Record-Boundary Discovery in Web Documents

D.W. Embley*
Dept. of Computer Science
Brigham Young University
Provo, Utah 84602, U.S.A.
embley@cs.byu.edu

Abstract

Extraction of information from unstructured or semistruc-
tured Web documents often requires a recognition and de-
limitation of records. (By “record” we mean a group of
information relevant to some entity.) Without first chunk-
ing documents that contain multiple records according to
record boundaries, extraction of record information will not
likely succeed. In this paper we describe a heuristic ap-
proach to discovering record boundaries in Web documents.
In our approach, we capture the structure of a document as a
tree of nested HTML tags, locate the subtree containing the
records of interest, identify candidate separator tags within
the subtree using five independent heuristics, and select a
consensus separator tag based on a combined heuristic. Our
approach is fast (runs linearly for practical cases within the
context of the larger data-extraction problem) and accurate
(100% in the experiments we conducted).

1

The amount of data available electronically on the
Web has increased dramatically in recent years. Users
commonly retrieve this data by browsing and keyword
searching, which are intuitive, but present severe lim-
itations [Ape94]. To overcome these limitations, some
researchers have resorted to database techniques. But
databases require structured data and most Web data is
unstructured, or at best semistructured [BDFS97], and
cannot be queried using traditional query languages.
To structure Web data for traditional database query
languages, one of the most promising approaches is
to build wrappers for Web documents [Ade98, AK97a,
AK97b, AM97, DEW97, ECJ*98, GHR97, HGMC+97,
KWD97, HGMC*97, MMK98, S0d97]. In building

Introduction

*Research funded in part by Novell

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

Y. Jiang
Dept. of Computer Science
Brigham Young University
Provo, Utah 84602, U.S.A.
jiang@cs.byu.edu

467

Y.-K. Ng
Dept. of Computer Science
Brigham Young University
Provo, Utah 84602, U.S.A.
ng@cs.byu.edu

wrappers, we often need to divide source documents
into chunks of information that correspond to records
(i.e., groups of information relevant to some entity). In
a Web document that lists multiple car advertisements,
for example, we need to identify each individual
advertisement before we can extract the information
from the ad. This record identification task, by itself,
is nontrivial [AK97a, AK97b].

In this paper we propose an approach to discover
boundaries of records in a Web document. Once found
we can separate these records and pass them on for
further processing. Our main contribution here is to
provide a set of individual heuristics and a way to
combine these heuristics into a method for discovering
record boundaries. We assume that each Web document
we process (1) has multiple records and (2) contains at
least one record-separator tag. We note that it is an
entirely different problem to check these assumptions
or to solve similar document classification problems
such as to determine if a record spans multiple Web
documents or if a record resides in a single Web
document. We leave these issues for future research
[WWW].

This is not the first time the problem of separating
records in a Web document has been addressed. [AM97,
HGMC*97] detect record boundaries manually. They
first examine the documents, find the HTML tags
that separate the records of interest, and then write
a program to separate the records. [Ade98, AK97a,
AK97b, DEW97, KWD97, Sod97] separate records with
some degree of automation. Their approaches focus
primarily on using syntactic clues, such as HTML tags,
to identify record boundaries. None of these approaches
is fully automatic.

Our approach differs markedly from these proposals.
We first provide a heuristic for locating groups of
records within a Web document® (Section 3). This
heuristic builds a “tag tree” based on the nested
structure of start- and end-tags and locates the subtree

1We have done all our work with HTML documents, but most
of this work should carry over directly to other document type
definitions (DTDs), such as XML.

that contains the records of interest. We restrict
our search for a separator tag to candidate tags
found in this subtree. We next apply five different
heuristics, which each individually attempts to locate
a separator tag among the candidate tags (Section 4).
We label these five heuristics: OM (ontology matching),
SD (standard deviation), IT (identifiable “separator”
tags), HT (highest-count tags), and RP (repeating-
tag pattern). Each of these heuristics returns one
or more candidate separator tags with a measure
of certainty/uncertainty attached to each candidate.
Finally, we provide a way to combine these individual
heuristics to determine a consensus separator tag
(Section 5) and hence discover the record boundaries.
For practical cases and in the context of our overall
extraction process, the entire process is O(n), where
n is the size of an input document. We applied this
approach in four different application areas using Web
documents obtained from twenty different sites, which
together contained thousands of records (Section 6).
The results were uniformly good, attaining 100%
accuracy on all sites we examined.

Before explaining the details of our approach, we
begin in Section 2 with a short description of the larger
context in which we use our record-boundary-detection
heuristics. This short description is necessary to provide
the context for our record-boundary-discovery research
and to explain what we mean by an ontology and how
we use it in our work.

2 Context for Record-Boundary

Discovery Problem

Figure 1, which we take from [ECJ*98], shows the
overall process we use for extracting and structuring
Web data. As depicted in the figure, the input (upper
left) is a Web page, and the output (lower right) is
a populated database. The figure also shows that
an application ontology is an independent input. For
us, an application ontology is a conceptual model
augmented with additional information to describe
constants and keywords for the application. This
ontology describes the application of interest. When
we change applications, for example from car ads, to
job ads, to obituaries, to university courses, we change
the ontology, and we apply the process to different Web
pages. Significantly, everything else remains the same:
the routines that extract records, parse the ontology,
recognize constants and keywords, and generate the
populated database instance do not change. In this
way, we make the process generally applicable to any
application domain.

