Storing Semistructured Data with STORED

Alin Deutsch*

Univ. of Pennsylvania
adeutsch@gradient.cis.upenn.edu

Abstract

Systems for managing and querying semistructured-data
sources often store data in proprietary object repositories
or in a tagged-text format. We describe a technique that
can use relational database management systems to store
and manage semistructured data. Our technique relies on
a mapping between the semistructured data model and the
relational data model, expressed in a query language called
STORED. When a semistrcutured data instance is given,
a STORED mapping can be generated automatically us-
ing data-mining techniques. We are interested in applying
STORED to XML data, which is an instance of semistruc-
tured data. We show how a document-type-descriptor
(DTD), when present, can be exploited to further improve
performance.

1 Introduction

Semistructured data is becoming ubiquitous. The emer-
gence of XML, which is a data format for semistruc-
tured data, will increase the availability of semistruc-
tured data. Such data is best defined as a graph-based,
self-describing object instance model. Data consists of
a collection of objects; each object is either atomic (e.g.,
integer, string, image, audio, video), or complex (i.e., a
set of (attribute, object) pairs). Since attribute names
are stored with the data, the data is self-describing.
Existing systems for managing and querying semistruc-

tured data sources store the schema with the data.
Lorel [17] and Tsimmis [16] store their data as graphs;
the schema is stored as attributes labeling the graph’s
edges. Strudel [6] stores the data externally as struc-
tured text, and internally as a graph. XML often
is stored in proprietary object repositories or in text
files, in which tags encode the schema. Storing the
schema with the data provides the flexibility required
by semistructured data. In data integration, for exam-
ple, data from new sources can be loaded immediately,

1Part of this work was done while the author visited AT&T
Labs.

Mary Fernandez
AT&T Labs
mffQresearch.att.com

Dan Suciu
AT&T Labs

suciu@research.att.com

regardless of its structure, and changes to the struc-
ture ‘of old sources can be handled seamlessly. This
flexibility, however, incurs a space cost, because the
schema is replicated at each data item, and a time cost,
because of the additional processing of the replicated
schema. A more fundamental disadvantage however, is
that we cannot use a commercial RDBMS for managing
the semistructured data.

We describe a technique for using an RDBMS to
store, query and manage semistructured data. Semistruc-
tured data can always be stored as a ternary relation,
since the data is an edge-labeled graph, but this is no
better than storing the schema with the data. Instead,
our technique relies on an aggressive mapping from
the semistructured data model to the relational model.
The mapping is expressed in STORED (Semistructured
TO Relational Data), a declarative query language. A
relational schema is chosen, then the STORED map-
ping translates the semistructured data instance into
that schema. The mapping is always lossless: parts of
the semistructured data that do not fit the schema are
stored in an “overflow” graph.

We expect this technique to be used (1) to store
and manage efficiently existing semistructured data
sources, and (2) to convert relational sources into a
semistructured format, such as XML,

In the first application, the semistructured-data in-
stance exists, e.g., it might be a large XML file. The
main issue is generating the relational schema and the
STORED mapping automatically from patterns discov-
ered in the data instance. Subsequently, queries and up-
dates over the semistructured view are automatically
rewritten into queries and updates over the relational
store. If some query mix is known in advance, it may
be used during the generation phase. As the data or
the query mix changes, the performance of the rela-
tional storage may degrade, and a new mapping should
be generated (and the relational data reorganized). In
the second application, a relational data source is ex-
ported in a semistructured view, e.g., in an XML view.
In this case, the STORED mapping is defined by the

permission to make digital or hard copics of all or part of this wor}f for
personal or classroom use is granted without fee provnded that copxcs‘
are not made or distributed for profit or con'lmercxa‘l advantage and that
copies bear this notice and the full citation on the lllrst‘pagc T(f copy
otherwise, 1o republish, 10 post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-581 13-084-8/99/05...$5.00

application writer. This application is easier than the
first, because the mapping need not be generated au-
tomatically. We expect this application will become
more important as information providers export data
in XML.

Given a semistructured data instance, we have to gen-

431

erate a “good” relational schema and STORED map-
ping to that schema. The meaning of “good” depends
on the application, but usually includes minimizing
disk space, reducing data fragmentation, and satisfy-
ing constraints of the RDBMS (e.g., maximum number
of attributes per relation). When a query mix on the
semistructured data is known, a “good” relational stor-
age reduces the weighted cost of those queries. Hence,
this can be modeled as a cost optimization problem.
Unlike other optimization problems (of query plans [20]
or data warehouse design [18]), our input is the data in-
stance, not a set of queries!. This problem is NP-hard
in the size of the data. For that reason, we did not
pursue the cost bases approach, but instead developed
a heuristic algorithm. Wang and Li [21] have described
a data-mining algorithm for semistructured data, and
we adapt their algorithm to our problem. The result of
the data-mining phase is used to produce a reasonable
relational schema and STORED mapping.

Given the relational mapping of the STORED query,
the system automatically generates the overflow map-
ping necessary to ensure that any semistructured in-
stance is stored losslessly. This part of the STORED
mapping specifies which objects or object parts are
stored in the overflow graph. The mapping must be
lossless for any data instance, because we support up-
dates, which are propagated to the relational store or
the overflow graph. These overflow mappings can be un-
necessarily conservative; for XML data, we show that a
DTD can be used to simplify the overflow mappings.

Given the complete STORED mapping, our system
accepts queries and updates over the semistructured
source and rewrites them into queries and updates
on the relational source. Rewriting of relational or
datalog queries is a well-understood problem [11, 14].
Since STORED is a new query language with novel
features, we revisit query rewriting. We show that
arbitrary queries on semistructured data, with regular
expressions and tree-like patterns, can be rewritten in
terms of STORED mappings. Updates are important
as well. We show that insertions in the semistructured
data can be automatically rewritten as insertions into
the relational and overflow stores.

This paper makes the following contributions:

STORED, a declarative language for specifying stor-
age mappings from the semistructured-data model
to the relational model plus overflow graphs.

A schema-generation algorithm, which constructs
a relational schema and STORED mappings for a
semistructured data instance and, possibly, a query
mix.

An algorithm for automatic generation of STORED
overflow mappings for a given relational mapping,
which can exploit a DTD.

A query- and an update-rewriting algorithm.

1We may also consider as input a query mix, but that size is
negligible compared to the data.

432

Figure 1: An instance of semistructured data. Values
and object identifiers are omitted.

Audit: &Zol
{taxpayer: &o024
{name : &o041 "Gluschko",
address : %034 {street : %105 “"Tyuratam",
appartment : &o0623 "2C"
zip : &121 "07099"}
audited : &o46 "10/12/63",
taxamount : &o47 12332},
taxpayer : &o21
{name : %0132 "Kosberg",
address : %025 {street : %427 "Tyuratam",
number : &928 206,
zip : %121 "92443"}
: &o46 "11/1/68",
&o46 "10/12/77",
: &0283 0,
%0632 "likely"}

audited
audited :
taxamount
taxevasion :
taxpayer : &020
{name : &0132 "Korolev",
address : &02b53 "Baikonur, Russia",
audited : &o46 "10/12/86",
taxamount : &o0283 O,
taxevasion : &0632 "likely"}
company : &o26
{name : %0623 "Rocket Propulsion Inc.",
owner : &024}

Figure 2: Textual representation of data

Example Mapping. Our semistructured model is an
ordered version of the OEM model [16]. Data consists
of a collection of objects, in which each object is either
complex or atomic. A complex object is an ordered set
of (attribute, object) pairs, and an atomic object
is an atomic value of type int, string, video, etc.
Hence, data is a graph, with edges labeled by attributes
and some leaves labeled with atomic values. Data is
exchanged in a text representation: the data graph in
Fig. 1 is represented textually in Fig. 2. The order of
an object’s attributes is the only difference from the
OEM model, and we use the order only when storing
the data. Any order will do; it can be the order in the
text representation or obtained in some other way.

