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Abstract 
Extraction of information from unstructured or semistruc- 
tured Web documents often requires a recognition and de- 
limitation of records. (By “record” we mean a group of 
information relevant to some entity.) Without first chunk- 
ing documents that contain multiple records according to 
record boundaries, extraction of record information will not 
likely succeed. In this paper we describe a heuristic ap- 
proach to discovering record boundaries in Web documents. 
In our approach, we capture the structure of a document as a 
tree of nested HTML tags, locate the subtree containing the 
records of interest, identify candidate separator tags within 
the subtree using five independent heuristics, and select a 
consensus separator tag based on a combined heuristic. Our 
approach is fast (runs linearly for practical cases within the 
context of the larger data-extraction problem) and accurate 
(100% in the experiments we conducted). 

1 Introduction 

The amount of data available electronically on the 
Web has increased dramatically in recent years. Users 
commonly retrieve this data by browsing and keyword 
searching, which are intuitive, but present severe lim- 
itations [Ape94]. To overcome these limitations, some 
researchers have resorted to database techniques. But 
databases require structured data and most Web data is 
unstructured, or at best semistructured [BDFS97], and 
cannot be queried using traditional query languages. 

To structure Web data for traditional database query 
languages, one of the most promising approaches is 
to build wrappers for Web documents [Ade98, AK97a, 
AK97b, AM97, DEW97, ECJ+98, GHR97, HGMC+97, 
KWD97, HGMC+97, MMK98, Sod97]. In building 
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wrappers, we often need to divide source documents 
into chunks of information that correspond to records 
(i.e., groups of information relevant to some entity). In 
a Web document that lists multiple car advertisements, 
for example, we need to identify each individual 
advertisement before we can extract the information 
from the ad. This record identification task, by itself, 
is nontrivial [AK97a, AK97b]. 

In this paper we propose an approach to discover 
boundaries of records in a Web document. Once found 
we can separate these records and pass them on for 
further processing. Our main contribution here is to 
provide a set of individual heuristics and a way to 
combine these heuristics into a method for discovering 
record boundaries. We assume that each Web document 
we process (1) has multiple records and (2) contains at 
least one record-separator tag. We note that it is an 
entirely different problem to check these assumptions 
or to solve similar document classification problems 
such as to determine if a record spans multiple Web 
documents or if a record resides in a single Web 
document. We leave these issues for future research 
[WWW]. 

This is not the first time the problem of separating 
records in a Web document has been addressed. [AM97, 
HGMC+97] detect record boundaries manually. They 
first examine the documents, find the HTML tags 
that separate the records of interest, and then write 
a program to separate the records. [Ade98, AK97a, 
AK97b, DEW97, KWD97, Sod971 separate records with 
some degree of automation. Their approaches focus 
primarily on using syntactic clues, such as HTML tags, 
to identify record boundaries. None of these approaches 
is fully automatic. 

Our approach differs markedly from these proposals. 
We first provide a heuristic for locating groups of 
records within a Web document? (Section 3). This 
heuristic builds a “tag tree” based on the nested 
structure of start- and end-tags and locates the subtree 

1 We have done all our work with HTML documents, but most 
of this work should carry over directly to other document type 
definitions (DTDs), such as XML. 
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that contains the records of interest. We restrict 
our search for a separator tag to candidate tags 
found in this subtree. We next apply five different 
heuristics, which each individually attempts to locate 
a separator tag among the candidate tags (Section 4). 
We label these five heuristics: OM (ontology matching), 
SD (standard deviation), IT (identifiable “separator” 
tags), HT (highest-count tags), and RP (repeating- 
tag pattern). Each of these heuristics returns one 
or more candidate separator tags with a measure 
of certainty/uncertainty attached to each candidate. 
Finally, we provide a way to combine these individual 
heuristics to determine a consensus separator tag 
(Section 5) and hence discover the record boundaries. 
For practical cases and in the context of our overall 
extraction process, the entire process is o(n), where 
n is the size of an input document. We applied this 
approach in four different application areas using Web 
documents obtained from twenty different sites, which 
together contained thousands of records (Section 6). 
The results were uniformly good, attaining 100% 
accuracy on all sites we examined. 

Before explaining the details of our approach, we 
begin in Section 2 with a short description of the larger 
context in which we ‘use our record-boundary-detection 
heuristics. This short description is necessary to provide 
the context for our record-boundary-discovery research 
and to explain what we mean by an ontology and how 
we use it in our work. 

2 Context 5or Record-Boundary 
Discovery Problem 

Figure 1, which we take from [ECJ+98], shows the 
overall process we use for extracting and structuring 
Web data. As depicted in the figure, the input (upper 
left) is a Web page, and the output (lower right) is 
a populated database. The figure also shows that 
an application ontology is an independent input. For 
us, an application ontology is a conceptual model 
augmented with additional information to describe 
constants and keywords for the application. This 
ontology describes the application of interest. When 
we change applications, for example from car ads, to 
job ads, to obituaries, to university courses, we change 
the ontology, and we apply the process to different Web 
pages. Significantly, everything else remains the same: 
the routines that extract records, parse the ontology, 
recognize constants and keywords, and generate the 
populated database instance do not change. In this 
way, we make the p:rocess generally applicable to any 
application domain. 

