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Abstract 
Systems for managing and querying semistructured-data 
sources often store data in proprietary object repositories 
or in a tagged-text format. We describe a technique that 
can use relational database management systems to store 
and manage semistructured data. Our technique relies on 
a mapping between the semistructured data model and the 
relational data model, expressed in a query language called 
STORED. When a semistrcutured data instance is given, 
a STORED mapping can be generated automatically us- 
ing data-mining techniques. We are interested in applying 
STORED to XML data, which is an instance of semistruc- 
tured data. We show how a document-type-descriptor 
(DTD), when present, can be exploited to further improve 
performance. 

1 Introduction 
Semistructured data is becoming ubiquitous. The emer- 
gence of XML, which is a data format for semistruc- 
tured data, will increase the availability of semistruc- 
tured data. Such data is best defined as a graph-based, 
self-describing object instance model. Data consists of 
a collection of objects; each object is either atomic (e.g., 
integer, string, image, audio, video), or complex (i.e., a 
set of (attribute, object) pairs). Since attribute names 
are stored with the data, the data is self-describing. 

Existing systems for managing and querying semistruc- 
tured data sources store the schema with the data. 
Lore1 [17] and Tsimmis [16] store their data as graphs; 
the schema is stored as attributes labeling the graph’s 
edges. Strudel [6] stores the data externally as struc- 
tured text, and internally as a graph. XML often 
is stored in proprietary object repositories or in text 
files, in which tags encode the schema. Storing the 
schema with the data provides the flexibility required 
by semistructured data. In data integration, for exam- 
ple, data from new sources can be loaded immediately, 
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regardless of its structure, 
ture ‘of old sources can be 
flexibility, however, incurs 
schema is replicated at each _. ._. 

and changes to the struc- 
handled seamlessly. This 
a space cost, because the 
data item, and a time cost, 

because of the additional processing of the replicated 
schema. A more fundamental disadvantage however, is 
that we cannot use a commercial RDBMS for managing 
the semistructured data. 

We describe a technique for using an RDBMS to 
store, query and manage semistructured data. Semistruc- 
tured data can always be stored as a ternary relation, 
since the data is an edge-labeled graph, but this is no 
better than storing the schema with the data. Instead, 
our technique relies on an aggressive mapping from 
the semistructured data model to the relational model. 
The mapping is expressed in STORED (Semistructured 
TO Relational Data), a declarative query language. A 
relational schema is chosen, then the STORED map- 
ping translates the semistructured data instance into 
that schema. The mapping is always lossless: parts of 
the semistructured data that do not fit the schema are 
stored in an “overflow” graph. 

We expect this technique to be used (1) to store 
and manage efficiently existing semistructured data 
sources, and (2) to convert relational sources into a 
semistructured format, such as XML. 

In the first application, the semistructured-data in- 
stance exists, e.g., it might be a large XML file. The 
main issue is generating the relational schema and the 
STORED mapping automatically from patterns discov- 
ered in the data instance. Subsequently, queries and up- 
dates over the semistructured view are automatically 
rewritten into queries and updates over the relational 
store. If some query mix is known in advance, it may 
be used during the generation phase. As the data or 
the query mix changes, the performance of the rela- 
tional storage may degrade, and a new mapping should 
be generated (and the relational data reorganized). In 
the second application, a relational data source is ex- 
ported in a semistructured view, e.g., in an XML view. 
In this case, the STORED mapping is defined by the 
application writer. This application is easier than the 
first, because the mapping need not be generated au- 
tomatically. We expect this application will become 
more important as information providers export data 
in XML. 

Given a semistructured data instance, we have to gen- 
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erate a “good” relational schema and STORED map- 
ping to that schema. The meaning of “good” depends 
on the application, but usually includes minimizing 
disk space, reducing data fragmentation, and satisfy- 
ing constraints of the RDBMS (e.g., maximum number 
of attributes per relation). When a query mix on the 
semistructured data iis known, a “good” relational stor- 
age reduces the weighted cost of those queries. Hence, 
this can be modeled as a cost optimization problem. 
Unlike other optimization problems (of query plans [20] 
or data warehouse design [18]), our input is the data in- 
stance, not; a set of queries’. This problem is NP-hard 
in the size of the data. For that reason, we did not 
pursue the cost bases approach, but instead developed 
a heuristic algorithm. Wang and Li [21] have described 
a data-mining algorithm for semistructured data, and 
we adapt their algorithm to our problem. The result of 
the data-mining phase is used to produce a reasonable 
relational schema and STORED mapping. 

Given the relational mapping of the STORED query, 
the system automatically generates the overflow map- 
ping necessary to ensure that any semistructured in- 
stance is stored losslessly. This part of the STORED 
mapping specifies which objects or object parts are 
stored in the overflow graph. The mapping must be 
lossless for any data instance, because we support up- 
dates, which are pro:pagated to the relational store or 
the overflow graph. These overflow mappings can be un- 
necessarily conservative; for XML data, we show that a 
DTD can be used to simplify the overflow mappings. 

Given the complete STORED mapping, our system 
accepts queries and updates over the semistructured 
source and rewrites them into queries and updates 
on the relational source. Rewriting of relational or 
datalog queries is a well-understood problem [ll, 141. 
Since STORED is a new query language with novel 
features, we revisit query rewriting. We show that 
arbitrary queries on semistructured data, with regular 
expressions and tree-like patterns, can be rewritten in 
terms of STORED mappings. Updates are important 
as well. We show tha,t insertions in the semistructured 
data can be automatically rewritten as insertions into 
the relational and overflow stores. 

This paper makes the following contributions: 

STORED, a declarative language for specifying stor- 
age mappings from the semistructured-data model 
to the relational model plus overflow graphs. 

A schema-generation algorithm, which constructs 
a relational schema and STORED mappings for a 
semistructured data instance and, possibly, a query 
mix. 

An algorithm for automatic generation of STORED 
overflow mappings for a given relational mapping, 
which can exploit a DTD. 

A query- and an update-rewriting algorithm. 

‘We may also consider as input a query mix, but that size is 
negligible compared to the data. 

Audit 

Figure 1: An instance of semistructured data. Values 
and object identifiers are omitted. 

Audit: .%ol 
(taxpayer: $024 

{name : &041 “Gluschko”, 
address : &034 {street : 0105 “Tyuratam”, 

appartment : 60623 “2C” 
zip : $121 “07099’9 

audited : to46 “10/12/63”, 
taxamount : %047 12332). 

taxpayer : $021 
{name : $0132 “Kosberg”, 

address : &025 {street : $427 “Tyuratam”, 
number : 8928 206, 
zip : %121 “92443”) 

audited : lo46 “11/l/68”, 
audited : $046 “10/12/77”, 
taxamount : 80283 0, 
taxevasion : %0632 “likely”) 

taxpayer : $020 
{name : 00132 “Korolev” 

address : 80253 “BaikoAur, Russia”, 
audited : 8046 “10/12/86”, 
taxamount : %0283 0, 
taxevasion : $0632 “likelv”) 

I - 

company : %026 
{name : Po623 “Rocket Propulsion Inc.“, 

owner : %024) 
3 

Figure 2: Textual representation of data 

Example Mapping. Our semistructured model is an 
ordered version of the OEM model [16]. Data consists 
of a collection of objects, in which each object is either 
complex or atomic. A complex object is an ordered set 
of (attribute, object) pairs, and an atomic object 
is an atomic value of type int, string, video, etc. 
Hence, data is a graph, with edges labeled by attributes 
and some leaves labeled with atomic values. Data is 
exchanged in a text representation: the data graph in 
Fig. 1 is represented textually in Fig. 2. The order of 
an object’s attributes is the only difference from the 
OEM model, and we use the order only when storing 
the data. Any order will do; it can be the order in the 
text representation or obtained in some other way. 

