Computing Capabilities of Mediators

Ramana Yerneni, Chen Li, Hector Garcia-Molina, Jeffrey Ullman
Department of Computer Science
Stanford University
{yerneni,chenli,hector,ullman } @cs.stanford.edu

Abstract

Existing data-integration systems based on the media-
tion architecture employ a variety of mechanisms to de-
scribe the query-processing capabilities of sources. How-
ever, these systems do not compute the capabilities of
the mediators based on the capabilities of the sources
they integrate. In this paper, we propose a framework
to capture a rich variety of query-processing capabil-
ities of data sources and mediators. We present al-
gorithms to compute the set of supported queries of
a mediator, based on the capability limitations of its
sources. Our algorithms take into consideration a vari-
ety of query-processing techniques employed by media-
tors to enhance the set of supported queries.

1 Introduction

Many data integration systems (e.g., [, 2, 3, 4,
6, 7]) use a mediation architecture [9] in which
a mediator provides users with seamless access
to information from heterogeneous sources. In
mediation systems, one often encounters sources
with diverse and limited query capabilities.
Contemporary mediator systems such as TSIM-
MIS [5, 6], Garlic [7], Information Manifold [4]
and DISCO [3, 8] perform capability-based query
processing. Sources express their capabilities in
these systems through a variety of mechanisms
— query templates, capability records, and simple
capability-description grammars. However, none of
these systems computes the query-capabilities of
mediators based on the supported source queries.
Not having the mediator capabilities readily avail-
able makes it difficult to treat mediators as sources

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first pageA‘To copy
otherwisc, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

443

for other mediators. Furthermore, users have a dif-
ficult time understanding the set of supported me-
diator queries in these systems. Consequently, users
must endure a frustrating trial-and-error approach,
submitting queries that are rejected until finally hit-
ting upon a query that is answered by the mediator.

In this paper, we present algorithms to precom-
pute mediator capabilities automatically, so that
users and other mediators know which queries are
supported. In addition, we extend the types of
source limitations that can be handled by exist-
ing mediation systems. For example, we handle at-
tributes that can only be queried with values from
a fixed menu of constants.

The World Wide Web is a prime example of a
context where we need to handle many different
types of source limitations. On the Web, data
sources typically publish their query-processing
capabilities through query forms. Users pose
queries to data sources by filling out query forms
and submitting them to the sources. For instance,
the Web bookstore Amazon.com (www.amazon . com)
provides a query form that allows users to search
for books by specifying any one of author, title
and subject attributes. Another Web bookstore
AlBooks.com (www.albooks.com) does not allow
search by the subject attribute alone, while it
provides search by the author or the title attribute.

Mediators built on Web sources frequently in-
dicate their sets of supported queries through
forms. For instance, the Junglee shopping guide
for books (compagq.junglee.com) mediates across
many Web bookstores including Amazon.com and
AlBooks.com. The Junglee mediator provides a
query form that allows search by the title or the
author attribute.

Computing mediator capabilities can be simple in
some cases. For instance, the combined restrictions
of Amazon.com and A1Books.com indicate that the
Junglee shopping guide can support queries that
search for books by specifying the author or the title
attribute. Queries specifying the subject attribute

alone are not feasible because AlBooks.com does
not answer this query.

In many cases, the computation of mediator
capabilities is more complicated due to the rich
variety of source-capability limitations and the
host of techniques mediators employ in processing
queries. For instance, we show in Section 4 that
by using special techniques to postprocess the
results of queries on weaker data sources, mediators
can support much larger sets of queries. Thus,
the capabilities we compute for mediators can be
“stronger” than those of the underlying sources.

Another complication arises when we consider
mediator capabilities that depend on the contents
of sources. In such cases, a mediator may define
its capabilities with a “lower bound” that specifies
which queries will always be answerable, and an
“upper bound” indicating which queries will never
be answerable. Queries “between” bounds may
be answerable, depending on the contents of the
sources at run time. We refer to mediators
that handle upper and lower bounds as dynamic
mediators. In Section 5, we discuss how dynamic
mediators process queries and how their capabilities
can be determined.

Deriving mediator forms by hand is error-prone.
Manual computation of mediator capabilities is also
expensive, since each time a source changes its
capabilities, we may have to update the mediator
capabilities. We need to develop algorithms to
compute mediator capabilities automatically.

In this paper, we make the following specific
contributions:

o Framework: We develop a framework for de-
scribing the restrictions on attribute specifica-
tions commonly found on the Web and in other
heterogeneous data-integration contexts.

o Algorithms: We present algorithms for comput-
ing the query capabilities of mediators based on
the capabilities of the sources they mediate.

e Concise Description: We provide strategies
to condense the capability description of a
mediator and enable efficient query-feasibility
determination for users and other mediators
that employ this mediator as a source.

e Advanced Techniques: We discuss advanced
techniques that could be used by dynamic
mediators to process queries beyond those that
are feasible 1n conventional mediators.

2 Framework

In this section, we present our framework for
describing the query capabilities of data sources

and mediators. In our framework, each data source
exports a set of relational views.! Conceptually,
a query to a source is submitted by filling out a
form on one of the views exported by the source.
The query specifies values for some attributes of
the view, and the result of executing the query is a
set of tuples of the source view on which the query
is posed. The following example illustrates a source
view and answering queries on that view.

EXAMPLE 2.1 Consider a source that exports a
view R(X,Y, Z). Let the set of tuples in source view
R be {(z1,v1,21), (21,42, 21), (T2, Y2, 22)}. Query
R(X,Y,z) results in {(x1, 1, 21), (21, Y2, 21) }, while
query R(X,y1, Z) returns one tuple: (z1,y1,21). O

2.1 Mediator Views

A mediator integrates data from multiple sources
and exports a set of integrated views. Each in-
tegrated view is defined in terms of source views
and/or other integrated views. The set of oper-
ations used to define integrated views are union,
join, selection and projection. We do not allow re-
cursive views, so the mediator-view definitions form
a directed acyclic graph (DAG). Since we allow the
use of integrated views to define other integrated
views, we can assume without loss of generality that
each definition of a mediator view uses only one op-
erator — union, join, selection or projection.

