CACM: a small, homogeneous set of titles and ab- 
stracts of scientific articles from the Communica- 
tions of the A CICI; 

WSJ88: the 1988 Wall Street Journal, a medium-sized 
corpus of American newspaper articles; and 

TREC-123: a large, heterogeneous database consist- 
ing of TREC CDs 1, 2, and 3, which contains news- 
paper articles, magazine articles, scientific abstracts, 
and government documents [8]. 

These are standard test corpora used by many re- 
searchers. Table 1 summarizes their characteristics. 

4.3 Metrics 

The language models consisted of two types of infor- 
mation: a vocabulary, and frequency information for 
each term in the vocabulary. The correspondence be- 
tween the learned vocabulary and the actual vocabulary 
was measured with two metrics, percentage learned and 
ctf ratio. The correspondence between the learned fre- 
quency information and the actual frequency infonma- 
tion was measured with the Spear-man Rank Correlation 
Coeficient. Each metric is described below. 

4.3.1 Percentage Learned 

The learned vocabulary is necessarily a subset of the 
actual vocabulary, because it is learned by examining a 
subset of documents in the database. It is natural to ask 
what proportion of the set is covered by the subset, or 
in this case, what proportion of the terms in the actual 
vocabulary are found in the learned vocabulary. We call 
this metric percentage learned. 

The percentage learned metric is actually a poor 
match for text data, because of the skewed distribution 
of terms in a text database. In general, about 50% of 
the unique terms in a text database occur just once in 
the database; another 17% occur twice, and 8% oc.cur 
three times [16, 91. About 75% of the vocabulary of a 
text database is words that occur three times or less. 

The percentage learned metric treats the terms in a 
language model as if they were all equally important. 
In reality most of them convey very little information 
about the contents of the database. 

4.3.2 Ctf Ratio 

The skewed distribution of terms in a text database is 
caused by a large number of essentially irrelevant terms, 
and a small number of frequent terms. The frequent and 
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moderately-frequent terms convey the most information 
about the contents of a database. A more appropriate 
metric for measuring the quality of a learned vocabulary 
is one that is weighted by the importance of each term. 

Ctf ratio is such a metric. It measures the proportion 
of database term occurrences that are covered by 
terms in the learned language model. For a learned 
vocabulary V’ and an actual vocabulary V, ctf ratio is: 

where ctfi is the number of times term i occurs in the 
database (collection term frequency, or ctfi. 

A ctf ratio of 80% means that the learned language 
model contains the words that account for 80% of the 
word occurrences in the database. For example, if the 
database consists of 99 occurrences of ‘apple’ and 1 
occurrence of ‘bear’, and if the learned language model 
contains just ‘apple’, its ctf ratio is 99 / (99 + 1) = 
0.99, or 99%. 

4.3.3 Spearman Rank Correlation 

The second component of a language model is term fre- 
quency information, which indicates the relative impor- 
tance or descriptive power of each term in the database. 
Information Retrieval (IR) algorithms typically use fre- 
quency information as a component of a statistical rank- 
ing procedure [7, 6, 11. For example, a term that occurs 
often in a particular database might be considered rep- 
resentative of its contents. 

A sampling algorithm can estimate the proportion 
of documents in a database that contain the term. 
However, it is not known yet how to estimate the s&e of 
a database by sampling, so it is impossible to estimate 
the actual number of documents containing a term (dd. 

The estimated proportion of documents containing a 
term could be compared with the actual proportion of 
documents containing the term, but such a comparison 
is biased by the number of documents examined. For 
example, if the true proportion is SS%, the most 
accurate estimate possible after seeing 10 documents 
is 90%, hence a certain amount of error is built into 
this type of comparison. 

It is more accurate to rank terms by their frequency of 
occurrence and then compare the rankings of terms that 
occur in both the database and the learned language 
model. Zipf’s Law indicates that there is a predictable 
relationship between a term’s rank and its frequency in 
the database [16). Given a term’s rank, its frequency 
can be estimated relatively accurately, and vice versa. 

