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Abstract 

In recent years, many data mining methods have been 
proposed for finding useful and structured information from 
market basket data. The association rule model was 
recently proposed in order to discover useful patterns and 
dependencies in such data. This paper discusses a method 
for indexing market basket data efficiently for similarity 
search. The technique is likely to be very useful in 
applications which utilize the similarity in customer buying 
behavior in order to make peer recommendations. We 
propose an index called the signature table, which is very 
flexible in supporting a wide range of similarity functions. 
The construction of the index structure is independent of the 
similarity function, which can be specified at query time. 
The resulting similarity search algorithm shows excellent 
scalability with increasing memory availability and database 
size. 

1 Introduction 

This paper addresses the problem of retrieval and 
similarity search for market basket data. In recent 
years, the progress of bar code technology has made 
it possible to collect information containing consumer 
transaction data efficiently. Information about market 
baskets is collected in the form of sets of items which 
are bought together in a transaction. Let U denote the 
universal set of items. Thus, a transaction T is a set 
of items which is a subset of U, and represents those 
items from U which were bought in the corresponding 
transaction. Since the correlations in the buying 
behavior of the different items may be deduced from 
transactions, they may be used in order to make 
decisions in many target marketing applications. 

The market basket problem has been studied exten- 
sively with reference to the issue of finding association 
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rules between the different items [2, 31. In this paper, 
we will discuss this problem from the context of sim- 
ilarity search. For a given target transaction, we wish 
to find the Ic transactions which are most similar to it. 
The straightforward solution of using a sequential scan 
may require considerable I/O for very large data collec- 
tions. This is especially true for transaction data, which 
is usually of the order of gigabytes or terabytes. 

The problem of indexing has been studied consid- 
erably in the database literature from the perspective 
of multidimensional quantitative data. Some examples 
of data structures for performing indexing are the R- 
Tree and its variants [l, 5, 12, 221. These data struc- 
tures can support many kinds of queries, such as point 
queries, range queries, or similarity to a predefined tar- 
get. After the introduction of the R-Tree, substantial 
work was done on improving indexing techniques for 
high dimensional data [6, 15, 161. As the dimensional- 
ity increases, the performance of these methods dete- 
riorates rapidly because of the so called dimensionaz- 
ity curse. As a rule of thumb, when the dimensional- 
ity is more than 10, none of the above methods work 
well. A variety of indexes and query processing tech- 
niques have been proposed in the database literature 
which are specially suited to the similarity search query 
[4, 7, 13, 14, 15, 17, 20, 21, 231. Recently, the pyra- 
mid technique was proposed for range queries, which 
reduces the performance deterioration caused by high 
dimensionality [6]. It has also been observed [20], that 
the query performance is quite sensitive to the similar- 
ity (or distance) function which is used. 

A typical transaction contains only a few items 
out of a universe of hundreds or thousands of items 

PI. Furthermore, the items in a transaction are 
closely correlated. For example, in a database for 
a supermarket application, if a transaction contains 
the item “Milk”, then it may often also contain the 
items “Bread” or “Butter”. The total dimensionality 
of transaction data is clearly out of the range of the 
available indexing techniques for continuous valued 
attributes. On the other hand, the sparsity and 
correlations in transaction data provide an opportunity 
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which can be exploitsed in order to design efficient index 
structures. 

It has been observed in earlier work [20], that index 
structures are often sensitive to the nature of the 
similarity function which is used. Two simple similarity 
functions between transactions are the number of 
matches and the ha,mming distance. The number of 
matches between two transactions is defined by the 
number of items wh.ich were bought in both. In other 
words, if Tl and Tg are two transactions, then the 
match fun.ction betvveen Tl and T2 is defined by the 
cardinality of Tl n Ta. The hamming distance between 
two transactions is defined to be the number of items 
which were bought in one of the transactions, but 
not both. Thus, the hamming distance between the 
transactions Tl and 12’2 is the sum of the cardinalities of 
the two sets (Tl - Tz) and (T2 - Tl). In reality, good 
similarity functions for transaction data are much more 
complex than the above mentioned functions. Often 
the similarity criterion may be complex function of the 
number of matches and the hamming distance. 

The inverted index is a data structure which can 
support queries based on the number of matches 
between t,he target and the database transactions. 
It relies on the sparsity of the data in order to 
provide efficient responses to similarity queries [18] and 
is widely used for information retrieval applications. 
Unfortunately, the inverted index cannot efficiently 
resolve queries in which the similarity criterion can be 
any general function of the number of matches and 
hamming distance between the target and database 
transactions. It also cannot easily support queries 
which are variations on the traditional similarity search 
problem (eg. range queries or multi-target variants of 
similarity queries). Furthermore, although transaction 
data is sparse, the degradation in performance of 
inverted indexes with increasing density is too steep to 
be of practical use for many real applications. 

We will introduce a data structure called the Signa- 
ture Table, and show how to use it effectively for sim- 
ilarity search. This data structure is quite flexible in 
being able to support different kinds of similarity func- 
tions. Furthermore, it shows excellent scalability with 
increasing database size. This is a characteristic which 
is crucial to effective deployment for very large data- 
bases. 