Specifically, our approach consists of the following 
steps. (1) We develop the ontological model instance 
for the domain of interest (the Application. Ontology in 
the figure). (2) We p arse this ontology to generate 

a database scheme (the Database Description in the 
figure) and to generate rules for matching constants 
and keywords (the Constant/Keyword Matching Rules 
in the figure). (3) To obtain data from the Web, we 
invoke a Record Extractor (see figure) that separakes 
an unstructured Web document into individual record- 
size chunks, cleans them by removing markup-language 
tags, and presents them as individual unstructured 
documents for further processing. (It is the record 
separation task in this component that we discuss in this 
paper.) (4) We invoke recognizers that use the matching 
rules generated by the parser to extract from .the 
cleaned individual unstructured documents the objects 
and relationships from which we obtain the raw, as- 
yet-unorganized data to populate the model instance. 
The result is the Data-Record Table in the figure. (5) 
Finally, we populate the generated database scheme by 
using heuristics to determine which constants populate 
which records in the database scheme. These heuristics 
correlate extracted keywords with extracted constants 
and use cardinality constraints in the ontology to 
determine how to construct records and insert them into 
the database. 

In earlier papers [ECLS98, ECJ+98], we have pre- 
sented these ideas for extracting and structuring data 
from unstructured documents. We noted in these pa- 
pers, and we reiterate here that our ontologies are as- 
sumed to be narrow in breadth (meaning that the on- 
tology is small, having no more than a few dozen ob- 
ject and relationship sets in its conceptual model) and 
that our target documents are assumed to be rich. in 
data (meaning that there is an abundance of recogniz- 
able constants such as email addresses, phone numbers, 
names of automobile makes and models, and so forth). 
We also presented in those papers results of experiments 
we conducted on three different types of unstructured 
documents taken from the Web, namely, car ads, ,job 
ads, and obituaries. In those experiments, our appro,ach 
attained recall ratios in the range of 90% and preci- 
sion ratios near 95% (except for names in obituaries, 
which had precision ratios near 75%). For our first pa- 
per [ECLS98], we separated car and job ads by hand, 
and for our second paper [ECJ+98], we used a prel.im- 
inary version of the record-boundary processor, which 
we describe in this paper. 

3 Heuristics for Locating Groups of 
Records 

Most Web documents are hypertext documents that are 
written according to a document type definition such 
as HTML that includes plain text and tags. A tag in a 
Web document consists of a pair of opening and closing 
brackets, i.e., “<” and “>“, that enclose a tag name, 
sometimes followed by a list of tag attributes, whereas 
plain text in a Web document is a sequence of characters 
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Figure 1: Data extraction and structuring process. 

not embedded within any tag. We distinguish each tag 
in a Web document as either a start-tag or an end-tag. 
A start-tag is a tag whose name does not start with a 
forward slash (i.e., “/“), whereas the name of an end- 
tag is the name of its corresponding start-tag preceded 
by “/“. Some start-tags have no corresponding end-tag. 
In our processing we discard and thus totally ignore two 
special tags: (1) comment tags that start with <! and 
(2) any end-tag that has no corresponding start-tag. 

Tags in a Web document D define discrete regions in 
D. A region R in D begins where a start-tag 5’ appears 
and ends either where the the corresponding end-tag E 
of S appears or (if E does not exist) just before the 
next tag. Between a start-tag and its corresponding 
end-tag, other start- and/or end-tags can be nested. 
Regions, as defined here, do not necessarily correspond 
to regions over which a tag applies for display purposes. 
Our purpose here is not to display a document, but 
to build a convenient structure for discovering record 
boundaries. 

Based on this nested structure, we construct a data 
structure, called tag tree, to represent a document D 
according to the nested regions in D. A node in the 
tag tree of D identifies a region in D. Using the tag 
tree of D along with the heuristic approaches (to be 
presented) in Sections 4 and 5, we attempt to detect 

the region containing the records of interest in D. 
Figure 2(b) shows a short, sample HTML document 

and its corresponding tag tree T. The document in 
Figure 2(a) has additional plain text as indicated by 
the ellipses, but all the HTML tags in the document 
are present. In the tag tree in Figure 2(b), we use only 
the name of the start-tag in a node in T as the label 
of the node to simplify the drawing of each node in the 
figure. A node also contains the plain text within a tag’s 
region. Since the tags <html> and </html> embed all 
of D, <html> is the start-tag of the root node R of 
T. Since a <head> tag exists between the <html> and 
</html> tags in D, a child node of R is constructed 
which has <head> as its start-tag. The tag <title> is 
the only start-tag embedded between the <head> and 
</head> tags in D and is thus the only child of node 
head. The node labeled body is another child node of 
R, and the descendant nodes of the node body are as 
Figure 2(b) shows. 