The text representation specifies the data in a tree-
like format. To specify arbitrary graphs, we write
references to object identifiers, e.g., the value of the
Audit.company.owner attribute in Fig. 2 is the object
%024. In this paper, we consider the data to be a
tree. Object identifiers in the text representation are
optional. If no object identifier is specified, an object
is assigned a unique identifier automatically. These
assumptions are consistent with XML.

Taxpayerl

oid name street no apt zip auditl audit?2 taxamount | taxevasion

024 | Gluschko | Tyuratam 2C 07099 | 10/12/63 12332

021 Kosberg Tyuratam | 206 92443 1171/68 10/12/77 0 likely
Taxpayer2 Company
[0id | name | address audited | taxamount | taxevasion name | owner |
[020 | Korolev [Baikonur | 10/12/86 0 likely | [Rocket Propulsion Inc. | 024 |

Figure 3: Relational storage

The following is an example of the kind of mapping
to a relational schema on which we base our technique.
One choice of a relational schema and its correspond-
ing instance is in Fig. 3. We separate objects by their
“types”: taxpayers and companies are stored sepa-
rately. We separate taxpayers with a complex address
from those with a string-valued address. Even af-
ter this decomposition, objects are not uniform: there
are many nulls. Table taxpayerl has two attributes
auditl and audit2 to accommodate objects with two
occurrences of the audit attribute. Most object identi-
fiers from the semistructured data are omitted. The ac-
tual “mapping” is not explicitly defined, but implied by
the choice of attribute and table names. For instance,
the path Audit.taxpayer.name is mapped to both
name in Taxpayerl and name in Taxpayer2, and the
path Audit.taxpayer.audited is mapped to auditi
and audit?2 in Taxpayerl, and to audit in Taxpayer2.
Data like that in Fig. 3 can be managed by any RDBMS.
Unlike semistructured data, the schema is not stored
with the data. Of course, this choice is not unique or
necessarily the best. For example, we could store all
taxpayers in one relation, and split their addresses,
depending on their structure. = Some updates to the
semistructured data instance cannot be accommodated
by the chosen relational storage. For example, we can-
not add a new taxpayer with a phone attribute. In-
stead, we store that data in an overflow graph. Any
semistructured data repository can store the overflow
graph. Efficiency is not crucial, because the overflow
graph should be small. System issues arise from the
integration of a relational storage with a semistructured
overflow, but they are not addressed in this paper.

In Sec. 2, we introduce the STORED language, and
in Sec. 3, we describe an algorithm for automatically
generating the relational STORED mappings from
a data instance. Sec. 4 shows how to generate
automatically the overflow mappings. Sec. 5 describes
query and update rewriting algorithms, and Sec. 6
reports some experimental results.

2 STORED

We describe STORED (Semistructured TO Relational
Data). A relational schema is a collection of relation
names Ry,..., R, with arities ny,...,n,,. An overflow
schema is a collection of graph names, Gi,...,Gy.
Conceptually, each graph G; contains a unary relation
Gi.roots(X) and a ternary one G;.edges(X,L,Y) (X,Y
object identifiers, L attribute name). A mized schema
contains a relational schema and an overflow schema.
A STORED mapping translates semistructured data
into instances of some mixed schema. STORED
is more restrictive than other query languages for

semistructured data: it doesn’t have joins or regular-
path expressions. This ensures losslessness: it must be
possible to reconstruct any semistructued data instance
from its transformation over the mixed schema.

Simple Storage Queries. A STORED mapping
consists of one or more FROM WHERE STORE queries.
The FROM clause is a single pattern that binds several
variables. The STORE clause states how values bound
to variables are stored. In this example, nested addr
objects are flattened into the 4-ary relation Taxpri:

M1 = FROM Audit.taxpayer : $X
{ name : $N,
addr : {street : $S, zip :q $2Z}}
STORE Taxpr1($X, $N, $S, $2)

Each FROM clause defines a unique key variable; by
default, it is the first variable in the pattern, e.g.,
$X above. Each binding of the key variable that
matches the pattern causes one tuple to be stored by
the STORE clause. Patterns are sequences of attribute
constants. All variables in the FROM clause must be used
in the STORE clause, but intermediate variables may be
removed from the pattern, i.e., it’s not necessary to
write $A in addr:$A {street:$S, zip:$Z}

We can also store optional attributes:

M2 = FROM Audit.taxpayer : $X
{ name : $N, addr : { street $S, zip $Z },
OPT { audited : $A, taxamount : $T }}
STORE Taxpr2($X, $N, $S, $Z, $4, 3$T)

Here name, addr.street and addr.zip are required
attributes, therefore the first four columns of Taxpr2
are always non-null, but audited and taxamount are
optional. When one of them is missing, the last two
attributes in Taxpr2 are null. we can check for
audited and taxamount independently:

M3 = FROM Audit.taxpayer : $X
{ name : $N, addr : {street $S, zip $Z}
OPT{audited : $A},
OPT{taxamount : $T}}
STORE Taxpr3($X, $N, $S, $Z, 34, $T)

Each STORED pattern has a required subpattern
and an arbitrary number of OPT subpatterns; the latter
can be nested (i.e., each OPT subpattern has its required
subpattern and other OPT subpatterns). The matching
succeeds at an object x if the required subpattern
matches that object; a successful matching binds the
required variables. The OPT subpatterns are tentatively
matched too, starting from their required subpatterns.

A STORED mapping may contain several queries.
This example shows how to cluster taxpayers into two
relations, using combinations of their attributes:

433

M4a = FROM Audit.taxpayer : $X
{ name : $N, addr : $P,
OPT{audited : $A}, OPT{taxamount : $T}}
WHERE typeOf($P, "string")
STORE Taxpr4a($X, $N, $P, $4, $T)
FROM Audit.taxpayer : $X
{ name : $N,
addr : { street $S,
OPT{city $C, OPT{zip $Z}}}
0PT{audited : $A}, OPT{taxamount : $T}}
STORE Taxpr4b($X, $N, $S, $Ap, $C, $Z, $A, $T)

M4b

Taxpayers with an addr attribute of type string
are stored in Taxpr4a and the others in Taxpr4b. In
the latter case, street must be present, but city is
optional. When city is present, then zip is optional?.
Each STORE clause must refer to a distinct relation
(Taxpr4a and Taxpr4b in the example), to simplify
reconstructing the semistructured data.

In this example, only one of M4a or M4b will succeed
for a given object, because the conditions on addr
are mutually exclusive. In general, several queries
may succeed, and a single object may be stored in
multiple relations. This replication can be desirable
when rewriting queries, because it permits the system to
choose the target relation that best matches the query,
but it incurs a higher cost in disk space.