This paper is organized as follows. In the next 
section, we will discuss the nature of the similarity 
function and the kinds of queries that we would like 
the index structure to support. In Section 3, we will 
introduce the signature table, and discuss the details 
of its construction. In Section 4, we will discuss the 
branch and bound method which uses the signature 
table for effective similarity search. Section 5 discusses 
the empirical results, whereas Section 6 is a conclusion 

and summary. 

1.1 Contributions of this paper 

This paper discusses a flexible indexing structure for 
similarity search which is applicable to a wide vari,ety 
of similarity functions. We would like to be able to 
perform similarity search when the similarity function 
between two transactions is a general function of 
the number of matches and the hamming distance. 
We achieve this goal under certain very reasonable 
constraints on the similarity function. The process 
of building the signature table is independent of the 
similarity function, which can be specified at qulery 
time. Furthermore, the query processing techniques 
discussed in this paper have the potential to be 
extended to more complex variations of similarity 
search queries with multiple similarity functions and/or 
targets. The (percentage) pruning efficiency of our 
technique increases with database size. This is a 
useful property, given the huge sizes of sales transaction 
databases. 

2 The Similarity Function 

In this section we will discuss the general properties 
of the similarity function which are supported by the 
techniques in this paper. Let a: be the number of ite:ms 
in which the transactions Tl and Tz match, and let 
y be the number of items in which Tl and Tz differ. 
Then the similarity between Tl and Tz is a function 
of both z and y. We shall denote this function by 
j(~, y). For the sake of convention, we will assume tlhat 
the similarity function is such that higher values imply 
greater similarity. The index structure proposed in this 
paper is capable of handling maximization techniques 
on this general function f(~, y), provided that it satis:Fies 
the following two constraints: 

Af(zc, Y> > o 
- 

A$,Y) < o 

AY - 

(1) 

(2) 

The conditions on the function ensure that it is an 
increasing function in terms of the number of matches 
and is decreasing in terms of the hamming distance. 
These are quite reasonable assumptions for similarity 
functions, since a higher number of matches imply 
greater similarity, whereas a greater hamming dista:nce 
implies less similarity. Some examples of functions 
which satisfy this requirement are as follows: 

(1) Hamming distance (minimization): When re- 
stated in maximization form, we have f(c, y) = l/y. 

(2) A4;tch to hamming distance ratio: f(z, y) = 
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(3) Cosine: Let S and T denote two transactions, such 
that #S and #T are the number of items in S and 
T respectively. The cosine of the angle between S 
and T is defined as follows: 

cosine(S, T) = mTm 

x 

= J(2.a:+y-#T).&jP- 

A variant of the above mentioned cosine function 
is often used to measure similarity in information 
retrieval applications [l 13. 

A large number of other functions also satisfy the 
above property. In order to set the ground for further 
discussion, we shall prove a result which is key to the 
correctness of our similarity procedure for the function 

ft.7 -1. 

Lemma 2.1 Let f be a function satisfying: 

Af (x9 Y) > o 
- 

Af?:, y) < o 

AY - 

Let 7 be an upper bound on the value of x and 8 be a 
lower bound on the value of y. Then f (-y,(3) is an upper 
bound on the value of the function f(x, y). 

Proof: let (x0, y”) be any realization of the value of 
(I, y). Then, x0 5 y and y” > 8. It follows from the 
above conditions that: 

f(x”, Y”> I f (Y! YO> 5 f (79 6) 

The result follows. I 

2.1 The similarity search query and its 
variations 

When stated in simple form, the similarity query is as 
follows: 

For a given target transaction T, find the k transactions 
which maximize the similarity function f(x, y), where 
x is the number of matches, and y is the hamming dis- 
tance with the target transaction. 

An interesting variation of this query is one in which we 
have multiple targets, and we wish to maximize some 
function of the similarity of the transactions to the dif- 
ferent targets. For example, we may wish to maximize 
the average similarity of the retrieved transactions to n 
different targets. 

Other variations on this query structure include range 
queries such as those in which we wish to find all the 

transactions whose similarity to the target is at least 
equal to a predefmed threshold t. More generally, 
let fi(-, -), . . . fn(-, *) be n similarity functions, and let 
t1 , . . .t, be n threshold values. The range query finds 
all transactions which satisfy the constraints fi(., e) 2 

h,.. . fn(*, a) 2 t,. An example of such a query is one 
in which we wish to find all transactions which have at 
least p items in common and at most q items different 
from the target. 

In this paper, our primary focus is on the nearest 
neighbor query as stated in its purest form of finding 
the closest transaction to the target. However, since 
the branch and bound query processing technique is 
applicable to all optimization functions, the methods 
discussed in this paper can be easily extended to the 
above variations. In a later section of the paper, we 
will briefly discuss the slight modifications required in 
order to support these queries. 

3 The Signature Table 

In this section, we will discuss the definition and 
characterization of the signature table. We shall first 
discuss some notations and terminology in order to 
facilitate further discussion. 

A signature is a set of items. The items in the original 
data are partitioned into sets of signatures. Consider 
the case when the items in the original data are 

u,..., 20). Then one possible partition of these items 
into signatures could be P = {l, 2,4,6,8,11,18}, Q = 
{3,5,7,9,10,16,2’% and R = {12,13,14,15,17,19}. 