The Spearman Rank Correlation Coefficient is an 
accepted metric for comparing two rankings [12]. The 
Spearman Rank Correlation Coefficient is defined as: 

R=l--$-C$ 
n 

where di is the rank difference of common term i, 
and and n is the number of terms. Two rankings are 
identical when the correlation coefficient is 1. They are 
uncorrelated when the coefficient is 0, and in reverse 
order when the coefficient is - 1. 

Database selection does not require a rank correlation 
coefficient of 1.0. It is sufficient for the learned language 
model to represent the relative importance of index 
terms in each database to some degree of accuracy; for 
example, it might be sufficient to know the ranking 
of a term f5%. Although most database selection 
algorithms are likely to be relatively insensitive to 
small ranking errors, it is an open question how much 
error a given algorithm can tolerate before selection 
accuracy deteriorates. That question, although clearly 
important, lies outside the scope of this paper. In 
this paper we simply study the degree of correlation 
between the learned and actual rankings under a variety 
of experimental conditions. 

4.4 Setting Parameters 

Experiments with query-based sampling require making 
choices about how query terms are selected and how 
many documents are examined per query. 

In our experiments, the first query run on a database 
was always determined by selecting a word randomly 
from the actual TREC-123 language model. The initial 
query could be selected using other criteria, for example 
selecting a frequent term, or selecting a term from 
another language model. Several informal experiments 
found that the choice of the initial query term had little 
effect on the quality of the language model learned. 

Subsequent query terms were chosen by a variety of 
methods, which are described in the following sections. 
However, in all cases the terms chosen were subject to 
certain requirements, in order to avoid selecting terms 
that would be likely to retrieve few or no documents. 
A term selected as a query term could not be a number 
and was required to be 3 or more characters long. 
These requirements are similar to the requirements 
often placed on index terms in text retrieval systems. 

We had no hypotheses to guide the decision about 
how many documents to sample per database query. 
Instead, experiments were conducted to determine the 
effect of varying this parameter. 

The CACM and WSJ88 experiments presented in 
this paper were ended after examining 300 documents. 
The TREC-123 experiments presented in this paper 
were ended at 500 documents. These stopping criteria 
were chosen empirically after running several initial 
experiments, and were biased by our interest in learning 
language models from small (ideally, constant) sized 
samples. Several experiments with each database 
were continued until several thousand documents were 
sampled, to ensure that nothing unusual happened. 
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Figure 1: Measures of how well a learned language model covers the vocabulary of a full-text database. (a) Percentisge 
of database terms covered by the learned language model. (b) Percentage of database word occurrences covered by 
terms in the learned language model. (Four documents examined per query.) 

5 Experimental Results 

A series of experiments was conducted in which the 
method of generating queries and the number of 
documents examined per query were varied. The 
goals of these experiments were to determine whether 
effective language models were learned at all, and if so, 
what combination of parameters produced either the 
fastest learning or the most accurate language models. 

In all experiments, the first query run on a database 
was determined by selecting a word randomly from the 
TREC-123 database, as described above. 

The baseline experiment consisted of choosing the 
second and subsequent query terms randomly from 
the language model being learned, and examining four 
documents per query.. The number four was determined 
empirically; later in this paper we present results for 
other numbers of documents. Results for the baseline 
experiment are showln in Figures 1 and 2. 

The graphs in Figures la and lb demonstrate why 
the percentage of terms learned is a poor metric for 
judging the quality of a language model. About 250 
documents had to be seen in order to discover about 
a third of the CACM vocabulary, but that vocabulary 
represented about 86% of the word occurrences in the 
CACM database. The contrast was more dramatic on 
the TREC-123 database; in that test, only about 1% 
of the vocabulary was discovered after 250 documents, 
but it represented about 81% of the term occurrences. 

Recall that 418 stop words, including such frequent 
terms as “the”, “and”, and “a”, were discarded from the 
language models before these comparisons were done. 
Stop words are usually words that are necessary to the 
language syntax but that convey little information. If 
stop words were not discarded from the vocabulary, the 
ctf ratio would grow and converge even more rapidly. 

.& 1.0 

$ 0.8 
0 

. . 
.-- . 

100 200 300 400 500 
Number of documents examined 

Figure 2: A measure of how well a term ranking by 
document frequency (da in the learned language model 
agrees with a term ranking by document frequency in 
the full-text database. (Four documents examined per 
query.) 