The text representation specifies the data in a tree- 
like format. To specify arbitrary graphs, we write 
references to object identifiers, e.g., the value of the 
Audit. company. owner attribute in Fig. 2 is the object 
&024. In this paper, we consider the data to be a 
tree. Object identifiers in the text representation. are 
optional. If no object identifier is specified, an object 
is assigned a unique identifier automatically. These 
assumptions are consistent with XML. 
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Taxpayer 1 
oid name street no apt zip audit.1 audit2 taxamount taxevasion 
024 Gluschko Tyurat am 2c 07099 10/12/63 12332 
021 

Taxpayer2 Company 
oid name address 1 audited 1 taxamount 1 taxevasion 
020 1 Korolev 1 Baikonur ( 10/12/86 1 0 1 likely Rocket Propulsion Inc. 

The following is an example of the kind of mapping 
to a relational schema on which we base our technique. 
One choice of a relational schema and its correspond- 
ing instance is in Fig. 3. We separate objects by their 
“types” : taxpayers and companies are stored sepa- 
rately. We separate taxpayers with a complex address 
from those with a string-valued address. Even af- 
ter this decomposition, objects are not uniform: there 
are many nulls. Table taxpayer1 has two attributes 
audit 1 and audit2 to accommodate objects with two 
occurrences of the audit attribute. Most object identi- 
fiers from the semistructured data are omitted. The ac- 
tual “mapping” is not explicitly defined, but implied by 
the choice of attribute and table names. For instance, 
the path Audit. taxpayer .name is mapped to both 
name in Taxpayer1 and name in Taxpayer2, and the 
path Audit. taxpayer. audited is mapped to audit1 
and audit2 in Taxpayerl, and to audit in Taxpayer2. 
Data like that in Fig. 3 can be managed by any RDBMS. 
Unlike semistructured data, the schema is not stored 
with the data. Of course, this choice is not unique or 
necessarily the best. For example, we could store all 
taxpayers in one relation, and split their addresses, 
depending on their structure. Some updates to the 
semistructured data instance cannot be accommodated 
by the chosen relational storage. For example, we can- 
not add a new taxpayer with a phone attribute. In- 
stead, we store that data in an overflow graph. Any 
semistructured data repository can store the overflow 
graph. Efficiency is not crucial, because the overflow 
graph should be small. System issues arise from the 
integration of a relational storage with a semistructured 
overflow, but they are not addressed in this paper. 

In Sec. 2, we introduce the STORED language, and 
in Sec. 3, we describe an algorithm for automatically 
generating the relational STORED mappings from 
a data instance. Sec. 4 shows how to generate 
automatically the overflow mappings. Sec. 5 describes 
query and update rewriting algorithms, and Sec. 6 
reports some experimental results. 

2 STORED 
We describe STORED (Semistructured TO Relational 
Data). A relational schema is a collection of relation 
names RI,... , R, with arities or,. . . , n,. An overflow 
schema is a collection of graph names, Gi, . . . ,Gk. 
Conceptually, each graph Gi contains a unary relation 
Gi.roots(X) and a ternary one Gi.edges(X, L, Y) (X, Y 
object identifiers, L attribute name). A mixed schema 
contains a relational schema and an overflow schema. 
A STORED mapping translates semistructured data 
into instances of some mixed schema. STORED 
is more restrictive than other query languages for 

Figure 3: Relational storage 

semistructured data: it doesn’t have joins or regular- 
path expressions. This ensures losslessness: it must be 
possible to reconstruct any semistructued data instance 
from its transformation over the mixed schema. 

Simple Storage Queries. A STORED mapping 
consists of one or more FROM WHERE STORE queries. 
The FROM clause is a single pattern that binds several 
variables. The STORE clause states how values bound 
to variables are stored. In this example, nested addr 
objects are flattened into the 4-ary relation Taxprl: 

Ml = FROM Audit.taxpayer : $X 
t name : $N, 

addr : {street : $S, zip :q $Z)) 
STORE Taxprl($X, $N, $S, $Z) 

Each FROM clause defines a unique key variable; by 
default, it is the first variable in the pattern, e.g., 
$X above. Each binding of the key variable that 
matches the pattern causes one tuple to be stored by 
the STORE clause. Patterns are sequences of attribute 
constants. All variables in the FROM clause must be used 
in the STORE clause, but intermediate variables may be 
removed from the pattern, i.e., it’s not necessary to 
write $A in addr:$A {street:$S, zip:$Z}. 

We can also store optional attributes: 

M2 = FROM Audit.taxpayer : $X 
{ name : $N, addr : < street $S, zip $Z ), 

OPT C audited : $A, taxamount : $T >) 
STORE Taxpr2(SX, $N, $S, $Z, $A, $T) 

Here name, addr . street and addr . zip are required 
attributes, therefore the first four columns of Taxpr2 
are always non-null, but audited and taxamount are 
optional. When one of them is missing, the last two 
attributes in Taxpr2 are null. we can check for 
audited and taxamount independently: 

M3 = FROM Audit.taxpayer : $X 
t name : $N, addr : Cstreet $S, zip $Z) 

OPTCtaxamount !"&> 
OPTIaudited 

STORE TaxprJ($X, $N, $S, $Z, $A, $T) 

Each STORED pattern has a required subpattern 
and an arbitrary number of OPT subpatterns; the latter 
can be nested (i.e., each OPT subpattern has its required 
subpattern and other OPT subpatterns). The matching 
succeeds at an object x if the required subpattern 
matches that object; a successful matching binds the 
required variables. The OPT subpatterns are tentatively 
matched too, starting from their required subpatterns. 

A STORED mapping may contain several queries. 
This example shows how to cluster taxpayers into two 
relations, using combinations of their attributes: 
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M4a = 

M4b = 

FROM Audit.taxpayer : $X 
c name : ON. addr : $P. 

OPTCaudited : $A), OPT(taxamount : $T)) 
WHERE typeOf($P, "string") 
STORE T&pr4a($X, ON, $P, $A, $T) 
FROM Audit.taxpayer : $X 
C name : SN, 

addr : C street $S, 
OPTCcity SC, OPT(zip $Z})} 

OPTCaudited : $A>, OPTCtaxamount : ST)) 
STORE Taxpr4b(SX, SN, $S, $Ap, SC, SZ, $A, $T) 

Taxpayers with an addr attribute of type string 
are stored in Taxpr4a and the others in Taxpr4b. In 
the latter case, str,eet must be present, but city is 
optional. ‘When city is present, then zip is optionaP. 
Each STORE clause must refer to a distinct relation 
(Taxpr4a and Taxp.r4b in the example), to simplify 
reconstructing the semistructured data. 