A transaction T is said to activate a signature A at 
level T if and only if IAnT/ > T. This level T is referred 
to as the activation threshold. For example, consider the 
transaction T = (2,6,17,20). Then, the transaction T 
will activate the signatures P, Q, and R at level T = 1, 
and will activate only the signature P at level T = 2. 

The set of items are partitioned into K sets of signa- 
tures. We shall refer to this value of K as the signature 
cardinality. The supercoordinate of a transaction ex- 
ists in K-dimensional space such that each dimension of 
the supercoordinate has a unique correspondence with a 
particular signature and vice-versa. Each dimension in 
this K-dimensional supercoordinate is a O-l value which 
indicates whether or not the corresponding signature is 
activated by that transaction. Thus, if the items are 
partitioned into K signatures {Sr, . . .SK}, then there 
are 2K possible supercoordinates. Each transaction 
maps .on to a unique supercoordinate, though multi- 
ple transactions may map into the same supercoordi- 
nate. If Si,, Si,, . . . S’i, be the set of signatures which a 
transaction activates, then the supercoordinates of that 
transaction are defined by setting the 1 5 K dimen- 
sions {ir, iz, . . . ir} in this supercoordinate to 1 and the 
remaining to 0. 

The signature table consists of a set of 2K entries. 
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Figure 1: Illustration of the signature table 

One entry in the signature table corresponds to each 
possible supercoordinate. Thus, the entries in the 
signature table create a partition of the data. This 
partition will be used for the purpose of similarity 
search. The signaturse table is stored in main memory, 
whereas the actual t:ransactions which are indexed by 
each entry of the signature table are stored on disk. 
This constrains the value of the signature cardinality 
since the 2K entries of the signature table need to be 
stored in main memory. Each entry in the signature 
table points to a list of pages which contain the 
transactions indexed by that supercoordinate. The 
signature table is illustrated in Figure 1. 

A signature can be understood as a small category of 
items from the universal set of items U. Thus, if the 
items in each signature are closely correlated, then a 
transaction is likely to activate a small number of sig- 
natures. These signa,tures provide an idea of the “ap- 
proximate” pattern of buying behavior for that transac- 
tion. The concept of using approximate representations 
in order to index data has been explored in earlier work 
[8, 9, lo]. Our method of representation, data structure 
and query techniques are very different, being specially 
designed for the similarity search problem. 

3.1 Details of signature table construction 

In order to explain the process of signature table con- 
struction we shall introduce some additional notation 
and terminology. An itemset I is defined to be a set of 
items satisfying I C U. Here U is the universal set of 
items. A k-itemset?i:r an itemset which has k items in 
it. The support of an itemset I is defined to be the per- 
centage of transactions in the database which contain 1 
as a subset. 

The effective construction of the signature table 
requires us to partition the universal set of items U 
into subsets of items which form the signatures. We 
would like the set of items in each signature to be closely 
correlated. This is achieved by using the followi:ng 
procedure. We construct a graph such that each nolde 
of the graph corresponds to an item. For every pair 
of items such that the corresponding itemset has a 
predefined minimum support, we add an edge between 
the nodes. We also add a weight to each edge which is 
the inverse of the support of that pair of items. Thus, 
when the support of a pair of items is high, the weight 
of the corresponding edge is low, and vice-versa. 

We would like to find a partition of the items such 
that the sum of the supports of the items in each 
partition is similar and the cross-correlations among the 
items in the different partitions are as small as possible. 
In the transformation discussed above this translates 
to the problem of finding the graph partitioning such 
that the weight of the edges crossing the partitions of 
the graph is as small as possible. The desire to keep 
partitions evenly balanced arises from the need to create 
the signature table in such a way that the transactialns 
are well distributed over the different entries. The des:ire 
to keep the cross-correlations between the different 
partitions small is motivated by the aim of keeping very 
closely correlated’ items in each signature. 

Unfortunately, the weighted graph partitioning prob- 
lem is notoriously difficult to solve. Thus, this approach 
is too time intensive and impractical for most problems. 
Instead, we choose to use a variant of the single link- 
age clustering algorithm [19] in order to find the opti- 
mal partitions, The disadvantage of single-linkage algo- 
rithms is that they are often likely to lead to long strag- 
gly clusters 1191. However, space and time-optimal algo- 
rithms are available in order to perform single-linkage 
clustering, and this is clearly attractive when the to- 
tal number of items is very large. Briefly stated, the 
single-linkage clustering algorithm is as follows: 

Construct a node for each item. 

Let the distance between each pair of nodes be de- 
fined by the inverse of the support of the correspond- 
ing 2-itemset. 

Apply the greedy minimum spanning tree algorithm 
to the resulting graph in order to generate the single 
linkage clusters. Add edges one by one to the graph, 
starting with the null graph which contains only 
nodes, but no edges. The edges are added in order 
of increasing distance. This strategy ensures that if 
the support of a pair of items is high, then they are 

‘Another reason for desiring the correlation property is that 
we would like only a small number of signatures to be activated 
by a transaction. This is important in providing efficiency for our 
similarity search procedure. 
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likely to belong to the same connected component. 
The mass of a connected component in this graph is 
defined as the sum of the supports of the individual 
items in that component. Remove any component 
which is such that its mass exceeds a predefined 
percentage of the sum of the supports of all the 
individual items. We shall refer to this threshold 
value of the mass as the critical mass. This set 
of items which satisfies the critical mass criterion 
forms a signature set. We continue the process of 
adding edges and removing components of critical 
mass until each item belongs to some signature set. 

