
Computing Capabilities of Mediators 

Ramana Yerneni, Ohen Li, Hector Garcia-Molina, Jeffrey Ullman 
Department of Computer Science 

Stanford University 
{yerneni,chenli,hector,ullman}Qcs.stanford.edu 

Abstract 

Existing data-integration systems based on the media- 
tion architecture employ a variety of mechanisms to de- 
scribe the query-processing capabilities of sources. How- 
ever, these systems do not compute the capabilities of 
the mediators based on the capabilities of the sources 
they integrate. In this paper, we propose a framework 
to capture a rich variety of query-processing capabil- 
ities of data sources and mediators. We present al- 
gorithms to compute the set of supported queries of 
a mediator, based on the capability limitations of its 
sources. Our algorithms take into consideration a vari- 
ety of query-processing techniques employed by media- 
tors to enhance the set of supported queries. 

1 Introduction 

Many data integration systems (e.g., [l, 2, 3, 4, 
6, 71) use a mediation architecture [9] in which 
a mediator provides users with seamless access 
to information from heterogeneous sources. In 
mediation systems, one often encounters sources 
with diverse and limited query capabilities. 

Contemporary mediator systems such as TSIM- 
MIS [5, 61, Garlic [7], Information Manifold [4] 
and DISCO [3,8] perform capability-based query 
processing. Sources express their capabilities in 
these systems through a variety of mechanisms 
- query templates, capability records, and simple 
capability-description grammars. However, none of 
these systems computes the query-capabilities of 
mediators based on the supported source queries. 
Not having the mediator capabilities readily avail- 
able makes it difficult to treat mediators as sources 

Permission to make digital or hard ropics ofall or part of this work fw 
personal or classroom we is granted without fee provided that copies 
are not made or distributed fbr profit or commercial advantage and that 
copies hear this notice and the full citation on the lirst page. To copy 
othcrwisc, 10 republish, to post on scrvcrs or to rcdistributc to lists, 
requires prior specific permission atld!or a fee. 

SIGMOD ‘99 Philadelphia PA 
Copyright ACM 1999 I-581 13-084-S/99/05.,.$5.00 

for other mediators. Furthermore, users have a dif- 
ficult time understanding the set of supported me- 
diator queries in these systems. Consequently, users 
must endure a frustrating trial-and-error approach, 
submitting queries that are rejected until finally hit- 
ting upon a query that is answered by the mediator. 

In this paper, we present algorithms to precom- 
pute mediator capabilities automatically, so that 
users and other mediators know which queries are 
supported. In addition, we extend the types of 
source limitations that can be handled by exist- 
ing mediation systems. For example, we handle at- 
tributes that can only be queried with values from 
a fixed menu of constants. 

The World Wide Web is a prime example of a 
context where we need to handle many different 
types of source limitations. On the Web, data 
sources typically publish their query-processing 
capabilities through query forms. Users pose 
queries to data sources by filling out query forms 
and submitting them to the sources. For instance, 
the Web bookstore Amazon.com (www . amazon. cam) 
provides a query form that allows users to search 
for books by specifying any one of author, title 
and subject attributes. Another Web bookstore 
AlBooks.com (www. aibooks. corn) does not allow 
search by the subject attribute alone, while it 
provides search by the author or the title attribute. 

Mediators built on Web sources frequently in- 
dicate their sets of supported queries through 
forms. For instance, the Junglee shopping guide 
for books (Compaq. junglee. corn) mediates across 
many Web bookstores including Amazon.com and 
AlBooks.com. The Junglee mediator provides a 
query form that allows search by the title or the 
author attribute. 

Computing mediator capabilities can be simple in 
some cases. For instance, the combined restrictions 
of Amazon.com and AlBooks.com indicate that the 
Junglee shopping guide can support queries that 
search for books by specifying the author or the title 
attribute. Queries specifying the subject attribute 
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alone are not feasible because AlBooks.com does 
not answer this query. 

In many cases, the computation of mediator 
capabilities is more complicated due to the rich 
variety of source-capability limitations and the 
host of techniques mediators employ in processing 
queries. For instance, we show in Section 4 that 
by using special techniques to postprocess the 
results of queries on weaker data sources, mediators 
can support much larger sets of queries. Thus, 
the capabilities we compute for mediators can be 
“stronger” than those of the underlying sources. 

Another complication arises when we consider 
mediator capabilities that depend on the contents 
of sources. In such cases, a mediator may define 
its capabilities with a “lower bound” that specifies 
which queries will always be answerable, and an 
“upper bound” indicating which queries will never 
be answerable. Queries “between” bounds may 
be answerable, depending on the contents of the 
sources at run time. We refer to mediators 
that handle upper and lower bounds as dynamic 
mediators. In Section 5, we discuss how dynamic 
mediators process queries and how their capabilities 
can be determined. 

Deriving mediator forms by hand is error-prone. 
Manual computation of mediator capabilities is also 
expensive, since each time a source changes its 
capabilities, we may have to update the mediator 
capabilities. We need to develop algorithms to 
compute mediator capabilities automatically. 

In this paper, we make the following specific 
contributions: 

Framework: We develop a framework for de- 
scribing the restrictions on attribute specifica- 
tions commonly found on the Web and in other 
heterogeneous data-integration contexts. 

Algorithms: We present algorithms for comput- 
ing the query capabilities of mediators based on 
the capabilities of the sources they mediate. 

Concise Description: We provide strategies 
to condense the capability description of a 
mediator ansd enable efficient query-feasibility 
determination for users and other mediators 
that employ this mediator as a source. 

. Advanced Techniques: We discuss advanced 
techniques t,hat could be used by dynamic 
mediators to process queries beyond those that 
are feasible in conventional mediators. 