Specifically, our approach consists of the following
steps. (1) We develop the ontological model instance
for the domain of interest (the Application. Ontology in
the figure). (2) We parse this ontology to generate

468

a database scheme (the Datebase Description in the
figure) and to generate rules for matching constants
and keywords (the Constant/Keyword Matching Rules
in the figure). (3) To obtain data from the Web, we
invoke a Record Extractor (see figure) that separates
an unstructured Web document into individual record-
size chunks, cleans them by removing markup-language
tags, and presents them as individual unstructured
documents for further processing. (It is the record
separation task in this component that we discuss in this
paper.) (4) We invoke recognizers that use the matching
rules generated by the parser to extract from the
cleaned individual unstructured documents the objects
and relationships from which we obtain the raw, as-
yet-unorganized data to populate the model instance.
The result is the Data-Record Table in the figure. (5)
Finally, we populate the generated database scheme by
using heuristics to determine which constants populate
which records in the database scheme. These heuristics
correlate extracted keywords with extracted constants
and use cardinality constraints in the ontology to
determine how to construct records and insert them into
the database.

In earlier papers [ECLS98, ECJ*98], we have pre-
sented these ideas for extracting and structuring data
from unstructured documents. We noted in these pa-
pers, and we reiterate here that our ontologies are as-
sumed to be narrow in breadth (meaning that the on-
tology is small, having no more than a few dozen ob-
ject and relationship sets in its conceptual model) and
that our target documents are assumed to be rich in
data (meaning that there is an abundance of recogniz-
able constants such as email addresses, phone numbers,
names of automobile makes and models, and so forth).
We also presented in those papers results of experiments
we conducted on three different types of unstructured
documents taken from the Web, namely, car ads, job
ads, and obituaries. In those experiments, our approach
attained recall ratios in the range of 90% and preci-
sion ratios near 95% (except for names in obituaries,
which had precision ratios near 75%). For our first pa-
per [ECLS98], we separated car and job ads by hand,
and for our second paper [ECJ*98], we used a prelim-
inary version of the record-boundary processor, which
we describe in this paper.

3 Heuristics for Locating Groups of

Records

Most Web documents are hypertext documents that are
written according to a document type definition such
as HTML that includes plain text and tags. A tagin a
Web document consists of a pair of opening and closing
brackets, i.e., “<” and “>”, that enclose a tag name,
sometimes followed by a list of tag attributes, whereas
plain teztin a Web document is a sequence of characters

| Web Page l

@xtractor

Object-Relationship
Model Instance

Data Frames

Lexicons

Ontology
Parser

Constant/Keyword
Matching Rules

{5

u
"sn'gégt:ged Constant/Keyword
Documents Recognizer

Record-Level
Objects,
Relationships,
and Constraints

Database
Scheme

Data-Record Tabte
{Descriptor/String/Position)

Database-Instance
Generator

I Populated Database I

Figure 1: Data extraction and structuring process.

not embedded within any tag. We distinguish each tag
in a Web document as either a start-tag or an end-tag.
A start-tag is a tag whose name does not start with a
forward slash (i.e., “/”), whereas the name of an end-
tag is the name of its corresponding start-tag preceded
by “/”. Some start-tags have no corresponding end-tag.
In our processing we discard and thus totally ignore two
special tags: (1) comment tags that start with <! and
(2) any end-tag that has no corresponding start-tag.

Tags in a Web document D define discrete regions in
D. A region R in D begins where a start-tag S appears
and ends either where the the corresponding end-tag E
of S appears or (if E does not exist) just before the
next tag. Between a start-tag and its corresponding
end-tag, other start- and/or end-tags can be nested.
Regions, as defined here, do not necessarily correspond
to regions over which a tag applies for display purposes.
Our purpose here is not to display a document, but
to build a convenient structure for discovering record
boundaries.

Based on this nested structure, we construct a data
structure, called tag tree, to represent a document D
according to the nested regions in D. A node in the
tag tree of D identifies a region in D. Using the tag
tree of D along with the heuristic approaches (to be
presented) in Sections 4 and 5, we attempt to detect

469

the region containing the records of interest in D.

Figure 2(b) shows a short, sample HTML document
and its corresponding tag tree T. The document in
Figure 2(a) has additional plain text as indicated by
the ellipses, but all the HTML tags in the document
are present. In the tag tree in Figure 2(b), we use only
the name of the start-tag in a node in T as the label
of the node to simplify the drawing of each node in the
figure. A node also contains the plain text within a tag’s
region. Since the tags <html> and </html> embed all
of D, <html> is the start-tag of the root node R of
T. Since a <head> tag exists between the <html> and
< /html> tags in D, a child node of R is constructed
which has <head> as its start-tag. The tag <title> is
the only start-tag embedded between the <head> and
< /head> tags in D and is thus the only child of node
head. The node labeled body is another child node of
R, and the descendant nodes of the node body are as
Figure 2(b) shows.

We construct the tag tree T of a Web document D
as follows. (1) We initialize a stack and a table indexed
by tag names and other needed data structures. (2)
We scan through D to discard “useless” tags and insert
all “missing” end tags. A “useless” tag is a tag that
either start with <! or is an end-tag that has no
corresponding start-tag. We use the stack, table, and

<html><head:> <title>Classifieds</title> < /head>
<body bgcolor=“#FFFFFF” >

<table><tr><td>
<hl align="“left” >Funeral Notices - </h1> October 1, 1998
<hr>

Lemar K. Adamson
 died on September 30, 1998. Lemar was born on September 5, 1913

church. ... MEMORIAL CHAPEL, ...