EXAMPLE 2.2 Consider a mediator with five
data sources. Let the respective source views be
Ri(X,Y,2), Ry(X,Y,Z), R3(X,Y,Z), Ra(Z,U),
and Rs(U,V,W). Let the mediator define the
following two views: Mi{X,Y,Z) is the union of
R1, Ry and R3; Mo(X,Y,Z,U,V,W) is the join of
Mi(X,Y,Z), Ry and Rs. Users can pose queries
on the views of a mediator in a manner similar to
submitting queries on source views. For instance,
one can specify My (z1,Y, Z,U, V,w;) as a query to
the mediator. o

2.2 Attribute Adornments

The query capabilities of a data source are ex-
pressed as a set of templates supported by the
source. A template, like a form on the Web, iden-
tifies the various attributes of a source view that
can be specified in a query submitted on the view.
Restrictions on attribute specification are also indi-
cated by templates (e.g., if an attribute value has

1We use the relational framework for simplicity of expo-
sition. We believe that all the main ideas presented in this
paper carry over seamlessly to other data models like OEM
{6] and XML (www.w3.org/TR/REC-xml). In fact, our interest
in computing mediator capabilities is based on our work in
the TSIMMIS project, which uses the OEM data model.

to be chosen from a menu of choices). We use at-
tribute adornments to specify how the attributes of
a view can participate in supported queries.

Based on our study of query forms for a variety
of Web data sources, we consider the following five
kinds of attribute adornments:

1. adornment f (for free): the attribute may or may
not be specified in the query;

. adornment u (for unspecifiable): the attribute
cannot be specified in the query;

adornment b (for bound): the attribute must be
specified in the query;

adornment c[s] (for constant): the attribute
must be specified, and in addition, it must be
chosen from the set of constants s;

. adornment ofs] (for optional): the attribute
may or may not be specified in the query, and
if specified, it must be chosen from the set of
constants s.

Each template specifies an adornment for each
attribute of a view. In the case of the ¢ and o
adornments, the menus of constants allowed are
also specified by the templates. The following
example illustrates how templates with attribute
adornments are used to express query capabilities.

EXAMPLE 2.3 Consider the source of Exam-
ple 2.1 that exports the single view R(X,Y, Z). Let
the source support a set of queries on this view that
specify some value for X and no value for Y. In
addition, let these queries optionally specify some
value for Z. A template that expresses these query
capabilities is buf. This template is similar to a Web
form in which only the X and the Z fields appear,
with the annotation that the X field must be spec-
ified when submitting the form.

Suppose the source also supports another set of
queries in which X cannot be specified, Y can be
specified optionally while Z must be specified and
must be chosen from {zy, z2}. These query capabil-
ities are expressed by the template ufc/z1, z2].

Based on the two templates, one can easily
determine whether a given query on the source
view is answerable or not. For instance, query
R(z1,Y,Z) is answerable because it satisfies the
first template, while query R(X,Y, z1) is answerable
because it satisfies the second template. Queries
R(X,4,Z) and R(X,Y,z3) do not satisfy either
template. So, they are not answerable.]

We use the same mechanism of adorned templates
to describe mediator capabilities. That is, the

445

capabilities of a mediator are expressed as a set of
templates on the views exported by the mediator.
In this paper, we study the process of computing the
templates of mediator views based on the templates
of source views.

3

The set of answerable queries of a mediator is
affected by the techniques used by the mediator in
processing the queries posed to it. In this section,
we start by considering the following simple query
processing scheme: When a query is submitted, the
mediator translates this query into a set of relevant
source queries by transferring the query bindings;
subsequently, the mediator combines the results
of the source queries, based on the operations
(union, join, selection, projection) appearing in the
definition of the mediator view on which the query
is submitted. In particular, simple mediators:

Templates for Simple Mediators

e do not perform any postprocessing other than
that indicated in the view definitions;

o perform join operations locally, i.e., they do not
pass bindings from one join operand to another.

The simple query-processing scheme we described
above is likely to be supported by most mediators,
so we choose it for our base case. We call
mediators employing this query-processing scheme
simple mediators. In Section 4, we discuss how
mediators can employ additional postprocessing
techniques and join methods to enhance their sets
of answerable queries.

3.1 Union Views

We start by computing the set of templates for a
union view. We present this computation in three
steps. The first step deals with the simple case of
a union view that has two base views, with each
base view having exactly one template. Next, we
show how to compute the set of templates with
two base views, but with each base view having an
arbitrary number of templates. Then, we describe
the computation for a union view with an arbitrary
number of base views, each having an arbitrary
number of templates.

Union of Two Single-Template Base Views.
For each attribute, we compute its adornment in
the union-view template based on its adornments
in the two base-view templates.? This computation
is based on the mapping function presented in

2We assume here that both base views have the same
set of attributes. In Section 6, we discuss the template
computation for union views over base views that have
different schemas.

| £ | o[ss] | b | «fsa] u

f f o[ss] b c[s4] u
o[s1] || ols1] | ofs1 Ns3] | c[s1] | c[s1 Ns4] | u
b b c[s3] b c[s4) -
c[s2] || c[s2] | c[sanss] | c[sa] | cl[s2Ns4] | -

Table 1: Composition of Adornments

Table 1. Given the two adornments of an attribute
in the two base-view templates, the table indicates
the adornment of the attribute in the union-view
template. For example, the entry in the table
for the combination of f and b is b because the b
adornment in one of the base-view templates forces
the mediator to require that the attribute must be
specified in the union-view query. Note that the
mapping function of Table 1 is symmetric.