We construct the tag tree T of a Web document D 
as follows. (1) We initialize a stack and a table indexed 
by tag names and other needed data structures. (2) 
We scan through D to discard “useless” tags and insert 
all “missing” end tags. A “useless” tag is a tag that 
either start with <! or is an end-tag that has no 
corresponding start-tag. We use the stack, table, and 
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<html><head:><title>Classifieds</title></head> 
<body bgcolor== “#FFFFFF” > 
<table><tr><td> 
<hl align=“le~t.“>Funeral Notices - </hl> October 1, 1998 
<hr:> 
<b>Lemar K. Adamson</b><br> died on September 30, 1998. Lemar was born on September 5, 1913 
. . . 
church. . . . <b:*MEMORIAL CHAPEL</b>, . . . <br> 
<hi-:> 
Our ‘beloved <b>Brian Fielding Frost</b>, age 41, passed away on September 30, 1998, . . . 
. . . 
held at . . . in the <b>Howard Stake Center</b>, 
<b>Carrillo’s Tucson Mortuary</b>, . . . 
Holy Hope Cemetery<br>, . . . 
<hr> 
<b>Leonard Kenneth Gunther</b><br> passed away on September 30, 1998. . . . 
. . . 
. . . at <b>HEATHER MORTUARY</b>, . . . 
. . . at 11:OO a.m. at <b>HEATHER MORTUARY</b>, on 
Tuesday, Octobler 6, 1998. . . . .<br> 
<hr> 
</td.></tr></table> 
All material is copyrighted. 
</body> 
</html> 

(a) A sample Web document 

hl hr b br b br hr b b b br hr b br b b br hr ’ 

(b) The tag tree of the Web document in Figure 2(a) 

Figure 2: A sample document and its tag tree 
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a linked list to insert missing end-tags in D. All start- 
tags that are encountered in this pass through D are 
pushed onto the stack. Also, each of these start-tags 
is inserted into the table along its relative position in 
D and its location on the stack. The insertion is at 
the beginning of a linked list whose head is in the table 
at the location indexed by start-tag name. (Note that 
there can be multiple appearances of the same start- 
tag in D and that their relative positions in D and 
their locations on the stack should be maintained for 
inserting missing end-tags in 0.) (3) As a final step, we 
scan through D again, which now has every “missing” 
end-tag. In this pass, we create T according to an in- 
order traversal. (By inserting end-tags, note that we are 
not preparing the document for display; instead we are 
preparing it to help in our search for record boundaries. 
The updated document is discarded once the tag tree is 
built.) Appendix A contains the Tag-Tree Construction 
algorithm which provides a more detailed description of 
this tag-tree construction process. 

The Tag-Tree Construction algorithm has time com- 
plexity L?(n), where n is the length of the input Web 
document D. Step 1, the initialization, is 0(n), because 
we scan D to obtain the start-tags for initializing the 
table. For an appropriate list representation, adding a 
new entry to the table for each new start-tag and linking 
a new node to an existing linked list takes a constant 
amount of time. Since we do not have to consider a 
tag more than once after it has been put in the table, 
inserting a missing end-tag into D for its corresponding 
start-tag which appears in the stack is at worst O(t), 
where t is the number of tags in D. Hence, Step 2 
takes at most O(t). In the construction Step (Step 3) 
of building the tag tree T of D, the number of nodes 
to be constructed in T is proportional to t, and the 
plain text we need to insert is proportional to n. Since 
n > t, the Tag-Tree Construction algorithm has time 
complexity O(n). 

Given a tag tree T, our first task is to locate the 
subtree of T that contains the records of interest. It is 
our conjecture that in a Web document with multiple 
records of interest, the subtree of T whose root has the 
highest fan-out should contain the records. Indeed, we 
do not consider Web documents that do not satisfy this 
conjecture. In Figure 2(b), the subtree rooted at td 
is the highest-fan-out subtree. Since we can find the 
highest fan-out subtree by a traversal of the tag tree, 
this operation is O(t), where t is the number of tags. 
Since t is less than n, the size of the document, this 
operation is bounded by O(n). 

We next count the number of appearances of each 
start-tag in the immediate child nodes of N, the root 
node of the highest fan-out subtree, and distinguish 
each of these tags as either an irrelevant tag or a 
candidate tag. An irrelevant tag is a start-tag with 

relatively few appearances (< 10% of the total number 
of tags in the subtree rooted at N). In Figure 2(b), hl 
is an irrelevant tag. All tags that are not irrelevant 
are called candidate tags, because these become our 
candidates for record separators. The candidate tags 
in Figure 2(b) are hr, b, and br. This operation is 
clearly dominated by O(n) since a single scan of the 
child nodes of N is sufficient to obtain the candidate 
tags. 