Multiple Attributes. One characteristic of semistruc-
tured data is that objects may have multiple occur-
rences of the same attribute; for example, a person may
have two phone attributes and several subordinate at-
tributes. We distinguish two classes of multiply oc-
curring attributes. A small-set attribute usually has
low cardinality and most often is one; e.g., most people
have one phone, but some may have two. A collection
attribute denotes a collection of objects, usually with
high cardinality; e.g., bosses usually can have many
subordinates. For small-set attributes, we may in-
crease the number of columns in a relation to accommo-
date all occurrences, whereas for collection attributes,
we may store the attributes in a nested or separate rela-
tion. We show how to express both classes in STORED.

Below, the audited attribute occasionally occurs
twice:

M7 = FROM Audit.taxpayer : $X
{ name : $N, audited : $A1, OPT{ audited :
STORE Taxpr7($N, $A1, $A2)

$A2 32}

M7 stores objects with at least one audited attribute;
the value of $A2 may be null. In a declarative seman-
tics, when some object has two audited attributes with
values u, v, then both u,v and v,u are valid bindings
for $A1, $A2. However, in our context, it suffices to
store a single permutation in Taxpr7. Here, we use
the order in the data model. Conceptually, STORED
queries are rewritten such that each occurrence of an
attribute name a is uniquely indexed as a[1], af2],
al3],

M8 = FROM Audit.taxpayer : $X
{ namef1] : $N, audited[1] : $A1,
OPT{ audited[2] : $A2 }}
STORE Taxpr8(N, Al, A2)

2To be precise: a zip without a city is not stored, while a
city without a zip is stored.

Only attributes below the key variable are enumer-
ated: Audit and taxpayer are not. For each data
object x, we enumerate all its attributes; e.g., its
audited attributes become audited[1], audited[2],
etc. This guarantees the matching between the pattern
and the data is unique.

Collection attributes can be stored in nested relations
or as separate relations, if nested relations are not
supported. In this example, we assume that each
irscenter has a collection attribute hearing:

Mila = FROM Audit.irscenter : $X
{ centername : $N, centeraddress : $A}
STORE IrsCenter($X, $N, $4)

Milb = FROM Audit.irscenter:$X.hearing:$Y
{ hearingdate : $D, taxpayername : $TN,

auditorname : $AN, decision : $2}

KEY $Y
STORE Hearings($Y, $X, $D, $IN, $AN, $2)

This stores a many-to-one mapping from Hearings
to IrsCenter. M11b’s key variable is $Y, which is not
the first variable, so it must be declared explicitly.
STORED requires that the key variable be outside any
{...} subpattern: e.g. $TN cannot be declared to be
the key variable in M11b.

Label Variables. Some instances of semistructured
data store data as attributes. For example a person’s
name could be an attribute name, like in:

Data: {john: {phone:5551234,fax:5551235},
joe: {phone:5552345,fax:5552346}, ... }

STORED supports label variables which are stored in
relations as values. Label variables must occur before
the key variable, for example:

FROM Data.$L: $X {phone:$P, fax:$F}
STORE R($X, $L, $P, $F)

Overflow Queries. So far we have described rela-
tional queries, whose target are the relations of the
mixed schema. Next, we describe overflow queries, tar-
geting the overflow graphs. For example, consider the
relational query below:

Mi3a = FROM Audit.taxpayer : $X
{ name : $N, OPT{ address : {street $S, city $C}}}
STORE R($X,$N,$S,$C)

We could complement it with the following two
overflow queries, storing other attributes besides name,
address.street, and address.city:

M13b = FROM Audit.taxpayer : $X
{ name : $N, OPT{address : $A},
$L : 3}
OVERFLOW G1($L)
M13c = FROM Audit.taxpayer : $X
{ name : $N,
address : {street $S, city $C, $K : _}}
OVERFLOW G2($K)

Syntactically, overflow queries resemble relational
ones, except that they must have one attribute variable
that occurs last in the pattern, which is “stored” in
the overflow graph by the OVERFLOW statement. We

434

illustrate the semantics on M13b. Assume that $X is
bound to some object identifier x. After matching
name and possibly address, $L is bound successively
to all other attributes. For each binding of $L to
some attribute name 1 with value y: (1) x is stored
in G.roots, (2) the edge (x,1,y) is stored in G.edges,
and (3) the subtree rooted at y is stored in G.edges.
Note that if some object $X has several name or address
attributes, the first one is stored in R, and all others are
stored in G1. Similarly, M13c stores in G2 all subobjects
of address, except the first occurrence of street and
city. An object can be reconstructed from R, Gi, G2.

As a convenience, the value of the key variable is
always stored in G.roots, even if it is not the actual root
of the subgraph being stored. For example the following
are stored by M13c: G2.roots($X) and G2.edges ($X,
$K,) (where _is the actual value of the $K attribute).

Overflow queries cannot have nested patterns other
than those containing the attribute variable.

In addition to storing relations in a relational reposi-
tory, the overflow graphs are stored in a semistructured
data object repository. Integrating the relational and
overflow systems is necessary to preserve the flexibility
of the original semistructured data. The performance
requirements for the overflow system, however, are less
demanding than for a stand-alone object repository, be-
cause the relational system handles most of the data.

3 Generating Storage Mappings

We now describe how to generate automatically the
relational STORED mapping M given a semistructured
data instance D (the overflow mapping is deferred
to Sec. 4). Several competing goals determine M’s
effectiveness. First, we want to limit the number
of tables. Although many RDBMs do not limit the
number of tables, storing each object in a separate
table is undesirable. Second, we want to bound the
disk space. Although the size of the data instance D
is fixed, its relational storage may be arbitrarily large,
because an object may be stored in more than one
relation. A related goal is minimizing the number of
nulls. Some RDBMS store nulls efficiently, e.g., a null
entry in a record requires only a byte, and nulls at the
end of the record take no space. Nonetheless, we do
not want to generate wide, sparse tables, since even
one byte per null entry becomes expensive. A related
restriction is that some RDBMS impose an upper limit
on the number of attributes per table®. Depending on
the application, other goals may include reducing object
splits and their redundant storage in multiple relations,
or, on the contrary, increasing object redundancy to
improve query evaluation.

These goals are best modeled as a cost-optimization
problem. Given a data instance D, generate a STORED
mapping M that minimizes a storage-cost function
c(M), the cost of storing M(D). The generator must
also accommodate hard constraints, e.g., the limit of
attributes per table. A query mix, 0={q,.. ,Qk}
can also be considered. For a given STORED mapping
M, each query Q; can be rewritten as a relational query,

30racle 8.0.4 imposes a limit of 1000.

435

Parameter Name | Meaning

K Max tables

A Max attributes per table
S Max disk space

c Collection size threshold
Supp Min Support

Table 1: Storage-generation parameters

Q¥, on M(D) (Sec. 5). Given a weight f; for each query
Ql, and a query cost function d(Q¥) that denotes the
cost of evaluatmg Q¥ on the relational data, a second
goal is to minimize “the query-cost functlon, dM) =
Yi=1,; fid(QM). The optimization problem can now
be applied to the combined cost c(M) + d(M).

Unfortunately, the storage-cost cost optimization
problem is NP-hard in the size of the input data
(by reduction from the rectilinear picture compression
problem (8]).

Theorem 3.1 The problem of computing an optimal
storage mapping M is NP-hard in the size of the
semistructured data D.

This is a daunting complexity. Typically, query
optimization problems are NP-complete in the size of a
query, but here the problem is NP-hard in the size of the
data. Search algorithms like dynamic programming are
unlikely to work, so we consider heuristics, starting from
frequent patterns in the data discovered by data mining.
Wang and Li [21] describe a data-mining algorithm for
semistructured data. We review it briefly and refer to
it as WL’s algorithm.