The percentage of terms found after examining a 
given number of documents is a function of database 
size, hence it varies widely among the three databases 
examined. However, the ctfratios in these experiments 
indicate that most of the frequent terms are found after 
examining a fixed number of documents, no matter how 
big the database is. At 250 documents, ctf ratio is 
greater than 80% for all three databases, and the curves 
are leveling, implying that after a certain point most 
of the new terms occur rarely. This is consistent with 
Zipf’s law [16]. 

Figure 2 shows the rate at which the ranking of terms 
in the learned language model begins to match the rank- 
ing of terms in the actual language model. The model 
for the small homogeneous CACM database converges 
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rapidly; at 82 documents, the correlation coefficient ex- 
ceeds 0.9. The model for the larger, more heteroge- 
neous WSJ88 database converges more slowly, reaching 
a correlation coefficient of 0.76 at 300 documents. The 
even larger, more heterogeneous TREC-123 database 
converges the most slowly, reaching a correlation coef- 
ficient of 0.4 at 500 documents. 

Unlike the ctf ratio, which appeared to converge at 
a constant rate despite database size, the correlation 
of term rankings appears to be influenced by database 
size. The model for the CACM database reached a 
high degree of correlation, but had sampled 2.6% of 
the database (82 documents). The model for WSJ88 
reached a lesser degree of correlation, but had sampled 
just 0.8% of the database (300 documents). The model 
for TREC-123 sampled only 0.04% of the database (500 
documents). 

These experiments demonstrate that representative 
term frequencies are learned by sampling only a small 
fraction of the contents of a database. However, they 
also raise questions that we cannot yet answer. 

It is likely that the ranking errors are not distributed 
evenly throughout the rankings, because there is far 
more opportunity to gather information about the 
proper ranking of frequent terms than rare terms. How 
best to measure the distribution of error is the subject 
of current research. 

It is also an open problem how correlated the 
rankings need to be for accurate database selection. A 
correlation coefficient of 0.9 (CACM) is almost certainly 
not required. Whether a correlation coefficient of 0.4 
(TREC-123) is sufficient is not known. If it is not, 
sampling can be continued to reach whatever level of 
correlation is required. For example, sampling for 
another 100 queries (400 documents) would greatly 
improve the degree of correlation, while raising the size 
of the sample from 0.04% of the database to 0.08%. 

5.1 Number of Documents Examined Per 

Query 
The baseline experiments retrieved from the database, 
or sampled, the four most highly ranked documents for 
each query. The number four is used here as a baseline 
because it produced good results empirically. However, 
the number four is a parameter that can be varied, and 
it is reasonable to investigate the effects of varying it. 

There is a cost to running queries; the database 
provider must do computation, and the process building 
the language model must wait. Costs might be reduced 
by examining more than four documents per query. For 
example, searchable databases on the Web often return 
10 document titles in response to a full-text query, 
with additional documents available upon request. This 
characteristic might suggest examining as many as 10 
documents per query. 

1 Dots/ 11 CACM WSJ88 1 TREC-123 

Table 2: Effect of varying the number of documents 
examined per query on how long it takes a sampling 
method to reach a ctf ratio of 80%. Dots is the number 
of documents that had to be examined. SRCC is the 
Spearman Rank Correlation Coefficient. 

Conversely, the process of running queries and re- 
trieving documents is intended to approximate a ran- 
dom sampling of the database. However, a query nec- 
essarily returns a biased sample of documents. If the 
documents returned by a query have similar vocabular- 
ies and term frequency patterns, then little is gained 
by examining many of them. This consideration might 
suggest examining a small number of documents per 
query, perhaps as few as one per query. 

A series of experiments was performed to determine 
the effect of varying N, the number of documents 
examined per query. Values of N = 1,2,4,6,8, and 
10 were tested. 

It is difficult to see from graphs that there is any dif- 
ference in the accuracy of the language models learned 
by examining different numbers of documents per query, 
hence they are not included in this paper. The differ- 
ences are small; query-based sampling produces stable 
results over a range of parameter settings. 