When the adornments of an attribute in the base-
view templates involve menus of constants, we need
to compute the resulting menu of constants. As
indicated in Table 1, when only one of the base-
view templates has a menu (with adornment o or ¢),
this menu is copied over to the union-view template.
When both the base-view templates have menus, we
intersect the two menus.

In some cases, the base-view adornments of an
attribute cannot be combined to arrive at a valid
union-view adornment. Such cases are indicated by
“.” in Table 1. For instance, consider the case of
one base view having the b adornment and the other
having the u adornment. No valid adornment can
be computed in this case because the b adornment
of the first base view forces the mediator to require
that the attribute must be specified, while the u
adornment of the other base view prevents the
mediator from allowing the attribute to be specified
in the union-view query.® Although not shown
explicitly in Table 1, an attribute may also end
up with an invalid adornment when computing its
menu of constants by intersecting its menus from
the base-view templates. In particular, the c[s]
entries in Table 1 are replaced by “-” when s is
empty. Note that the o[s] entry should be replaced
by u when s is empty.

During the computation of the union-view tem-
plate, if any attribute is determined to have the
invalid adornment, we declare that no union-view
template can be computed from the two base-view
templates.

Union of Two Base Views with Multiple

3Recall that we are dealing with simple mediators in this
section. In the next section, we will see how mediators use
postprocessing techniques to arrive at a valid adornment of
b when the base-view adornments are b and u.

446

Templates. For each pair in the cross product of
the template sets of the two base views, we compute
a template for the union view based on the process
described above. As noted earlier, in some cases
no union-view template can result from a pair of
base-view templates. Accordingly, the number of
templates for a union view over two base views
with template sets 77 and T varies from zero to
ITll X |T2|

Union of Multiple Base Views with Mul-
tiple Templates. We compute the templates of
the union view by considering two base views at a
time. That is, if the union view has n base views,
we invoke the method of computing templates for a
union view with two base views (n — 1) times. Note
that the associativity and symmetry of the mapping
function presented in Table 1 allow us to carry out
the computation in this simple manner.

EXAMPLE 3.1 Let a mediator view M be de-
fined as the union of three source views Ry(X,Y, Z),
Ry(X,Y, Z) and R3(X,Y, Z). Let R; have two tem-
plates: bff and ffb, let Ry have the single template
fof, and let Rs have two templates: ffcfsy] and
cfsa]ff

When computing the templates of By U Ry, we
consider two combinations of base-view templates:
bff for Ry and fbf for R,; ffb for R; and fbf for
R;. Based on the first combination, we compute
the template bbf, and the second combination yields
the template fbb.

Now, for (R; U R3) U Rz, four combinations of
templates are considered and they result in the
following four templates for M: bbcfs1], focfs1],
¢[s2]Jbf and ¢[s2[bb. Notice that it may be possible
to “collapse” this set of templates into a smaller set
that still captures the same capability information.
For instance, we can eliminate two of the four
templates for M and keep only two templates:
focfs1] and c¢fsaJbf. In Section 3.4 we discuss how
template sets can be reduced to arrive at concise
capability description. m]

3.2 Join Views

As noted earlier, a simple mediator processes a
query on a join view by first transferring the query
bindings to the base views, and then joining the
results of the base-view queries. Since the join-view
query processing is similar to the union-view query
processing, the computation of templates for join
views is similar to that of union-view templates.
However, unlike in the case of a union view, the
attributes of a join view may not appear in all of
its base views. So, the computation of attribute
adornments in a join-view template is slightly
different from that in a union-view template.

Join of Two Single-Template Base Views.
For all nonjoin attributes, we copy over their
adornments from the base-view templates (each
nonjoin attribute appears in exactly one of the base
views). For each join attribute, the adornment
computation employs the same mapping function
(see Table 1) that is used when computing union-
view templates.

Join of Two Base Views with Multiple
Templates. As in the union case, for each pair in
the cross product of the sets of base-view templates,
we compute a join-view template.

Join of Multiple Base Views with Multiple
Templates. Once again, as in the union case,
we consider two base views at a time. If the join
view has n base views, we invoke the method of
computing templates for a join view with two base
views (n — 1) times.

3.3

When processing a query on a selection view,
the mediator copies it over into a query on the
underlying base view and applies the selection
predicate on the results of the base-view query.
Therefore, the set of base-view templates are simply
copied over as the set of selection-view templates.

A query on a projection view is translated into a
query on the underlying base view by simply leaving
the hidden attributes (those that are in the base
view but not in the projection view) unspecified. If
any of the hidden attributes has a b or ¢ adornment
in a base-view template, the translated query does
not match this base-view template. Therefore,
we only create a template for the projection view
whenever the base-view template has the f, o or u
adornments for the hidden attributes. The created
projection-view template simply copies over the
adornments for each of the projected attributes
from the base-view template.

Selection and Projection Views

3.4

The number of templates computed for mediator
views can be very large. For instance, in the case
of a mediator view that is a union of n source
views with k templates each, we can end up with as
many as k" templates. A large number of templates
makes it difficult to ascertain whether a given query
is answerable. A user or another mediator trying
to figure out if a candidate query should be posed
to a mediator would like a succinct specification of
the mediator query capabilities. Fortunately, we
may be able to reduce the size of the capability
description significantly, based on the concept of
eliminating redundant templates. Informally, a
template in a set is redundant if every query allowed

Concise Capability Description

447

by it is also allowed by at least one other template
in the set. A complete discussion of the problem
of identifying redundant templates and eliminating
them is beyond the scope of this paper. Here, we
briefly describe a simple technique that helps us
eliminate redundant templates.

Figure 1: The Adornment Graph

First, we develop the notion of comparing the re-
strictiveness of two attribute adornments. The rela-
tive restrictiveness of the various kinds of attribute
adornments is captured by the graph of Figure 1.
The set of nodes in the graph are the five adorn-
ments: f, o, b, c and u. A solid arc in the graph
from node n; to node n, represents the fact that
the adornment of n; is at least as restrictive as
that of n,. Broken arcs originate and terminate
with adornments that have constant sets associated
with them (i.e., ¢ and o adornments). A broken arc
from node n; to node ns represents the fact that
the adornment of n, is at least as restrictive as the
adornment of ny if the constant set associated with
the former is a subset of the constant set associated
with the latter. For instance, ¢[s1] is at least as
restrictive as ofsg] if sy is a subset of s».