In this example, only one of M4a or M4b will succeed 
for a given object, because the conditions on addr 
are mutually exclus;ive. In general, several queries 
may succeed, and a single object may be stored in 
multiple relations. This replication can be desirable 
when rewriting queries, because it permits the system to 
choose the target relation that best matches the query, 
but it incurs a higher cost in disk space. 

Multiple Attributes. One characteristic of semistruc- 
tured data is that objects may have multiple occur- 
rences of the same attribute; for example, a person may 
have two phone attributes and several subordinate at- 
tributes. We distinguish two classes of multiply oc- 
curring at tributes. A small-set attribute usually has 
low cardinality and most often is one; e.g., most people 
have one phone, but some may have two. A collection 
attribute denotes a collection of objects, usually with 
high cardinality; e.g., bosses usually can have many 
subordinates. For small-set attributes, we may in- 
crease the number of columns in a relation to accommo- 
date all occurrences, whereas for collection attributes, 
we may store the attributes in a nested or separate rela- 
tion. We show how to express both classes in STORED. 

Below, the audited attribute occasionally occurs 
twice: 

M7 = FROM Audit.taxpayer : $X 
C name : $N, audited : $Al, OPT{ audited : $A2 )) 
STORE Taxpr'T($N, SAl, $A21 

M7 stores objects with at least one audited attribute; 
the value of $A2 may be null. In a declarative seman- 
tics, when some object has two audited attributes with 
values u, v, then both u , v and v , u are valid bindings 
for $Al, $A2. However, in our context, it suffices to 
store a single permutation in Taxpr7. Here, we use 
the order i.n the data model. Conceptually, STORED 
queries are rewritten. such that each occurrence of an 
attribute name a is .uniquely indexed as a[11 , a[21 , 
aC31, . . . . 

M8 = FROM Audit.taxpayer : $X 
C nameC11 : $N, audited[l] : SAI, 

OPTC auditedC21 : $A2 )) 
STORE Taxpr8(N, Al, A2) 

- 
2T~ be precise: a zip without a city is not stored, while a 

city without a zip is stored. 

Only attributes below the key variable are enumer- 
ated: Audit and taxpayer are not. For each data 
object x, we enumerate all its attributes; e.g., its 
audited attributes become audited Cl] , audited [2] , 
etc. This guarantees the matching between the pattern 
and the data is unique. 

Collection attributes can be stored in nested relations 
or as separate relations, if nested relations are not 
supported. In this example, we assume that each 
irscenter has a collection attribute hearing: 

Mlia = FROM Audit.irscenter : $X 
c centername : $N, centeraddress : $A) 
STORE IrsCenter($X, $N, $A) 

Mllb = FROM Audit.irscenter:$X.hearing:$Y 
C hearingdate : SD, taxpayername : $TN, 

auditorname : $AN, decision : $Z) 
KEY $Y 
STORE Iiearings($Y, $X, $D, $IN, $AN, $Z) 

This stores a many-to-one mapping from Hearings 
to IrsCenter. Mllb’s key variable is $Y, which is not 
the first variable, so it must be declared explicitly. 
STORED requires that the key variable be outside any 
{ . . . } subpattern: e.g. $TN cannot be declared to be 
the key variable in Mllb. 

Label Variables. Some instances of semistructured 
data store data as attributes. For example a person’s 
name could be an attribute name, like in: 

Data: Cjohn: Cphone:5551234,fax:5551235), 
joe: Cphone:5552345,fax:5552346), . . . ) 

STORED supports label variables which are stored. in 
relations as values. Label variables must occur before 
the key variable, for example: 

FROM Data.$L: $X {phone:$P, fax:$F) 
STORE R($X, $L, $P, SF) 

Overflow Queries. So far we have described rela- 
tional queries, whose target are the relations of the 
mixed schema. Next, we describe overflow queries, tar- 
geting the overflow graphs. For example, consider the 
relational query below: 

M13a = FROM Audit.taxpayer : 
( name : $N OPT< addrfzs 
STORE R($X,iN,$S,$C) 

. {street $S, city $0)) 
' 

We could complement it with the following two 
overflow queries, storing other attributes besides name, 
address.street,and address.city: 

M13b = FROM Audit.taxpayer : 
C name : $N, OPTiaddres$: : $A), 

$L : J 
OVERFLOW Gl($L) 

M13c = FROM Audit.taxpayer : $X 
C name : SN, 

address : {street $S, city $C, $K : -1) 
OVERFLOW G2($K) 

Syntactically, overflow queries resemble relational 
ones, except that they must have one attribute variable 
that occurs last in the pattern, which is “stored” in 
the overflow graph by the OVERFLOW statement. We 
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illustrate the semantics on M13b. Assume that $X is 
bound to some object identifier x. After matching 
name and possibly address, $L is bound successively 
to all other attributes. For each binding of $L to 
some attribute name 1 with value y: (1) x is stored 
in G.roots, (2) the edge (x,l,y) is stored in G.edges, 
and (3) the subtree rooted at y is stored in G. edges. 
Note that if some object $X has several name or address 
attributes, the first one is stored in R, and all others are 
stored in Gl. Similarly, M13c stores in G2 all subobjects 
of address, except the first occurrence of street and 
city. An object can be reconstructed from R, Gl , G2. 

As a convenience, the value of the key variable is 
always stored in G. roots, even if it is not the actual root 
of the subgraph being stored. For example the following 
are stored by M13c: G2.roots($X> and G2.edges($X, 
$K, J (where _ is the actual value of the $K attribute). 

Overflow queries cannot have nested patterns other 
than those containing the attribute variable. 

In addition to storing relations in a relational reposi- 
tory, the overflow graphs are stored in a semistructured 
data object repository. Integrating the relational and 
overflow systems is necessary to preserve the flexibility 
of the original semistructured data. The performance 
requirements for the overflow system, however, are less 
demanding than for a stand-alone object repository, be- 
cause the relational system handles most of the data. 

3 Generating Storage Mappings 
We now describe how to generate automatically the 
relational STORED mapping M given a semistructured 
data instance D (the overflow mapping is deferred 
to Sec. 4). Several competing goals determine M’s 
effectiveness. First, we want to limit the number 
of tables. Although many RDBMs do not limit the 
number of tables, storing each object in a separate 
table is undesirable. Second, we want to bound the 
disk space. Although the size of the data instance D 
is fixed, its relational storage may be arbitrarily large, 
because an object may be stored in more than one 
relation. A related goal is minimizing the number of 
nulls. Some RDBMS store nulls efficiently, e.g., a null 
entry in a record requires only a byte, and nulls at the 
end of the record take no space. Nonetheless, we do 
not want to generate wide, sparse tables, since even 
one byte per null entry becomes expensive. A related 
restriction is that some RDBMS impose an upper limit 
on the number of attributes per table3. Depending on 
the application, other goals may include reducing object 
splits and their redundant storage in multiple relations, 
or, on the contrary, increasing object redundancy to 
improve query evaluation. 