<hr>
Our beloved Brian Fielding Frost, age 41, passed away on September 30, 1998, ...

held at ... in the Howard Stake Center,
Carrillo’s Tucson Mortuary, ...

Holy Hope Cemetery
, ...

<hr>

Leonard Kenneth Gunther
 passed away on September 30, 1998. ...
.. at HEATHER MORTUARY, ...

.. at 11:00 a.m. at HEATHER MORTUARY , on
Tuesday, October 6, 1998.

<hr>

</td></tr></table>

All material is copyrighted.

</body>

< /html>

(a) A sample Web document

title table

td

hiT hr b br b br hr b b b br hr b br b b br hr

(b) The tag tree of the Web document in Figure 2(a)

Figure 2: A sample document and its tag tree

470

a linked list to insert missing end-tags in D. All start-
tags that are encountered in this pass through D are
pushed onto the stack. Also, each of these start-tags
is inserted into the table along its relative position in
D and its location on the stack. The insertion is at
the beginning of a linked list whose head is in the table
at the location indexed by start-tag name. (Note that
there can be multiple appearances of the same start-
tag in D and that their relative positions in D and
their locations on the stack should be maintained for
inserting missing end-tags in D.) (3) As a final step, we
scan through D again, which now has every “missing”
end-tag. In this pass, we create T according to an in-
order traversal. (By inserting end-tags, note that we are
not preparing the document for display; instead we are
preparing it to help in our search for record boundaries.
The updated document is discarded once the tag tree is
built.) Appendix A contains the Tag-Tree Construction
algorithm which provides a more detailed description of
this tag-tree construction process.

The Tag-Tree Construction algorithm has time com-
plexity O(n), where n is the length of the input Web
document D. Step 1, the initialization, is O(n), because
we scan D to obtain the start-tags for initializing the
table. For an appropriate list representation, adding a
new entry to the table for each new start-tag and linking
a new node to an existing linked list takes a constant
amount of time. Since we do not have to consider a
tag more than once after it has been put in the table,
inserting a missing end-tag into D for its corresponding
start-tag which appears in the stack is at worst O(t),
where ¢ is the number of tags in D. Hence, Step 2
takes at most O(t). In the construction Step (Step 3)
of building the tag tree T of D, the number of nodes
to be constructed in T is proportional to t, and the
plain text we need to insert is proportional to n. Since
n > t, the Tag-Tree Construction algorithm has time
complexity O(n).

Given a tag tree T, our first task is to locate the
subtree of T that contains the records of interest. It is
our conjecture that in a Web document with multiple
records of interest, the subtree of T whose root has the
highest fan-out should contain the records. Indeed, we
do not consider Web documents that do not satisfy this
conjecture. In Figure 2(b), the subtree rooted at td
is the highest-fan-out subtree. Since we can find the
highest fan-out subtree by a traversal of the tag tree,
this operation is O(t), where ¢ is the number of tags.
Since t is less than n, the size of the document, this
operation is bounded by O(n).

We next count the number of appearances of each
start-tag in the immediate child nodes of N, the root
node of the highest fan-out subtree, and distinguish
each of these tags as either an irrelevant tag or a
candidate tag. An irrelevant tag is a start-tag with

471

relatively few appearances (< 10% of the total number
of tags in the subtree rooted at N). In Figure 2(b), hl
is an irrelevant tag. All tags that are not irrelevant
are called candidate tags, because these become our
candidates for record separators. The candidate tags
in Figure 2(b) are hr, b, and br. This operation is
clearly dominated by O(n) since a single scan of the
child nodes of NV is sufficient to obtain the candidate
tags.

If there is only one candidate tag, we treat it as the
record separator. Otherwise, we apply the heuristic
approach described in the next two sections to discover
the record separator.

4 Record-Boundary Discovery:

Individual Heuristics

To discover the record separator, we first apply five
heuristics, which individually and independently, rank
the candidate tags. We then apply a consensus heuristic
to combine the rankings of these individual heuristics.
This section describes the individual heuristics; the next
section describes the combined heuristic.

The individual heuristics span a broad range of
possible techniques for discovering record boundaries.
Our HT (highest-count tags) heuristic simply ranks the
candidate tags based on the number of appearances;
the separator tag is likely to rank high on this list when
there are a large number of records. Our IT (identifiable
“separator” tags) heuristic uses a predetermined list of
likely HTML separator tags. Both hand-created HTML
documents and tool-generated HTML documents tend
to consistently use common separator tags (e.g., hr).
Our SD (standard deviation) heuristic makes use of
the observation that when multiple records about
an entity appear in a document, the records are
typically about the same size. Thus, the candidate
tag with the minimum standard deviation based on
the size of the plain text between identical tags
tends to be the separator. Our RP (repeating-tag
pattern) heuristic makes use of the observation that
divisions between records often include several tags
that consistently appear in the same order (e.g., a br
followed immediately by an hr). Our OM (ontology
matching) heuristic considers the content of a record.
Items that are in a one-to-one correspondence or are
functional with respect to the entity of interest tend
to appear once and only once in a record. If we can
recognize these items, we can look for candidate tags
that best separate these items into individual records.