2 

In 

Framework 

this section! we present our framework for 
describing the query capabilities of data sources 

and mediators. In our framework, each data source 
exports a set of relational views.’ Conceptually, 
a query to a source is submitted by filling out a 
form on one of the views exported by the source. 
The query specifies values for some attributes of 
the view, and the result of executing the query is a 
set of tuples of the source view on which the query 
is posed. The following example illustrates a source 
view and answering queries on that view. 

EXAMPLE 2.1 Consider a source that exports a 
view R(X, Y, 2). Let the set of tuples in source view 

R be ((21, yl, ti), (21, ys, zi), (22, ~2~22)). Query 
R(X,Y,~l)resultsin{(~1,~l,~1),(~1,~2,~l)},while 
query R(X, yi, 2) returns one tuple: (21, yi, ~1). 0 

2.1 Mediator Views 

A mediator integrates data from multiple sources 
and exports a set of integrated views. Each in- 
tegrated view is defined in terms of source views 
and/or other integrated views. The set of oper- 
ations used to define integrated views are union, 
join, selection and projection. We do not allow re- 
cursive views, so the mediator-view definitions form 
a directed acyclic graph (DAG). Since we allow the 
use of integrated views to define other integrated 
views, we can assume without loss of generality that 
each definition of a mediator view uses only one op- 
erator - union, join, selection or projection. 

EXAMPLE 2.2 Consider a mediator with five 
data sources. Let the respective source views be 

&(X, Y, z), R2(X, J’, 21, R3(X, J’, 21, R4(Z, u), 
and Rs(U, V, W). Let the mediator define the 
following two views: Mi (X, Y, 2) is the union of 
RI, R2 and R3; Mz(X, Y, 2, U, V, W) is the join of 
Mi (X, Y, Z), R4 and Rg. Users can pose queries 
on the views of a mediator in a manner similar to 
submitting queries on source views. For instance, 
one can specify M2(2i, Y, 2, U, V, wi) as a query to 
the mediator. El 

2.2 Attribute Adornments 

The query capabilities of a data source are ex- 
pressed as a set of templates supported by the 
source. A template, like a form on the Web, iden- 
tifies the various attributes of a source view that 
can be specified in a query submitted on the view. 
Restrictions on attribute specification are also indi- 
cated by templates (e.g., if an attribute value has 

1 We use the relational framework for simplicity of expo- 
sition. We believe that all the main ideas presented in this 
paper carry over seamlessly to other data models like OEM 
[S] and XML (nnn.a3 .org/TR/REC-xml). In fact, our interest 
in computing mediator capabilities is based on our work in 
the TSIMMIS project, which uses the OEM data model. 



to be chosen from a menu of choices). We use at- 
tribute adornments to specify how the attributes of 
a view can participate in supported queries. 

Based on our study of query forms for a variety 
of Web data sources, we consider the following five 
kinds of attribute adornments: 

1. 

2. 

3. 

4. 

5. 

adornment f (for free): the attribute may or may 
not be specified in the query; 

adornment u (for unspecifiable): the attribute 
cannot be specified in the query; 

adornment b (for bound): the attribute must be 
specified in the query; 

adornment c[s] (for constant): the attribute 
must be specified, and in addition, it must be 
chosen from the set of constants s; 

adornment o[s] (for optional): the attribute 
may or may not be specified in the query, and 
if specified, it must be chosen from the set of 
constants s. 

Each template specifies an adornment for each 
attribute of a view. In the case of the c and o 
adornments, the menus of constants allowed are 
also specified by the templates. The following 
example illustrates how templates with attribute 
adornments are used to express query capabilities. 

EXAMPLE 2.3 Consider the source of Exam- 
ple 2.1 that exports the single view R(X, Y, 2). Let 
the source support a set of queries on this view that 
specify some value for X and no value for Y. In 
addition, let these queries optionally specify some 
value for 2. A template that expresses these query 
capabilities is buf. This template is similar to a Web 
form in which only the X and the 2 fields appear, 
with the annotation that the X field must be spec- 
ified when submitting the form. 

Suppose the source also supports another set of 
queries in which X cannot be specified, Y can be 
specified optionally while 2 must be specified and 
must be chosen from { .zl,z2). These query capabil- 
ities are expressed by the template ufc[z~, PJ/. 

Based on the two templates, one can easily 
determine whether a given query on the source 
view is answerable or not. For instance, query 
R(zl, Y, 2) is answerable because it satisfies the 
first template, while query R(X, Y, 21) is answerable 
because it satisfies the second template. Queries 
R(X, y1,Z) and R(X, Y, zs) do not satisfy either 
template. So, they are not answerable. cl 

We use the same mechanism of adorned templates 
to describe mediator capabilities. That is, the 

capabilities of a mediator are expressed as a set of 
templates on the views exported by the mediator. 
In this paper, we study the process of computing the 
templates of mediator views based on the templates 
of source views. 

3 Templates for Simple Mediators 
The set of answerable queries of a mediator is 
affected by the techniques used by the mediator in 
processing the queries posed to it. In this section, 
we start by considering the following simple query 
processing scheme: When a query is submitted, the 
mediator translates this query into a set of relevant 
source queries by transferring the query bindings; 
subsequently, the mediator combines the results 
of the source queries, based on the operations 
(union, join, selection, projection) appearing in the 
definition of the mediator view on which the query 
is submitted. In particular, simple mediators: 

l do not perform any postprocessing other than 
that indicated in the view definitions; 

l perform join operations locally, i.e., they do not 
pass bindings from one join operand to another. 

The simple query-processing scheme we described 
above is likely to be supported by most mediators, 
so we choose it for our base case. We call 
mediators employing this query-processing scheme 
simple mediators. In Section 4, we discuss how 
mediators can employ additional postprocessing 
techniques and join methods to enhance their sets 
of answerable queries. 

3.1 Union Views 

We start by computing the set of templates for a 
union view. We present this computation in three 
steps. The first step deals with the simple case of 
a union view that has two base views, with each 
base view having exactly one template. Next, we 
show how to compute the set of templates with 
two base views, but with each base view having an 
arbitrary number of templates. Then, we describe 
the computation for a union view with an arbitrary 
number of base views, each having an arbitrary 
number of templates. 