These goals are best modeled as a cost-optimization 
problem. Given a data instance D, generate a STORED 
mapping M that minimizes a storage-cost function 
c(M) , the cost of storing M(D). The generator must 
also accommodate hard constraints, e.g., the limit of 
attributes per table. A query mix, 0 = (41,. . . , h}, 
can also be considered. For a given STORED mapping 
M, each query Qi can be rewritten as a relational query, 

30racle 8.0.4 imposes a limit of 1000. 

Table 1: Storage-generation parameters 

@, on M(D) (Sec. 5). Given a weight fi for each query 
qi, and a query cost function d(@) that denotes the 
cost of evaluating C$’ on the relational data, a second 
goal is to minimize the query-cost function, d(M) = 
Ci=l,k f&(&y). The optimization problem can now 
be applied to the combined cost c(M) + d(M). 

Unfortunately, the storage-cost cost optimization 
problem is NP-hard in the size of the input data 
(by reduction from the rectilinear picture compression 
problem [8]). 

Theorem 3.1 The problem of computing an optimal 
storage mapping M is NP-hard in the size of the 
semistructured data D. 

This is a daunting complexity. Typically, query 
optimization problems are NP-complete in the size of a 
query, but here the problem is NP-hard in the size of the 
data. Search algorithms like dynamic programming are 
unlikely to work, so we consider heuristics, starting from 
frequent patterns in the data discovered by data mining. 
Wang and Li [21] describe a data-mining algorithm for 
semistructured data. We review it briefly and refer to 
it as WL ‘s algorithm. 

WL’s Data-Mining Algorithm. WL’s data model 
is a large collection of semistructured objects, i.e., a 
graph with many roots. WL’s algorithms searches for 
tree patterns, which are trees consisting of attribute 
constants and the symbol “?‘I, which means any 
attribute. Attributes are indexed in WL, to allow for 
multiple attribute occurrences. An example of a WL 
pattern in our notation is: 

{name Cl1 , phone Cl] I phone C21, 
address cl1 : {street Cl1 , city Cl] , zip cl] 1) 

The support of this pattern is the number of root 
objects that contain at least name, two phones, and an 
address, with the latter containing at least street, 
city, zip. Given a particular semistructured instance 
and a minimum support, WL’s algorithm has two steps. 
First, it finds all paths with high support: the set 
of such paths is called Fl. The second step is an 
adaptation of the standard apriory algorithm [2] in 
which items are replaced by paths, and itemsets by 
tree patterns (in WL’s setting each ordered set of 
k paths uniquely corresponds to a pattern tree with 
k leaves). The algorithm generates successively the 
sets F2, F3,. . . , Fk, . . ., where each Fk consists of sets 
of k paths, whose associated pattern trees have high 
support. 
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Storage-Generation Algorithm. Our storage gen- 
eration algorithm has five parameters, listed in Table 1. 
It generates a relational storage with at most K tables, 
each having at most A attributes, and with total disk 
space at most, S. We assume fixed-length records. C dis- 
tinguishes between “small sets” and “collections”. An 
attribute with less than C occurrences is a small set, 
and the algorithm attempts to produce one column for 
each member of the set. Attributes with C or more oc- 
currences are represented by nested relations. Finally, 
Supp is the minimum support, a parameter for the data- 
mining algorithm, chosen and tuned by the database 
administrator. 

We define a type Iof pattern, called storage patterns, 
that are different from WL’s patterns. A storage 
pattern has the form F:B, where F is the prefix and 
B the body. The prefix is a word 11.12.. . lk, where the 
labels 11, . . . , lk are either a (an attribute name) or - 
(a wildcard similar to WL’s “?“). The last label, lk, 
must be an attribute name. The body B has the form 
{11 : Br,. . . ,l, : BP}, where Bl, . . . , B, are other bodies, 
and each label is an indexed attribute a[i] (denoting i 
occurrences of attribute a) or a[*] (denoting a nested 
collection). An example of a pattern is: 

Audit.taxpayer:Cname Cll, phoneC21, 
address[*l:Cstreet Cll, cityC113) 

Intuitively, this pattern is contained in all taxpayer 
objects with at least a name, two phones, and C 
addresses, the latter with streets and cities. Note that 
phone Cl1 is missing: only the highest index occurs in 
the pattern. The relationship between these patterns 
and STORED mappings is formalized below. 

Given a pattern P = F : B and a semistructured data 
instance D, the pattern support of P is defined as follows. 
Let ol,.. . , o, be all objects in D reachable from the 
root by a path matching the prefix F. The support is 
defined to be the number of objects oi which contain 
the body B. Containment is defined as follows. First, 
replace every occurrence of a label a[*] in B with 
aCC1. Assuming B=:{ll:Bl,...,lp:Bp}, an object o 
contains B iff for each label lj of the form aCi1 the 
object has at least i outgoing edges labeled a, to objects 
Ol,..., oi and each oi contains the pattern Bj. 

Queries on semistructured data have one or more 
data patterns, which specify paths to match in the input 
data (example queries are in Sec. 5). Our algorithm 
converts each query- pattern into a data tree and 
extends the data-mmmg algorithms to these new data 
items. Any other conditions in the queries (other than 
patterns) are ignored. Given the weight f of some query 
9, each of its patterns is converted into f occurrences of 
the corresponding data tree. Since queries may contain 
regular-path expressions, our data trees may have edges 
labeled with regular-path expressions: the definition of 
containment above is extended in an obvious way to the 
case when oi contains regular-path expressions. 

Given a query mix I&, . . . , Dk with weights f 1,. . . , fk, 
we define the query support of a storage pattern P to be 
the sum of all fi fo:r which P is contained in qi. The 
mixed support of P i;s the sum of the data support and 
the query support. 

ALGORITHM: Automatic Storage Generation 
INPUT: K, A, S, C, Supp, and query mix Q 
OUTPUT: Set of relational STORED mappings 

METHOD: 
Step 1: Find all minimal prefixes 

with data support >= Supp 

step 2: - Run the WL data mining algorithm 
with the changes in the text. 

- Let K' = number of maximally 
contained patterns found 

Step 3: Select KO (<= K) patterns out of the K' 

Step 4: For each of the KO patterns, select 
the set of “required" attributes 

Step 5: For each of the KO patterns with 
required attributes, generate one or 
more STORED relational queries. 

Figure 4: Automatic Storage Generation Algorithm 

We explain each step of the algorithm, which appears 
in Fig. 4. 

Step 1: Compute minimal path prefixes. 
First, we generate all prefixes 11.12.. . lk with support 
1 Supp. This requires a single pass through the data, 
during which we construct a trie structure in memory 
that encodes all prefixes in the data. Each trie node 
uniquely corresponds to a prefix, and has only those 
outgoing attributes a that were discovered in the data, 
plus - (the wildcard). We start with the empty trie and 
extend it as we traverse the data. Each trie node stores 
the support for that prefix. Once a trie node reaches 
minimal support Supp, we delete the tree undernea,th, 
and do not further expand that node. 

Each prefix with high support identifies the collection 
of objects in the semistructured-data instance D that 
become the root objects for the data-mining algorithm 
in Step 2. 