Note that the critical mass criterion in step (3) for 
determining when to remove a component from the 
graph determines the signature cardinality K. If the 
critical mass for a signature set is low, then the value 
of the signature cardinality K is high, and vice-versa. 
Higher values of K are desirable, since this results in 
a finer granularity of partitioning of the data. The 
empirical section will illustrate that partitions of higher 
granularity result in better pruning performance. On 
the other hand, it is also necessary to choose low enough 
values of K such that the signature table can be held 
in main memory. 

Once the signatures have been determined, the parti- 
tions of the data may be defined by using the superco- 
ordinates of the transactions. Each transaction belongs 
to the partition which is defined by its supercoordinate. 
The transaction lists are built for each supercoordinate 
(as illustrated in Figure 1) based on this partition. 

4 The Branch and Bound Technique 

The use of branch and bound methods for nearest 
neighbor search has been explored by Roussopoulos 
et. al. [171. This method was proposed for 
continuous valued attributes. The same principles are 
applicable to the market basket problem. The use of 
signature sets for organizing transactions is the key to 
determining good estimations on the similarity between 
the target transaction and the transactions indexed by 
the signature table entries. 

The branch and bound method is a classical technique 
in combinatorial optimization. It uses an ordered search 
method on a partitioning of the data in order to avoid 
searching many of the partitions. Pruning is done 
by finding good optimistic bounds on the distance of 
a target point to each set representing a partition of 
the search space. This bound is an optimistic2 bound 
(upper bound) on the value of the similarity function 
between the target and any transaction in this set. If 

‘In general, the term “optimistic bound” refers to an upper 
bound, when the similarity search problem is in maximization 
form, and a lower bound when the similarity search problem is 
in minimization form. Recall that our convention indicated that 
higher values of the function f(., -) imply greater similarity. 

P~ShliE4iC 

Bound 

Opt(i): OPTIMISTIC BOUND OF TARGET TO DATA SUBSET i. 

Figure 2: The partitioning techniques in the branch and 
bound method 

this optimistic bound is less than than the similarity 
of the target to some solution R which has already 
been determined, then the corresponding set may be 
pruned from contention. This is because none of these 
transactions can provide better similarity to the target 
than R. This solution R defines a pessimistic bound 
(or lower bound) on the quality of the optimal solution. 
The overall idea of the branch and bound method is 
illustrated in Figure 2. The process of pruning reduces 
the size of the accessed space substantially, and thereby 
leads to improved running times. 

We know that each entry in the signature table 
points to a set of transactions which corresponds to 
a particular supercoordinate. It is the partitioning 
created by these supercoordinates which may be used 
in order to perform the branch and bound method. 

Pseudocode for the branch and bound algorithm 
is given in Figure 3. The description pertains to 
the case when the single nearest neighbor needs to 
be found. The modifications for the more general 
problem are quite simple, and are discussed in Section 
4.3. The first step is to compute the optimistic 
bounds from the target transaction to each entry in the 
signature table. We perform a main memory sort of 
the entries in the signature table in decreasing order of 
the optimistic bounds. This sort provides the order 
in which the supercoordinates of the signature table 
should be scanned. The purpose of the sorting is to 
order the partitions created by the supercoordinates in 
such a way that the partitions which are most likely to 
contain the nearest transaction to the target are visited 
first. 

We scan the supercoordinates in the signature table 
one by one, and compute the similarity between the 
target transaction and the transactions indexed by that 
entry. The similarity computation is illustrated in 
the procedure EvaluateObjective(., .) of Figure 5. We 
always keep track of the best candidate which has been 
found so far. The similarity of this transaction to the 
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Algorithm BtanchAndBound(TargetTrensaction: T, 
SignatureTableEntries:{l,. . . 2K}) 

begin 
for each table entry i do 

begin 
Opt(i) = FindOpti,misticBound(T, i); 

end 
Sort the ent.ries in the table in decreasing order of Opt(i); 
BestTTansacticm = A randomly chosen transaction; 
{ BestTvansaction keeps track of the transaction with 
the highest similarity value among those scanned so far } 

PessimisticBound = EvaluateObjective(BestTransaction, T); 
BestValue = EvaluateObjectiue(BestTtansaction, T); 
for each table entry i, in decreasing order of Opt(i) do 

begin 
if Opt(i) 5 PessimisticBound then prune entry i; 
else 

begin 
7(i) = Transactions indexed by entry i; 
for each transaction S E 7(i) do 

if EvaluateObjective(S, T) > BestValue then 
begin 
BestValue = EvaluateObjective(S, T); 
BestTransaction = S; 
end 