Note that the adornment-restrictiveness relation-

ship represented by Figure 1 is transitive. For in-
stance, c is at least as restrictive as f because it is
at least as restrictive as b, which in turn is at least
as restrictive as f. Based on the relative restric-
tiveness of adornments discussed above, we specify
the following simple test for identifying redundant
templates in a set.
Subsumption Test: A template T is subsumed
by another template 7" if for every attribute X the
adornment of X in T is at least as restrictive as the
adornment of X in T” (based on Figure 1).

As illustrated in the following example, we
use the Subsumption Test to identify redundant
templates in a set of templates (those subsumed by
other templates in the set).

EXAMPLE 3.2 Suppose a view has the following
set of templates: {bff, fbf, ffb,c[s1]fb, ubo[ss]}.
Based on the Subsumption Test defined above, we
deduce that cfsy /fb is subsumed by bff, and ubo[s;]
is subsumed by fbf. Thus, the given set of five
templates can be reduced to {bff, fof, ffb}. O

3.5

Our algorithm for computing mediator templates
has time complexity that is exponential in the input
size (the number of source-view templates and the
size of the mediator-view definitions). However, the
exponential time complexity is not an important
concern because all this computation 1s performed
“offline,” when the mediator is formed on a set of
sources (not when a query is being processed).

We have presented the machinery to compute the
templates of a single mediator view starting from
the templates of its base views. We can extend this
machinery in a straightforward manner to compute
the templates of all the views in a mediator view
DAG by considering them in topological order.

Summary Remarks

4 Advanced Query-Processing

Techniques in Mediators

In this section, we consider some techniques em-
ployed by mediators to support more queries than
those supported by the simple mediators of the pre-
vious section. We start by presenting examples that
illustrate two important techniques used by media-
tors, postprocessing and passing bindings, and how
they impact template computation.

EXAMPLE 4.1 Let M be a mediator view de-
fined as the unicn of two source views Ry (XY, Z)
and Ry(X,Y, Z). Suppose R; has the template bfu,
and Ry has the template buf. In the case of a sim-
ple mediator, we compute the single template buu
for M. Based on this template, M(z1,Y,Z) is a
feasible query, while M(zy,y1, z1) is not.

If the mediator can postprocess the results of
queries on the underlying views, then it can support
more queries. For instance, it can support the
query M (z1,y1,21) by first invoking the feasible
queries Ri(z1,y1,2) and Ra(z1,Y,z1), and then
filtering the resilts of these queries with respect
to the conditions on the Y and the Z attributes.
In particular, it can apply the condition (Z = z)
on the result of Ry(z1,v:1,Z) and the condition
(Y = y1) on the result of Ra(z1,Y,21). The union
of the postprocessed results of source queries gives
the answer to the query M (x1,y1,21). Thus, the
ability of the mediator to postprocess the results of
underlying queries can enhance the set of feasible
queries supported by the mediator. O

448

f

| £ Jolsl| b | sl |
f f f b cls4] f

o[s1] f f b c[s4] f
b b b b c[s4] b

c[s2] || c[s2] | cls2] | cls2] | c[s2Nsa] | c[s2]
u f c[s4) f

Table 2: Union with Postprocessing

EXAMPLE 4.2 Let a mediator view M be the
join of two source views R (X, Y, Z) and Ro(Z, U, V).
Suppose R; has the single template bfb, and R has
the single template fub. In the case of a simple
mediator, M has the single template bfbub. For in-
stance, M(z;,Y, z1,U,v1) is a feasible query while
M(z1,y1,2,U,v1) is not.

If the mediator can perform join operations by
passing bindings from one join operand to the next
(i.e., it can perform bind joins [11}), the query
M(z1,y1,2Z,U,v1) can be answered. The mediator
can first execute the query R,(Z,U,v1) and pass
bindings for the Z attribute. For each value of Z,
say z;, in the result of Ra(Z,U,v;), the mediator
can invoke the query Rj(zy,y1,z). The answer
to the query on M is obtained from the results
of all these R; queries and the R, query. Thus,
the ability to perform join operations by passing
bindings enhances the set of queries a mediator can
support. 0

4.1 Union Views

As before, the computation of union-view templates
can be described in three steps. In fact, the only
difference between this computation and the one in
Section 3.1 is in the first step, where we compute
the template of a union view defined over two base
views, each with a single template.

Union of Two Single-Template Base Views.
Using the same notation as before, we define a
new mapping function for the computation of an
attribute’s adornment in the union-view template
from the attribute’s adornments in the two base-
view templates. The new mapping function is
shown in Table 2.

The essential difference between the mapping
function of Table 2 and the mapping function used
in Section 3.1 is in the treatment of the u and
the o adornments. When a base-view adornment
is u, the mediator can invoke a query on this
view without specifying a value for this attribute
and then optionally support a value specified by
the union-view query for this attribute in the
postprocessing step. Therefore, the u adornment
is treated the same way as the fadornment. In a
similar way, when a base-view template has the o
adornment for an attribute, and a value specified

| £ Jofss]|] b | efsa] | u

f f f f c[s4] f

o[s:] f f f c[s4] f

b b | b | b c[s4] b
c[s2] || c[s2] | c[s2] | cls2] | cls2 Nsa] | c[s2]

u f f f c[s4] f

Table 3: Join by Passing Bindings

by the union-view query for this attribute is not
one of the menu constants associated with the o
adornment, the mediator can execute a query on
the base view without specifying any value for this
attribute and check for the value given by the union-
view query in the postprocessing step. Thus, o is
also treated as f.