4.1 HT: Highest-Count Tags

For the highest-count-tags heuristic, we construct an
ordered list of candidate tags sorted in descending
order by number of appearances in the highest-fan-out
subtree. This operation is O(c log ¢) where ¢ is the

number of candidate tags. Since ¢ is small (usually less
than a dozen or so for practical cases, where c is not
pathologically large) and is also much smaller than the
document size n (¢ << n), we consider the cost of this
operation to be negligible. Thus, for practical cases we
ignore this cost in our overall estimation of the running
time.

4.2 IT: Identifiable “Separator” Tags

Some Web documents are generated by using authoring
tools (such as Microsoft FrontPage), and their formats
(i-e., layouts) are regular. Furthermore, even in hand-
generated documents, authors tend to use regular
layouts. Thus, for documents with multiple records,
there tends to be a few tags that consistently separate
these records. By looking at these documents and
keeping track of separator tags and how often authors
use these tags to separate records, we can create an
ordered list of the most commonly used tags that
separate records of interest in Web documents.

To create our ordered separator tag list, we looked at
one hundred Web documents in two application areas
(obituaries and car advertisement) from ten different
Web sites. Our current list is as follows:

hr tr td a table p br h4 hl strong b i

We simply rank the candidate tags according to this list
and discard any candidate tags that are not in this list.
Thus, for our example document in Figure 2 we rank
hr first, br second, and b third. We use the obvious
O(cl) algorithm to rank the candidates according to this
list. Since both the number of candidate tags ¢ and the
length of our tag list [is small compared to the size of
a document, the cost of this operation is negligible.

4.3 SD: Standard Deviation

For this heuristic, we compute the standard deviation
of the interval (in terms of the number of characters)
between each candidate separator. For the sample
document in Figure 2, we calculate the number of
characters between each occurrence of hr, between
each occurrence of b, and between each occurrence of
br. We then rank the tags with the smallest standard
deviation first.

We can obtain the text counts for calculating the
standard deviations by a linear scan of the text in the
nodes of the highest-fan-out subtree, an O(n) operation.
Sorting the resulting standard deviations is O(c log ¢),
where c is the number of candidate tags. As before, we
consider this sort to be negligible for practical cases.

4.4 RP: Repeating-Tag Pattern

We base our heuristic for a repeating-tag pattern on
the idea that record boundaries often have consistent
patterns of two or more adjacent tags. Some tag

472

may consistently appear before or after the record
separators. In Figure 2, for example, we have the
combinations <hr> and
<hr>.

We apply our RP heuristic to the highest-fan-out
subtree of Web document with ¢ candidate tags as
follows. We count the number of occurrences of all (up
to ¢?) pairs of candidate tags that have no intervening
plain text. If a pair <a> occurs at a record
boundary and <a> is the record separator, the count
for this pair should be about the same as the count of
the number of occurrences of <a> alone. Of course,
it is possible that some (or even all) counts for pairs
are zero or close to zero. We only consider pairs whose
count is greater than 10% of the lowest-count candidate
tag. For each considered pair <a>, we calculate
the absolute value of the difference between the count
for the pair and the count for <a> alone and also the
absolute value of the difference between the count for
the pair and the count for alone. We then rank the
candidate tags in ascending order on this absolute value.
Since a particular candidate tag may appear more than
once in this ranking, we discard all but the best ranking
for the tags in the list. We note that the list may be
empty, in which case our RP heuristic simply does not
supply an answer.

To analyze the running time for the RP heuristic,
we first observe that we can create a tag-pair table
indexed by all pairs of candidate tags in O(c?) time,
where ¢ is the number of candidate tags. Next we
observe that we can make a single pass through the
tags in the highest-fan-out subtree and obtain all the
counts we need, an operation bounded by O(n), where
n is the size of the Web document. Taking the absolute
value for each tag of a pair and checking it for possible
consideration requires a pass through the table of pairs,
an O(c?) operation. Since there are up to 2¢* tags
indexing the tag-pair table, sorting each of these tags in
ascending order on their absolute value and removing
duplicates may take as much as O(c? log ¢?). For the
overall cost, we note that in practical cases ¢ is small
and ¢ << n. We thus treat all the operations based
on c as negligible and obtain O(n) as the estimated cost
for the RP heuristic.

4.5 OM: Ontology-Matching

We may expect one or more fields of a record to appear
once and only once in the record. We call such fields
record-identifying fields. For each record-identifying
field, if we can locate a value for the field or even
just an indication that the value exists, we can count
the number of such occurrences. Then, if we take
the average number of occurrences for several record-
identifying fields in a Web document D, we have a good
chance of correctly estimating the number of records
in D. With this estimate, we can rank the candidate

separators by how closely their number of appearances
corresponds to the estimated number of records.

As an example, the death date for an obituary is a
record-identifying field because there should be one and
only one death date in each record. As an indication
that this field exists, we use a keyword set that includes
“died on” and “passed away on” (see Figure 2(a))
to indicate the existence of the field. We do not
use the date itself because there may be many other
fields in the record such as birth date and funeral date
that are also dates. Although date values themselves
are not record-identifying indicators for obituaries, the
keywords that distinguish among the various dates
are excellent indicators for the existence of record-
identifying fields. We note that a record-identifying
field is not the same as a key for a record, but rather is
a field that is likely to occur once and only once for each
record. A death date, for example, occurs once in every
obituary, but a death date is not a key that identifies
deceased persons in a genealogical database.