PessimisticBound = BestValue; 
end 

end; 
return(BestTransaction); 
end 

Algorithm FindOptimisticBound(TargetTransaction: T, 
Signature Table Entry: i) 

begin 
Mop* = FindOptimisticMatch(T, i); 
Dopt = FindOptimisticDist(T, i); 

return(f(A&t, Dqt)); 
end 

Figure 3: The branch and bound algorithm for indexing 
market baskets 

Algorithm FindOptimisticDist(TargetTransaction: T, 
Signature Table Entry: i) 

{ This algorithm finds an optimistic (lower) bound on the 
hamming distance between the target transaction and the 
signature table entry t. A detailed description of this 
technique is provided in Section 4.1 of the paper } 

Algorithm FindOptimisticMatch(TargetTransaction: T, 
Signature Table Entry: i) 

{ This algorithm finds an optimistic (upper) bound on the 
matches between the target transaction and the signature 
table entry i. A detailed description of this technique 
is provided in Section 4.1 of the paper } 

Figure 4: Evaluating the optimistic bounds on the 
match and hamming distance 

Algorithm EvaluateObjective(Transaction: S, Transaction: T) 
begin 

I = Number of matches between S and T; 

y=H amming Distance between S and T; 

return(f(r,y)); 
end 

Figure 5: Evaluating the objective function betwleen 
two transactions 

target provides a pessimistic bound on the quality of 
the similarity function between the target transaction 
and any of the transactions in the database.3 As the 
algorithm scans through the different supercoordinates, 
it continues to update (increase) the pessimistic bound, 
as better and better candidates are discovered. At the 
same time, those entries for which the optimistic bound 
is less than the current value of the pessimistic bound 
are pruned from contention. 

The performance of the algorithm is sensitive to the 
criterion used in order to sort the signature table en- 
tries. This is because finding closely matching tratns- 
actions (and hence higher pessimistic bounds) earlier 
on can significantly improve pruning performance. The 
use of optimistic bounds in order to perform the sorting 
is only one possible implementation of the algorithm. 
Another interesting implementation would be to sort 
the entries in the signature table based on the simi- 
larity function between the respective supercoordinates 
of the signature table entries and the target. In other 
words, if B’ be the supercoordinate of the target, and 
Bi be the supercoordinate of signature table entry i, 
then the sort order may be determined by using the 
similarity function between B’ and Bi for each i. This 
provides a different order of search of the partitions, 
though the optimistic bounds are still used in order to 
evaluate the pruning criterion for a given signature ta- 
ble entry. This can improve the performance when the 
sort criterion is a better indication of the average case 
similarity between the target and the transactions in- 
dexed by a signature table entry. For the purposes of 
this paper, we always use the optimistic bounds in or- 
der to perform the sorting. It now remains to explain 
how the optimistic bounds may be found. 

4.1 Finding optimistic bounds 

In order to find an optimistic bound on the similarity 
between the target transaction and a supercoordinate 
for the similarity function f(M, D), we first need to 
find optimistic bounds on the values of M and D. 
It follows from Lemma 2.1 that if i&,t and D,,t 

SThe correctness of this assertion is quite obvious, since the 
value of the similarity function of the closest transaction to the 
target in a subset of the database is a lower bound on the 
similarity to the closest transaction in the database. 
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are the respective optimistic bounds on the values of 
the match -and hamming distance between the target 
and the supercoordinate (all transactions indexed by 
that supercoordinate), then an optimistic bound on 
the similarity function may be computed by evaluating 
f(MoPt, DoPt). Note that D,t is a lower bound, 
whereas Mop* is an upper bound. This is because 
lower values of the hamming distance imply greater 
similarity, whereas higher values of the match function 
imply greater similarity. 

The variable Dist will contain the optimistic (lower) 
bound on the hamming distance between the target 
transaction and the signature table entry B. In the 
beginning, Dist is initialized to 0. In order to find an 
optimistic (lower) bound on the hamming distance from 
a target transaction to all transactions indexed by the 
supercoordinate B we process each of the signature sets 
Sj for j E (1,. . . K} and add an amount to Dist, which 
is calculated in the following way: 

(1) For each j E (1,. . ., K} such that bj = 0, we 
know that every transaction indexed by that entry 
must have less than T items from Sj in it. On the 
other hand, if the target transaction has Tj 2 T 

items in common with that signature, we know 
that an optimistic bound on the hamming distance 
between the target and any transaction indexed by 
that signature entry must be Tj - T + 1. Thus, 
for each j E (1,. . .K} such that bj = 0 we add 
max(0, ~j - T -I- 1) to Dist. 

(2) For each j E { 1, . . . , K} such that bj = 1, we 
know that every transaction indexed by that entry 
must have at least T items from Sj in it, Cn the 
other hand, if the target transaction has Tj < T 

items common with that signature, we know that 
an optimistic bound on the similarity between the 
target and any transaction indexed by that signature 
entry must be T - Tj. Thus, for each such entry we 
add max{O, T - Tj) to Dist. 

We will now discuss how Mopt and Dopt may 
be determined. Let {Sr, . . . , SK} be the sets of 
signatures. Let T be the activation threshold, and TP~ 

be the number of items common to each of the K 
signature sets Si from the target transaction. Let B 
be an entry in the signature table, and let the K 
bits representing its supercoordinate be denoted by 

-3 1.. . bK}. The bit bi corresponds to the signature Si. 