Union of Two Single-Template Base Views. 
For each attribute, we compute its adornment in 
the union-view template based on its adornments 
in the two base-view templates.2 This computation 
is based on the mapping function presented in 

2We assume here that both base views have the same 
set of attributes. In Section 6, we discuss the template 
computation for union views over base views that have 
different schemas. 
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Table 1: Composition of Adornments 

Table 1. Given the two adornments of an attribute 
in the two base-view templates, the table indicates 
the adornment of the attribute in the union-view 
template. For example, the entry in the table 
for the combination of f and b is b because the b 
adornment in one of the base-view templates forces 
the mediator to require that the attribute must be 
specified in the union-view query. Note that the 
mapping function of Table 1 is symmetric. 

When the adornments of an attribute in the base- 
view t,emplates involve menus of constants, we need 
to compute the resulting menu of constants. As 
indicated in Table 1, when only one of the base- 
view templates has a menu (with adornment o or c), 
this menu is copied over to the union-view template. 
When both the base-view templates have menus, we 
intersect the two menus. 

In some cases, the base-view adornments of an 
attribute cannot be combined to arrive at a valid 
union-view adornment. Such cases are indicated by 
“-” in Table 1. For instance, consider the case of 
one base view halving the b adornment and the other 
having the u adornment. No valid adornment can 
be computed in this case because the b adornment 
of the first base view forces the mediator to require 
that the attribute must be specified, while the u 
adornment of the other base view prevents the 
mediator from allowing the attribute to be specified 
in the union-view query.3 Although not shown 
explicitly in Table 1, an attribute may also end 
up with an invalid adornment when computing its 
menu of constants by intersecting its menus from 
the base-view templates. In particular, the c[s] 
entries in Table 1 are replaced by “-” when s is 
empty. Note that the o[s] entry should be replaced 
by u when s is empty. 

During the computation of the union-view tem- 
plate, if any attribute is determined to have the 
invalid adornment, we declare that no union-view 
template can be computed from the two base-view 
templates. 

Union of Two Base Views with Multiple 

3Recall that we are dealing with simple mediators in this 
section. In the next section, we will see how mediators use 
postprocessing techniques to arrive at a valid adornment of 
b when the base-view adornments are b and u. 

Templates. For each pair in the cross product of 
the template sets of the two base views, we compute 
a template for the union view based on the process 
described above. As noted earlier, in some cases 
no union-view template can result from a pair of 
base-view templates. Accordingly, the number of 
templates for a union view over two base views 
with template sets ‘71 and Tz varies from zero to 

ITll x I7’2l. 
Union of Multiple Base Views with Mul- 

tiple Templates. We compute the templates of 
the union view by considering two base views at a 
time. That is, if the union view has n base views, 
we invoke the method of computing templates for a 
union view with two base views (n - 1) times. Note 
that the associativity and symmetry of the mapping 
function presented in Table 1 allow us to carry out 
the computation in this simple manner. 

EXAMPLE 3.1 Let a mediator view M be de- 
fined as the union of three source views Ri(X, Y, Z), 
Rs(X, Y, 2) and Rs(X, Y, 2). Let Ri have two tem- 
plates: bfl and fi, let R2 have the single template 
fbf, and let Rs have two templates: flc[si] and 

ch2lff. 
When computing the templates of RI U R2, we 

consider two combinations of base-view templates: 
bff for RI and j%f for R2; ~9% for RI and fbf for 
R-J. Based on the first combination, we compute 
the template bbf and the second combination yields 
the template fbb. 

Now, for (RI U R2) U Rs, four combinations of 
templates are considered and they result in the 
following four templates for M: bbc[sJ, fbc[sJ, 
c[sJbf and c[sa]bb. Notice that it may be possible 
to “collapse” this set of templates into a smaller set 
that still captures the same capability information. 
For instance, we can eliminate two of the four 
templates for M and keep only two templates: 
fbc[si] and c[sz]bf. In Section 3.4 we discuss how 
template sets can be reduced to arrive at concise 
capability description. El 

3.2 Join Views 

As noted earlier, a simple mediator processes a 
query on a join view by first transferring the query 
bindings to the base views, and then joining the 
results of the base-view queries. Since the join-view 
query processing is similar to the union-view query 
processing, the computation of templates for join 
views is similar to that of union-view templates. 
However, unlike in the case of a union view, the 
attributes of a join view may not appear in all of 
its base views. So, the computation of attribute 
adornments in a join-view template is slightly 
different from that in a union-view template. 
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Join of Two Single-Template Base Views. 
For all nonjoin attributes, we copy over their 
adornments from the base-view templates (each 
nonjoin attribute appears in exactly one of the base 
views). For each join attribute, the adornment 
computation employs the same mapping function 
(see Table 1) that is used when computing union- 
view templates. 

Join of Two Base Views with Multiple 
Templates. As in the union case, for each pair in 
the cross product of the sets of base-view templates, 
we compute a join-view template. 

Join of Multiple Base Views with Multiple 
Templates. Once again, as in the union case, 
we consider two base views at a time. If the join 
view has n base views, we invoke the method of 
computing templates for a join view with two base 
views (n - 1) times. 

3.3 Selection and Projection Views 

When processing a query on a selection view, 
the mediator copies it over into a query on the 
underlying base view and applies the selection 
predicate on the results of the base-view query. 
Therefore, the set of base-view templates are simply 
copied over as the set of selection-view templates. 

A query on a projection view is translated into a 
query on the underlying base view by simply leaving 
the hidden attributes (those that are in the base 
view but not in the projection view) unspecified. If 
any of the hidden attributes has a b or c adornment 
in a base-view template, the translated query does 
not match this base-view template. Therefore, 
we only create a template for the projection view 
whenever the base-view template has the f, o or u 
adornments for the hidden attributes. The created 
projection-view template simply copies over the 
adornments for each of the projected attributes 
from the base-view template. 