A given application ontology contains the informa-
tion needed to determine the record-identifying fields.
All object sets whose objects have a one-to-one corre-
spondence with the entity of interest designate record-
identifying fields as well as all object sets whose objects
are functionally dependent on the entity of interest. We
are selective in choosing which record-identifying fields
to consider in our ontology-matching heuristic. First,
we limit the number of fields to be at least 3 and no
more than 20% of the number of sets of objects in the
ontology. We want at least 3, so that we can obtain a
reasonable average (if we do not have at least 3 record-
identifying fields, we do not use our ontology-matching
heuristic). We also set an upper bound because we
want to use only a few of the “best” record-identifying
fields. We order the potential record-identifying fields
from “best” to “worst” by first considering fields that
are in a one-to-one correspondence with the entity of in-
terest and then considering those that are functionally
dependent on the entity of interest. Then, within these
groups we consider keyword indicators first followed by
identifiable values, except that we do not consider iden-
tifiable values that share a common type (e.g., dates in
the obituary example).

To apply our ontology-matching heuristic, we first
count the number of appearances of each record-
identifying field in a Web document D and calculate
the average number of appearances of all the record-
identifying fields in D. We then consider the number of
appearances of each candidate tag and rank these tags
in order by how close they come to the average.

We check for the existence of a keyword or constant
value by matching a regular expression with the plain
text in the highest-fan-out subtree. Since this matching
process is at best O(pr), where p is the size of the plain

473

text and r is the number of regular expressions, the
running time of the ontology-matching heuristic is not
linear. We observe, however, that in the overall data-
extraction process in Figure 1 we must run the regular
expressions over all the plain text in the highest-fan-
out subtree. We further observe that if we integrate
processes, we can run the regular-expression matching
process before separating records at no additional cost.
This is because the entries in the Data-Record Table
(see Figure 1) are ordered by position in the document.
Once we discover the separator tag, we can use the posi-
tion of the separator tags in the document to partition
the Data-Record Table into sets of entries that are in
a one-to-one correspondence with the records, and use
these sets of entries for further downstream process-
ing by the Database-Instance Generator. Therefore, we
claim that the contribution of the ontology-matching
heuristic within the overall process is no more than the
contribution given the Data-Record Table. Since the
Data-Record Table contains all recognized keywords and
values, along with their associated object sets and their
positions within the plain text of the document, a single
scan through the table allows us to obtain the counts
we need. Thus, the ontology-matching heuristic is O(d),
where d is the number of lines in the Data-Record Ta-
ble for the plain text in the highest-fan-out subtree.
Although d may be large, for practical cases it is not
typically larger than n, the document size; thus, we as-
sume O(d) < O(n). We note that we must also sort the
candidate tags, which is an O(c log c) operation, where
¢ is the number of candidate tags, but as before, this
operation is negligible.

5 Record-Boundary Discovery:

Combined Heuristics

Each heuristic presented in Section 4 is independent
of the others but works well only for some particular
Web documents. We therefore consider combining
these individual, independent heuristics to improve our
chances of locating a correct record separator in a
Web document. To determine the best combination of
the five heuristics, we adopt Stanford certainty theory
[LS98] to help us make the decision. In Section 5.1
we explain our adaptation of Stanford certainty theory.
As will be evident in this section, we will need to have
certainty factors for each of our individual heuristics.
To obtain these certainty factors, we conducted some
initial experiments. In Section 5.2 we describe these
initial experiments and how we used them to obtain
the certainty factors for each of our heuristics. Given
these certainty factors, we present in Section 5.3 the
algorithm for our compound heuristic.

5.1

Stanford certainty theory defines a confidence measure
and generates some simple rules for combining inde-
pendent evidence. If evidence from two independent
observations support the same result, Standard cer-
tainty theory gives the following rule to combine the ev-
idence from these two independent observations. Sup-
pose CF(E)) is the certainty factor associated with evi-
dence E; for some observation B and CF(E,) is the cer-
tainty factor associated with evidence E» for the same
observation B, then the new certainty factor CF of B,
called the compound certainty factor of B, is calculated
by: CF(E,)+CF(E,;)—-(CF(E,)xCF(E,)). By using
this rule repeatedly, it is possible to combine the results
of evidence from any number of independent events that
are used for determining B. For example, if the cer-
tainty factors are 88%, 74%, and 66% that a tag T is a
record separator in a document, then the compound cer-
tainty factor for T is 98.93%. (The compound certainty
factor is computed using Stanford certainty theory on
these three factors as 88% + 74% + 66% - 88% x 74%
- 88% x 66% - T4% x 66% + 88% x T4% x 66%
98.93%.)

Certainty Measure

5.2

In order to determine the certainty factors for the
individual heuristics, we considered two application
areas: obituaries and car advertisements. To achieve
geographical diversity (and thus hopefully a reasonable
sampling of different kinds of Web documents), we
chose ten on-line newspaper sites (listed in Table 1)
located in different regions of the United States. For
each application, we retrieved five Web documents from
one site. Thus, there were 100 experimental Web
documents. After scanning through these documents,
we manually located the correct record separators of
the documents. (Note that a Web document may have
more than one record separator.) We then applied
each individual heuristic on each experimental Web
document and compared the output with the manually
determined record separators.

Table 2 gives the results for obituaries, and Table 3
gives the results for car ads. The first row of Table 2
shows that 83% of the time the OM heuristic ranked
a correct record separator of an experimental Web
document as its first choice and 17% of the time the
OM heuristic ranked a correct record separator as its
second choice. Similarly, for the other heuristics, we
calculated the percentage of Web documents in which a
correct record separator was the first, second, third, or
fourth choice of the ranking obtained from each of the
heuristics. In these initial experiments, a correct record
separator was always among the four highest ranked
choices for all the heuristics.