For example, consider the point at which the ctf 
ratio reaches 80% for each database (Table 2). The 
language model for the small, homogeneous CACM 
database is learned most quickly when 8-10 documents 
are examined per query. Four documents per query 
is better for the larger and heterogeneous WSJ88 
database, and 2 documents per query is best for 
the even larger and more heterogeneous TREC-123 
database. 

It appears to make little difference whether 1, 2, or 
4 documents are examined per query. The differences 
are sufficiently small that the decision can be based on 
other criteria, for example, the relative costs of running 
queries and examining documents. (Hence our choice 
of 4 as a baseline, which requires fewer queries to reach 
a given number of documents.) However, the results 
with the TREC-123 database show that there can be a 
significant cost to examining too many documents per 
query, presumably because the samples are less diverse. 
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Figure 3: Measures of how different query selection strategies affect the accuracy of a learned language model. (a) 
Percentage of database word occurrences covered by terms in the learned language model. (b) Spearman rank 
correlation coefficient between the term rankings in the learned language model and the database. (1988 Wall Street 
Journal database. Four documents examined per query.) 

Random, Random, avg-tf, df, ctf, 
olm llm llm llm llm 

Number of queries 167 78 107 155 153 

Table 3: The nu:mber of queries required to retrieve 300 documents using different query selection criteria. 

5.2 Query Selection Strategies 

The baseline experiments select query terms randomly 
from the learned language model. Random selection 
from the learned language model is used as a baseline in 
this paper because it produced good results empirically. 
However, query terms could be selected from the 
learned language model using other criteria, or they 
could be selected from another language model. The 
query selection strategy is another parameter, and it is 
reasonable to investigate the effects of varying it. 

An early hypothesis was that frequent terms in a 
database would produce a relatively random sample 
of documents, because they would be more likely 
to occur in a variety of contexts. There are many 
metrics for measuring term frequency in a database, 
but the three most common in Information Retrieval 
are document frequency (dfi, collection term frequency 
(ctfi, and average term frequency (avg-tf = ctf / dfi. 
Although these metri,cs are related, they have differing 
characteristics, and tend to be useful for different 
purposes. Each was tested as a method of selecting 
query terms from the learned language model. 

An early concern was that the learned language 
model would initially be biased strongly towards the 
documents that just happened to be sampled first, and 
that that bias would be reinforced by continuing to 
select query terms from the learned language model. A 

solution would be to select terms from another, more 
complete language model, in the hopes of getting a 
more random set of query terms. This hypothesis 
was designated the ‘other language model’, or elm, 
hypothesis. It, too, was tested, and compared with 
the ‘learned language model’, or llm, technique used 
throughout the previous sets of experiments. 

The ‘other’ language model used in these experiments 
was the full TREC-123 language model. This choi.ce 
clearly creates an unfair bias in favor of the TRE’C- 
123 database. However, we were interested in seei:ng 
whether an ‘other’ language model that was well- 
matched with the actual language model would provide 
any advantage; if it appeared promising, it could lbe 
investigated more carefully. 

A series of experiments was conducted, using tlhe 
same methodology used in the previous sets of experi- 
ments. The number of documents examined per que.ry 
was four. Query terms were selected either from the 
learned language model using one of the term frequency 
metrics described above, or randomly from the ‘other’ 
language model. All three databases (CACM, WSJ88, 
and TREC-123) were tested. The results were simil,ar 
for each database, so only results for WSJ88 are pre- 
sented here (Figure 3 and Table 3). 

The Random olm (other language model) experi- 
ments learned the important vocabulary and term fre- 
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quency information more quickly than the Random llm 
(learned language model) (Figure 3). However, they 
also required twice as many queries to create a sample 
of 300 documents (Table 3). This difference is caused 
by selecting query terms that either don’t occur in the 
sample database, or that occur in fewer than N = 4 
documents. 

Although the results using the learned and other lan- 
guage models are relatively similar in this experiment, 
the ‘other’ language model was an exact match to one 
sampled database (TREC-123) and a superset of an- 
other (WSJSS). We view the Random, olm results with 
caution, because the number of failed queries might 
have been higher if we had selected query terms from 
the language model of a less similar database. 

The experiments demonstrate that selecting query 
terms from the learned language model, as opposed 
to a more complete ‘other’ language model, does not 
produce a markedly skewed sample of documents. The 
rate of learning is faster if measured by the number 
of queries run, and slower if measured by the number 
of documents examined. Whichever metric is used, 
a relatively unbiased language model is learned with 
moderate cost. 