Step 2: Data mining. We use WL’s data 
mining algorithm with the following changes. First, 
we compute both the data support and the combined 
support (data plus query support). The algorithm 
is guided by the combined support, i.e., patterns are 
grown as long as their combined support is large. 
Second, we keep backpointers to subpatterns with high 
data support; this information is used in Step 3. Recall 
that WL’s algorithm generates a new set P of Ic paths 
in Fk by combining two sets of k - 1 paths in F&-l. .We 
store one backpointer in P to whichever of its parent 
pattern has higher data support. This means some 
non-maximal patterns in Fk-r cannot be deleted at the 
end of phase k, which increases memory usage. The 
increase, however, is not prohibitive, e.g., there will be 
k additional sets retained for each set in Fk. Finally, 
we terminate the algorithm either when the combined 
support decreases below Supp or when k reaches A. 

Step 3: Select KO patterns. From Step 2, we have 
KY maximally contained patterns, each with support 
2 Supp. Recall that WL’s algorithm also retains FI, 
the set of highly supported paths. Now we use a greedy 
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algorithm to select a subset of no more than K of the K’ 
patterns that best cover the paths in Fl. We sort Fl 
by the data support and start by picking any pattern 
PI that covers (i.e., contains) paths in Fl with highest 
support. In general, we pick pattern Pk such as to (a) 
minimize the maximum overlap with Pi,. . . , Pk-1, and 
(b) in case of ties, cover the paths with highest support 
in Fl which is still uncovered. We stop when we cover all 
paths in Fl or when k reaches K (the maximum number 
of relations allowed). 

Step 4: Select required attributes. For each 
of the KO patterns P selected in Step 3, we have a 
chain of backpointers to strictly smaller subpatterns, 
P=Rl,F?,... ,R”, with increasing data support (with 
IV in FI). In Step 4, we choose some i for each pattern 
so that the subpattern Ri becomes the required part of 
P. We attempt to choose a small i, i.e., a pattern with 
the fewest attributes, because such a pattern will match 
more semistructured objects in the mapping associated 
to P. 

Choosing a small i, however, will increase the number 
of nulls and the overlap with the set of objects stored 
in different relations, and therefore increase the total 
disk space. For a given i, the disk space requirement 
for P can be computed from the data supports. In Step 
4, we initialize the i counter for each pattern to 1 and 
increment them in a round-robin fashion, until we are 
within the limit for the allowed disk space S. In addition, 
we stop incrementing the i’s before two patterns end up 
containing each other’s required part: we allow one to 
contain the required part of the other, but then we will 
stop reducing its required part. 

Step 5: Generate STORED queries. Each 
storage pattern P, with its required subpattern R, is 
converted into one or more STORED queries. This is 
pretty straightforward. For example, for the following 
pattern/subpattern: 

P = Audit.taxpayer:Cname[lI, phoneC21, 
addressC*I:CstreetClI, cityC11)) 

R = Audit.taxpayer:{name[l], phone[lI) 

we associate the following STORED queries: 

Ml = FROM Audit.taxpayer:$X 
I name:$N, phone:$Pl, 

OPT 1 uhone:$P2 1) 
STORE Sili$X, $N, $Pi. $P2) 

M2 = FROM Audit.taxpayer:QX.address:$Y 
I street $S, city-$C) 
KEY 8Y 
STORE R2OX, $Y, $S, $C) 

A collection attribute like address [*I results either in 
a nested relation (if the RDBMS supports it), or in a 
separate relation: in the example we assumed the latter, 
hence the separate relation R2. 

4 Generating Overflow Mappings 
In Sec. 3, we showed how to generate automatically the 
relational mapping from a data instance. Next we show 
how to construct the accompanying overflow mapping, 
which ensures that the storage is lossless. 

When nothing is known about the semistructured 
data overflow queries are always needed and tend to 

be complex. In practice, we found that specifying 
overflow queries is much simpler given information 
about the data’s structure. Such information is 
sometimes available, for instance, the structure of 
XML data is specified by a DTD. Hence we discuss 
overflow mappings in the context of semistructured data 
schemas. 

Consider the schema: 

Sl = SCHEMA {Audit : 
((taxpayer: {name: String, 

address: String, 
(address: String)?, 
(taxreturn: S2)*) 

I*)) 
S2 = SCHEMA {year: String, amount: String, 

(extension:String)?) 

It specifies that the data has arbitrarily many 
taxpayers, each with one name, one or two addresses, 
and arbitrarily many taxreturns. The latter are of 
“type” S2, meaning that they have a year, an amount, 
and zero or one extensions. Multiple types can be 
defined and recursion is permitted. As this example 
illustrates, schemas may contain regular expressions, 
with the usual operators (alternation ” ] “, Kleene star 
“*“, zero-or-one “?“, concatenation ‘I, I’), like in DTD’s. 
However, unlike DTDs, these regular expressions are 
unordered [9]. 

Schemas may also contain attribute variables, and 
simple inequalities may be imposed on these variables. 
For example: 

S3 = SCHEMA {Audit: ((taxpayer: 
C name: String, address: 

f street: String, zip: int, (SK: Any)*), 
(SL: Any)*) I*)) 

WHERE $K <> zip, $L not in {name, address) 
Any = SCHEMA (($P: Any)*) 

Here taxpayers can have exactly one name and 
address, and any number of additional attributes 
different from name, address. Note that Any is 
a schema for any semistructured data. This is of 
particular interest for us: when nothing is known about 
the data, we assume that the schema is Any. 

Schemas like those presented here lead quickly to 
high complexity [3], although much of their power is 
not needed in practice. For instance, they allow us to 
define useless types like S4 = SCHEMA {name: String, 
(off ice : String, off ice : String) *}, which specifies 
that a person has an even number of offices. We 
consider here restricted schemas. A restricted schema 
is a schema in which every regular expression is a 
concatenation of expressions of the form (a:T), or 
(a:T)?, or (a:T)*. The schemas Sl, S2, S3, Any, 
defined above, are restricted schemas, but S4 is not. 
Every schema S can be converted into a restricted 
schema S, by performing the following transformations 
repeatedly (here p, p’ , . . . denote pairs (a:S>, 
(a’:S’), . ..). 

(p I p') -1 p?, p'? 
%'* 

-> p*,p'* 
(p,p') ? -> p? p'? 
(p*) ? ' 

-> p* 
-> p* (p?)* -> p* 

(p?) ? -> p? 
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ALGORITH:M Automatic Overflow Generation 
INPUT Relational mapping M, schema S 
OUTPUT Overflow mapping 0 

METHOD 
Steo 1: for each attribute a in S 

construct set. of databases D, 
Step 2: for each D E D, 

compute M on D 
if a is not stored by M 
then generate overflow mapping 

Figure 5: Generation of overflow mappings 

In the remainder of this section, we use an abbre- 
viated notation for restricted schemas, indicating the 
attributes’ ranges. For example, schema Sl is denoted: 

Sl=Audit[l] : C taxpayerCO,*l : 
CnameCll, addressCl,21, 

taxreturnCO,*l:~~ear[ll, amountC11, extension[O,ll>>) 

Each range is [i , jl , with i a number and j a number 
or *. When i=j , the range is abbreviated by [il. 

We describe next the algorithm for overflow genera- 
tion, for a given relational STORED mapping M, and a 
restricted schema S. For presentation purposes we as- 
sume S is non-recursive, has no variables, and each at- 
tribute occurs at most once in S. Thus S is equivalent 
to a tree, with each attribute a occurring exactly once, 
labeled with a range denoted range (a>. We will relax 
these assumptions later. 