If there is only one candidate tag, we treat it as the 
record separator. Otherwise, we apply the heuristic 
approach described in the next two sections to discover 
the record separator. 

4 Record-Boundary Discovery: 
Individual Heuristics 

To discover the record separator, we first apply five 
heuristics, which individually and independently, rank 
the candidate tags. We then apply a consensus heuristic 
to combine the rankings of these individual heuristics. 
This section describes the individual heuristics; the next 
section describes the combined heuristic. 

The individual heuristics span a broad range of 
possible techniques for discovering record boundaries. 
Our HT (highest-count tags) heuristic simply ranks the 
candidate tags based on the number of appearances; 
the separator tag is likely to rank high on this list when 
there are a large number of records. Our IT (identifiable 
“separator” tags) heuristic uses a predetermined list of 
likely HTML separator tags. Both hand-created HTML 
documents and tool-generated HTML documents tend 
to consistently use common separator tags (e.g., hr). 
Our SD (standard deviation) heuristic makes use of 
the observation that when multiple records about 
an entity appear in a document, the records are 
typically about the same size. Thus, the candidate 
tag with the minimum standard deviation based on 
the size of the plain text between identical tags 
tends to be the separator. Our RP (repeating-tag 
pattern) heuristic makes use of the observation that 
divisions between records often include several tags 
that consistently appear in the same order (e.g., a br 
followed immediately by an hr). Our OM (ontology 
matching) heuristic considers the content of a record. 
Items that are in a one-to-one correspondence or are 
functional with respect to the entity of interest tend 
to appear once and only once in a record. If we can 
recognize these items, we can look for candidate tags 
that best separate these items into individual records. 

4.1 HT: Highest-Count Tags 

For the highest-count-tags heuristic, we construct an 
ordered list of candidate tags sorted in descending 
order by number of appearances in the highest-fan-out 
subtree. This operation is O(c log c) where c is the 
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number of candidate tags. Since c is small (usually less 
than a dozen or so for practical cases, where c is not 
pathologically large) and is also much smaller than the 
document size n (c << n), we consider the cost of this 
operation to be negligible. Thus, for practical cases we 
ignore this cost in our overall estimation of the running 
time. 

4.2 IT: Identifiable “Separator” Tags 

Some Web documents are generated by using authoring 
tools (such as Microsoft FrontPage), and their formats 

( i.e., layouts) are regular. Furthermore, even in hand- 
generated documents, authors tend to use regular 
layouts. Thus, for d!ocuments with multiple records, 
there tends to be a few tags that consistently separate 
these records. By looking at these documents and 
keeping tra.ck of separator tags and how often authors 
use these tags to separate records, we can create an 
ordered list of the most commonly used tags that 
separate records of interest in Web documents. 

To create our ordered separator tag list, we looked at 
one hundred Web documents in two application areas 
(obituaries and car advertisement) from ten different 
Web sites. Our current list is as follows: 

hr tr td a table p br h4 hl strong b i 

We simply rank the candidate tags according to this list 
and discard any candidate tags that are not in this list. 
Thus, for our example document in Figure 2 we rank 
hr first, br second, and b third. We use the obvious 
O(cZ) algorithm to rank the candidates according to this 
list. Since both the number of candidate tags c and the 
length of our tag list I is small compared to the size of 
a document, the cost of this operation is negligible. 

4.3 SD: Standard Deviation 

For this heuristic, we compute the standard deviation 
of the interval (in terms of the number of characters) 
between each candidate separator. For the sample 
document in Figure 2, we calculate the number of 
characters between each occurrence of hr, between 
each occurrence of b, and between each occurrence of 
br. We then rank the tags with the smallest standard 
deviation first. 

We can obtain the text counts for calculating the 
standard deviations by a linear scan of the text in the 
nodes of the highest-fan-out subtree, an O(n) operation. 
Sorting the resulting standard deviations is c?(c log c), 
where c is the number of candidate tags. As before, we 
consider this sort to be negligible for practical cases. 

4.4 RIP: Repeating-Tag Pattern 

We base our heuristic for a repeating-tag pattern on 
the idea that record boundaries often have consistent 
patterns of two or more adjacent tags. Some tag 

may consistently appear before or after the record 
separators. In Figure 2, for example, we have the 
combinations <hr><b> and <br><hr>. 

We apply our RP heuristic to the highest-fan-out 
subtree of Web document with c candidate tags as 
follows. We count the number of occurrences of all (up 
to c2) pairs of candidate tags that have no intervening 
plain text. If a pair <a><b> occurs at a record 
boundary and <a> is the record separator, the count 
for this pair should be about the same as the count of 
the number of occurrences of <a> alone. Of course, 
it is possible that some (or even all) counts for pairs 
are zero or close to zero. We only consider pairs whose 
count is greater than 10% of the lowest-count candidate 
tag. For each considered pair <a><b>, we calculate 
the absolute value of the difference between the count 
for the pair and the count for <a> alone and also the 
absolute value of the difference between the count :for 
the pair and the count for <b> alone. We then rank the 
candidate tags in ascending order on this absolute value. 
Since a particular candidate tag may appear more than 
once in this ranking, we discard all but the best ranking 
for the tags in the list. We note that the list may be 
empty, in which case our RP heuristic simply does not 
supply an answer. 