After all the K signatures have been processed, the 
value of Dist represents an optimistic (lower) bound 
on the hamming distance from the target to any 
transaction indexed by that entry in the signature 
table. At this stage, D,t may be set to the value 
of Dist. The above description pertains to the 
FindOptimisticDist(., a) of Figure 4. Correspondingly, 
the procedure FindOptimisticMatch(., .) of Figure 4 

illustrates the method for finding the optimistic (upper) 
bound on the number of matches. In order to find 
optimistic bounds on the matches between the target 
transaction and a signature entry, the method is very 
similar. The variable Match denotes the optimistic 
(upper) bound on the number of matches between the 
target and any transaction indexed by supercoordinate 
B. In order to determine the optimistic bounds, we 
update Match in the following way for each signature 
set: 

(1) For each j E (1,. . . K} such that bj = 0, we add 
min(r - 1, Tj} to Match. 

(2) For each j E (1,. . .K} such that bj = 1, we add Tj 

to Match. 

After processing the K signatures, the value of M,,, is 
set to the value of Match. Once Mopt and D,t have 
been determined, the optimistic bound on the similarity 
of the target to a supercoordinate is determined by 
computing f(Mopt, D,t). This is achieved by the 
procedure FindOptimisticBound(., .) of Figure 3. 

4.2 Speeding up by early termination 

The method can be speeded up significantly using early 
termination methods. The idea in early termination 
is that it is possible to terminate the algorithm after 
searching a predefined percentage of the transactions. 
The current best solution provides an approximation 
on the nearest neighbor. It is also possible to provide 
an estimate of how close this solution is to the nearest 
neighbor distance. Let S denote the set of table entries 
which have not been explored till (early) termination. 
Then an optimistic bound on the quality of the best 
similarity of the target transaction to any transaction 
indexed by the remaining signature table entries is given 
by mqEs{Opt(i)} defined in Figure 3. If this value is 
less than what was obtained at termination, then we 
know that we have found the true nearest neighbor. 
Otherwise, this value provides an upper bound on the 
quality of the best possible solution. Another way in 
which one could terminate the algorithm is when the 
best transaction found so far is within a reasonable 
similarity difference from the optimistic bounds of the 
unexplored table entries. In this way it is possible to 
provide a guarantee on the quality of the presented 
solution. 

4.3 Generalizations to other similarity and 
range queries 

This technique can be generalized easily to the k- 
nearest neighbor problem. The only difference is that 
at each stage of the algorithm, we maintain the k 
best candidates found so far. The pessimistic bound 
is determined by the similarity function of the target 
transaction with the kth best candidate found so far. A 
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supercoordinate maty be pruned if its optimistic bound 
is less than this value. 

Similarity queries for multiple targets can also be 
supported by the signature table. Consider for example, 
the case when the similarity of a transaction to a set 
of targets is definetd by the average similarity of the 
transaction to each of the targets. In this case, the 
optimistic bound for a signature table entry is obtained 
by averaging the o’ptimistic bounds of the signature 
table entry to each of the different targets. The rest 
of the algorithm is exactly the same. 

Although the focus of this paper is on the similar- 
ity search problem., we mention in the passing that 
the techniques discussed in this paper can be easily 
adapted in order to support range queries such as find- 
ing all transactions whose similarity to the target is 
larger than a predeflned threshold t. The only modi- 
fication required is to the pruning criterion. We need 
to prune those entries of the signature table such that 
their optimistic bounds are less than this user speci- 
fied threshold t. More generally, if fr . . .f,, be n simi- 
larity functions, then the range query correponding to 
fi(., a) 2 tl . . .f,,(., .) _> t, can be resolved by prun- 
ing those entries in the signature table if the optimistic 
bounds corresponding to any of the similarity functions 
are less than the corresponding threshold values. 

5 Empirical1 Results 

Synthetic methods for generating market basket data 
have been discussed earlier by Agrawal et. al. [3]. 
This method was used in order to test the efficiency 
of association rule algorithms on market basket data. 
We used this data generation method in order to test 
our algorithm. 

The first step was to generate L = 2000 maximal 
“potentially large itemsets”: These potentially large 
itemsets capture the consumer tendencies of buying 
certain items together. All transactions were obtained 
by combining noisy variations of these potentially 
large itemsets. We first picked the size of each 
maximal itemset as a random variable from a Poisson 
distribution with mean PL. Each successive itemset 
was generated by picking half of its items from the 
current itemset, and generating the othet half randomly. 
This ensures that the potentially large itemsets often 
have common items.. Each itemset I has a weight WI 
associated with it, which is chosen from an exponential 
distribution with un:it mean. The size of a transaction 
was drawn from a Poisson distribution with mean PT. 
Each transaction was generated by assigning maximally 
potentially large itemsets to it in succession. The 
itemset was assigned. to a transaction by rolling an L- 
sided weighted die such that the weight of the side for 
itemset I was defineld by WI. If an itemset did not fit 
exactly, it was assigned to the current transaction half 
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Figure 6: Scaling of pruning performance with database 
size (hamming distance) 
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Figure 7: Percentage accuracy scaling with different 
levels of early termination (hamming distance) 

of the time, and was moved to the next transaction 
the rest of the time. In order to capture the fact that 
the customers may not often buy all the items in a 
potentially large itemset together, we added some noise 
to the potentially large itemsets before adding them to a 
transaction. For each itemset I, we decided a noise level 
w E (0, 1). W e g enerated a geometric random varia,ble 
G with parameter nr. While adding a potentially 
large itemset to a transaction, we dropped min{G, 111) 
randomly chosen items from the transaction. The noise 
level nr for each itemset I was chosen from a normal 
distribution with mean 0.5 and variance 0.1. 

