A New Method for Similarity Indexing of Market Basket Data

Charu C. Aggarwal
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

charu@watson.ibm.com

Joel L. Wolf
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

jlw@watson.ibm.com

Philip S. Yu
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

psyu@watson.ibm.com

Abstract

In recent years, many data mining methods have been
proposed for finding useful and structured information from
market basket data. The association rule model was
recently proposed in order to discover useful patterns and
dependencies in such data. This paper discusses a method
for indexing market basket data efficiently for similarity
search. The technique is likely to be very useful in
applications which utilize the similarity in customer buying
behavior in order to make peer recommendations. We
propose an index called the signature table, which is very
flexible in supporting a wide range of similarity functions.
The construction of the index structure is independent of the
similarity function, which can be specified at query time.
The resulting similarity search algorithm shows excellent
scalability with increasing memory availability and database
size.

1

This paper addresses the problem of retrieval and
similarity search for market basket data. In recent
years, the progress of bar code technology has made
it possible to collect information containing consumer
transaction data efficiently. Information about market
baskets is collected in the form of sets of items which
are bought together in a transaction. Let U denote the
universal set of items. Thus, a transaction T is a set
of items which is a subset of U, and represents those
items from U which were bought in the corresponding
transaction. Since the correlations in the buying
behavior of the different items may be deduced from
transactions, they may be used in order to make
decisions in many target marketing applications.

The market basket problem has been studied exten-
sively with reference to the issue of finding association

Introduction

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, 1o post on servers or 1o redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

407

rules between the different items [2, 3]. In this paper,
we will discuss this problem from the context of sim-
ilarity search. For a given target transaction, we wish
to find the k transactions which are most similar to it.
The straightforward solution of using a sequential scan
may require considerable I/O for very large data collec-
tions. This is especially true for transaction data, which
is usually of the order of gigabytes or terabytes.

The problem of indexing has been studied consid-
erably in the database literature from the perspective
of multidimensional quantitative data. Some examples
of data structures for performing indexing are the R-
Tree and its variants [1, 5, 12, 22]. These data struc-
tures can support many kinds of queries, such as point
queries, range queries, or similarity to a predefined tar-
get. After the introduction of the R-Tree, substantial
work was done on improving indexing techniques for
high dimensional data [6, 15, 16]. As the dimensional-
ity increases, the performance of these methods dete-
riorates rapidly because of the so called dimensional-
1ty curse. As a rule of thumb, when the dimensional-
ity is more than 10, none of the above methods work
well. A variety of indexes and query processing tech-
niques have been proposed in the database literature
which are specially suited to the similarity search query
(4, 7, 13, 14, 15, 17, 20, 21, 23]. Recently, the pyra-
mid technique was proposed for range queries, which
reduces the performance deterioration caused by high
dimensionality [6]. It has also been observed [20], that
the query performance is quite sensitive to the similar-
ity (or distance) function which is used.

A typical transaction contains only a few items
out of a universe of hundreds or thousands of items
[2]. Furthermore, the items in a transaction are
closely correlated. For example, in a database for
a supermarket application, if a iransaction contains
the itemn “Milk”, then it may often also contain the
items “Bread” or “Butter”. The total dimensionality
of transaction data is clearly out of the range of the
available indexing techniques for continuous valued
attributes. On the other hand, the sparsity and
correlations in transaction data provide an opportunity

which can be exploited in order to design efficient index
structures.

It has been observed in earlier work [20], that index
structures are often semsitive to the nature of the
similarity function which is used. Two simple similarity
functions between transactions are the number of
matches and the hamming distance. The number of
matches between two transactions is defined by the
number of items which were bought in both. In other
words, if T; and T, are two transactions, then the
match function between T and T, is defined by the
cardinality of T3 N T;. The hamming distance between
two transactions is defined to be the number of items
which were bought in one of the transactions, but
not both. Thus, the hamming distance between the
transactions T; and T5 is the sum of the cardinalities of
the two sets (77 — 12) and (T> — T1). In reality, good
similarity functions for transaction data are much more
complex than the above mentioned functions. Often
the similarity criterion may be complex function of the
number of matches and the hamming distance.