We start by indexing all attribute names in M, as in 
Sec. 2. For each attribute name a in M, define high(a) 
to be its maximum index: when a is not indexed 
(occurs before the key variable), then high(a) = 0. 
We illustrat,e our algorithm on the following STORED 
mapping: 

M = FROM Audit.taxpayer: $X 
< nameCll:$N, addressCll:$A. 

OPT taxreturn[l:l: 
yearr.11: $Y, amountC11: $A, extensionCl1: $E) 

STORE R($X, $N, $A, $Y, $A, SE) 

M' = FROM Audit.taxpayer:$X.taxreturn:$Z 
{ yearC11: OY, amountC11: $A) 

KEY $I' 
STORE 0($X, $2, $Y. $A) 

We have: 

high(Audit)=O, high(taxpayer)=O, high(name)=l, 
high(address)=l, high(taxreturn)=l, high(year)=l, 
high(amount)=l, high(extension)=l 

The algorithm is shown in Fig. 5 and is illustrated in 
Fig. 6 on the schema Sl and the relational STORED 
queries M, M> . Step 1 constructs a set D, of canonical 
databases, for each attribute a in S. Intuitively these 
databases “challenge” M to prove that it can store the 
attribute a. D, is obtained by recursively traversing 
the tree associated to S, and creating for each attribute 
b several copies, labeled b [II , b [Zl , . . . , b [k] , and 
possibly b [*I, as follows. Let range(b) = [i, j] : 

l When b # a and b is not an ancestor of a in S, then 
we create i copies b[ll , b [2] , . . . , b[i] . 

Auditll] 

D 
address 

Audit[ll Audit[ll 

Figure 6: Canonical Databases for Schema Sl 

l When b = a, or b is an ancestor of a in S, then we 
choose a certain k and create copies labeled bC1.1 , 
b[2], . . . . b[k]. Each value of k results in a 
different database in D,. Let high(b) = m. When 
j=* then k is choosen to be each of i , i+l , . . . , 
m, *. When j is a number, then k is choosen to be 
each of i, i+l, . . . , min(j , m+l). 

Fig. 6 depicts the construction of D, for m’ost 
attributes a (the other attributes, Audit, taxpayer, 
taxreturn, are similar). 

In Step 2, the algorithm evaluates M on each canonical 
database D E D,, and checks whether M stores the value 
of every a attribute: if not, then an overflow query 
is generated. In Fig. 6, this happens in two cases: 
address [2] in Dadbass and extension Cl] in Dextension 
(both edges are emboldened). The corresponding 
overflow queries are generated from D in an obvious 
fashion. In our example the two queries are: 

01 = FROM Audit.taxpayer:$X 
C name:$N, address:$A, $L:,) 
WHERE $L = address 
OVERFLOW Ci($L) 

02 = FROM Audit.taxpayer:$X 
C name:$N, address:$A, taxreturn:$T, 

taxreturn: { year:$Y, amount:$A, $L:- 1) 
WHERE $L = extension 
OVERFLOW G2($L) 

We address now the restrictions in our algorithm. 
First,, recursive types in S are handled by unfolding. 
Although, in general, this results in an infinite tree, 
only a finite portion needs to be considered, because 
the queries in M are non-recursive (have no regular-path 
expressions). Second, label variables $L in S will occur 
as constants in the canonical databases. Conceptually, 
$L can be one of the attribute constants occurring in -the 
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ALGORITHM Query rewriting 
INPUT Stored mapping M, user query Q 
OUTPUT Set of rewritten queries Ql, . . . . Qk 

over the mixed schema 

METHOD 
Step 1 (preprocessing) 

From M, construct inversion rules I 
From I, construct canonical data instance D 

Step 2 Compute Q on D, ignoring the WHERE conditions 

Step 3 For each ansvsr, compute all minimal covers 
of the answer with inversion rules 

Step 4 For each cover generate a query Qi 
by adding WHERE conditions from Q, from 
gluing the inversion rules, and from I 

Figure 7: Rewriting algorithm 

query and schema, or anything else, and the algorithm 
takes this into account when evaluating M. Finally, 
repeated attributes in the schema are handled by 
replacing them with the concatenation of all attributes 
above them. 

5 Query and Update Rewriting 
Given a STORED mapping, the system accepts queries 
and updates over the semistructured data and rewrites 
them into queries and updates over the relational store, 
and the overflow graphs. This section describes the 
rewriting algorithm. We start first with query rewriting, 
then address update rewriting. 

The algorithm appears in Fig. 7. We explain it below 
and illustrate it on the STORED mapping M: 

Ma = 

Mb = 

MC = 

ynMai;;it.taxpayer: $X 
: CfirstnameCll : $FN, 

lastname[i] : $LN), 
addrCl1 : CstreetCll : $S, 

cityC11 : SC), 
OPT{taxamountCll : $T)> 

STORE Taxpayer($X. $FN, $LN, $S, $C, $T) 
FROM Audit.taxpayer: $X 
C addrC11 : CstreetCll : QS, 

cityCl1 : SC, $L : -11 
OVERFLOW Cl($L) 
ynMaCll;;ft.taxpayer: $X 

: $N. 
OPTCtaxamount[il : $T), 
$L : 2 

OVERFLOW GZ($L) 

Our example query q returns the names of taxpay- 
ers whose taxamount is less than 10% of their in- 
come on some W4 form and whose address contains 
“Philadelphia”: 

Q = SELECT $N 
FROM Audit.taxpayer:$X 
t name : $N, taxsmount:$T, 

v4form.income:$I, address.+:$A) 
WHERE $T < 0.1 * $1, $A = "Philadelphia" 

Note that the query returns a set of name aids, each 
with f irstname and lastname. 

The queries we consider have patterns with regular 
expressions (in the FROM clause), and arbitrary con- 
ditions in the WHERE clause (i.e., joins are allowed). 

IaO = 

Ial = 

Ib = 

Ic = 

FROM Taxpayer($X, $FN, $LN, $S, $C, $T) 
CONSTRUCT Audit : S-Audit0 

{taxpayer: S-taxpayer 
C name : S-name-1($X) 

{firstname : S-firstname-1($X). $FN, 
lastname : S-lastname-1($X) $LN), 

addr : S-addr-1($X) 
{street : S-street-1($X) $S, 

city : S-city-1($X) $Cl)) 

FROM Taxpayer($X, $FN, SLN, $S, $C, $T) 
WHERE $T != null 
CONSTRUCT Audit : S-Audit0 

{taxpayer: S-taxpayer 
{ taxamount : S-taxamount-1($X) $T)) 

FROM Cl.roots($X), Gl.edges($X,$L,$Y) 
CONSTRUCT Audit : S-Audit0 

<taxpayer: S-taxpayer 
{addr : S-addr-1($X) C$L : $Y)>) 

FROM G2.roots($X), G2.edges($X, $K, $Z) 
WHERE $K != taxamount 
CONSTRUCT Audit : S-Audit0 

{taxpayer: S-taxpayer <SK : $Z)) 

Figure 8: Inversion rules for query M. 

These are common features of all query languages for 
semistructured data [17, 4, 7, 61. 