4.2

When processing a query on a join view over a set
of base views, since the attribute values returned
from one base-view query can be used to satisfy the
binding requirements of the subsequent base-view
queries, the order in which the base-view queries are
considered is important. Accordingly, the template
computation for join views is presented in four
steps. The first step considers a join sequence of
two base views, each with one template. Then
we deal with a join sequence of two base views,
each with an arbitrary number of templates. Next
we handle a join sequence of an arbitrary number
of base views, each with an arbitrary number of
templates. Finally, in the fourth step, we compute
the templates of a join view by considering all the
sequences of its base views.

Join Sequence of Two Single-Template
Base Views. As before, for all nonjoin attributes
we copy over their adornments from the base-view
templates. The mapping function for computing
the adornment of a join attribute is presented in
Table 3. The adornment of the first base-view is
listed on the left and the adornment of the second
base-view is listed on the top of the table. Because
the mediator can perform joins by passing bindings,
the case of a b adornment for the second base view is
similar to the case of an fadornment. The mediator
passes the required binding for the second base view
from the result of the query on the first base view.

Join Sequence of Two Base Views with
Multiple Templates. As in the union case,
we repeatedly invoke the method that handles
single-template base views and compute the set of
templates of the join sequence. That is, for each
combination of base-view templates, we obtain a
template for the join sequence.

Join Sequence of Multiple Base Views with
Multiple Templates. We associate left-to-right

Join Views

449

the base views in the join sequence (note that
Table 3 is associative, but not symmetric). That
is, if the join sequence has n base views, we call the
method of computing templates for a join sequence
of two base views (n — 1) times.

Join View of Multiple Base Views with
Multiple Templates. We consider all the possible
sequences of the base views, and for each sequence,
we invoke the above method to compute a set of
templates. For a join view with n base views, we
call this method n! times. We take the union of the
n! resulting sets of templates to arrive at the set of
templates for the join view.

EXAMPLE 4.3 Let a mediator view M be de-
fined as the join of three base views R;(X,Y,Z),
Ry(Z,U,V) and Rs(V,W). Let R; have two tem-
plates: fbf and bfb, let R, have two templates: bfb
and fbf, and let Rz have the single template fb.

We consider a total of six sequences. For
the sequence (R;, Ry, R3), we end up with four
templates: foffbb, fbfbfb, bfbfbb and bfbbfb. For the
sequence (Rg, Ro, R;), the templates are: fobfjb,
fofbfb, bfbffb and bffbfb. Continuing in this manner,
we can compute another four sets of four templates
each, based on the remaining four sequences. The
union of these six sets of templates yields a set
of 24 templates for M. After minimizing this set
of templates, we end up with the following three
templates for M: fbfffb, bfoffb, bffbfb.

Without the ability to perform joins by passing
bindings, the set of templates for the mediator
view M would be limited to: fbbfbb, fofofb, bfbfbb
and bfbbfb. Notice that these four templates are
more restrictive than the three we obtained for a
mediator that passes bindings. In particular, the
set of queries covered by the three templates of M
provided by the mediator through bind joins is a
strict superset of the set of queries covered by the
four templates obtained through local joins. For
instance, the query M (X, y1, Z, U, v1, w1) is feasible
only if the mediator passes bindings.]

4.3

For selection views, the template computation is
quite different from that of Section 3.3. We do
generate a selection-view template corresponding
to each base-view template. However, we do not
simply copy over the adornments from the base-
view templates to the selection-view templates.

Selection and Projection Views

EXAMPLE 4.4 Let M be a selection view with
R(X,Y,Z) as its base view and (X <) as
the selection condition. Let R have a template
bfu. According to the template computation in
Section 3.3, M will have the bfu template.

The bfu template of M does not allow a query
like M{z2,Y, z1). However, the mediator can make
use of its postprocessing abilities to support such a
query. Given M (z2,Y,21), the mediator can first
process the feasible base-view query R(z2,y1,Z2)
and then filter the results of this query with the
condition (Z = z;). Therefore, M can have the
more flexible template bff.

Now, suppose that the selection predicate on M is
(X = 21) instead of (X < z1). The bff template of
M precludes a query like M (X, y1, Z). However, the
mediator can infer from the selection-view predicate
that it can translate M (X, y1,Z) into R(x1,y1,Z),
a feasible query on the base-view. So, it can
support the query M(X,y1,Z). To reflect this
ability to support “additional” queries on M, the
template of M is changed to fff. Thus, a mediator
that performs postprocessing can have selection-
view templates that are much more flexible than
their corresponding base-view templates. 0O

Base View || Sel. Attribute | Nonsel. Attribute
Adornment Adornment Adornment
f f f
o[s1] f f
b f or b b
c[s1] f or c[s1] c[s1]
u f f

Table 4: Selection with Postprocessing

The new rules for the computing selection-view
templates are based on the mapping function given
in Table 4. 'We consider two cases for each
attribute in the selection view: (i) the selection
predicate specifies a value for the attribute; (ii)
the selection predicate does not specify a value
for the attribute. In both cases, by employing
postprocessing operations at the mediator, base-
view adornments of o and u are converted to
the selection-view adornment of f In addition,
the b adornment is also converted to the less
restrictive f adornment if a value for the attribute
can be inferred from the selection predicate. A ¢
adornment is converted into an f adornment if the
selection predicate specifies a value for the attribute
that is in the constant set associated with the
attribute’s adornment in the base-view template. If
the inferred value is not in the set of constants of
the base-view template, we simply copy over the c
adornment to the selection-view template.

The computation of templates for projection
views is similar to that of Section 3.3, except that
u and o adornments in the base-view templates are
treated as f adornments. That is, we copy over the

450

f, b and ¢ adornments of the projected attributes
from the base-view templates to the corresponding
projection-view templates, while the u and o for the
projected attributes are changed to the fadornment
in the projection-view templates. As before, we do
not derive a projection-view template from a base-
view template that has the b or the ¢ adornment for
a hidden attribute.