WL’s Data-Mining Algorithm. WL’s data model
is a large collection of semistructured objects, i.e., a
graph with many roots. WL’s algorithms searches for
tree patterns, which are trees consisting of attribute
constants and the symbol "7", which means any
attribute. Attributes are indexed in WL, to allow for
multiple attribute occurrences. An example of a WL
pattern in our notation is:

{name[1], phone[1], phone[2],
address{1]: {street[1], city[1], zip[1]1}}

The support of this pattern is the number of root
objects that contain at least name, two phones, and an
address, with the latter containing at least street,
city, zip. Given a particular semistructured instance
and a minimum support, WL’s algorithm has two steps.
First, it finds all paths with high support: the set
of such paths is called F;. The second step is an
adaptation of the standard apriory algorithm [2] in
which items are replaced by paths, and itemsets by
tree patterns (in WL’s setting each ordered set of
k paths uniquely corresponds to a pattern tree with
k leaves). The algorithm generates successively the
sets Fy, F3,..., Fg,..., where each Fj consists of sets
of k paths, whose associated pattern trees have high
support.

Storage-Generation Algorithimn. Our storage gen-
eration algorithm has five parameters, listed in Table 1.
It generates a relational storage with at most K tables,
each having at most A attributes, and with total disk
space at most S. We assume fixed-length records. C dis-
tinguishes between “small sets” and “collections”. An
attribute with less than C occurrences is a small set,
and the algorithm astempts to produce one column for
each member of the set. Attributes with C or more oc-
currences are represented by nested relations. Finally,
Supp is the minimum support, a parameter for the data-
mining algorithm, chosen and tuned by the database
administrator.

We define a type of pattern, called storage patterns,
that are different from WL’s patterns. A storage
pattern has the form F:B, where F is the prefix and
B the body. The prefix is a word 1;.1,... 1y, where the
labels 14,...,1x are either a (an attribute name) or -
(a wildcard similar to WL’s “?”). The last label, 1,
must be an attribute name. The body B has the form
{11 :By,...,1; : Bp}, where By, ..., B, are other bodies,
and each label is an indexed attribute a[i] (denoting i
occurrences of attribute a) or a[*] (denoting a nested
collection). An example of a pattern is:

Audit.taxpayer:{name[1], phone[2],
address[*] :{street[1], city[1]}}

Intuitively, this pattern is contained in all taxpayer
objects with at least a name, two phones, and C
addresses, the latter with streets and cities. Note that
phone[1] is missing: only the highest index occurs in
the pattern. The relationship between these patterns
and STORED mappings is formalized below.

Given a pattern P = F:B and a semistructured data
instance D, the pattern support of P is defined as follows.
Let o1,...,0, be all objects in D reachable from the
root by a path matching the prefix F. The support is
defined to be the number of objects o; which contain
the body B. Containment is defined as follows. First,
replace every occurrence of a label a[*] in B with
al[C]l. Assuming B = {1, : By,...,1; : By}, an object o
contains B iff for each label 1; of the form a[i] the
object has at least i outgoing edges labeled a, to objects
01,...,0; and each o; contains the pattern B;.

Queries on semistructured data have one or more
data patterns, which specify paths to match in the input
data (example queries are in Sec. 5). Qur algorithm
converts each query pattern into a data tree and
extends the data-mining algorithms to these new data
items. Any other conditions in the queries (other than
patterns) are ignored. Given the weight £ of some query
Q, each of its patterns is converted into £ occurrences of
the corresponding data tree. Since queries may contain
regular-path expressions, our data trees may have edges
labeled with regular-path expressions: the definition of
containment above is extended in an obvious way to the
case when o; contains regular-path expressions.

Given a query mix Qy, ..., Qx with weights £4,..., fy,
we define the guery support of a storage pattern P to be
the sum of all £f; for which P is contained in Q;. The
mized support of P is the sum of the data support and
the query support.

436

ALGORITHM: Automatic Storage Generation

INPUT: K, 4, 5, C, Supp, and query mix Q
OUTPUT: Set of relational STORED mappings
METHOD:

Step 1: Find all minimal prefixes
with data support >= Supp

Step 2: - Run the WL data mining algorithm
with the changes in the text.

- Let K’ = number of maximally
contained patterns found

Step 3: Select KO (<= K) patterns out of the K’

Step 4: For each of the KO patterns, select
the set of ‘‘required’’ attributes

Step 5: For each of the KO patterns with
required attributes, generate one or
more STORED relational queries.

Figure 4: Automatic Storage Generation Algorithm

We explain each step of the algorithm, which appears
in Fig. 4.

Step 1: Compute minimal path prefixes.
First, we generate all prefixes 1;.15...1y with support
> Supp. This requires a single pass through the data,
during which we construct a trie structure in memory
that encodes all prefixes in the data. Each trie node
uniquely corresponds to a prefix, and has only those
outgoing attributes a that were discovered in the data,
plus - (the wildcard). We start with the empty trie and
extend it as we traverse the data. Each trie node stores
the support for that prefix. Once a trie node reaches
minimal support Supp, we delete the tree underneath,
and do not further expand that node.

Each prefix with high support identifies the collection
of objects in the semistructured-data instance D that
become the root objects for the data-mining algorithm
in Step 2.

Step 2: Data mining. We use WL’s data
mining algorithm with the following changes. First,
we compute both the data support and the combined
support (data plus query support). The algorithm
is guided by the combined support, i.e., patterns are
grown as long as their combined support is large.
Second, we keep backpointers to subpatterns with high
data support; this information is used in Step 3. Recall
that WL’s algorithm generates a new set P of &k paths
in Fy by combining two sets of k — 1 paths in Fy,_;. We
store one backpointer in P to whichever of its parent
pattern has higher data support. This means some
non-maximal patterns in F_; cannot be deleted at the
end of phase k, which increases memory usage. The
increase, however, is not prohibitive, e.g., there will be
k additional sets retained for each set in Fj. Finally,
we terminate the algorithm either when the combined
support decreases below Supp or when k reaches A.

Step 3: Select KO patterns. From Step 2, we have
K’ maximally contained patterns, each with support
> Supp. Recall that WL’s algorithm also retains Fi,
the set of highly supported paths. Now we use a greedy

algorithm to select a subset of no more than K of the K’
patterns that best cover the paths in F;. We sort Fy
by the data support and start by picking any pattern
P; that covers (i.e., contains) paths in F} with highest
support. In general, we pick pattern Py such as to (a)
minimize the maximum overlap with Py,...,Px_1, and
(b) in case of ties, cover the paths with highest support
in Fy which is still uncovered. We stop when we cover all
paths in Fj or when k reaches K (the maximum number
of relations allowed).

Step 4: Select required attributes. For each
of the KO patterns P selected in Step 3, we have a
chain of backpointers to strictly smaller subpatterns,
P =R!,R?,...,R®, with increasing data support (with
R™ in F}). In Step 4, we choose some i for each pattern
so that the subpattern R* becomes the required part of
P. We attempt to choose a small i, i.e., a pattern with
the fewest attributes, because such a pattern will match
more semistructured objects in the mapping associated
to P.