3.4 Concise Capability Description 

The number of templates computed for mediator 
views can be very large. For instance, in the case 
of a mediator view that is a union of n source 
views with k templates each, we can end up with as 
many as k” templates. A large number of templates 
makes it difficult to ascertain whether a given query 
is answerable. A user or another mediator trying 
to figure out if a candidate query should be posed 
to a mediator would like a succinct specification of 
the mediator query capabilities. Fortunately, we 
may be able to reduce the size of the capability 
description significantly, based on the concept of 
eliminating redundant templates. Informally, a 
template in a set is redundant if every query allowed 

by it is also allowed by at least one other template 
in the set. A complete discussion of the problem 
of identifying redundant templates and eliminating 
them is beyond the scope of this paper. Here, we 
briefly describe a simple technique that helps us 
eliminate redundant templates. 

Figure 1: The Adornment Graph 

First, we develop the notion of comparing the re- 
strictiveness of two attribute adornments. The rela- 
tive restrictiveness of the various kinds of attribute 
adornments is captured by the graph of Figure 1. 
The set of nodes in the graph are the five adorn- 
ments: f, o, b, c and u. A solid arc in the graph 
from node n1 to node n2 represents the fact that 
the adornment of nr is at least as restrictive as 
that of n2. Broken arcs originate and terminate 
with adornments that have constant sets associated 
with them (i.e., c and o adornments). A broken arc 
from node ni to node n2 represents the fact that 
the adornment of n1 is at least as restrictive as the 
adornment of nz if the constant set associated with 
the former is a subset of the constant set associated 
with the latter. For instance, c[sl] is at least as 
restrictive as o[sz] if s1 is a subset of sz. 

Note that the adornment-restrictiveness relation- 
ship represented by Figure 1 is transitive. For in- 
stance, c is at least as restrictive as f because it is 
at least as restrictive as b, which in turn is at least 
as restrictive as J. Based on the relative restric- 
tiveness of adornments discussed above, we specify 
the following simple test for identifying redundant 
templates in a set. 
Subsumption Test: A template T is subsumed 
by another template T’ if for every attribute X the 
adornment of X in T is at least as restrictive as the 
adornment of X in T’ (based on Figure 1). 

As illustrated in the following example, we 
use the Subsumption Test to identify redundant 
templates in a set of templates (those subsumed by 
other templates in the set). 
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EXAMPLE 3.;! Suppose a view has the following 
set of templates: { bff, f bf, ffb, c[sl]fb, ubo[s2]}. 
Based on the Subsumption Test defined above, we 
deduce that c[si,‘fb is subsumed by bff, and ubo[sz] 
is subsumed by fif. Thus, the given set of five 
templates can be reduced to {bff, fbf, ffb}. 0 

3.5 Summalry Remarks 

Our algorithm for computing mediator templates 
has time complexity that is exponential in the input 
size (the number of source-view templates and the 
size of the mediator-view definitions). However, the 
exponential time complexity is not an important 
concern because all this computation is performed 
L‘olIline,” when the mediator is formed on a set of 
sources (not when a query is being processed). 

We have presented the machinery to compute the 
templates of a single mediator view starting from 
the ternplates of its base views. We can extend this 
machinery in a straightforward manner to compute 
the templates of all the views in a mediator view 
DAG by considering them in topological order. 

4 Advanced Query-Processing 
Techni,ques in Mediators 

In this section, we consider some techniques em- 
ployed by mediators to support more queries than 
those supported 'by the simple mediators of the pre- 
vious section. We start by presenting examples that 
illust.rate two important techniques used by media- 
tors, postprocessing and passing bindings, and how 
they impact template computation. 

EXAMPLE 4.X Let M be a mediator view de- 
fined as the union of two source views Ri(X, Y, 2) 
and &(X, Y, 2). Suppose Rr has the template bfu, 
and Rs has the template buf. In the case of a sim- 
ple mediator, we compute the single template buu 
for M. Based on this template, M(zi, Y, 2) is a 
feasible query, while M(zi, yi, zi) is not. 

If the mediatsor can postprocess the results of 
queries on the underlying views, then it can support 
more queries. For instance, it can support the 
query M(a:i,yi, zi) by first invoking the feasible 
queries RI (21, y1 , 2) and R~(x~,Y,z~), and then 
filtering the results of these queries with respect 
to the conditions on the Y and the Z attributes. 
In particular, it can apply the condition (Z = .zr) 
on the result of Rl(zl, yi, Z) and the condition 
(Y = yi) on the result of R~(s~,Y,z~). The union 
of the postprocessed results of source queries gives 
the answer to the query M(xi, yl, zi). Thus, the 
ability of the mediator to postprocess the results of 
underlying queries can enhance the set of feasible 
queries supported by the mediator. 0 
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Table 2: Union with Postprocessing 

EXAMPLE 4.2 Let a mediator view M be the 

f 
b 

44 
f 

join of two source views RI (X, Y, Z) and R2 (Z, U, I/‘). 
Suppose RI has the single template bfb, and R2 has 
the single template fub. In the case of a simple 
mediator, M has the single template bfbub. For in- 
stance, M(zl, Y, zi, U, vi) is a feasible query while 
M(zl, yl, Z, U, VI) is not. 

If the mediator can perform join operations by 
passing bindings from one join operand to the next 
(i.e., it can perform bind joins [ll]), the query 
M(zl, yr, Z, U, ~1) can be answered. The mediator 
can first execute the query Rz(Z, U, ~1) and pass 
bindings for the Z attribute. For each value of Z, 
say zi, in the result of Rz(Z,U,vl), the mediator 
can invoke the query Rl(zl, yi, zi). The answer 
to the query on M is obtained from the result,s 
of all these RI queries and the R2 query. Thus, 
the ability to perform join operations by passing 
bindings enhances the set of queries a mediator can 
support. Cl 

4.1 Union Views 

As before, the computation of union-view templates 
can be described in three steps. In fact, the only 
difference between this computation and the one in 
Section 3.1 is in the first step, where we compute 
the template of a union view defined over two base 
views, each with a single template. 