The experiments also demonstrate that selecting 
query terms randomly from the learned language model 
is more effective than selecting them based on high 
frequency. This result was a surprise, because our 
hypothesis was that high frequency terms would either 
occur in many contexts, or would have relatively weak 
contexts, producing a more random sample. This 
hypothesis was not validated by the experiments. 

It may be that some high frequency terms tend to 
co-occur frequently in similar contexts, for example 
‘stocks’ and ‘bonds’ in the Wall Street Journal. A more 
careful approach to selecting high frequency terms, for 
example, based on part of speech (verbs, adjectives), or 
paying more attention to co-occurrence relationships in 
the sampled documents, might produce better results. 
Or, it may simply be that random selection of query 
terms produces a more random sample of documents 
than frequency-based selection. 

6 Stopping Criteria 

The term rankings in a learned language model converge 
to the term rankings in the actual language model as the 
number of documents examined increases. However, the 
differences between the learned and actual rankings are 
inconsequential long before they disappear completely. 
A stopping criterion is needed to let the sampling 
system decide when the learned language model is 
sufficiently accurate. 

Our hypothesis was that the learned language model 
did not converge to the actual language model at an 
even rate. This hypothesis is supported to some extent 

by the experiments described above. The Spearman 
Rank Correlation Coefficient initially rises rapidly, but 
then levels off (Figures 2 and 3). If the rate of 
convergence slows at a predictable rate, it might be 
possible to use this information in a stopping criterion. 

One simple technique is to compare the learned 
language model at time t with the learned language 
model at time t + 6. If the two learned language models 
are sufficiently similar, one might conclude that the 
learned language model is indeed converging. 

Similarity among the two language models could be 
determined with the Spearman Rank Correlation Coef- 
ficient, but its semantics are not obvious or intuitive. 
Experiments also showed that it is not well-suited for 
identifying small improvements in correlation. For ex- 
ample, language models learned at 50 document inter- 
vals tended to be highly correlated with each other (cor- 
relation coefficient 0.9997), even when there were no- 
ticeable differences in how well they correlated with the 
actual language model. 

Instead, we defined a new metric, rdiff, which 
measures the average rank difference of each term ti 
in two rankings RI and RP. rdiff can be viewed as 
the average distance, measured as a percentage of the 
number of ranks, that each term must move to convert 
one ranking into the other. rdiff is defined as: 

-$ * Cabs(&) 

where di is the rank difference of common term i, and 
and n is the number of terms. 

For example, given two rankings of 100 terms that are 
identical except that term tl is ranked 4th in one ranking 
and 5th in the other, while term t2 is ranked 5th in one 
ranking and 4th in the other (i.e., the two terms swap 
rankings), rdiff = (l/(100 * 100)) * (2) = 0.0002. 

If only one term could occupy each rank, rdiff would 
vary between 0.0 and 0.5. When multiple terms can 
occupy each rank, as is usually the case in language 
models, rdiff varies between 0.0 and 1.0. 

Figure 4 shows the rdiff between the language models 
created at 50-document increments for three databases. 
The rdiff between the language model created from 50 
CACM documents and the language model created from 
100 CACM documents is 0.01224. This rdiflmeans that 
the average term in one ranking must move a distance 
of 1.2% * n to reach its place in the other ranking, 
where n is the number of terms the two rankings have 
in common. 

The rdiff values observed were generally small, indi- 
cating that the language models did not change dra- 
matically over 50 document increments. 

However, the more interesting results are that rdiff 
values between different snapshots of the language 
model fell as more documents were examined, and that 
they appeared to do so independently of database size. 
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Figure 4: .Average distance a term must move to convert 
the ranking after D -- 50 documents to the ranking after 
D documents. (Four documents examined per query.) 

The former result suggests that it is possible to 
establish a stopping criterion based only on information 
that can be observed as language models are being 
learned. For example, a language model might be 
accurate enough when rdiff 5 0.004 over 2 consecutive 
50 document spans. 