Choosing a small i, however, will increase the number
of nulls and the overlap with the set of objects stored
in different relations, and therefore increase the total
disk space. For a given i, the disk space requirement
for P can be computed from the data supports. In Step
4, we initialize the i counter for each pattern to 1 and
increment them in a round-robin fashion, until we are
within the limit for the allowed disk space S. In addition,
we stop incrementing the i’s before two patterns end up
containing each other’s required part: we allow one to
contain the required part of the other, but then we will
stop reducing its required part.

Step 5: Generate STORED queries. Each
storage pattern P, with its required subpattern R, is
converted into one or more STORED queries. This is
pretty straightforward. For example, for the following
pattern/subpattern:

P = Audit.taxpayer:{name[1], phone[2],
address[*] : {street[1], city[1]}}
R = Audit.taxpayer:{name[1], phone[1i]l}

we associate the following STORED queries:

M1 = FROM Audit.taxpayer:$X
{ name:$N, phone:$P1,
OPT { phone:$P2 }}
STORE R1($X, $N, $P1, $P2)
M2 = FROM Audit.taxpayer:$X.address:$Y
{ street $S, city $C}
KEY $Y
STORE R2($X, $Y, $5, $C)

A collection attribute like address[*] results either in
a nested relation (if the RDBMS supports it), or in a
separate relation: in the example we assumed the latter,
hence the separate relation R2.

4 Generating Overflow Mappings

In Sec. 3, we showed how to generate automatically the
relational mapping from a data instance. Next we show
how to construct the accompanying overflow mapping,
which ensures that the storage is lossless.

When nothing is known about the semistructured
data overflow queries are always needed and tend to

437

be complex. In practice, we found that specifying
overflow queries is much simpler given information
about the data’s structure. Such information is
sometimes available, for instance, the structure of
XML data is specified by a DTD. Hence we discuss
overflow mappings in the context of semistructured data
schemas.
Consider the schema:

S1 = SCHEMA {Audit :
{(taxpayer: {name: String,
address: String,
(address: String)?,
(taxreturn: S52)%}
)*}}
S2 = SCHEMA {year: String, amount: String,

(extension:String)?}

It specifies that the data has arbitrarily many
taxpayers, each with one name, one or two addresses,
and arbitrarily many taxreturns. The latter are of
“type” S2, meaning that they have a year, an amount,
and zero or one extensions. Multiple types can be
defined and recursion is permitted. As this example
illustrates, schemas may contain regular expressions,
with the usual operators (alternation ” | 7, Kleene star
"%" zero-or-one "?", concatenation ","), like in DTD’s.
However, unlike DTDs, these regular expressions are
unordered [9].

Schemas may also contain attribute variables, and
simple inequalities may be imposed on these variables.
For example:

83 = SCHEMA {Audit: {(taxpayer:
{ name: String, address:
{ street: String, zip: int, ($K: Any)*},
($L: Any)*})*}}
WHERE $K <> zip, $L not in {name, address}
Any = SCHEMA {($P: Any)=*}

Here taxpayers can have exactly one name and
address, and any number of additional attributes
different from name, address. Note that Any is
a schema for any semistructured data. This is of
particular interest for us: when nothing is known about
the data, we assume that the schema is Any.

Schemas like those presented here lead quickly to
high complexity [3], although much of their power is
not needed in practice. For instance, they allow us to
define useless types like S4 = SCHEMA {name:String,
(office:String,office:String)*}, which specifies
that a person has an even number of offices. We
consider here restricted schemas. A restricted schema
is a schema in which every regular expression is a
concatenation of expressions of the form (a:T), or
(a:T)7?, or (a:T)*. The schemas S1, S2, S3, Any,
defined above, are restricted schemas, but S4 is not.
Every schema S can be converted into a restricted
schema S, by performing the following transformations
repeatedly (here p, p’,... denote pairs (a:S),

(a’:8°),...):

(p | p?’) ->p?, p'? (p,p’)* =-> p*,p’*
(p,p’) 7 -> p?, p'? (p*)* -> p*
(p*) ? ~-> p* (p7)* -> p*
(p?) 7 -> p?

ALGORITHM Automatic Overflow Generation

INPUT Relational mapping M, schema S
OUTPUT Overflow mapping O
METHOD

Step 1: for each attribute a in S
construct set of databases Da
for each D € Da

compute M on D

if a is not stored by M

then generate overflow mapping

Step 2:

Figure 5: Generation of overflow mappings

In the remainder of this section, we use an abbre-
viated notation for restricted schemas, indicating the
attributes’ ranges. For example, schema S1 is denoted:

St=Audit[1] : { taxpayer[0,*] :
{name[1], address[1,2],

taxreturn{0,*] :{year[1], amount[1], extension[0,1]1}}}

Eachrangeis [1i,j], with i a number and j a number
or *. When i=j, the range is abbreviated by [i].

We describe next the algorithm for overflow genera-
tion, for a given relational STORED mapping M, and a
restricted schema S. For presentation purposes we as-
sume S is non-recursive, has no variables, and each at-
tribute occurs at most once in S. Thus S is equivalent
to a tree, with each attribute a occurring exactly once,
labeled with a range denoted range(a). We will relax
these assumptions later.

We start by indexing all attribute names in M, as in
Sec. 2. For each attribute name a in M, define high(a)
to be its maximum index: when a is not indexed
(occurs before the key variable), then high(a) = 0.
We illustrate our algorithm on the following STORED

mapping:

M = FROM Audit.taxpayer: $X
{ name[1]:$N, address([1]:$A,
OPT taxreturn[1]:
year[1]: $Y, amount[1]: $A, extension{1]: $E}
STORE R($X, $N, $4, $Y, $A, $E)

M’ = FROM Audit.taxpayer:$X.taxreturn:$Z
{ year[1]: $Y, amount[1]: $A}
KEY $Y
STORE Q($X, $Z, $Y, $A)

We have:

high(Audit)=0, high(taxpayer)=0, high(name)=1,
high(address)=1, high(taxreturn)=1, high(year)=i,
high(amount)=1, high(extension)=1

The algorithm is shown in Fig. 5 and is illustrated in
Fig. 6 on the schema S1 and the relational STORED
queries M, M’. Step 1 constructs a set D, of canonical
databases, for each attribute a in S. Intuitively these
databases “challenge” M to prove that it can store the
attribute a. D, is obtained by recursively traversing
the tree associated to S, and creating for each attribute
b several copies, labeled b[1], b[2], ., blk], and
possibly b[*], as follows. Let range(b) = [i,jl:

e When b # a and b is not an ancestor of a in S, then
we create i copies b[1], b[2], ., bli].

438

Audit(1} Auditf1] Audit[1]

taxpayer[*)

m nmc[%

D
address

taxpayer{*} taxpayerf*)

ss(1] nm@

Audit(1]

s(2]

Audit[1]

taxpayer([*]

taxpayer[*}

name[]/m-"e ssf1

taxreturn(*]

amount extension

Figure 6: Canonical Databases for Schema S1

e When b = a, or b is an ancestor of a in S, then we
choose a certain k and create copies labeled b[1],
b[2], ., b[kl. Each value of k results in a
different database in D,. Let high(b) = m. When
j=+ then k is choosen to be each of i, i+1, ...,
m, *. When j is a number, then k is choosen to be
each of 1, i+1, ., min(j, m+1).

Fig. 6 depicts the construction of D, for most
attributes a (the other attributes, Audit, taxpayer,
taxreturn, are similar).