Union of Two Single-Template Base Views. 
Using the same notation as before, we define a 
new mapping function for the computation of an 
attribute’s adornment in the union-view template 
from the attribute’s adornments in the two base- 
view templates. The new mapping function is 
shown in Table 2. 

The essential difference between the mapping 
function of Table 2 and the mapping function used 
in Section 3.1 is in the treatment of the 21 and 
the o adornments. When a base-view adornment 
is u, the mediator can invoke a query on this 
view without specifying a value for this attribute 
and then optionally support a value specified by 
the union-view query for this attribute in the 
postprocessing step. Therefore, the u adornment 
is treated the same way as the f adornment. In a 
similar way, when a base-view template has the o 
adornment for an attribute, and a value specified 
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Table 3: Join by Passing Bindings 

by the union-view query for this attribute is not 
one of the menu constants associated with the o 
adornment, the mediator can execute a query on 
the base view without specifying any value for this 
attribute and check for the value given by the union- 
view query in the postprocessing step. Thus, o is 
also treated as J 

4.2 Join Views 

When processing a query on a join view over a set 
of base views, since the attribute values returned 
from one base-view query can be used to satisfy the 
binding requirements of the subsequent base-view 
queries, the order in which the base-view queries are 
considered is important. Accordingly, the template 
computation for join views is presented in four 
steps. The first step considers a join sequence of 
two base views, each with one template. Then 
we deal with a join sequence of two base views, 
each with an arbitrary number of templates. Next 
we handle a join sequence of an arbitrary number 
of base views, each with an arbitrary number of 
templates. Finally, in the fourth step, we compute 
the templates of a join view by considering all the 
sequences of its base views. 

Join Sequence of Two Single-Template 
Base Views. As before, for all nonjoin attributes 
we copy over their adornments from the base-view 
templates. The mapping function for computing 
the adornment of a join attribute is presented in 
Table 3. The adornment of the first base-view is 
listed on the left and the adornment of the second 
base-view is listed on the top of the table. Because 
the mediator can perform joins by passing bindings, 
the case of a b adornment for the second base view is 
similar to the case of an fadornment. The mediator 
passes the required binding for the second base view 
from the result of the query on the first base view. 

Join Sequence of Two Base Views with 
Multiple Templates. As in the union case, 
we repeatedly invoke the method that handles 
single-template base views and compute the set of 
templates of the join sequence. That is, for each 
combination of base-view templates, we obtain a 
template for the join sequence. 

Join Sequence of Multiple Base Views with 
Multiple Templates. We associate left-to-right 

the base views in the join sequence (note that 
Table 3 is associative, but not symmetric). That 
is, if the join sequence has n base views, we call the 
method of computing templates for a join sequence 
of two base views (n - 1) times. 

Join View of Multiple Base Views with 
Multiple Templates. We consider all the possible 
sequences of the base views, and for each sequence, 
we invoke the above method to compute a set of 
templates. For a join view with n base views, we 
call this method n! times. We take the union of the 
n! resulting sets of templates to arrive at the set of 
templates for the join view. 

EXAMPLE 4.3 Let a mediator view M be de- 
fined as the join of three base views Ri(X, Y, Z), 
Rz(Z, U, V) and Rs( V, W). Let Ri have two tem- 
plates: fbf and bfb, let R2 have two templates: bfb 
and fbf, and let R3 have the single template fb. 

We consider a total of six sequences. For 
the sequence (RI, R2, R3), we end up with four 
templates: jl$bb, fbfbfb, bfbfbb and bflbfb. For the 
sequence (R3, R2, RI), the templates are: fbbfi, 
fbfbfb, bfiffb and bflj5. Continuing in this manner, 
we can compute another four sets of four templates 
each, based on the remaining four sequences. The 
union of these six sets of templates yields a set 
of 24 templates for M. After minimizing this set 
of templates, we end up with the following three 
templates for M: fbfffl, b@fl, bffafb. 

Without the ability to perform joins by passing 
bindings, the set of templates for the mediator 
view M would be limited to: fibfib, fbfbfb, bfbfbb 
and bfbbfb. Notice that these four templates are 
more restrictive than the three we obtained for a 
mediator that passes bindings. In particular, the 
set of queries covered by the three templates of M 
provided by the mediator through bind joins is a 
strict superset of the set of queries covered by the 
four templates obtained through local joins. For 
instance, the query M(X, yi, 2, U, ~11, ~1) is feasible 
only if the mediator passes bindings. Cl 

4.3 Selection and Projection Views 

For selection views, the template computation is 
quite different from that of Section 3.3. We do 
generate a selection-view template corresponding 
to each base-view template. However, we do not 
simply copy over the adornments from the base- 
view templates to the selection-view templates. 