The inverted index is a data structure which can
support queries based on the number of matches
between the target and the database transactions.
It relies on the sparsity of the data in order to
provide eflicient responses to similarity queries [18] and
is widely used for information retrieval applications.
Unfortunately, the inverted index cannot efficiently
resolve queries in which the similarity criterion can be
any general function of the number of matches and
hamming distance between the target and database
transactions. It also cannot easily support queries
which are variations on the traditional similarity search
problem (eg. range queries or multi-target variants of
similarity queries). Furthermore, although transaction
data is sparse, the degradation in performance of
inverted indexes with increasing density is too steep to
be of practical use for many real applications.

We will introduce a data structure called the Signa-
ture Table, and show how to use it effectively for sim-
ilarity search. This data structure is quite flexible in
being able to support different kinds of similarity func-
tions. Furthermore, it shows excellent scalability with
increasing database size. This is a characteristic which
is crucial to effective deployment for very large data-
bases.

This paper is organized as follows. In the next
section, we will discuss the nature of the similarity
function and the kinds of queries that we would like
the index structure to support. In Section 3, we will
introduce the signature table, and discuss the details
of its construction. In Section 4, we will discuss the
branch and bound method which uses the signature
table for effective sirnilarity search. Section 5 discusses
the empirical results, whereas Section 6 is a conclusion

408

and summary.

1.1

This paper discusses a flexible indexing structure for
similarity search which is applicable to a wide variety
of similarity functions. We would like to be able to
perform similarity search when the similarity function
between two transactions is a general function of
the number of matches and the hamming distance.
We achieve this goal under certain very reasonable
constraints on the similarity function. The process
of building the signature table is independent of the
similarity function, which can be specified at query
time. Furthermore, the query processing techniques
discussed in this paper have the potential to be
extended to more complex variations of similarity
search queries with multiple similarity functions and/or
targets. The (percentage) pruning efficiency of our
technique increases with database size. This is a
useful property, given the huge sizes of sales transaction
databases.

Contributions of this paper

2

In this section we will discuss the general properties
of the similarity function which are supported by the
techniques in this paper. Let = be the number of items
in which the transactions 73 and T: match, and let
y be the number of items in which T} and T, differ.
Then the similarity between T3 and T, is a function
of both z and y. We shall denote this function by
f(z,y). For the sake of convention, we will assume that
the similarity function is such that higher values imply
greater similarity. The index structure proposed in this
paper is capable of handling maximization techniques
on this general function f(z, y), provided that it satisfies
the following two constraints:

The Similarity Function

22y 5 (1
Af(z,y)
Ay <0 (2)

The conditions on the function ensure that it is an
increasing function in terms of the number of matches
and is decreasing in terms of the hamming distance.
These are quite reasonable assumptions for similarity
functions, since a higher number of matches imply
greater similarity, whereas a greater hamming distance
implies less similarity. Some examples of functions
which satisfy this requirement are as follows:

(1) Hamming distance (minimization): When re-
stated in maximization form, we have f(z,y) = 1/y.

(2) Match to hamming distance ratio: f(z,y) =
z/y.

(3) Cosine: Let S and T denote two transactions, such
that #S5 and #T are the number of items in S and
T respectively. The cosine of the angle between S
and T is defined as follows:

cosine(S,T) = ﬁ

= VB oty-#1T) T

A variant of the above mentioned cosine function
is often used to measure similarity in information
retrieval applications [11].

A large number of other functions also satisfy the
above property. In order to set the ground for further
discussion, we shall prove a result which is key to the
correctness of our similarity procedure for the function

f(’a ')'
Lemma 2.1 Let f de a function satisfying:

Let v be an upper bound on the value of z and 8 be a
lower bound on the value of y. Then f(v,0) is an upper
bound on the value of the function f(z,y).

Proof: let (z° y°) be any realization of the value of
(z,y). Then, z° < v and y° > 6. It follows from the
above conditions that:

f(woa'yo) < f(')'vyo) < f('Ya 0) (3)
The result follows. [|
2.1 The similarity search query and its
variations

When stated in simple form, the similarity query is as
follows:

For a given target transaction T', find the k transactions
which maximize the similarity function f(z,y), where
z is the number of matches, and y is the hamming dis-
tance with the target transaction.

An interesting variation of this query is one in which we
have multiple targets, and we wish to maximize some
function of the similarity of the transactions to the dif-
ferent targets. For example, we may wish to maximize
the average similarity of the retrieved transactions to n
different targets.