The latter result, that rdi$ falls independently of 
database size, relates to a discrepancy between what 
the ctfratio and Spearman Rank Correlation Coefficient 
indicate about how language models converge. ctfratio 
suggests that they converge in a nearly constant number 
of documents (Figures 1 and 3a). The Spearman 
coefficient suggests that the rate of convergence is 
influenced by databiase size (Figures 2 and 3b). rdifl 
appears to agree with ctfratio that a constant number 
of documents is sufficient. 

The experiment with rdiff is significant because it 
suggests t,hat a stopping condition can be created 
that depends only upon information that is observable 
while learning a language model. It also raises the 
question of whether such a stopping condition is even 
required, or whether it is sufficient to sample a constant 
number of documents, irrespective of database size and 
characteristics. 

7 A Peak Inside: Summarizing 
Database Contents 

Our interest is prim.arily in an automatic method of 
learning language models that are sufficiently accurate 
and detailed for use by automatic database selection 
algorithms. However, a language model can also be 
used to indicate to a person the general nature of a 
given text database. 

A simple and well-known method of summarizing 
database contents is to display the terms that occur 
frequently and are not stopwords. This method is effec- 

tive because databases are in some sense guaranteed to 
be about the words that occur most often. 

We illustrate this point with a ‘real world’ example 
based on the Microsoft Customer Support database, 
available on the Web. We chose this database because 
its contents are well-known. Although this example is 
presented late in this paper, it is based on our earliest 
sampling research, when it was unclear what were the 
best parameter settings. The database was sampled 
as in other experiments described above, except that 
25 documents were examined per query. Subsequent 
research indicated that fewer documents per query is 
more efficient (Section 5.1). 

Terms in the learned language model were ranked 
for browsing by df, ctf, and avg-tf. The rankings 
produced by all three metrics allow one to see easily 
that the database contains documents about Microsoft 
software. avg-tf produced the most informative ranking, 
because words such as “excel”, “foxpro”, “microsoft”, 
“nt” , “access”, and “windows” are ranked highly, and 
because the list contains more content words (Ta.ble 
4). However, one cannot draw strong conclusions ab,out 
how to summarize database contents from this one test. 

Although simple word lists are effective for summa- 
rizing database contents, they are not necessarily the 
most effective techniques. Frequent phrases, and com- 
mon relationships among words or concepts, are known 
to be better. 

Indeed, one consequence of creating language models 
from sampled documents is that it makes more powerful 
summarizations possible. The sampling process is :not 
restricted just to words lists and frequency tables, nor 
is it restricted to just the information the database 
chooses to provide. 

Instead, it has a set of several hundred documents 
from which to mine frequent phrases, names, dates, 
relationships, and other interesting information. This 
information enables construction of more powerful and 
more informative summaries than is possible with lthe 
simple language models used by cooperative methods. 

8 Query Expansion * 

Query expansion is a process in which terms are added 
to a query during document retrieval, to make it longer 
and more representative of a person’s information need. 
Query expansion can occur automatically, without user 
assistance or knowledge, or it can be done interactively. 

The state-of-the-art in document retrieval is query 
expansion based on co-occurrence. Expansion terms are 
words and phrases that tend to occur in the database 
often with query terms, but that are not necessarily 
synonyms. For example, the phrase ‘illegal alien’ might 
be added to the query ‘immigration’if they tend to co- 
occur in documents in the database. 
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term avg-tf term avg-tf term avg-tf term avg- tf term avg-tf 
project 10.924 microsoft 5.736 access 4.554 set 3.948 command 3.504 
excel 8.750 object 5.637 print 4.550 application 3.919 following 3.387 
office 8.565 user 5.297 data 4.322 product 3.890 windows 3.369 
works 7.389 visual 5.273 internet 4.268 menu 3.840 new 3.369 
server 7.271 beta 4.986 error 4.217 text 3.717 settings 3.317 
word 7.221 service 4.983 box 4.213 software 3.621 example 3.152 
table 6.639 basic 4.903 articles 4.121 code 3.617 version 3.147 
printer 6.507 file 4.867 setup 4.094 name 3.611 message 3.119 
foxpro 6.486 nt 4.845 mail 4.067 system 3.544 information 3.076 
database 6.117 field 4.729 users 4.042 dialog 3.515 select 3.072 

Table 4: The top 50 words found by sampling the Microsoft Customer Support Database (ranked by avg-tf). 