In Step 2, the algorithm evaluates M on each canonical
database D € D,, and checks whether M stores the value
of every a attribute: if not, then an overflow query
is generated. In Fig. 6, this happens in two cases:
address[2] in Dagqress and extension[1] in Deytension
(both edges are emboldened). The corresponding
overflow queries are generated from D in an obvious
fashion. In our example the two queries are:

01 = FROM Audit.taxpayer:$X
{ name:$N, address:$A, $L:.}
WHERE $L = address
OVERFLOW G1($L)

02 = FROM Audit.taxpayer:$X

{ name:$N, address:$A, taxreturn:$T,
taxreturn: { year:$Y, amount:$4, $L:_ }}

WHERE $L = extension

OVERFLOW G2($L)

We address now the restrictions in our algorithm.
First, recursive types in S are handled by unfolding.
Although, in general, this results in an infinite tree,
only a finite portion needs to be considered, because
the queries in M are non-recursive (have no regular-path
expressions). Second, label variables $L in S will occur
as constants in the canonical databases. Conceptually,
$L can be one of the attribute constants occurring in the

ALGORITHM Query rewriting

INPUT Stored mapping M, user query Q

QUTPUT Set of rewritten queries Q1, ..., Qk
over the mixed schema

METHOD
Step 1 (preprocessing)
From M, construct inversion rules I
From I, construct canonical data instance D

Step 2 Compute Q on D, ignoring the WHERE conditions

Step 3 For each answer, compute all minimal covers
of the answer with inversion rules

Step 4 For each cover generate a query Qi
by adding WHERE conditions from (, from
gluing the inversion rules, and from I

Figure 7: Rewriting algorithm

query and schema, or anything else, and the algorithm
takes this into account when evaluating M. Finally,
repeated attributes in the schema are handled by
replacing them with the concatenation of all attributes
above them.

5 Query and Update Rewriting

Given a STORED mapping, the system accepts queries
and updates over the semistructured data and rewrites
them into queries and updates over the relational store,
and the overflow graphs. This section describes the
rewriting algorithm. We start first with query rewriting,
then address update rewriting.

The algorithm appears in Fig. 7. We explain it below
and illustrate it on the STORED mapping M:

Ma = FROM Audit.taxpayer: $X
{ name[1] : {firstname[1] : $FN,
lastname[1] : $LN},
addr[1] : {street([1] : $S,
city[1] : $CI,
OPT{taxamount[1] : $T}}
STORE Taxpayer($X, $FN, $LN, $S, $C, $T)
Mb = FROM Audit.taxpayer: $X
{ addr[1] : {street(1] : $S,
city[1] : $C, 3L : _}}
OVERFLOW G1($L)
Mc = FROM Audit.taxpayer: $X
{ name(1] : $N,
O0PT{taxamount[1] : $T},
SL @ _
OVERFLOW G2($L)

Our example query Q returns the names of taxpay-
ers whose taxamount is less than 10% of their in-
come on some W4 form and whose address contains
"Philadelphia':

Q = SELECT $N
FROM Audit.taxpayer:$X
{ name : $N, taxamount:$T,
w4form.income:$I, address.*:$A}
WHERE $T < 0.1 * $I, $A = "Philadelphia"

Note that the query returns a set of name oids, each
with firstname and lastname.

The queries we consider have patterns with regular
expressions (in the FROM clause), and arbitrary con-
ditions in the WHERE clause (i.e., joins are allowed).

439

Ia0 = FROM Taxpayer($X, $FN, $LN, $S, $C, $T)
CONSTRUCT Audit : S_Audit()
{taxpayer: S_taxpayer($X)

{ name : S_name_1($X)
{firstname : S_firstname_1($X), $FN,
lastname : S_lastname_1($X) $LN},
addr : S_addr_1($X)
{street : S_street_1($X) $S,

city : S_city_1($X) $C}}}

Ial = FROM Taxpayer($X, $FN, $LN, $S, $C, $T)
WHERE $T != null
CONSTRUCT Audit : S_Audit()
{taxpayer: S_taxpayer($X)
{ taxamount : S_taxamount_1($X) $T}}

Ib = FROM Gl.roots($X), Gl.edges($X,$L,$Y)
CONSTRUCT Audit : S_Audit()
{taxpayer: S_taxpayer($X)

{addr : S_addr_1($X) {$L : $Y}}}

Ic = FROM G2.roots($X), G2.edges($X, $K, $2)
WHERE $K !'= taxamount
CONSTRUCT Audit : S_Audit()
{taxpayer: S_taxpayer($X) {$K : $Z}}

Figure 8: Inversion rules for query M.

These are common features of all query languages for
semistructured data [17, 4, 7, 6].

Step 1 is a preprocessing step and starts by construct-
ing inversion rules for the queries in M. This step is an
adaptation from [14], where inversion rules were first
used in query rewriting. In our context, the rules are
generated internally by the system and are not intended
for the user. We describe them in a concrete syntax
for presentation purposes only. Each rule consists of a
FROM, WHERE, and CONSTRUCT clause. The first two are
as before; the CONSTRUCT clause contains a tree con-
structor, in which node oids are generated by Skolem
Functions which, in turn, correspond to attribute names
(including indexes). For our example, the inversion
rules are shown in Fig. 8, and the Skolem functions
are S_Audit, S_taxpayer, S.name_l, etc. For each re-
lational query in M, one inversion rule is created for the
required subpattern, and one inversion rule for each OPT
subpattern. For each overflow query, a single inversion
rule is created for its required subpattern (and OPT sub-
patterns are ignored). Thus, Ia0 and Ial are created
for Ma, and Ib and Ic are created from Mb and Mc re-
spectively. As in [14], inversion rules have the property
that they reconstruct the entire semistructured data.

Step 1 continues by constructing a single canonical
data instance D from the inversion rules. This is achived
by “fusing” all symbolic objects in the CONSTRUCT
clauses of all inversion rules (Fig. 9). Its nodes are
labeled with Skolem function names or overflow graph
names, and edges are either unlabeled (when the target
is an overflow graph) or labeled with an attribute name.
In addition, edges are annotated with the name of the
inversion rule (e.g. [Ia0], [Iall, [Ib], [Icl).

Steps 2 and 3 do the actual rewriting (this is related
to query decomposition and algebraic optimization [15]
for the Mediator Specification Language, MSL). Step 2
is a simple computation of the query on D, during which
the conditions in the WHERE clause are not checked, and

Figure 9: Canonical data instance D. The dotted edge
is an extension, used for updates.

unlabeled edges in D may match any attribute in the
query. For our example, the result of the evaluation is:

$X $N $T 81 $A
S_taxpayer | Sname._1 | S-taxamount_1 | G2 | S street_I
S_taxpayer | S.name.-1 | S_taxamount_1 | G2 S_city-1
S-taxpayer | Scname.l | S_taxamount.l | G2 Gl
S_taxpayer | S_name.1 G2 G2 | S_street-1
S_taxpayer | S_name._1 G2 G2 S_city-1
S_taxpayer | Sname.l G2 G2 Gl
S_taxpayer G2 S_taxamount-1 | G2 | S_street.1
S_taxpayer G2 S-taxamount_-1 | G2 S_city-1
S_taxpayer G2 S_taxamount_1 | G2 G1
S_taxpayer G2 G2 G2 | S.street-1
S_taxpayer G2 G2 G2 S_city-1
S_taxpayer G2 G2 G2 Gl

Step 3 considers each row in the answer relation, and
finds all minimal covers of the corresponding subgraph
of D by the inversion rules. Consider the first row
above, the edges of the corresponding subgraph of D
are highlighted in Fig. 9, and the unique minimal cover
is { Ia0, Ial, Ic}

Finally, for each minimal cover, Step 4 constructs a
query over the mixed schema. The query is essentially
obtained by joining all inversion rules in the cover
(which results in new WHERE conditions), and adding
conditions from the original query Q. For our example,
the resulting query is:

SELECT S_name($X)
{ firstname : S_firstname($X) $FN, // reconstruct
lastname : S_lastname($X) $LN } // name
FROM Taxpayer($X, $FN, $LN, $S, $C, $T), // Ia0, Ial
G2.roots($X’), $X’.wdaform.income $I’ // Ic
WHERE $T '= null, // from Ial
$X = $X° // glue Ial with Ic at S_taxpayer
$T < 0.1 * $I, $S = "Philadelphia" // from Q

This query checks "Philadelphia" in the street
position: another query would check for it in the city
position. The query reconstructs the name using Skolem
functions. Its FROM clause contains mixed relational
goals (like Taxpayer(...)) with semistructured data
patterns on the overflow graphs. The WHERE clause may
have join conditions, like $X = $X°.