To analyze the running time for the RP heuristic, 
we first observe that we can create a tag-pair ta’ble 
indexed by all pairs of candidate tags in 0(c2) time, 
where c is the number of candidate tags. Next we 
observe that we can make a single pass through the 
tags in the highest-fan-out subtree and obtain all the 
counts we need, an operation bounded by O(n), where 
n is the size of the Web document. Taking the absolute 
value for each tag of a pair and checking it for possible 
consideration requires a pass through the table of pairs, 
an S(c2) operation. Since there are up to 2c2 tags 
indexing the tag-pair table, sorting each of these tags, in 
ascending order on their absolute value and removing 
duplicates may take as much as 0(c2 log c2). For the 
overall cost, we note that in practical cases c is small 
and c << n. We thus treat all the operations based 
on c as negligible and obtain C?(n) as the estimated cfost 
for the RP heuristic. 

4.5 OM: Ontology-Matching 

We may expect one or more fields of a record to appear 
once and only once in the record. We call such fields 
record-identifying fields. For each record-identifying 
field, if we can locate a value for the field or even 
just an indication that the value exists, we can count 
the number of such occurrences. Then, if we take 
the average number of occurrences for several record- 
identifying fields in a Web document D, we have a good 
chance of correctly estimating the number of records 
in D. With this estimate, we can rank the candidate 
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separators by how closely their number of appearances 
corresponds to the estimated number of records. 

As an example, the death date for an obituary is a 
record-identifying field because there should be one and 
only one death date in each record. As an indication 
that this field exists, we use a keyword set that includes 
“died on” and “passed away on” (see Figure 2(a)) 
to indicate the existence of the field. We do not 
use the date itself because there may be many other 
fields in the record such as birth date and funeral date 
that are also dates. Although date values themselves 
are not record-identifying indicators for obituaries, the 
keywords that distinguish among the various dates 
are excellent indicators for the existence of record- 
identifying fields. We note that a record-identifying 
field is not the same as a key for a record, but rather is 
a field that is likely to occur once and only once for each 
record. A death date, for example, occurs once in every 
obituary, but a death date is not a key that identifies 
deceased persons in a genealogical database. 

A given application ontology contains the informa- 
tion needed to determine the record-identifying fields. 
All object sets whose objects have a one-to-one corre- 
spondence with the entity of interest designate record- 
identifying fields as well as all object sets whose objects 
are functionally dependent on the entity of interest. We 
are selective in choosing which record-identifying fields 
to consider in our ontology-matching heuristic. First, 
we limit the number of fields to be at least 3 and no 
more than 20% of the number of sets of objects in the 
ontology. We want at least 3, so that we can obtain a 
reasonable average (if we do not have at least 3 record- 
identifying fields, we do not use our ontology-matching 
heuristic). We also set an upper bound because we 
want to use only a few of the “best” record-identifying 
fields. We order the potential record-identifying fields 
from “best” to “worst” by first considering fields that 
are in a one-to-one correspondence with the entity of in- 
terest and then considering those that are functionally 
dependent on the entity of interest. Then, within these 
groups we consider keyword indicators first followed by 
identifiable values, except that we do not consider iden- 
tifiable values that share a common type (e.g., dates in 
the obituary example). 

To apply our ontology-matching heuristic, we first 
count the number of appearances of each record- 
identifying field in a Web document D and calculate 
the average number of appearances of all the record- 
identifying fields in D. We then consider the number of 
appearances of each candidate tag and rank these tags 
in order by how close they come to the average. 

We check for the existence of a keyword or constant 
value by matching a regular expression with the plain 
text in the highest-fan-out subtree. Since this matching 
process is at best Q&r), where p is the size of the plain 

text and r is the number of regular expressions, the 
running time of the ontology-matching heuristic is not 
linear. We observe, however, that in the overall data- 
extraction process in Figure 1 we must run the regular 
expressions over all the plain text in the highest-fan- 
out subtree. We further observe that if we integrate 
processes, we can run the regular-expression matching 
process before separating records at no additional cost. 
This is because the entries in the Data-Record Table 
(see Figure 1) are ordered by position in the document. 
Once we discover the separator tag, we can use the posi- 
tion of the separator tags in the document to partition 
the Data-Record Table into sets of entries that are in 
a one-to-one correspondence with the records, and use 
these sets of entries for further downstream process- 
ing by the Database-Instance Generator. Therefore, we 
claim that the contribution of the ontology-matching 
heuristic within the overall process is no more than the 
contribution given the Data-Record Table. Since the 
Data-Record Table contains all recognized keywords and 
values, along with their associated object sets and their 
positions within the plain text of the document, a single 
scan through the table allows us to obtain the counts 
we need. Thus, the ontology-matching heuristic is O(d), 
where d is the number of lines in the Data-Record Ta- 
ble for the plain text in the highest-fan-out subtree. 
Although d may be large, for practical cases it is not 
typically larger than n, the document size; thus, we as- 
sume O(d) < O(n). W e note that we must also sort the 
candidate tags, which is an 0(c log c) operation, where 
c is the number of candidate tags, but as before, this 
operation is negligible. 