EXAMPLE 4.4 Let M be a selection view with 
R(X,Y, 2) as its base view and (X < II) as 
the selection condition. Let R have a template 
bfu. According to the template computation in 
Section 3.3, M will have the bfu template. 
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The bfu template of M does not allow a query 
like M(zz, Y, 21). However, the mediator can make 
use of its postprocessing abilities to support such a 
query. Given M’(zz, Y, zl), the mediator can first 
process the feasible base-view query R(z2, yl, 2) 
and then filter the results of this query with the 
condition (2 = ~1). Therefore, M can have the 
more flexible template b$ 

Now, suppose that the selection predicate on A4 is 
(X = :cl) instead of (X < 21). The bff template of 
M precludes a query like M(X, ~1~2). However, the 
mediator can infer from the selection-view predicate 
that it can translate M(X, ~1, 2) into R(z1, ~1, Z), 
a feasible query on the base-view. So, it can 
support the query M(X, y1 , 2) . To reflect this 
ability to support “additional” queries on M, the 
template of M is changed to #J Thus, a mediator 
that performs postprocessing can have selection- 
view templates that are much more flexible than 
their corresponding base-view templates. 0 

Sel. Attribute Nonsel. Attribute 

q=.F&- 

Table 4: Selection with Postprocessing 

The new rules for the computing selection-view 
templates are based on the mapping function given 
in Table 4. We consider two cases for each 
attribute in the selection view: (i) the selection 
predicate specifies a value for the attribute; (ii) 
the selection predicate does not specify a value 
for the attribute. In both cases, by employing 
postprocessing operations at the mediator, base- 
view adornments of o and u are converted to 
the selection-view adornment of f In addition, 
the b adornment is also converted to the less 
restrictive fadornment if a value for the attribute 
can be inferred from the selection predicate. A c 
adornment is converted into an fadornment if the 
selection predicate specifies a value for the attribute 
that is in the constant set associated with the 
attribute’s adornment in the base-view template. If 
the inferred value is not in the set of constants of 
the base-view template, we simply copy over the c 
adornment to the selection-view template. 

The computa.tion of templates for projection 
views is similar to that of Section 3.3, except that 
u and o adornments in the base-view templates are 
treated as f adornments. That is, we copy over the 

f, b and c adornments of the projected attributes 
from the base-view templates to the corresponding 
projection-view templates, while the u and o for the 
projected attributes are changed to the fadornment 
in the projection-view templates. As before, we do 
not derive a projection-view template from a base- 
view template that has the b or the c adornment for 
a hidden attribute. 

5 Dynamic Mediators 

So far, we have seen how the templates of a 
mediator can be computed in order to specify 
the set of queries answerable by the mediator. 
Given that computation, a query is supported by 
the mediator if it satisfies one of the mediator 
templates. However, as illustrated by Example 5.1, 
it may not be necessary for a query to satisfy a 
template in order for it to be answerable. 

EXAMPLE 5.1 Consider a mediator view A1 
defined as a join of two source views R.1 (X, Y) and 
Rz(Y,Z). Let RI h ave the single templat,e bf and 
let Rz have the single template c[s]i where s is 
{ ~1, ~2, ys}. Based on the computation described in 
Section 4, M has the single template bc[s]f Query 
M(zl, ~1, Z) is answerable because it satisfies the 
template of M. 

Consider the query Ad(zl,Y, Z). This query 
does not satisfy the template of M. However, the 
mediator may attempt to process the query anyway. 
It can perform a bind join by processing the query 
Rl(zl, Y) and passing bindings for the Y attribute 
in the queries to Rz. The set of Y values in the 
result of the query RI (21, Y) may turn out to be a 
subset of s. In this case, the query M(x1, Y, Z) can 
be answered successfully. 0 

Based on Example 5.1, we note that the answer- 
ability of a user query is not entirely determined 
by checking it against the templates computed ac- 
cording to the methods of Sections 3 and 4. If the 
query satisfies some template, it is guaranteed to 
be answerable, otherwise, its answerability depends 
on the current state of the data in the source views. 
For instance, the current state of RI in Example 5.1 
may help make the query answerable. Then again, 
the state of RI may be such that the query can- 
not be answered. Mediators attempting to execute 
queries that are not guaranteed to be answerable, to 
determine query answerability in a data-dependent 
manner at run time, are called dynamic mediators. 

5.1 Conservative and Liberal Templates 

Dynamic mediators execute queries that are not 
guaranteed to be feasible, with the hope of answer- 
ing them in a data-dependent manner. However, as 

450 



illustrated by Example 5.2, it is sometimes possi- 
ble to determine that a query is infeasible without 
attempting to execute it. 

EXAMPLE 5.2 Consider M, defined as a join of 
Rr(X, Y) and Rz(Y, 2, U). Let RI have the single 
template bf and let Rz have the single template 
c[s]fb, where s is { yi , ~2, ya}. Then, M has the 
template bc[s]fb. This template of M indicates that 
the query M(cr, yi, 2, ~1) is definitely answerable. 
The query M(zl,Y, 2, ~1) does not satisfy the 
template of M. However, it is answerable if the 
set of Y values at RI is a subset of s. The query 
M(zi, Y, 21, U) also does not satisfy the template 
bc[s]fb. We can determine that this query is not 
going to be answerable, irrespective of the set of 
Y values at R, because it does not specify a value 
for U. Blindly trying to execute it in a dynamic 
mediator results in an expensive way of finding out 
that the query is infeasible. cl 

Example 5.2 showed that there may be situations 
in which we can determine that a given query is not 
going to be answerable irrespective of the state of 
the data in the sources. It is desirable to be able 
to specify a set of templates such that if none of 
them is satisfied by a query, we can ascertain that 
the query is infeasible, without trying to execute it 
futilely. Such templates specify an “upper bound” 
to the set of queries that can be answered by a 
dynamic mediator, while the templates computed 
in the previous section form the “lower bound.” We 
call the first kind liberal templates and the second 
kind conservative templates. 

Each view has a set of conservative templates 
and a set of liberal templates. Given a query on 
a view, we ascertain that the query is answerable 
if it satisfies at least one of the conservative tem- 
plates of the view, and the query is not answerable 
if it does not satisfy any of the liberal templates of 
the view. If a query does not satisfy any conserva- 
tive templates but satisfies at least one liberal tem- 
plate, then a dynamic mediator executes the query 
in a data-dependent manner. For instance, in Ex- 
ample 5.2, we can specify a conservative template 
bc[sJ’b and a liberal template bfi for the mediator 
view M. Based on these templates, we can deter- 
mine that query M(zr , yr, 2, ~1) is guaranteed to 
be answerable; query M(zr , Y, 2, U) is guaranteed 
to be unanswerable; query M(zr, Y, 2, ~1) may be 
answerable depending on the contents of RI. 