By comparing the percentages of the two applications

Initial Experiments

474

| On-line Newspaper

[URL

Salt Lake Tribune

www.sltrib.com

Arizona Daily Star

www.azstarnet.com

Houston Chronicle

www.chron.com

San Francisco Chronicle

www.sfgate.com

Seattle Times

www.seatimes.com

GoCincinnati.com

classifinder.gocinci.net

Standard Times

www.s-t.com

Detroit Newspapers

www.dnps.com

Connecticut Post

www.connpost.com

Access Atlanta

www.accessatlanta.com

Table 1: On-line newspapers for initial experiments

Heuristic \

Ranking 1 2 3 4
oM 8% | 17% | 0% | 0%
RP 83% | "% | 10% | 0%
SD 59% | 27% | 14% | 0%

IT 92% | 8% | 0% | 0%
HT 58% | 23% | 17% | 2%

Table 2: Experimental results for obituaries

Heuristic \
Ranking 1 2 3 4
oM 86% | 8% | 4% | 2%
RP 2% | 18% | 8% | 2%
SD 72% | 18% | 10% | 0%
IT 100% | 0% | 0% | 0%
HT 40% | 42% | 16% | 2%
Table 3: Experimental results for car advertisements
application
Heuristic \
Ranking 1 2 3 4
OM 84.5% | 12.5% | 2.0% | 1.0%
RP 77.5% | 125% [9.0% | 1.0%
SD 65.5% | 22.5% | 12.0% | 0.0%
1T 96.0% | 4.0% | 0.0% | 0.0%
HT 49.0% | 32.5% | 16.5% | 2.0%

Table 4: Certainty factors, as selected by our initial

experiments

in Tables 2 and 3, we can see that the results are rea-
sonably consistent in both applications. We obtained
our certainty factors by averaging the percentages in
Tables 2 and 3. Table 4 shows the resulting certainty
factors. This table asserts that the highest ranking can-
didate tag chosen by the OM heuristic has a certainty
factor of 84.5%, that the second highest ranking candi-
date tag has a certainty factor of 12.5%, and so on for
the OM heuristic and also for all other heuristics.

5.3 The Compound Heuristic

For our compound heuristic we had the choice of any
combination of two, three, four, or all five of the
heuristics. It might seem that choosing, say, the top
two or three heuristics and ignoring the rest might
produce the best results. Because we did not know what
combination to choose, we continued with our initial
experiments and tried all combinations on the same
100 Web documents. There are 3o _, C(5,i) — 6 (=
26) possible combinations (minus 6 because we cannot
have none and we already have the results for the five
individual heuristics).

For each combination, we calculated the compound
certainty factor for each candidate tag in our exper-
imental documents. We then determined the success
rate of each combination. If there are X tags that have
the highest compound certainty factors and only Y of
these X tags are correct record separators in a Web
document D, then the success for D, denoted sc(D),
is Y/X (i.e., there is Y/X% chance that the correct
record separator in D is chosen). The success rate for a
combination is (31, (sc(D;))/n), where D; is the ith
experimental Web document. Table 5 shows the success
rates for all combinations. Note that in Table 5 we use
O, R, S, I, and H to represent the OM, RP, SD, IT, and
HT heuristics, respectively. For example, OR denotes
the OM and RP combination.

By considering the success rates in Table 5, we see
that all the combinations that include IT have high
success rates (over 90%). This is not surprising since
it, by itself, was the best in our initial experiments as
Tables 2 and 3 show. We also see, however, that ORSI,
ORIH, RSIH, and ORSIH all have 100% success rate
for our experimental documents; these combinations
found a correct record separator in all 100 experimental
documents. In deciding among these four best choices,
we observed that any one of them could be chosen as
our compound heuristic. Since all five heuristics are
independent and since they may all help find a correct
separator, we decided to choose ORSIH, which include
all five heuristics.

Thus, our heuristic algorithm for discovering record
boundaries in Web documents that contain multiple
records is as follows.

Algorithm. Record-Boundary Discovery Algorithm

475

Compound | Success || Compound | Success
Heuristic Rate Heuristic Rate

OR 85.83% 0OSI 95.00%

0S 88.00% OSH 87.50%

0Ol 95.00% OIH 95.00%

OH 79.00% RSI 95.00%

RS 79.50% RSH 85.50%

RI 95.00% RIH 95.00%

RH 76.33% SIH 95.00%

SI 95.00% ORSI 100.00%

SH 69.50% ORSH 82.50%

IH 95.00% ORIH 100.00%

ORS 81.50% OSIH 95.00%

ORI 93.33% RSIH 100.00%

ORH 84.83% ORSIH 100.00%

Table 5: Experimental results for all the compound
heuristics

Input: A Web document D
Output: The consensus record separator tag of D
1. call Tag-Tree Construction Algorithm (see
Appendix A) to create the tag tree T of D
2. count the number of children of each node in T to
locate the highest-fan-out subtree HF
3. extract the set of candidate tags CT from HF
4. apply the five individual heuristics OM, SD, IT,
HT, and RP on CT
5. for each candidate tag C in CT do begin
apply Stanford certainty theory to the results of
all five heuristics (ORSIH) using the certainty
factors in Table 4
end
6. choose the candidate tag with the highest
compound certainty factor computed in Step 5 as
the record separator of D

For example, consider the Web document in Fig-
ure 2(a). The results of applying five individual heuris-
tics are as follows.