Updates. We consider a strict subset of the Lorel’s [1]
update statements:

UPDATE <object-selector> += <object-expression>
UPDATE <object-selector> := <value-expression>

440

In both statements <object-selector> is a query
whose result must be a single object identifier o,
and <object-expression> is a constant expression
denoting a complex-value object o’ (syntax like in
Fig. 2). The first statement adds all (attribute,
value) pairs of o’ to o (to the end of the order). The
second statement replaces the value of the atomic object
o with <value-expression>. We describe the rewriting
of the first update statement; the second is easier and
handled similarly.

Update rewriting has two steps. First, <object-selector>

is evaluated on the canonical database D. We illustrate
with the STORED mapping M above and the following
update:

UPDATE (SELECT $X
FROM Audit.taxpayer:$X { name.lastname:$N }
WHERE $N = “Smith") += {taxamount: "100000"}

Referring to Fig. 9, there are two results in Step
1: ($X = S_taxpayer, $N = S_lastname), and ($X =
S_taxpayer, $N = G2). We illustrate in the sequel
with the first result only.

In the second step, for each row in the result, we
extend D with <object-expression>: this is the dotted
edge in Fig. 9. Now we execute every STORED query in
M on the extended object, but only consider results that
use at least some edge of the extension (the “dotted”
edges). For each such result, we generate one update
instruction on the mixed schema. We illustrate using
queries Ma and Mc. One of the bindings of Ma’s variables
is:
$X = S_taxpayer, $FN = S_firstname,
$LN = S_lasname_1, $S = S_street_1, $C = S.city_1

This corresponds to the following update:

UPDATE Taxpayer($X, $FN, $LN, $S, $C, $T)
SET $T := 100000
WHERE $LN="Smith"

When evaluating Mc, the order of the two taxamount
attributes in Fig. 9 matters. There are two bindings
for Mc: we consider the one that binds $L to the new
taxamount, which meand taxamount[1] (in Mc) must
have been bound to the first edge. This translates into
the update:

UPDATE G2.roots($X), G2.edges($X,taxamount,100000)
WHERE Taxpayer($X, $FN, $LN, $S, $C, $T),
$LN="Smith", $T != null

6 Preliminary Experiments

We ran some preliminary experiments with our auto-
matic STORED generation algorithm. Our data set is
DBLP, the popular database bibliography Web site?,
a collection of XML-like files. It does not have an
explicit structure. Each XML file corresponds to one
publication: a proceedings paper, a journal article, a
book, a PhD thesis, etc. The directory structure cap-
tures alot of information. For example, the top level
contains books, conf, journals, ms, persons, and
phd directories. Under conf, there is one subdirectory

4http://wuw.informatik.uni—trier.de/'ley/db/about/instr.html

FROM Bib.inproceedings $X

{ author: $A1, OPT{author: $A2, OPT{author: $A3})},
OPT{title: $T}, OPT{pages: $PP}, OPT{year: $V},
OPT{booktitle: $B}, OPT{url: $U}}

STORE R1($A1, $A2, $A3, $T, $PP, %Y, $B, $U)

FROM Bib.article $X

{ author :$A,
OPT{title: $T}, OPT{pages: $PP}, OPT{year: $Y},
OPT{volume: $V}, OPT{journal: $J}, OPT{number: $N},
OPT{url: $U}}

STORE R2($A, $T, $PP, $Y, $V, $J, ¢N, SO

FROM Bib.article $X

{ author: $A1, author: $A2, OPT{author: $A3},
O0PT{pages: $PP}, OPT{year: $Y}, OPT{volume: $V},
OPT{number: $N}}}

STORE R3($A1, $A2, $A3, $PP, $Y, $V, $N)

Figure 10: STORED query for A=8

for each conference (255 in total), etc. The directory
information, however, can be fully recovered from the
publications themselves. A typical entry is:

<inproceedings key="Abiteboul97">

<author>Serge Abiteboul</author>,
<title>Querying Semi-Structured Data.</title>,
<pages>1-18</pages>,

<year>1997</year>,

<booktitle>ICDT</booktitle>,
<url>db/conf/icdt/icdt97.html#Abiteboul97</url>
</inproceedings>

The publication data is irregular: some entries have
multiple author’s, optional url’s, or many citation
attributes; a few have unfamiliar attributes. Most at-
tributes have scalar values, but some have structure.
There are about 92,000 publications that, when repre-
sented as a semistructured data, have 861,000 edges.
The total disk space is 95M.

We decided to ignore the directory structure and
moved all files in one directory. We chose a minimum
support of 8500, which is 8.6%. Only articles
and inproceedings had minimum support (books are
only 307, phd thesis 67). In a separate experiment
(not reported for lack of space), we also considered
a query mix, in which one query with high weight
referred to books. In that experiment, books did
have minimum support, and the system generated a
relation for storing book objects. We found no collection
attributes; citation was a good candidate, but it did
not have high enough support. We also found no nested
attributes with high enough support.

Fig. 10 contains an example of one generated STORED
mapping with A=8. There were only 8 attributes of high
support for inproceedings, and all 8 in combination
still had high support: hence a single STORED query
maps inproceedings. There were more than 8 at-
tributes of high support for article, therefore these ob-
jects are split into two relations: R2, tries to cover most
objects, by requiring only the author attribute, while
R3, requires two authors, giving it the best chance to
store objects not stored in R2.

We ran two sets of experiments: one that varied the
maximum number of attributes per relation, A, and one

441

{ A 3 [4 [5 [6 [7] 8 [9]
Querles 9 9 5 4 4 3 3
Coverage (%) | 91 94 94 90 [92 1 90 90
Space (M) | 1.1 | 1.60 [115 | 1 | 1 | 09 | 12
Nulls (k) 23 116 112 | 123 | 91 | 106 | 201

[S [O05M[0.78M [0.93M | 1.0M |

Nulls 2.5k 40k 106k 106k
Coverage | 59% 7% 90% 90%

Table 2: Effect of varying maximum number of
attributes per relation and maximum disk space.

that varied total disk space allocated to the relations,
S. The results are shown in Table 2.

We varied A from 3 to 9 (since there were 10 attributes
of high support). We assessed the quality by the
algorithm by measuring the number of queries, the data
coverage, and the number of nulls. Queries is the
total number of relational STORED queries generated
(hence, relations). Coverage is the percentage of the
861k edges that are stored in the relations. Space is the
estimated disk space required by the relational storage
(assuming fixed-length records). Nulls represent the
amount of space occupied by nulls.