5.2 Computing Liberal Templates 

Typically, in the case of a source view, the liberal 
templates of the view are the same as the conser- 
vative templates. When computing the templates 

11 f 1 ds31 b 1 ds41 U 

f 
f 
b 

+21 
f 

Table 5: Liberal Templates for Join Views 

of derived views at a mediator, the liberal tem- 
plates tend to diverge from their conservative coun- 
terparts. The algorithms of Section 4 yield conser- 
vative templates for mediator views. That is, we 
start with conservative templates of base views and 
obtain conservative templates of derived views. 

With small changes to the algorithms of Sec- 
tion 4, we can compute the liberal templates. For 
the selection, projection and union views, we use the 
same algorithms to compute the liberal templates 
of derived views starting with the liberal templates 
of their base views. However, the computation is 
slightly different in the case of join views. 

For a join view, we start with the liberal tem- 
plates of the base views and compute the corre- 
sponding liberal templates of the join view, in a 
manner that is quite similar to that of Section 4.2. 
The only difference is the use of a new mapping 
function that combines the attribute adornments of 
the base-view templates. The new mapping func- 
tion is given in Table 5. This mapping function 
is similar to the one used in Section 4.2, except in 
the case of the c adornment in the second base- 
view template. In this case, when computing the 
liberal template of the join view, the mediator al- 
lows a more flexible adornment because it can try to 
get the appropriate constant required by the second 
base view from the result of the query on the first 
base view. That is, it can optimistically treat the 
c adornment in the second base-view template as if 
it is the f adornment. For instance, when the first 
base-view adornment is f and the second base-view 
adornment is c, the liberal adornment for the join- 
view is f (instead of c in the conservative computa- 
tion of Section 4.2). Also, note that when both the 
base view adornments are c, the resulting c adorn- 
ment in the liberal template for the join-view has 
the same constant set as the c adornment in the 
first base view (instead of the intersection of the 
constant sets in the two base-view templates). 

6 Output Restrictions 

The computation of mediator templates discussed 
so far assumes that all the attributes of a view are 
returned in response to any query on that view. 
There are situations in which a view may have 
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attributes on which conditions may be specified, but 
these attributes are not returned in the answer. For 
example, we can pose a query to Amazon.com by 
specifying the subject attribute of the desired set of 
books, and Amaz80n.com does not return the subject 
attribute when answering queries. 

In order to represent sources that do not return 
certain attributes, we need to specify explicitly the 
output restrictions of attributes in the templates of 
the views exported by the sources. In a template, 
each attribute should be adorned to reflect its input 
(query) as well ats its output (result) restrictions. 
To describe the input requirements of an attribute 
that has no output restriction (i.e., it appears in 
the result), we use the adornments introduced in 
Section 2: f, o, b, c and u. To describe the 
input restrictions of an attribute whose output is 
suppressed (i.e ., :it does not appear in the result), 
we introduce five new adornments: f ‘, o’, b’, c’ and 
u’. To illustrate the use of the new adornments, 
consider a source that exports view R(X, Y, 2) with 
the requirement that queries on this view must 
specify X, must not specify 2, and can specify Y 
optionally. Let the source suppress Y in its output 
(i.e., X and Z are output, Y is not). We describe 
the capabilities of the source with a bf ‘u template. 

The computation of mediator templates in the 
presence of output restrictions can be undertaken 
by modified versions of the algorithms of Sections 3 
and 4. Only the mapping functions used by the 
algorithms have to be extended to deal with the 
new adornments. In particular, no postprocessing 
operations can be performed on attributes that 
are not returned in source query results. Note 
that even necessary operations like joining on such 
attributes are prevented. All these considerations 
can be reflected in a new set of mapping functions 
for the a1gorithm.s presented so far. Due to space 
limitations, we dlo not present the new mapping 
functions here (please refer to the extended version 
of the paper [lo] for them). The introduction 
of the new attribute adornments forces us to 
also reconsider the adornment graph of Figure 1, 
which is the basis for identifying and eliminating 
redundant templates. The new graph is given in 
the extended vers#ion of the paper. 

Recall that in Sections 3 and 4 we assumed 
that the base views of a union view have the 
same schema. With the help of the new attribute 
adornments, we can handle the case of union views 
with heterogeneous base-view schemas. When 
encountering heterogeneous base-view schemas, we 
can simply treat the situation as if all the base- 
views have the same schema by adding the missing 
attributes to each base-view schema. For the newly 

added attributes, we specify the u’ adornments in 
the templates of the base views. To illustrate, 
consider a mediator view M(X, Y, 2) defined as a 
union of Rl(X, Y) and &(X, 2). Let RI have the 
template bf’ and let R2 have the template bf ‘. We 
introduce the missing attribute 2 into the template 
of RI and the missing attribute Y into the template 
of R2. Both 2 and Y have the u’adornment in the 
templates of RI and Rz, respectively. From the 
resulting bf ‘u’and bu’f’ templates, we can compute 
the appropriate bu ‘u ’ template for M (based on the 
new mapping function for computing union-view 
templates, presented in [lo]). 

7 A Case Study 

To verify that our capability-description framework 
makes sense in practice, we explored the Web, 
where many limited-capability sources are found. 
In particular, we wished to determine if the adorn- 
ments we developed in our framework were ade- 
quate in describing the query capabilities of sources 
and mediators. We also wanted to know how 
many templates were typically required to describe 
sources and mediators. Capability-based query pro- 
cessing could become unwieldy if large numbers of 
templates were required. Therefore, it is important 
to check if in the case of representative sources and 
mediators there would be an explosion of templates. 

7.1 Data Sources 

We considered two Web bookstores in our case 
study: Amazon.com (www . amazon. corn) and Barne- 
sAndNoble.com (shop. barnesandnoble . corn). 