Other variations on this query structure include range
queries such as those in which we wish to find all the

409

transactions whose similarity to the target is at least
equal to a predefined threshold ¢. More generally,
let fi(:,+)y...fa(*,+) be n similarity functions, and let
ty,...t, be n threshold values. The range query finds
all transactions which satisfy the constraints fi(-,-) >
ti,...fu(s,) > t,. An example of such a query is one
in which we wish to find all transactions which have at
least p items in common and at most g items different
from the target.

In this paper, our primary focus is on the nearest
neighbor query as stated in its purest form of finding
the closest transaction to the target. However, since
the branch and bound query processing technique is
applicable to all optimization functions, the methods
discussed in this paper can be easily extended to the
above variations. In a later section of the paper, we
will briefly discuss the slight modifications required in
order to support these queries.

3 The Signature Table

In this section, we will discuss the definition and
characterization of the signature table. We shall first
discuss some notations and terminology in order to
facilitate further discussion.

A signatureis a set of items. The items in the original
data are partitioned into sets of signatures. Consider
the case when the items in the original data are
{1,...,20}. Then one possible partition of these items
into signatures could be P = {1,2,4,6,8,11,18}, Q =
{8,5,7,9,10, 16,20}, and R = {12, 13,14, 15,17, 19}.

A transaction T is said to activate a signature A at
level r if and only if [ANT]| > r. This level r is referred
to as the activation threshold. For example, consider the
transaction T = {2,6,17,20}. Then, the transaction T
will activate the signatures P, @, and R at level r = 1,
and will activate only the signature P at level » = 2.

The set of items are partitioned into K sets of signa-
tures. We shall refer to this value of K as the signature
cardinality. The supercoordinate of a transaction ex-
ists in K-dimensional space such that each dimension of
the supercoordinate has a unique correspondence with a
particular signature and vice-versa. Each dimension in
this K-dimensional supercoordinate is a 0-1 value which
indicates whether or not the corresponding signature is
activated by that transaction. Thus, if the items are
partitioned into K signatures {S1,...Sk}, then there
are 2% possible supercoordinates. Each transaction
maps ‘on to a unique supercoordinate, though multi-
ple transactions may map into the same supercoordi-
nate. If S;,, S;,, ... S;; be the set of signatures which a
transaction activates, then the supercoordinates of that
transaction are defined by setting the ! < K dimen-
sions {1, 3,...4;} in this supercoordinate to 1 and the
remaining to 0.

The signature table consists of a set of 2K entries.

MAIN MEMORY

-—:>: List of transactions

]

'—:>r List of transactions
|

-—'>: List of transactions

Supercoordinate 1

Supercoordinate 2
Supercoordinate 3

i
F
'y
by
Iy
Iy
Ly
Iy
Iy
by
by
b
1y
b

| me e e e e e e m - m i
|

Figure 1: Illustration of the signature table

One entry in the signature table corresponds to each
possible supercoordinate. Thus, the entries in the
signature table create a partition of the data. This
partition will be ussd for the purpose of similarity
search. The signature table is stored in main memory,
whereas the actual transactions which are indexed by
each entry of the signature table are stored on disk.
This constrains the value of the signature cardinality
since the 2% entries of the signature table need to be
stored in main memory. Each entry in the signature
table points to a list of pages which contain the
transactions indexed by that supercoordinate. The
signature table is illustrated in Figure 1.

A signature can be understood as a small category of
items from the universal set of items U. Thus, if the
itemns in each signature are closely correlated, then a
transaction is likely to activate a small number of sig-
natures. These signatures provide an idea of the “ap-
proximate” pattern of buying behavior for that transac-
tion. The concept of using approximate representations
in order to index data has been explored in earlier work
(8, 9, 10]. Our method of representation, data structure
and query techniques are very different, being specially
designed for the similarity search problem.

3.1

In order to explain the process of signature table con-
struction we shall introduce some additional notation
and terminology. An itemset I is defined to be a set of
items satisfying I C U. Here U is the universal set of
items. A k-itemset is an itemset which has k items in
it. The support of an itemset I is defined to be the per-
centage of transactions in the database which contain I
as a subset.