We shall also briefly describe some of the symbols 
which we have used in order to annotate the dalta. 
The three primary factors which vary are the average 
transaction size PT, the size of a maximal potentially 
large itemset PL, and the number of transactions being 
considered. A data set with j.&T = 10, /.JL = 4 and 1OlDK 
transactions is denoted by T10.14.DlOOK. 

The algorithm was tested by varying the average 
transaction size PT between 5 to 15 and setting PL =: 6. 
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Figure 8: Percentage accuracy scaling with transaction 
size (hamming distance) 

Figure 9: Scaling of pruning performance with database 
size (match/hamming distance) 

Figure 10: Percentage accuracy scaling with different 
levels of early termination (match/hamming distance) 

Figure 11: Percentage accuracy scaling with transaction 
size (match/hamming distance) 

Figure 12: Scaling of pruning performance with data- 
base size (cosine) 

Figure 13: Percentage accuracy scaling with different 
levels of early termination (cosine) 
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Figure 14: Percentage accuracy scaling with transaction 
size (cosine) 

For all experiments, we fixed the value of the activation4 
threshold to 1. We tested the algorithm for three 
different objective functions; the hamming distance, 
the match to hamrning distance ratio, and the cosine 
function. 

We tested two performance functions with our algo- 
rithm: 
(1) Pruning efficiency: The pruning efficiency of the 
algorithm was defined as the percentage of the data 
which was pruned by the branch and bound technique 
when the algorithm was run to completion. 
(2) Accuracy: The accuracy was defined as the per- 
centage of the time that the nearest neighbor was found 
when the algorithm was terminated after accessing a 
predetermined percentage of the data. 

We tested the scalability of the algorithm with re- 
spect to three different parameters: 
(1) Databa.se Size: We tested how the performance 
of the algorithm varied with the the number of transac- 
tions in the database. We found that the performance 
of the algorithm in terms of pruning efficiency improved 
with database size. This is highly desirable, because the 
problem of similarity indexing is most relevant for very 
large databases. 
(2) Transaction Size: As the average transaction size 
increases, the similarity search problem becomes more 
difficult because of the increased density of the data. 
We tested the performance variation of the algorithm 
with increasing transaction size. 
(3) Memory Availability: The size of the signature 
table is constrained by the amount of available mem- 
ory. The amount of available memory determines the 
value of the signature cardinality K. We tested how the 

*We found from our empirical experiments that for larger 
transaction &es, higher values of the activation threshold 
provided better performance. The empirical studies presented 
in this paper do not take such improvements into account. A 
detailed study of this performance dependence will be provided 
in an expanded version of this paper. 

performance of the algorithm was affected for differing 
values of K. Again, we reached the conclusion that the 
performance of the algorithm in terms of accuracy and 
pruning efficiency improved with memory availabil,ity. 

The scalability with increasing database size and 
memory availability are clearly greatly advantageous 
features, given the current trends. 

Since we observed very similar results for all the 
similarity functions that we tested, we shall restrict, 
ourselves to explaining the performance results for only 
one of the objective functions. The performance results 
for the others are very similar, and are provided as 
confirmation of the flexibility of our index structure 
in being able to support different similarity functions 
efficiently at query time. 

We tested the variation in pruning performance of the 
algorithm with increasing database size. The transac 
tions were generated from the distribution TlO.IG.Dx, 
where a denotes the varying database size. The per-, 
formance results for the hamming distance function are 
indicated in Figure 6. On the X-axis we have indicated. 
the database size in number of transactions, whereas 
on the Y-axis we have indicated the pruning perfor-, 
mance of the algorithm in terms of the percentage of 
the transactions pruned. We have illustrated three: 
curves, one each for the values of the signature para- 
meters K = 13,14, and 15. For these values of K, the 
number of signature table entries are 213, 214 and 215 
respectively. In this range of values for K, the signature: 
table can easily fit into memory. In fact, it is possible: 
to use substantially larger values of K for better query 
performance. 

As is apparent from Figure 6, the algorithm pru.ned 
96% to 99% percent of the transactions when the v,alue 
of the signature cardinality K was 15. Furthermore, the 
performance of the algorithm improved substantially 
when the database sizes were increased. The reason for 
this is as follows: after evaluating a fixed percentage of 
the transactions, the value of the pessimistic bound in 
the case of larger databases is higher. The pessimistic 
bound is defined by the value of the similarity functions 
of the closest transaction to the target among those 
evaluated so far. Hence, for larger database sizes iit is 
statistically expected to be higher. Since a signature 
table entry is pruned only when its optimistic bound is 
less than this global pessimistic bound, it is expected 
that the pruning is more likely for a given signature 
table entry for larger databases. To understand this 
point better, let us consider a database which contains 
only two transactions. After evaluating one of the 
transactions, the other transaction cannot be pruned 
from contention unless the similarity function for the 
first transaction is larger than the optimistic bound to 
the signature table entry for the second transaction. 
On the other hand, in a database containing a million 
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transactions, the value of the pessimistic bound is 
substantially higher after evaluating half a million of 
the transactions. Therefore, the likelihood of many of 
the remaining signature table entries getting pruned 
is also substantially higher. This characteristic of the 
algorithm is quite desirable, since the entire relevance of 
the similarity search problem is motivated by the issue 
of reducing disk I/O in very large databases. 