5 Record-Boundary Discovery: 
Combined Heuristics 

Each heuristic presented in Section 4 is independent 
of the others but works well only for some particular 
Web documents. We therefore consider combining 
these individual, independent heuristics to improve our 
chances of locating a correct record separator in a 
Web document. To determine the best combination of 
the five heuristics, we adopt Stanford certainty theory 
[LS98] to help us make the decision. In Section 5.1 
we explain our adaptation of Stanford certainty theory. 
As will be evident in this section, we will need to have 
certainty factors for each of our individual heuristics. 
To obtain these certainty factors, we conducted some 
initial experiments. In Section 5.2 we describe these 
initial experiments and how we used them to obtain 
the certainty factors for each of our heuristics. Given 
these certainty factors, we present in Section 5.3 the 
algorithm for our compound heuristic. 
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5.1 Certainty Measure 

Stanford certainty theory defines a confidence measure 
and generates some simple rules for combining inde- 
pendent evidence. If evidence from two independent 
observations support the same result, Standard cer- 
tainty theory gives the following rule to combine the ev- 
idence from these two independent observations. Sup- 
pose CF(EL) is the certainty factor associated with evi- 
dence El fo:r some observation B and CF(E2) is the cer- 
tainty factor associated with evidence EZ for the same 
observation B, then the new certainty factor CF of B, 
called the compound certainty factor of B, is calculated 
by: CF(E1) +CF(Ez) - (CF(E1) x CF(E2)). By using 
this rule repeatedly, it is possible to combine the results 
of evidence from any number of independent events that 
are used for determining B. For example, if the cer- 
tainty factors are 88%, 74%, and 66% that a tag T is a 
record separator in a dlocument, then the compound cer- 
tainty factor for T is 98.93%. (The compound certainty 
factor is computed using Stanford certainty theory on 
these three factors as 88% + 74% + 66% - 88% x 74% 
- 88% x 66% - 74% x 66% + 88% x 74% x 66% = 
98.93%.) 

5.2 Initial Experiments 

In order to determine the certainty factors for the 
individual heuristics, we considered two application 
areas: obituaries and. car advertisements. To achieve 
geographical diversity (and thus hopefully a reasonable 
sampling of different kinds of Web documents), we 
chose ten on-line newspaper sites (listed in Table 1) 
located in different regions of the United States. For 
each application, we retrieved five Web documents from 
one site. Thus, there were 100 experimental Web 
documents. After scanning through these documents, 
we manually located the correct record separators of 
the documents. (Note that a Web document may have 
more than one record separator.) We then applied 
each individual heuristic on each experimental Web 
document and compared the output with the manually 
determined record separators. 

Table 2 gives the results for obituaries, and Table 3 
gives the results for car ads. The first row of Table 2 
shows that 83% of the time the OM heuristic ranked 
a correct record separator of an experimental Web 
document as its first choice and 17% of the time the 
OM heuristic ranked a correct record separator as its 
second choice. Similarly, for the other heuristics, we 
calculated the percentage of Web documents in which a 
correct record separator was the first, second, third, or 
fourth choice of the ranking obtained from each of the 
heuristics. :In these initial experiments, a correct record 
separator was always among the four highest ranked 
choices for all the heuristics. 

By comparing the percentages of the two applications 

On-line Newspaper URL 3 
Salt Lake Tribune www.sltrib.com 
Arizona Daily Star www.azstarnet.com - 
Houston Chronicle www.chron.com 
San Francisco Chronicle www.sfgate.com 
Seattle Times www.seatimes.com 
GoCincinnaticom classifinder.gocinci.net 
Standard Times www.s-t.com 
Detroit Newspapers www.dnps.com 
Connecticut Post www.connpost.com 
Access Atlanta www.accessatlanta.com 

Table 1: On-line newspapers for initial experiments 

Heuristic \ 
Ranking 1 2 3 4 

Table 2: Experimental results for obituaries 

Heuristic \ 
Ranking 1 2 3 4 

Table 3: Experimental results for car advertisements 
application 

Heuristic \ 
Ranking 

~‘i 

Table 4: Certainty factors, as selected by our initial 
experiments 

474 



in Tables 2 and 3, we can see that the results are rea- 
sonably consistent in both applications. We obtained 
our certainty factors by averaging the percentages in 
Tables 2 and 3. Table 4 shows the resulting certainty 
factors. This table asserts that the highest ranking can- 
didate tag chosen by the OM heuristic has a certainty 
factor of 84.5%, that the second highest ranking candi- 
date tag has a certainty factor of 12.5%, and so on for 
the OM heuristic and also for all other heuristics. 