OM: [(hr, 1), (br, 2), (b, 3)]
RP: [(hr, 1), (br, 2), (b, 3)]
SD: [(hr, 1), (b, 2), (br, 3)]
HT: [(b, 1), (br, 2), (hr, 3)]

Combining these five individual heuristics together
yields the following.

ORSIH: [(hr, 99.96%), (b, 64.75%), (br, 56.34%))

Thus, hr is chosen as the record separator since
99.96% is the highest percentage among the three.

We argued earlier that the time complexity of
constructing the tag tree T of a Web document D is

On-line Newspaper
URL OM | RP| SD|IT| HT}| A
Alameda Newspaper
www.adone.com/
alameda 1 1 1 1 1 1
Idaho State Journal
www.journalnet.com 1 1 2 1 2 1
Sacramento Bee
www.sacbee.com 1 1 1 1 1 1
Tampa Tribune
www.tampatrib.com 1 1 1 1 1 1
Shoals Timesdaily
www.timesdaily.com 1 1 1 1 2 1

Table 6: Test set 1 - obituaries

O(n), where n is the length of D, which is the time
complexity of Step 1 in the Record-Boundary Discovery
Algorithm. Locating the highest fan-out subtree of T
in Step 2 and creating CT in Step 3 take a constant
amount of time. Applying each individual heuristic in
Step 4 takes at most O(n) time, with the understanding
that D is a document found in practice and that
the regular-expression matching for the OM heuristic
has already been done for the larger data-extraction
problem. Computing the compound certainty factor
for each of the candidate tags in Step 5 using Stanford
certainty theory is O(c), where ¢ is the number of
candidate tags, as is choosing the candidate tag with the
highest compound certainty factor. Hence, the entire
process for computing the consensus record separator
of D is O(n) for practical cases within the context of
the larger data-extraction problem.

6

To verify the accuracy of our heuristic approach for
record-boundary discovery in Web documents, we ex-
amined four sets of Web documents in four different
application areas. Fach set contained five Web docu-
ments from five different Web sites, 20 documents all
together. The twenty Web sites we chose are located in
different regions of the United States. Two of the sets
were documents for obituaries and car advertisements.
These test documents, however, were from entirely dif-
ferent sites (compare Table 1 with the site listings in
Table 6 and Table 7). The other two sets were for two
entirely different applications, namely computer job ad-
vertisements and university course descriptions (see the
site listings in Table 8 and Table 9). Note that in these
tables, the last column (labeled A) records the rankings
of the compound hueristic, i.e., ORSIH.

For each of the 20 Web documents, we applied
the five individual heuristics presented in Section 4
and ORSIH, the compound heuristic, selected as our
combined heuristic as explained in Section 5. Tables 6

Experimental Results

476

On-line Newspaper
URL

oM

RP

SD

IT

HT

Arkansas Democrat -
Gazette
www.ardemgaz.com

Sioux City Journal
www.slouxcityjournal.
com

Knoxville News
www.knoxnews.com

Lincoln Journal Star
www.nebweb.com

Reno Gazette -
Journal
www.nevadanet.com/
renogazette

Table 7: Test set 2 - car advertisements

On-line Newspaper
URL OM | RP | SD | IT | HT | A

Baltimore Sun
www.sunspot.net 1 1 1 1 2 1
Dallas Morning News
dallasnews.com 1 1 2 1 2 1
Denver Post
www.denverpost.com 4 1 1 1 4 1
Indianapolis Star/News
www.starnews.com 1 1 1 1 1 1
Los Angeles Times
www.latimes.com 2 3 2 1 2 1

Table 8: Test set 3 - computer job advertisements

University

URL OM | RP | SD | IT{ HT | A
BYU
www.byu.edu 2 2 1 1 1 1
MIT
registrar.mit.edu 1 1 1 1 2 1
KSU
www.ksu.edu 1 1 2 2 2 1
USsC
www.usc.edu 1 1 2 1 1 1
UT - Austin
www.utexas.edu 1 2 2 1 1 1

Table 9: Test set 4 - university course descriptions

Heuristic | Success Rate |
oM 80%
RP 75%
SD 65%
IT 95%
HT 45%
ORSIH 100%

Table 10: Success rates of individual heuristics and
ORSIH for experimental Web documents

- 9 shows the results. The numbers in each column
are the ranking numbers of the correct record separator
obtained by the heuristic approach. For the Siouz
City Journal car ads in Table 7, for example, the OM
heuristic ranked the correct record separator first, RP
ranked it second, SD also ranked it second, IT ranked
it first, HT ranked it fourth, and ORSIH ranked it first.

We also calculated the success rates for each heuristic
approach on all experimental Web documents. Table 10
shows the results. We note that even though none
of the individual heuristics had a 100% success rate,
the success rate for our combined heuristic approach is
100%.

7 Concluding Remarks

We have described a heuristic approach to discovering
record boundaries in unstructured Web documents con-
taining multiple records of interest separated by one (or
more) tags. In our approach, we (1) defined a tag tree
to capture the structure of a raw Web document, (2)
located the subtree containing the records of interest
by checking for highest fan-out, (3) identified candidate
tags within the subtree, (4) applied five independent
heuristics (OM—ontology matching, SD—standard de-
viation, IT—identifiable “separator” tags, HT-highest-
count tags, and RP—repeating-tag pattern) to select
the best candidates, and (5) combined these heuristics
using an adaptation of Stanford certainty theory to se-
lect a consensus candidate. The process is O(n), where
n is the size of a document.