The performance of the algorithm for differing values 
of the signature cardinality K is because of the fact 
that higher values of K create a more fine grained 
partitioning. Therefore the optimistic and pessimistic 
bounds are more accurate and the probability of 
pruning is much higher. Note that the values of 
K which we have illustrated are quite conservative; 
in real systems we would pick higher values of K 
(dictated by main memory constraints), and therefore 
the corresponding pruning performances would also be 
substantially better. 

Figure 7 illustrates the accuracy of the algorithm 
for the hamming distance function for varying levels 
of early termination for the data set T10.16.D800K. 
We varied the termination criterion from 0.2% of the 
transactions to a maximum of 2%. As illustrated, the 
algorithm finds the nearest neighbor more than 90% of 
the time when K = 15 and the early termination level 
is larger than 1%. 

The performances of the algorithm for varying trans- 
action sizes on the hamming distance function are il- 
lustrated in Figures 8. The early termination level was 
fixed at 2%. It is apparent that the accuracy of the algo- 
rithm is reduced for longer transaction sizes. The reason 
for this is that for longer transaction sizes, each transac- 
tion activated a larger number of signatures. Therefore, 
most transactions mapped on to signature table entries 
which had a larger number of 1 bits. This resulted in 
a slight reduction of the pruning efficiency. For longer 
transaction sizes, it is more desirable to choose higher 
values of the signature cardinality K and also higher 
values of the activation threshold. 

The performances of the algorithm for the same 
evaluation criteria but a different similarity function 
(match to hamming distance ratio) are illustrated in 
Figures 9, 10, and 11; and the performances for the 
cosine function are illustrated in Figures 12, I8 , and 
14 respectively. For a given set of data, exactly the 
same signature table was used in order to test all the 
three similarity functions. As illustrated, the trends 
in these curves are very similar to the corresponding 
performance curves for the hamming distance function. 
This is evidence of the robustness and flexibility of 
our technique for using different similarity functions at 
query time. 

5.1 Performance of inverted indices 

Avg. Tr. Size Percentage Accessed 

5 3.32 
8 7.45 
10 9.37 
ii 

I 

14.50 
15 20.10 

u I u 

Table 1: Minimum Percentage of transactions accessed 
by an inverted index (without scattering) 

Since market basket data are high dimensional Boolean 
data, one possible alternative for this problem is 
the inverted index. An inverted index for an item 
stores all the Transaction Identifiers (TIDs), such 
that the corresponding transactions contain that item. 
Although the inverted index is vey well suited to queries 
which are based on the number of matches between 
the target record and the transactions, they are not 
so well suited to more sophisticated similarity functions 
of both the match and the hamming distance, or for 
complex multi-target variations of similarity queries. 
For each of the items in the target transaction, it is 
necessary to access all the transactions indexed by the 
items in the target, and calculate the similarity between 
the transactions and the target. Thus, the actual 
transactions need to be accessed from the database in a 
two phase process. In the first phase, all the TIDs of the 
transactions which contain any of the target items are 
found using the inverted index. In the second phase, the 
transactions are accessed from the original database, 
and the similarity of each of these transactions to the 
target is calculated. As we see from Table 1, the 
proportion of transactions which need to be accessed 
is quite considerable when the transaction sizes are 
larger. Furthermore, we need to go back to the original 
database in order to calculate the similarity of each such 
transaction to the target. Since these transactions may 
not lie on contiguous pages, this may result in a page- 
scattering eflect (or random disk access effect), which 
worsens the performance further. In other words, since 
the transactions are scattered over many different pages 
and all database accesses are granular in terms of page 
sizes, this may result in many unnecessary transactions 
being retrieved. This effect is such that even if 5% of 
the transactions in the database need to be accessed, it 
may be required to access almost the entire database. 
Table 1 does not take this effect into account. Clearly, 
the effect of page scattering may result in almost all the 
transactions in the entire database being accessed for 
most of the cases illustrated in Table 1. In comparison, 
the signature table is able to find the best solution a 
large percentage of time at an early termination level of 
0.2 - 2% of the transactions. 

417 



6 Conclusions and Summary 

In this paper, we discussed a technique for indexing 
market basket data. The technique can be adapted in 
order to resolve approzimate similarity queries. The 
method for building: the index structure is independent 
of the similarity function which can be specified at query 
time. The method shows very good pruning and ac- 
curacy performance and scales well with database size 
and memory availability. The query processing tech- 
niques discussed in this paper have the potential to 
be extended to more complex similarity functions with 
multiple targets, or range queries with multiple similar- 
ity functions. Our :future research will concentrate on 
these techniques. 
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