5.3 The Compound Heuristic 

For our compound heuristic we had the choice of any 
combination of two, three, four, or all five of the 
heuristics. It might seem that choosing, say, the top 
two or three heuristics and ignoring the rest might 
produce the best results. Because we did not know what 
combination to choose, we continued with our initial 
experiments and tried all combinations on the same 
100 Web documents. There are cb, C(5, i) - 6 (= 
26) possible combinations (minus 6 because we cannot 
have none and we already have the results for the five 
individual heuristics). 

For each combination, we calculated the compound 
certainty factor for each candidate tag in our exper- 
imental documents. We then determined the success 
rate of each combination. If there are X tags that have 
the highest compound certainty factors and only Y of 
these X tags are correct record separators in a Web 
document D, then the success for D, denoted SC(D), 
is Y/X (i.e., there is Y/X% chance that the correct 
record separator in D is chosen). The success rate for a 
combination is (Cy=i(sc(Di))/n), where Di is the ith 
experimental Web document. Table 5 shows the success 
rates for all combinations. Note that in Table 5 we use 
0, R, S, I, and H to represent the OM, RP, SD, IT, and 
HT heuristics, respectively. For example, OR denotes 
the OM and RP combination. 

By considering the success rates in Table 5, we see 
that all the combinations that include IT have high 
success rates (over 90%). This is not surprising since 
it, by itself, was the best in our initial experiments as 
Tables 2 and 3 show. We also see, however, that ORSI, 
ORIH, RSIH, and ORSIH all have 100% success rate 
for our experimental documents; these combinations 
found a correct record separator in all 100 experimental 
documents. In deciding among these four best choices, 
we observed that any one of them could be chosen as 
our compound heuristic. Since all five heuristics are 
independent and since they may all help find a correct 
separator, we decided to choose ORSIH, which include 
all five heuristics. 

Thus, our heuristic algorithm for discovering record 
boundaries in Web documents that contain multiple 
records is as follows. 

Algorithm. Record-Boundary Discovery Algorithm 

RI 95.00% RIH 95.00% 
RH 76.33% SIH 95.00% 

Table 5: Experimental results for all the compound 
heuristics 

Input: A Web document D 
Output: The consensus record separator tag of D 
1. call Tag-Tree Construction Algorithm (see 

Appendix A) to create the tag tree T of D 
2. count the number of children of each node in T to 

locate the highest-fan-out subtree HF 
3. extract the set of candidate tags CT from HF 
4. apply the five individual heuristics OM, SD, IT, 

HT, and RP on CT 
5. for each candidate tag C in CT do begin 

apply Stanford certainty theory to the results of 
all five heuristics (ORSIH) using the certainty 
factors in Table 4 

end 
6. choose the candidate tag with the highest 

compound certainty factor computed in Step 5 as 
the record separator of D 

For example, consider the Web document in Fig- 
ure 2(a). The results of applying five individual heuris- 
tics are as follows. 

OM: Lb-, 11, (br, 21, (b, 311 
RP: [(hr, 11, b, 21, (b, 311 
SD: [(hr, 11, (b, 21, (br, 311 
IT: [(hr, 11, b, 2L (b, 3)l 
HT: D, 11, (br, 2), (hr, 311 

Combining these five individual heuristics together 
yields the following. 

ORSIH: [(hr, 99.96%), (b, 64.75%), (br, 56.34%)] 

Thus, hr is chosen as the record separator since 
99.96% is the highest percentage among the three. 

We argued earlier that the time complexity of 
constructing the tag tree T of a Web document D is 
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I F 
talameda 111111 Idaho State Journal 

vww.journalnet.com 1 1 2 1 2 1 
Sacramento Bee 

Table 6: Test set 1 - obituaries 

0(n), where n is the length of D, which is the time 
complexity of Step 1 in the Record-Boundary Discovery 
Algorithm. Locating the highest fan-out subtree of T 
in Step 2 and creating CT in Step 3 take a constant 
amount of time. Ap:plying each individual heuristic in 
Step 4 takes at most O(n) time, with the understanding 
that D is a document found in practice and that 
the regular-expression matching for the OM heuristic 
has already been done for the larger data-extraction 
problem. C0mputin.g the compound certainty factor 
for each of the candi,date tags in Step 5 using Stanford 
certainty theory is 0(c), where c is the number of 
candidate tags, as is choosing the candidate tag with the 
highest compound certainty factor. Hence, the entire 
process for computing the consensus record separator 
of D is 0(n) for practical cases within the context of 
the larger data-extraction problem. 