We applied this approach in four different application
areas (car ads, job ads, obituaries, and university
courses) using Web documents obtained from twenty
different sites. The experiments we conducted showed
that this approach uniformly attained an accuracy of
100%.

References

[Ade98] B. Adelberg. Nodose - a tool for semi-
automatically extracting structured and
semistructured data from text documents.

In Proceedings of the 1998 ACM SIGMOD

477

[AK97a)

[AK97b]

[AM97)

[Ape94]

[BDFS97]

[DEW97]

[ECI+98]

[ECLS98]

[GHR97]

International Conference on Management
of Data, pages 283-294, Seattle, Washing-
ton, June 1998.

N. Ashish and C. Knoblock. Semi-
automatic wrapper generation for internet
information sources. In Proceedings of the
CoopIS’97, 1997.

N. Ashish and C. Knoblock. Wrapper
generation for semi-structured internet
sources. SIGMOD Record, 26(4):8-15,
December 1997.

P. Atzeni and G. Mecca. Cut and paste.
In Proceedings of the 16th ACM PODS,
pages 144-153, May 1997.

P. M. G. Apers. Identifying internet-
related database research. In Proceed-
ings of the 2nd International East- West
Database Workshop, pages 183-193, Kla-
genfurt, 1994. Springer-Verlag.

P. Buneman, S. Davidson, M. Fernandez,
and D. Suciu. Adding structure to un-
structured data. In Proceedings of the In-
ternational Conference on Database The-
ory (ICDT), 1997.

R.B. Doorenbos, O. Etzioni, and D.S.
Weld. A scalable comparison-shopping
agent for the world-wide web. In Proceed-
ings of the First International Conference
on Autonomous Agents, pages 39-48, Ma-
rina Del Rey, California, February 1997.

D. Embley, D. Campbell, Y. Jiang, Y.-K.
Ng, R. Smith, S. Liddle, and D. Quass. A
conceptual-modeling approach to extract-
ing data from the web. In Proceedings
of the 17th International Conference on
Conceptual Modeling (ER’98), Singapore,
November 1998. (to appear).

D.W. Embley, D.M. Campbell, S.W. Lid-
dle, and R.D. Smith. Ontology-based ex-
traction and structuring of information
from data-rich unstructured documents.
In Proceedings of the Conference on In-
formation and Knowledge Management
(CIKM’98), Washington D.C., November
1998. (to appear).

A. Gupta, V. Harinarayan, and A. Ra-
jaraman. Virtual database technology.
SIGMOD Record, 26(4):57-61, December
1997.

[HGMC*97] J. Haramer, H. Garcia-Molina, J. Cho,
R. Aranha, and A. Crespo. Extracting
semistructured information from the web.
In Proceedings of the Workshop on Man-
agement of Semistructured Data, Tucson,
Arizona, May 1997.

N. Kushmerick, D. Weld, and R. Dooren-
bos. Wrapper induction for information
extraction. In Proceedings of the 1997 In-
ternational Joint Conference on Artificial
Intelligence, pages 729-735, 1997.

[KWD97]

[LS98] G.F. Luger and W.A. Stubblefield. Arti-
ficial Intelligence: Structures and Strate-
gies for Complex Problem Solving, Third
Edition. Addison Wesley Longman, Inc.,

1998.

[MMK98] I. Muslea, S. Minton, and C. Knoblock.
Stakler: learning extraction rules
for sernistructured, web-based informa-
tion sources. In Proceedings of AAAI’98:
Workshop on AI and Information Integra-

tion, Madison, Wisconsin, July 1998.

[Sod97] S. Soderland. Learning to extract text-
based information from the world wide
web. In Proceedings of the Third Inter-
national Conference on Knowledge Dis-
covery and Date Mining, pages 251-254,

Newport Beach, California, August 1997.

[WWW] Homepage for BYU data extraction re-
search group. URL: http://www.deg.byu.

edu.

Appendix

A Tag-Tree Construction Algorithm

Input: A Web document D
Output: The tag tree T of D
1. Initialization
pass through D to obtain the set of start-tags
initialize TABLE as an array (initially empty) such
that an entry of TABLE is labeled by a start-
tag and associated with a linked list of nodes
2. repeat /* Discard useless tags and insert missing
end-tags */
locate the next tag G in D
if G is a comment-tag or G is an
end-tag with no corresponding start-tag in D
then
eliminate G from D
else if G is a start-tag
then
if G is not in TABLE, then
Create an entry in TABLE with label G and
push G onto stack S
Create a node of the form L, Sp|, where L
is the location of the next tag in D and
Sp is the location of G on S, and link
it to the entry with label G in TABLE
else /* G is an end-tag */
Search for the corresponding start-tag of G in S
Pop each of the tags A on top of G in S and
insert the corresponding end-tag of A
at L in D, where L is in node N
linked to the entry G' in TABLE which points
to Aon S
until end-of-file(D)
3. Scan D from the beginning /* Construct the tag
tree T */
repeat
Search for the next start-tag G in D
Create the node N := [G, I, O] in T, where I is
the plain text between G and the next tag in
D, and O is the plain text between the
corresponding end-tag of G and the next tag
in D
Create all the descendant nodes of N
until end-of-file(D)