Step 1 is a preprocessing step and starts by construct- 
ing inversion rules for the queries in M. This step is an 
adaptation from [14], where inversion rules were first 
used in query rewriting. In our context, the rules are 
generated internally by the system and are not intended 
for the user. We describe them in a concrete syntax 
for presentation purposes only. Each rule consists of a 
FROM, WHERE, and CONSTRUCT clause. The first two are 
as before; the CONSTRUCT clause contains a tree con- 
structor, in which node oids are generated by Skolem 
Functions which, in turn, correspond to attribute names 
(including indexes). For our example, the inversion 
rules are shown in Fig. 8, and the Skolem functions 
are SAudit, S-taxpayer, Sname-1, etc. For each re- 
lational query in M, one inversion rule is created for the 
required subpattern, and one inversion rule for each OPT 
subpattern. For each overflow query, a single inversion 
rule is created for its required subpattern (and OPT sub- 
patterns are ignored). Thus, IaO and Ial are created 
for Ma, and Ib and Ic are created from Mb and MC re- 
spectively. As in [14], inversion rules have the property 
that they reconstruct the entire semistructured data. 

Step 1 continues by constructing a single canonical 
data instance D from the inversion rules. This is achived 
by “fusing” all symbolic objects in the CONSTRUCT 
clauses of all inversion rules (Fig. 9). Its nodes are 
labeled with Skolem function names or overflow graph 
names, and edges are either unlabeled (when the target 
is an overflow graph) or labeled with an attribute name. 
In addition, edges are annotated with the name of the 
inversion rule (e.g. CIaOI , LIall , [Ibl , [ICI). 

Steps 2 and 3 do the actual rewriting (this is related 
to query decomposition and algebraic optimization [15] 
for the Mediator Specification Language, MSL). Step 2 
is a simple computation of the query on D, during which 
the conditions in the WHERE clause are not checked, and 
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I (Id, ISI. lb. ICI 

Figure 9: Canonical data instance D. The dotted edge 
is an extension, used for updates. 

unlabeled edges in 1) may match any attribute in the 
query. For our example, the result of the evaluation is: 

$X 
S-taxpayer 
S-taxpayer 
S-taxpayer 
S-taxpayer 
S-taxpayer 
S-taxpayer 
S-taxpayer 
S-taxpayer 
S-taxpayer 
S-taxpayer 
S-taxpayer 
S-taxpayer 

$N 
S-name_i 
S-name-1 
Sname-1 
Sname-1 
S-name-l 
Sname-1 

Ei 

:; 
G2 
G2 

$T 
S-taxamount- 
S-taxamount- 
S-taxamount- 

G2 Sstreet-1 
G2 S-city-l 

G2 G2 Gl 
S-taxamount- G2 S-street-1 
Sfaxamount-1 G2 S-city-l 
Sfaxamount-1 G2 Gl 

G2 G2 S-street-1 

zi :; 
S-city-l 

Gl 

Step 3 considers each row in the answer relation, and 
finds all minimal covers of the corresponding subgraph 
of D by the inversion rules. Consider the first row 
above, the edges of the corresponding subgraph of D 
are highlighted in Fig. 9, and the unique minimal cover 
is { IaO, Ial, Ic} 

Finally, for each minimal cover, Step 4 constructs a 
query over the mixed schema. The query is essentially 
obtained by joining all inversion rules in the cover 
(which results in new WHERE conditions), and adding 
conditions from the original query 9. For our example, 
the resulting query i;s: 

SELECT S-name ($X) 
C f irstn.ame : S-firstname $FN, // reconstruct 

lastname : S-last:name($X) $LN ) // name 
FROM Taxpayer($X, $FN, $LN, $S, SC, $T), // IaO, Ial 

G2.roots(SX’), $X’.w4form.income $1’ // Ic 
WHERE $T != null, // from Ial 

$X = 8X’ // glue Ial with Ic at S-taxpayer 
OT < 0.1 + $1, $S = “Philadelphia” // from Q 

This query checks “Philadelphia” in the street 
position: another query would check for it in the city 
position. The query reconstructs the name using Skolem 
functions. Its FROM clause contains mixed relational 
goals (like Taxpayer( . . .)) with semistructured data 
patterns on the overflow graphs. The WHERE clause may 
have join conditions, like $X = $X3. 

Updates. We consider a strict subset of the Lorel’s [l] 
update statements: 

UPDATE <object-selector> += <object-expression> 
UPDATE <object-selector> := <value-expression> 

In both statements <object-selector> is a query 
whose result must be a single object identifier o, 
and <object-expression> is a constant express:ion 
denoting a complex-value object o’ (syntax like in 
Fig. 2). The first statement adds all (attribute, 
value) pairs of 0’ to o (to the end of the order). The 
second statement replaces the value of the atomic objlect 
o with <value-expression>. We describe the rewriting 
of the first update statement; the second is easier and 
handled similarly. 

Update rewriting has two steps. First, <object-selector> 
is evaluated on the canonical database D. We illustrate 
with the STORED mapping M above and the following 
update: 

UPDATE (SELECT $X 
FROM Audit.taxpayer:$X { nsme.lastnsme:$N ) 
WHERE $N = “Smith”) += {taxamount: “100000”) 

Referring to Fig. 9, there are two results in Sleep 
1: ($X = S-taxpayer, $N = S-lastname), and ($X = 
S-taxpayer, $N = G2). We illustrate in the sequel 
with the first result only. 

In the second step, for each row in the result, we 
extend D with <object-expression>: this is the dotted 
edge in Fig. 9. Now we execute every STORED query in 
M on the extended object, but only consider results that 
use at least some edge of the extension (the “dotted” 
edges). For each such result, we generate one upd,ate 
instruction on the mixed schema. We illustrate using 
queries Ma and MC. One of the bindings of Ma’s variables 
is: 

$X = S-taxpayer, $FN = S-firstname, 
$LN = S-lasname-1, $S = S-street-l, $C = S.city-1 

This corresponds to the following update: 

UPDATE Taxpayer($X, $FN, $LN, $S, SC, $T) 
SET $T := 100000 
WHERE $LN=“Smith” 

When evaluating MC, the order of the two taxamount 
attributes in Fig. 9 matters. There are two bindings 
for MC: we consider the one that binds $L to the n.ew 
taxamount, which meand taxamount Cl] (in MC) must 
have been bound to the first edge. This translates into 
the update: 

UPDATE C2,roots($X), G2.edges($X,taxamount,iOOOOO) 
WHERE Taxpayer($X, $FN, $LN, $S, $C, ST), 

$LN=“Smith”, $T != null 

6 Preliminary Experiments 
We ran some preliminary experiments with our auto- 
matic STORED generation algorithm. Our data set is 
DBLP, the popular database bibliography Web sit,e4, 
a collection of XML-like files. It does not have an 
explicit structure. Each XML file corresponds to one 
publication: a proceedings paper, a journal article, a 
book, a PhD thesis, etc. The directory structure c(ap- 
tures alot of information. For example, the top level 
contains books, conf , journals, ms , persons, and 
phd directories. Under conf, there is one subdirectory 