5

So far, we have seen how the templates of a
mediator can be computed in order to specify
the set of queries answerable by the mediator.
Given that computation, a query is supported by
the mediator if it satisfies one of the mediator
templates. However, as illustrated by Example 5.1,
it may not be necessary for a query to satisfy a
template in order for it to be answerable.

Dynamic Mediators

EXAMPLE 5.1 Consider a mediator view M
defined as a join of two source views R;(X,Y) and
Ry(Y,Z). Let R; have the single template bf and
let Ry have the single template cfsjf, where s is
{y1,¥2, y3}. Based on the computation described in
Section 4, M has the single template befs]f. Query
M{(z1,y1,7) is answerable because it satisfies the
template of M.

Consider the query M(z1,Y,Z). This query
does not satisfy the template of M. However, the
mediator may attempt to process the query anyway.
It can perform a bind join by processing the query
Ri(z1,Y) and passing bindings for the Y attribute
in the queries to Ry. The set of Y values in the
result of the query R;(z1,Y) may turn out to be a
subset of s. In this case, the query M (z1,Y,Z)} can
be answered successfully.]

Based on Example 5.1, we note that the answer-
ability of a user query is not entirely determined
by checking it against the templates computed ac-
cording to the methods of Sections 3 and 4. If the
query satisfies some template, it is guaranteed to
be answerable, otherwise, its answerability depends
on the current state of the data in the source views.
For instance, the current state of Ry in Example 5.1
may help make the query answerable. Then again,
the state of Ry may be such that the query can-
not be answered. Mediators attempting to execute
queries that are not guaranteed to be answerable, to
determine query answerability in a data-dependent
manner at run time, are called dynamic mediators.

5.1
Dynamic mediators execute queries that are not
guaranteed to be feasible, with the hope of answer-
ing them in a data-dependent manner. However, as

Conservative and Liberal Templates

illustrated by Example 5.2, it is sometimes possi-
ble to determine that a query is infeasible without
attempting to execute it.

EXAMPLE 5.2 Consider M, defined as a join of
Ri(X,Y) and Ry(Y,Z,U). Let Ry have the single
template bf and let Rs have the single template
c[s]fb, where s is {y1,y2.y3}. Then, M has the
template befs/fb. This template of M indicates that
the query M(z1,y1, Z,u1) is definitely answerable.
The query M(z1,Y,Z,u1) does not satisfy the
template of M. However, it is answerable if the
set of Y values at R; is a subset of s. The query
M(z1,Y,21,U) also does not satisfy the template
be[s]fb. We can determine that this query is not
going to be answerable, irrespective of the set of
Y values at R, because it does not specify a value
for U. Blindly trying to execute it in a dynamic
mediator results in an expensive way of finding out
that the query is infeasible. a

Example 5.2 showed that there may be situations
in which we can determine that a given query is not
going to be answerable irrespective of the state of
the data in the sources. It is desirable to be able
to specify a set of templates such that if none of
them is satisfied by a query, we can ascertain that
the query is infeasible, without trying to execute it
futilely. Such templates specify an “upper bound”
to the set of queries that can be answered by a
dynamic mediator, while the templates computed
in the previous section form the “lower bound.” We
call the first kind liberal templates and the second
kind conservative templates.

Each view has a set of conservative templates
and a set of liberal templates. Given a query on
a view, we ascertain that the query is answerable
if it satisfies at least one of the conservative tem-
plates of the view, and the query is not answerable
if it does not satisfy any of the liberal templates of
the view. If a query does not satisfy any conserva-
tive templates but satisfies at least one liberal tem-
plate, then a dynamic mediator executes the query
in a data-dependent manner. For instance, in Ex-
ample 5.2, we can specify a conservative template
befs]fb and a liberal template bffb for the mediator
view M. Based on these templates, we can deter-
mine that query M(zi,y1,Z,u1) is guaranteed to
be answerable; query M(z,,Y,Z,U) is guaranteed
to be unanswerable; query M(z1,Y, Z, u1) may be
answerable depending on the contents of R;.

5.2 Computing Liberal Templates
Typically, in the case of a source view, the liberal
templates of the view are the same as the conser-
vative templates. When computing the templates

451

| £ Jo[ss}]| b |clsa]| wu

f f f f f f

o[s1] f f f f f

b b b b b b
clsa] || clsa] | c[sa] | cls2] | cls2] | c[s2]

u f f f f f

Table 5: Liberal Templates for Join Views

of derived views at a mediator, the liberal tem-
plates tend to diverge from their conservative coun-
terparts. The algorithms of Section 4 yield conser-
vative templates for mediator views. That is, we
start with conservative templates of base views and
obtain conservative templates of derived views.

With small changes to the algorithms of Sec-
tion 4, we can compute the liberal templates. For
the selection, projection and union views, we use the
same algorithms to compute the liberal templates
of derived views starting with the liberal templates
of their base views. However, the computation is
slightly different in the case of join views.

For a join view, we start with the liberal tem-
plates of the base views and compute the corre-
sponding liberal templates of the join view, in a
manner that is quite similar to that of Section 4.2.
The only difference is the use of a new mapping
function that combines the attribute adornments of
the base-view templates. The new mapping func-
tion is given in Table 5. This mapping function
1s similar to the one used in Section 4.2, except in
the case of the ¢ adornment in the second base-
view template. In this case, when computing the
liberal template of the join view, the mediator al-
lows a more flexible adornment because it can try to
get the appropriate constant required by the second
base view from the result of the query on the first
base view. That is, it can optimistically treat the
¢ adornment in the second base-view template as if
it is the f adornment. For instance, when the first
base-view adornment is f and the second base-view
adornment is ¢, the liberal adornment for the join-
view is f (instead of c in the conservative computa-
tion of Section 4.2). Also, note that when both the
base view adornments are ¢, the resulting ¢ adorn-
ment in the liberal template for the join-view has
the same constant set as the ¢ adornment in the
first base view (instead of the intersection of the
constant sets in the two base-view templates).