The first table shows that data fragmentation directly
depends on the maximum relation arity., When A is
small, objects need to be split across many relations
(then, joined at query time). On the other hand, space
is better utilized for small A’s, because the number of
null entries is smaller. The coverage (total number
of edges stored in the relational part) is consistent,
at approximately 90%. The actual overflow graphs
would be larger than 10% of the data, because some
overlap would exist between the overflow graphs and
the relational store.

The second set of results show a clear degradation of
the coverage when disk space for the relations is limited.
When S is small, the algorithm generates more required
attributes (Sec. 3): this decrease the number of nulls
and to improve utilization of the relations, but covers
fewer objects.

In summary, under reasonable assumptions, the gen-
erated STORED queries can cover a large percentage of
the data, and they do this by exploiting the regularities
found in the DBPL data instance.

7 Related Work and Discussion

Data clustering is the problem of grouping a large num-
ber of points in R? into sets (clusters), where the dis-
tances between any two points in the same cluster is
small. BIRCH [22] produces good clusters in just a few
passes over a large data set. We found the storage-
generation problem hard to model as a data clustering
problem, because objects with widely different struc-
tures may be well stored together. Nestorov, Abiteboul,
and Motwani [13] describe a clustering-based algorithm
which, when given a semistructured data, extracts a
schema for that data.

Theodoratos and Sellis [18] describe a warehouse-
configuration algorithm that when given a relational

database instance and a set of queries, generates an
optimal set of views that best support the query set.
This is related to the storage-generation problem, where
we search for relational views over semistructured data.
In our problem, however, the input is a data instance
instead of a query set, and our “views” must be lossless.

Tsatalos et al. [19] pioneered the idea of achieving
physical data independence by means of relational
views. STORED follows a similar philosophy in
achieving independence from the underlying relational
storage.

Linguistically, STORED is closely related to query
languages for semistructured data, such as Lorel [17, 1],
UnQL [4], MSL [15], and StruQL [7, 6], all of which
provide path expressions for matching attribute paths
in semistructured data. Due to its unique requirements,
STORED is strictly weaker than these languages.

Object-oriented databases [5] can store SGML and
XML documents without explicitly storing their schema,
but they require a DTD to derive an object-oriented
schema. This can be an effective storage mechanism for
XML data when the DTD is known, but in some appli-
cations, a DTD may not exist. Also, the technique can
increase data fragmentation, because new classes and
objects must be created to convert a DTD into a class
hierarchy [10, 12]. Our technique is complementary: it
does not require a DTD, and it uses a RDBMS instead
of an ODBMS.

Wang and Li {21] extended data-mining techniques to
semistructured data. Their algorithm finds “interesting
patterns”, i.e., subtrees with high support. Data mining
is a good foundation for the STORED generation
algorithm, although we must search for more complex
patterns and attempt to cover most of the data. If
applied directly, Wang and Li’s patterns would generate
a simple relational storage that covers only a small
fragment of the data.

Storing semistructured data in relations is an ambi-
tious goal, because the two models are apparently in-
compatible. Our hypothesis is that many semistruc-
tured data sources have a regular structure, with few
outliers: this structure should be exploited when stor-
ing the data. Our preliminary experiments using the
DBLP bibliography database support this hypothesis:
in particular, DBLP data is quite regular, even if some
outliers escape normal classification.

References

{1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel query language for semistructured
data. International Journal on Digital Libraries, 1(1):68-
88, April 1997.

R. Agrawal, T. Imielinski, and A. Swami. Mining association
rules between sets of items in large databases. In Proceedings
of ACM SIGMOD Conference on Management of Data,
pages 207-216, Washington, DC, 1993.

Catriel Beeri and Tova Milo. Schemas for integration and
translation of structured and semi-structured data. In
Proceedings of the International Conference on Database
Theory, 1999. to appear.

(2]

Peter Buneman, Susan Davidson, Gerd Hillebrand, and
Dan Suciu. A query language and optimization techniques
for unstructured data. In Proceedings of ACM-SIGMOD
International Conference on Management of Data, pages
505-516, 1996.

442

[5] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl.
From structured documents to novel query facilities. In
Richard Snodgrass and Marianne Winslett, editors, Proceed-
ings of 1994 ACM SIGMOD International Conference on
Management of Data, Minneapolis, Minnesota, May 1994.

[6] Mary Fernandez, Daniela Florescu, Jaewoo Kang, Alon
Levy, and Dan Suciu. Catching the boat with Strudel: expe-
rience with a web-site management system. In Proceedings of
ACM-SIGMOD International Conference on Management

of Data, 1998.

Mary Fernandez, Daniela Florescu, Alon Levy, and Dan
Suciu. A query language for a web-site management system.
SIGMOD Record, 26(3):4-11, September 1997.

M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. W. H. Freeman,
San Francisco, 1979.

S. Ginsburg. The Mathematical Theory of Contezt-Free
Languages. McGraw-Hill, 1966.

K.Bohm, K.Aberer, E.Neuhold, and X.Yang. Struc-
tured document storage and refined declarative and naviga-
tional access mechanisms in HyperStorM. VLDB Journal,
6(4):296-311, November 1997.

Alon Levy, Alberto Mendelzon, Yehoshua Sagiv, and Divesh
Srivastava. Answering queries using views. In Proceedings
of the 14th Symposium on Principles of Database Systems,
San Jose, CA, June 1995.

M.Volz, K.Aberer, and K.Béhm. Applying a flexible
OODBMS-IRS-Coupling to structured document handling.
In Internaltional Conference on Data Engineering, February
1996.

S. Nestorov, S. Abiteboul, and R. Motwani. Extracting
schema from semistructured data. In Proceedings of the
ACM Conference on Management of Data, pages 295-306,
1998.

Michael R. Genesereth Oliver M. Duschka. Answering
recursive queries using views. In Proceedings of the ACM
Symposium on Principles of Database Systems, pages 109-
116, 1997.

Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina.
Object fusion in mediator systems. In Proceedings of Very
Large Data Bases, pages 413-424, September 1996.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom.
Object exchange across heterogeneous information sources.
In IEEE International Conference on Data Engineering,
pages 251-260, March 1995.

D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and
J. Widom. Querying semistructure heterogeneous informa-
tion. In International Conference on Deductive and Object
Oriented Databases, pages 319-344, 1995.

Dimitri Theodoratos and Timos Sellis. Data warehouse con-
figuration. In Proceedings of the International Conference
on Very Large Data Bases, pages 126-135, Athens, Greece,
August 1997.

O. Tsatalos, M. Solomon, and Y. Ioannidis. The GMAP: a
vesatile tool for physical data independence. In Proc. 20th
International VLDB Conference, 1994.

Jeffrey D. Ullman. Principles of Database and Knowledge-
base Systems II: The New Technologies. Computer Science
Press, Rockvill, MD 20850, 1989.

Ke Wang and Huiqing Liu. Discovering typical structures
of documents: a road map approach. In ACM SIGIR
Conference on Research and Development in Information
Retrieval, August 1998.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny.
BIRCH: an efficient data clustering method for very large
databases. In Proceedings of ACM Conference on Manage-
ment of Data, pages 103-114, 1996.

(11

(12]

(13]

(14]

(18]

(16]

17)

[19]

20]

[21]

(22]