'http://vrrv.informatik.uni-trier.de/-ley/db/about/instr.html 
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FROM Bib.inproceedings $X 
1 author: QAl, OPTCauthor: $A2, OPT(author: $A3)), 

OPTCtitle: ST}, OPTCpages: $PP), OPT(year: $Y), 
OPT{booktitle: $B), OPT{url: $U)> 

STORE Rl($Al, $A2, $A3, $T, $PP, $Y, $B, $U) 

FROM Bib.article $X 
( author :$A, 

OPT{title: $T), OPT{pages: $PP), OPTIyear: $Y), 
OPT<volume: $V), OPTCjournal: $J), OPT{number: $N), 
OPTCurl: $U)> 

STORE R2($A, $T, $PP, $Y, $V, $3, $N, $U) 

FROM Bib.article $X 
{ author: $Al. author: $A2, OPTCauthor: $A3), 

OPT(pages: $PP), OPT{year: $Y). OPTCvolume: $V), 
OPTCnumber: $N))) 

STORE RJ($Al, $A2, $A3, $PP, $Y, $V, $N) 

Figure 10: STORED query for A=8 

for each conference (255 in total), etc. The directory 
information, however, can be fully recovered from the 
publications themselves. A typical entry is: 

<inproceedings key="Abiteboul97"> 
<author>Serge Abiteboul</author>, 
<title>Querying Semi-Structured Data.</title>, 
<pages>i-iB</pages>, 
<year>l997</year>, 
<booktitle>ICDT</booktitle>, 
<url>db/conf/icdt/icdt97.html#Abiteboul97</url> 
</inproceedings> 

The publication data is irregular: some entries have 
multiple author’s, optional url’s, or many citation 
attributes; a few have unfamiliar attributes. Most at- 
tributes have scalar values, but some have structure. 
There are about 92,000 publications that, when repre- 
sented as a semistructured data, have 861,000 edges. 
The total disk space is 95M. 

We decided to ignore the directory structure and 
moved all files in one directory. We chose a minimum 
support of 8500, which is 8.6%. Only articles 
and inproceedings had minimum support (books are 
only 307, phd thesis 67). In a separate experiment 
(not reported for lack of space), we also considered 
a query mix, in which one query with high weight 
referred to books. In that experiment, books did 
have minimum support, and the system generated a 
relation for storing book objects. We found no collection 
attributes; citation was a good candidate, but it did 
not have high enough support. We also found no nested 
attributes with high enough support. 

Fig. 10 contains an example of one generated STORED 
mapping with A=8. There were only 8 attributes of high 
support for inproceedings, and all 8 in combination 
still had high support: hence a single STORED query 
maps inproceedings. There were more than 8 at- 
tributes of high support for article, therefore these ob- 
jects are split into two relations: R2, tries to cover most 
objects, by requiring only the author attribute, while 
R3, requires two authors, giving it the best chance to 
store objects not stored in R2. 

We ran two sets of experiments: one that varied the 
maximum number of attributes per relation, A, and one 

I A I3 I4 I5 16 I71 8 19 I 

S 0.5M 0.78M 0.93M l.OM 
Nulls 2.5k 40k 106k 106k 

Coverage 59% 77% 90% 90% 

Table 2: Effect of varying maximum number of 
attributes per relation and maximum disk space. 

that varied total disk space allocated to the relations, 
S. The results are shown in Table 2. 

We varied A from 3 to 9 (since there were 10 attributes 
of high support). We assessed the quality by the 
algorithm by measuring the number of queries, the data 
coverage, and the number of nulls. Queries is the 
total number of relational STORED queries generated 
(hence, relations). Coverage is the percentage of the 
861k edges that are stored in the relations. Space is the 
estimated disk space required by the relational storage 
(assuming fixed-length records). Nulls represent the 
amount of space occupied by nulls. 

The first table shows that data fragmentation directly 
depends on the maximum relation arity. When A is 
small, objects need to be split across many relations 
(then, joined at query time). On the other hand, space 
is better utilized for small A’s, because the number of 
null entries is smaller. The coverage (total number 
of edges stored in the relational part) is consistent, 
at approximately 90%. The actual overflow graphs 
would be larger than 10% of the data, because some 
overlap would exist between the overflow graphs and 
the relational store. 

The second set of results show a clear degradation of 
the coverage when disk space for the relations is limited. 
When S is small, the algorithm generates more required 
attributes (Sec. 3): this decrease the number of nulls 
and to improve utilization of the relations, but covers 
fewer objects. 

In summary, under reasonable assumptions, the gen- 
erated STORED queries can cover a large percentage of 
the data, and they do this by exploiting the regularities 
found in the DBPL data instance. 

7 Related Work and Discussion 
Data clustering is the problem of grouping a large num- 
ber of points in Rd into sets (clusters), where the dis- 
tances between any two points in the same cluster is 
small. BIRCH [22] produces good clusters in just a few 
passes over a large data set. We found the storage- 
generation problem hard to model as a data clustering 
problem, because objects with widely different struc- 
tures may be well stored together. Nestorov, Abiteboul, 
and Motwani [13] describe a clustering-based algorithm 
which, when given a semistructured data, extracts a 
schema for that data. 

Theodoratos and Sellis [18] describe a warehouse- 
configuration algorithm that when given a relational 
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database instance and a set of queries, generates an 
optimal set of views that best support the query set. 
This is related to the storage-generation problem, where 
we search for relational views over semistructured data. 
In our problem, however, the input is a data instance 
instead of a query set., and our “views” must be lossless. 

Tsatalos et al. [19:] pioneered the idea of achieving 
physical data independence by means of relational 
views. STORED :follows a similar philosophy in 
achieving independence from the underlying relational 
storage. 

Linguistically, STORED is closely related to query 
languages for semistructured data, such as Lore1 [17, 11, 
UnQL [4], MSL [15], and StruQL [7, 61, all of which 
provide path expressions for matching attribute paths 
in semistructured data. Due to its unique requirements, 
STORED is strictly weaker than these languages. 

Object-oriented databases [5] can store SGML and 
XML documents without explicitly storing their schema, 
but they require a DTD to derive an object-oriented 
schema. This can be an effective storage mechanism for 
XML data when the IDTD is known, but in some appli- 
cations, a DTD may not exist. Also, the technique can 
increase data fragmentation, because new classes and 
objects must be created to convert a DTD into a class 
hierarchy [IO, 121. Our technique is complementary: it 
does not require a DTD, and it uses a RDBMS instead 
of an ODBMS. 

Wang and Li [21] extended data-mining techniques to 
semistructured data. Their algorithm finds “interesting 
patterns”, i.e., subtreles with high support. Data mining 
is a good foundation for the STORED generation 
algorithm, although we must search for more complex 
patterns and attempt to cover most of the data. If 
applied directly, Wan,g and Li’s patterns would generate 
a simple relational storage that covers only a small 
fragment of the data. 

Storing semistructured data in relations is an ambi- 
tious goal, because the two models are apparently in- 
compatible. Our hypothesis is that many semistruc- 
tured data sources have a regular structure, with few 
outliers: this structure should be exploited when stor- 
ing the data. Our preliminary experiments using the 
DBLP bibliography database support this hypothesis: 
in particular, DBLP #data is quite regular, even if some 
outliers escape normal classification. 
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