6 Output Restrictions

The computation of mediator templates discussed
so far assumes that all the attributes of a view are
returned in response to any query on that view.
There are situations in which a view may have

attributes on which conditions may be specified, but
these attributes are not returned in the answer. For
example, we can pose a query to Amazon.com by
specifying the subject attribute of the desired set of
books, and Amazon.com does not return the subject
attribute when answering queries.

In order to represent sources that do not return
certain attributes, we need to specify explicitly the
output restrictions of attributes in the templates of
the views exported by the sources. In a template,
each attribute should be adorned to reflect its input
(query) as well as its output (result) restrictions.
To describe the input requirements of an attribute
that has no output restriction (i.e., it appears in
the result), we use the adornments introduced in
Section 2: f, o, b, ¢ and u. To describe the
input restrictions of an attribute whose output is
suppressed (i.e., it does not appear in the result),
we introduce five new adornments: f’, o’, b’, ¢’ and
u’. To illustrate the use of the new adornments,
consider a source that exports view R(X,Y, Z) with
the requirement that queries on this view must
specify X, must not specify Z, and can specify Y
optionally. Let the source suppress Y in its output
(i.e., X and Z are output, Y is not). We describe
the capabilities of the source with a bf 'u template.

The computation of mediator templates in the
presence of output restrictions can be undertaken
by modified versions of the algorithms of Sections 3
and 4. Only the mapping functions used by the
algorithms have to be extended to deal with the
new adornments. In particular, no postprocessing
operations can be performed on attributes that
are not returned in source query results. Note
that even necessary operations like joining on such
attributes are prevented. All these considerations
can be reflected in a new set of mapping functions
for the algorithms presented so far. Due to space
limitations, we do not present the new mapping
functions here (please refer to the extended version
of the paper [10] for them). The introduction
of the new attribute adornments forces us to
also reconsider the adornment graph of Figure 1,
which is the basis for identifying and eliminating
redundant templates. The new graph is given in
the extended version of the paper.

Recall that in Sections 3 and 4 we assumed
that the base views of a union view have the
same schema. With the help of the new attribute
adornments, we can handle the case of union views
with heterogeneous base-view schemas. When
encountering heterogeneous base-view schemas, we
can simply treat the situation as if all the base-
views have the same schema by adding the missing
attributes to each base-view schema. For the newly

added attributes, we specify the u’ adornments in
the templates of the base views. To illustrate,
consider a mediator view M(X,Y, Z) defined as a
union of R1(X,Y) and Ry(X, Z). Let Ry have the
template bf’ and let R, have the template bf’. We
introduce the missing attribute Z into the template
of R, and the missing attribute Y into the template
of Ro. Both Z and Y have the u’ adornment in the
templates of R; and Rj, respectively. From the
resulting bf 'u’ and bu’f’ templates, we can compute
the appropriate bu’u’template for M (based on the
new mapping function for computing union-view
templates, presented in [10]).

7 A Case Study

To verify that our capability-description framework
makes sense in practice, we explored the Web,
where many limited-capability sources are found.
In particular, we wished to determine if the adorn-
ments we developed in our framework were ade-
quate in describing the query capabilities of sources
and mediators. We also wanted to know how
many templates were typically required to describe
sources and mediators. Capability-based query pro-
cessing could become unwieldy if large numbers of
templates were required. Therefore, it is important
to check if in the case of representative sources and
mediators there would be an explosion of templates.

7.1 Data Sources

We considered two Web bookstores in our case
study: Amazon.com (www.amazon.com) and Barne-
sAndNoble.com (shop.barnesandnoble.com).

Amazon.com supplies the following query forms:

e Form 1: At least one of author, title, subject
and format attributes must be specified. The
format attribute has a menu of choices.

e Form 2: The ISBN attribute must be specified.

e Form 3: At least one of keywords, publisher and
publication date attributes must be specified.

The results of queries to Amazon.com include the
following attributes: author, title, ISBN, publisher,
date, format, price and shipping info. In particular,
the subject and keywords attributes do not appear
in the answers.

The query capabilities of Amazon.com are de-
scribed by the templates in Table 6. The capabili-
ties offered by each query form are captured by one
or more templates. In Table 6, the first four tem-
plates capture Form 1, the fifth template captures
Form 2, while the last three templates correspond
to Form 3. Note that for simplicity of presentation

452

format | subject | KW | ISBN | pub | date [price I ship

author | title
b f 0 f
f b o f
f f C f
f f 0 b’
u u u u’
u u u u’
u u u u’
u u u u’

u u u u u
u u u u u
u u u u u
u u u u u
b u u u u
u b f u u
u f f u u
u f b u u

Table 6: Templates of Amazon.com

we did not show the menu of choices attached to the
o and ¢ adornments of the format attribute. The
menu specified by Amazon.com has “Hard cover”,
“Paperback”, etc.

BarnesAndNoble.com has two query forms:

e Form 1: At least one of author, title and
keywords attributes must be specified. In
addition, the format, subject, price and age
range attributes can be specified optionally.
These four attributes have menus of choices.

e Form 2. The ISBN attribute must be specified.

The output attribute set of BarnesAndNoble.com
is the same as that of Amazon.com. That is,
the source does not return the subject, keywords
and age range attributes in its answers. The
capabilities of BarnesAndNoble.com are described
by the templates in Table 7. The first three
templates describe the capabilities of the first form,
while the last template captures the second form.