Amazon.com supplies the following query forms: 

l Form 1: At least one of author, title, subject 
and format attributes must be specified. The 
format attribute has a menu of choices. 

l Form 2: The ISBN attribute must be specified. 

l Form 3: At least one of keywords, publisher and 
publication date attributes must be specified. 

The results of queries to Amazon.com include the 
following attributes: author, title, ISBN, publisher, 
date, format, price and shipping info. In particular, 
the subject and keywords attributes do not appear 
in the answers. 

The query capabilities of Amazon.com are de- 
scribed by the templates in Table 6. The capabili- 
ties offered by each query form are captured by one 
or more templates. In Table 6, the first four tem- 
plates capture Form 1, the fifth template captures 
Form 2, while the last three templates correspond 
to Form 3. Note that for simplicity of presentation 
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U U’ f’ U f 

Table 6: Templates of Amazoncorn 

we did not show the menu of choices attached to the 
o and c adornments of the format attribute. The 
menu specified by Amazon.com has “Hard cover”, 
“Paperback”, etc. 

BarnesAndNoble.com has two query forms: 

l Form 1: At least one of author, title and 
keywords attributes must be specified. In 
addition, the format, subject, price and age 
range attributes can be specified optionally. 
These four attributes have menus of choices. 

l Form 2: The ISBN attribute must be specified. 

The output attribute set of BarnesAndNoble.com 
is the same as that of Amazon.com. That is, 
the source does not return the subject, keywords 
and age range attributes in its answers. The 
capabilities of BarnesAndNoble.com are described 
by the templates in Table 7. The first three 
templates describe the capabilities of the first form, 
while the last template captures the second form. 

7.2 A Bookstore Mediator 

We considered a bookstore mediator that provides a 
union view over the above two source views. As sug- 
gested in Section 6, we handled the heterogeneous 
union of the two source views by adding the age at- 
tribute to the templates of Amazon.com with the U’ 
adornment. Moreover, we assumed that our book- 
store mediator employs postprocessing techniques 
to extend the set of feasible union-view templates, 
as discussed in Section 4. Accordingly, we com- 
puted a total of 22 templates for the mediator view. 
Our algorithm actually considered 32 (8 x 4) pairs 
of source-view templates and successfully generated 
union-view templates in the case of 26 pairs. How- 
ever, there were 4 duplicates among the 26 resulting 
templates. Then, we employed the techniques dis- 
cussed in Section 3.4 to identify and eliminate 14 
redundant templates and ended up with a concise 
set of 8 mediator templates (see Table 8). 

From the set of 8 templates for the mediator, 4 
query forms can be derived. Corresponding to the 
first template in Table 8, the bookstore mediator 
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has a query form that requires the specification of 
the ISBN attribute. Corresponding to the second 
template, we created a query form that requires the 
keywords to be specified. Next, we created a single 
query form that corresponds to the third and fourth 
templates. This query form requires that at least 
one of author and title attributes must be specified 
along with an optional specification of the subject 
field from a menu of choices. Finally, the last four 
templates were combined into a single query form 
that requires that at least one of author and title 
attributes and at least one of publisher and date 
attributes must be specified. 

Note that, the theoretical maximum number of 
forms for our bookstore mediator is 32 (because 
each combination of the base-view templates could 
have resulted in a mediator template, and each 
mediator template could end up as a separate query 
form). The fact that in our case study we obtained 
4 query forms for the mediator suggests that using 
the techniques presented in this paper, we may be 
able to compute manageable sets of query forms for 
mediators on Web sources. 

7.3 Observations 

Our case study demostrates that the capability- 
description framework we introduced in Section 2 
is well suited to describe the capabilities of Web 
sources and mediators. We note that sometimes 
more than one template is needed to describe a 
query form. However, the number of templates 
required to describe a form is typically small. We 
also observe that, in general, it is more difficult to 
derive forms from templates than vice versa. 

In the course of our experiments, we noticed 
that many Web sources change their query forms 
frequently. In fact, the data for our case study as 
presented above is valid as of March 1, 1999. It 
is unlikely that the Web sources we considered in 
our case study will retain the same forms a few 
months later. In our experience, sources change 
their Web forms many times in a short period of 
time (a few times a year). Building mediators 
on such evolving sources poses special challenges. 
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Table 7: Templates of BarnesAndNoble.com 
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Table 8: Concise Set of Templates for the Bookstore Mediator 

In particular, manual generation of query forms 
for mediators on such evolving sources becomes 
very difficult because whenever sources change their 
query forms, mediator capabilities have to be re- 
assessed. Automatic computation of mediator 
capabil-ities based on the techniques presented in 
this paper can be very helpful to mediation systems 
involving frequently changing sources. 

8 Conclusion 

In data-integration systems, it is important to de- 
scribe the capabil:ities of mediators so that they can 
be used as easily (by end users as well as other 
applications) as base sources are. Many contem- 
porary integration systems have not computed and 
exported mediator capabilities, thus making it hard 
for them to be useful in scalable applications involv- 
ing networks of mediators and sources. In some 
situations, mediat,or capabilities are manually com- 
puted and specified. Manual computation is er- 
ror prone and bec,omes unwieldy when dealing with 
large numbers of evolving sources whose query ca- 
pabilities change frequently. 

In this paper, we provided the machinery for au- 
tomatically computing the capabilities of mediators 
based on the capabilities of the sources they inte- 
grate. We proposed a capability-description frame- 
work with a rich set of attribute adornments to 
describe a variety of query-processing limitations 
of sources and mediators. We discussed various 
classes of mediators based on the query processing 
techniques they employ, and presented algorithms 
for the computation of their capabilities. We con- 
ducted experiments using Web sources and studied 
issues surrounding the adequacy of our capability- 
descript,ion framework and the effectiveness of our 

algorithms for computing mediator capabilities. 
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