A recent paper showed that co-occurrence query 
expansion can also significantly improve automatic 
database selection [15]. Indeed, it is arguably more 
important in database selection, because language 
models contain no information about which documents 
in a database contain which terms. A database may 
contain many occurrences of ‘white’ and ‘house’, but 
they may not occur in the same documents. If it 
also contains many occurrences of ‘president’, ‘Clinton’, 
‘oval’ and ‘ofice ‘, it is far more likely to contain 
documents about U.S. politics. 

Co-occurrence query expansion algorithms require a 
large representative database of documents in which to 
analyze co-occurrence patterns. In ordinary document 
retrieval, the database being searched is also the 
database that provides the co-occurrence information. 

However, when the task is database selection, it is 
not clear what database can be used to expand the 
query for selecting databases. Query expansion from 
any specific database introduces a bias towards selecting 
that database. It has been an open problem which 
query expansion database to use for general database 
selection tasks. 

The sampling method of building language models 
solves that problem. In the course of building language 
models, it acquires database samples si, sz, . . ., s, from 
databases dl , d2, . . . , d,. The union of these samples si , 

s2, ‘.‘, s, contains vocabulary, frequency of occurrence, 
and frequency of co-occurrence patterns that occur in 
the set of databases served by the selection algorithm. 
The union of samples favors no specific database, but 
reflects patterns that are common to them all. It is the 
appropriate database to use for query expansion during 
database selection. 

We view this as an advance in making query expan- 
sion a common part of automatic database selection. 

9 Conclusions 

Few people used Information Retrieval systems a decade 
ago. Now IR systems are used by millions of people ev- 

ery day, in the form of Internet Web-search systems. 
However, much of the information available on com- 
puter networks is not stored in commercial Web-search 
databases, and never will be. It is scattered across thou- 
sands of other searchable text databases, managed by 
a variety of large and small content providers. A chal- 
lenge for the research community is to make information 
in these many databases as accessible as is information 
within a single database today. 

Automatic database selection is a solution with many 
advantages, but it has been an incomplete solution 
for large-scale, multi-party environments such as the 
Internet. The cooperative nature of language model 
dissemination protocols such as STARTS do not address 
a variety of problems encountered in ‘real world’ 
environments. 

The query-based sampling approach to language 
model acquisition presented in this paper avoids the 
problems of cooperative protocols. It can be applied 
to older (‘legacy’) systems, it applies to systems that 
have no specific incentive to cooperate, and it is not 
as easily defeated by intentional misrepresentation. It 
also avoids the problem of reconciling the different word 
stemming, stopword, and customized indexing represen- 
tations used within each text database. The represen- 
tation problems are arguably the most serious problems 
with the cooperative approach, because they apply even 
when database providers intend to cooperate. 

This paper shows that query-based sampling can 
produce reasonably accurate language models for text 
databases of varying size and contents from just a few 
hundred documents. The documents can be acquired 
by running about one hundred single-term queries. The 
resource requirements, measured in queries, amount of 
computation, or amount of network traffic, is low. 

An additional benefit of sampling database docu- 
ments directly is that the selection service can construct 
for each database a set of language models of varying 
complexity. A relatively simple word and frequency 
language model might be used for database selection. 
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A more detailed language model identifying people, 
places, and relationships might be used for browsing. 

The selection service can also use the documents 
acquired by sampling to build a database for co- 
occurrence-based query expansion. It is known that 
this type of query expansion significantly improves the 
accuracy of database selection, but it was an open 
problem how such a database could be acquired. This 
paper presents a solution. 

The work reported in this paper is an important 
step in the direction of large-scale automatic database 
selection, but it is only a first step. Some database 
selection algorithms need to know the number of 
documents in a database, for scaling purposes, but 
it is an open pro’blem whether database size can 
be estimated by sa:mpling its contents. The criteria 
for recognizing when a language model is sufficiently 
accurate are more ad-hoc than we would prefer; a more 
principled criterion is the subject of current research. 
Finally, it would not be surprising if the query selection 
criteria could be iimproved, leading to more rapid 
learning of language models. 
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