7.2 A Bookstore Mediator

We considered a bookstore mediator that provides a
union view over the above two source views. As sug-
gested in Section 6, we handled the heterogeneous
union of the two source views by adding the age at-
tribute to the templates of Amazon.com with the u’
adornment. Moreover, we assumed that our book-
store mediator employs postprocessing techniques
to extend the set of feasible union-view templates,
as discussed in Section 4. Accordingly, we com-
puted a total of 22 templates for the mediator view.
Our algorithm actually considered 32 (8 x 4) pairs
of source-view templates and successfully generated
union-view templates in the case of 26 pairs. How-
ever, there were 4 duplicates among the 26 resulting
templates. Then, we employed the techniques dis-
cussed in Section 3.4 to identify and eliminate 14
redundant templates and ended up with a concise
set of 8 mediator templates (see Table 8).

From the set of 8 templates for the mediator, 4
query forms can be derived. Corresponding to the
first template in Table 8, the bookstore mediator

has a query form that requires the specification of
the ISBN attribute. Corresponding to the second
template, we created a query form that requires the
keywords to be specified. Next, we created a single
query form that corresponds to the third and fourth
templates. This query form requires that at least
one of author and title attributes must be specified
along with an optional specification of the subject
field from a menu of choices. Finally, the last four
templates were combined into a single query form
that requires that at least one of author and title
attributes and at least one of publisher and date
attributes must be specified.

Note that, the theoretical maximum number of
forms for our bookstore mediator is 32 (because
each combination of the base-view templates could
have resulted in a mediator template, and each
mediator template could end up as a separate query
form). The fact that in our case study we obtained
4 query forms for the mediator suggests that using
the techniques presented in this paper, we may be
able to compute manageable sets of query forms for
mediators on Web sources.

7.3

Our case study demostrates that the capability-
description framework we introduced in Section 2
is well suited to describe the capabilities of Web
sources and mediators. We note that sometimes
more than one template is needed to describe a
query form. However, the number of templates
required to describe a form is typically small. We
also observe that, in general, it is more difficult to
derive forms from templates than vice versa.

In the course of our experiments, we noticed
that many Web sources change their query forms
frequently. In fact, the data for our case study as
presented above is valid as of March 1, 1999. It
is unlikely that the Web sources we considered in
our case study will retain the same forms a few
months later. In our experience, sources change
their Web forms many times in a short period of
time (a few times a year). Building mediators
on such evolving sources poses special challenges.

Observations

author [title | format | subject | KW | ISBN | pub | date | price | ship | age
f b o o’ £ u u u o u o’
b f o o’ £ u u u o u o’
f f o o’ b’ u u u o u o’
u u u u’ u’ b u u u u w’
Table 7: Templates of BarnesAndNoble.com
author | title | format | subject | KW | ISBN | pub | date | price | ship | age
f f f v’ u’ b f f f f u’
f f f w b’ f f f f f u’
b f f o’ u’ f f f f f u’
f b f o’ u’ f f f f f u’
b f f u’ f f b f f f u’
f b f u’ f’ f b f f f u’
f b f u’ f’ f f b f f u’
b f f u’ f’ f f b f f u’

Table 8: Concise Set of Templates for the Bookstore Mediator

In particular, manual generation of query forms
for mediators on such evolving sources becomes
very difficult because whenever sources change their
query forms, mediator capabilities have to be re-
assessed. Automatic computation of mediator
capabilities based on the techniques presented in
this paper can be very helpful to mediation systems
involving frequently changing sources.

8 Conclusion

In data-integration systems, it is important to de-
scribe the capabilities of mediators so that they can
be used as easily (by end users as well as other
applications) as base sources are. Many contem-
porary integration systems have not computed and
exported mediator capabilities, thus making it hard
for them to be useful in scalable applications involv-
ing networks of mediators and sources. In some
situations, mediator capabilities are manually com-
puted and specified. Manual computation is er-
ror prone and becomes unwieldy when dealing with
large numbers of evolving sources whose query ca-
pabilities change frequently.

In this paper, we provided the machinery for au-
tomatically computing the capabilities of mediators
based on the capabilities of the sources they inte-
grate. We proposed a capability-description frame-
work with a rich set of attribute adornments to
describe a variety of query-processing limitations
of sources and mediators. We discussed various
classes of mediators based on the query processing
techniques they employ, and presented algorithms
for the computation of their capabilities. We con-
ducted experiments using Web sources and studied
issues surrounding the adequacy of our capability-
description framework and the effectiveness of our

454

algorithms for computing mediator capabilities.

References

[1] Y. Arens, C. Knoblock, W. Shen. Query Reformu-
lation for Dynamic Information Integration. Journal
of Intelligent Information Systems, 6(2/3):99-130,
1996.

M. Genesereth, A. Keller, O. Duschka. Infomaster:
An Information Integration System. Proc. SIGMOD
Conference, 1997.

O. Kapitskaia, A. Tomasic, P. Valduriez. Scaling
Heterogeneous Databases and the Design of Disco.
INRIA Technical Report, 1997.

A. Levy, A. Rajaraman, J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. Proc. VLDB Conference, 1996.

C. Li, R. Yerneni, et al. Capability-Based Mediation
in TSIMMIS. Proc. SIGMOD Conference, 1998.

[6] Y. Papakonstantinou, H. Garcia-Molina, J. Ullman.
Medmaker: A Mediation System Based on Declara-
tive Specifications. Proc. ICDE, 1996.

Y. Papakonstantinou, et al. Capabilities-Based
Query Rewriting in Mediator Systems. Proc. PDIS
Conference, 1996.

A. Tomasic, L. Raschid, P. Valduriez. Dealing
with Discrepancies in Wrapper Functionality. Proc.
ICDCS, 1996.
G. Wiederhold.
of Future Information Systems.
25:38-49, 1992.

[10] R. Yerneni, C. Li, et al Extended Ver-
sion: Computing Capabilities of Mediators.
www-db.stanford.edu/~yerneni/pubs/ccmev.ps.

(2]

(3]

[4]

B

(7]

(8]

Mediators in the Architecture
IEEE Computer,

(9]

[11] R. Yerneni, C. Li, et al. Optimizing Large Join
Queries in Mediation Systems. Proc. ICDT, 1999.