6 Experimental Results 

To verify the accuracy of our heuristic approach for 
record-boundary discovery in Web documents, we ex- 
amined four sets of Web documents in four different 
application areas. E’ach set contained five Web docu- 
ments from five different Web sites, 20 documents all 
together. The twenty Web sites we chose are located in 
different regions of the United States. Two of the sets 
were documents for obituaries and car advertisements. 
These test documents, however, were from entirely dif- 
ferent sites (compare Table 1 with the site listings in 
Table 6 and Table 7:1. The other two sets were for two 
entirely different applications, namely computer job ad- 
vertisements and university course descriptions (see the 
site listings in Table 8 and Table 9). Note that in these 
tables, the last column (labeled A) records the rankings 
of the compound hueristic, i.e., ORSIH. 

For each of the 20 Web documents, we applied 
the five individual Iheuristics presented in Section 4 
and ORSIH, the compound heuristic, selected as our 
combined heuristic as explained in Section 5. Tables 6 

- 
On-line Newspaper 

URL OM RP SD IT HT A 
- 

Arkansas Democrat - 

corn ..- 
Knoxville News 
www.knoxnews.com 1 1 1 1 1 1 .- 
Lincoln Journal Star 
www.nebweb.com 1 1 1 1 1 1 
Reno Gazette - 

Journal 
www.nevadanet.com/ 3 3 1 1 3 1 

renogazette .- 

Table 7: Test set 2 - car advertisements 

On-line Newspaper l-7 
URL OM RP SD IT HT 1 A 1 

Baltimore Sun 
www.sunspot.net 1 1 1 1 2 
Dallas Morning News 
dallasnews.com 1 1 2 1 2 
Denver Post 
www.denverpost.com 4 1 1 1 4 
Indianapolis Star/News 
www.starnews.com 1 1 1 1 1 
Los Angeles Times 
www.latimes.com 2 3 2 1 I21-l 

Table 8: Test set 3 - computer job advertisements 

University 
URL OM RP SD IT HT A 1 

BYU 1 

Table 9: Test set 4 - university course descriptions 

476 



Heuristic 1 Success Rate ) 

Table 10: Success rates of individual heuristics and 
ORSIH for experimental Web documents 

- 9 shows the results. The numbers in each column 
are the ranking numbers of the correct record separator 
obtained by the heuristic approach. For the Sioux 
City Journal car ads in Table 7, for example, the OM 
heuristic ranked the correct record separator first, RP 
ranked it second, SD also ranked it second, IT ranked 
it first, HT ranked it fourth, and ORSIH ranked it first. 

We also calculated the success rates for each heuristic 
approach on all experimental Web documents. Table 10 
shows the results. We note that even though none 
of the individual heuristics had a 100% success rate, 
the success rate for our combined heuristic approach is 
100%. 

7 Concluding Remarks 

We have described a heuristic approach to discovering 
record boundaries in unstructured Web documents con- 
taining multiple records of interest separated by one (or 
more) tags. In our approach, we (1) defined a tag tree 
to capture the structure of a raw Web document, (2) 
located the subtree containing the records of interest 
by checking for highest fan-out, (3) identified candidate 
tags within the subtree, (4) applied five independent 
heuristics (OM-ontology matching, SD-standard de- 
viation, IT-identifiable “separator” tags, HT-highest- 
count tags, and RP-repeating-tag pattern) to select 
the best candidates, and (5) combined these heuristics 
using an adaptation of Stanford certainty theory to se- 
lect a consensus candidate. The process is O(n), where 
n is the size of a document. 

We applied this approach in four different application 
areas (car ads, job ads, obituaries, and university 
courses) using Web documents obtained from twenty 
different sites. The experiments we conducted showed 
that this approach uniformly attained an accuracy of 
100%. 
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Appendix 

A Tag-Tree Construction Algorithm 
Input: A Web document D 
Output: The tag tree T of D 
1. Initialization 

pass through D to obtain the set of start-tags 
initialize TABLE as an array (initially empty) such 

that an entry of TABLE is labeled by a start- 
tag and associated with a linked list of nodes 

2. repeat /* Discard useless tags and insert missing 
end-tags */ 

locate the next tag G in D 
if G is a comment-tag or G is an 

end-tag with no corresponding start-tag in L) 
then 

eliminate G from D 
else if G is a start-tag 
then 

if G is not in TABLE, then 
Create an entry in TABLE with label G and 

push G onto stack S 
Create a node of the form [L, Sp], where L 

is the location of the next tag in D and 
Sp is the location of G on S, and link 
it to the entry with label G in TABLE 

else /* G is an end-tag */ 
Search for the corresponding start-tag of G in S 
Pop each of the tags A on top of G in S and 

insert the corresponding end-tag of A 
at L in D, where L is in node N 
linked to the entry G in TABLE which points 
to A on S 

until end-of-file(D) 
3. Scan D from the beginning /* Construct the tag 

tree T */ 
repeat 
Search for the next start-tag G in D 

Create the node N := [G, I, 0] in T, where I is 
the plain text between G and the next tag in 
D, and 0 is the plain text between the 
corresponding end-tag of G and the next tag 
in D 

Create all the descendant nodes of N 
until end-of-file(D) 
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