Details of signature table construction

410

The effective construction of the signature table
requires us to partition the universal set of items U
into subsets of items which form the signatures. We
would like the set of itemns in each signature to be closely
correlated. This is achieved by using the following
procedure. We construct a graph such that each node
of the graph corresponds to an item. For every pair
of items such that the corresponding itemset has a
predefined minimum support, we add an edge between
the nodes. We also add a weight to each edge which is
the inverse of the support of that pair of items. Thus,
when the support of a pair of items is high, the weight
of the corresponding edge is low, and vice-versa.

We would like to find a partition of the items such
that the sum of the supports of the items in each
partition is similar and the cross-correlations among the
items in the different partitions are as small as possible.
In the transformation discussed above this translates
to the problem of finding the graph partitioning such
that the weight of the edges crossing the partitions of
the graph is as small as possible. The desire to keep
partitions evenly balanced arises from the need to create
the signature table in such a way that the transactions
are well distributed over the different entries. The desire
to keep the cross-correlations between the different
partitions small is motivated by the aim of keeping very
closely correlated! items in each signature.

Unfortunately, the weighted graph partitioning prob-
lem is notoriously difficult to solve. Thus, this approach
is too time intensive and impractical for most problems.
Instead, we choose to use a variant of the single link-
age clustering algorithm [19] in order to find the opti-
mal partitions. The disadvantage of single-linkage algo-
rithms is that they are often likely to lead to long strag-
gly clusters [19]. However, space and time-optimal algo-
rithms are available in order to perform single-linkage
clustering, and this is clearly attractive when the to-
tal number of items is very large. Briefly stated, the
single-linkage clustering algorithm is as follows:

(1) Construct a node for each item.

(2) Let the distance between each pair of nodes be de-
fined by the inverse of the support of the correspond-
ing 2-itemset.

(3) Apply the greedy minimum spanning tree algorithm
to the resulting graph in order to generate the single
linkage clusters. Add edges one by one to the graph,
starting with the null graph which contains only
nodes, but no edges. The edges are added in order
of increasing distance. This strategy ensures that if

the support of a pair of items is high, then they are

1 Another reason for desiring the correlation property is that
we would like only a small number of signatures to be activated
by a transaction. This is important in providing efficiency for our
similarity search procedure.

likely to belong to the same connected component.
The mass of a connected component in this graph is
defined as the sum of the supports of the individual
items in that component. Remove any component
which is such that its mass exceeds a predefined
percentage of the sum of the supports of all the
individual items. We shall refer to this threshold
value of the mass as the critical mass. This set
of items which satisfies the critical mass criterion
forms a signature set. We continue the process of
adding edges and removing components of critical
mass until each item belongs to some signature set.

Note that the critical mass criterion in step (3) for
determining when to remove a component from the
graph determines the signature cardinality K. If the
critical mass for a signature set is low, then the value
of the signature cardinality K is high, and vice-versa.
Higher values of K are desirable, since this results in
a finer granularity of partitioning of the data. The
empirical section will illustrate that partitions of higher
granularity result in better pruning performance. On
the other hand, it is also necessary to choose low enough
values of K such that the signature table can be held
in main memory.

Once the signatures have been determined, the parti-
tions of the data may be defined by using the superco-
ordinates of the transactions. Each transaction belongs
to the partition which is defined by its supercoordinate.
The transaction lists are built for each supercoordinate
(as illustrated in Figure 1) based on this partition.

4 The Branch and Bound Technique

The use of branch and bound methods for nearest
neighbor search has been explored by Roussopoulos
et. al. [17). This method was proposed for
continuous valued attributes. The same principles are
applicable to the market basket problem. The use of
signature sets for organizing transactions is the key to
determining good estimations on the similarity between
the target transaction and the transactions indexed by
the signature table entries.

The branch and bound method is a classical technique
in combinatorial optimization. It uses an ordered search
method on a partitioning of the data in order to avoid
searching many of the partitions. Pruning is done
by finding good optimistic bounds on the distance of
a target point to each set representing a partition of
the search space. This bound is an optimistic? bound
(upper bound) on the value of the similarity function
between the target and any transaction in this set. If

2In general, the term “optimistic bound” refers to an upper
bound, when the similarity search problem is in maximization
form, and a lower bound when the similarity search problem is
in minimigation form. Recall that our convention indicated that
higher values of the function f(-,-) imply greater similarity.

411

Data Subset 1 Data Subset 2 Data Subset 3

Opt(i): OPTIMISTIC BOUND OF TARGET TO DATA SUBSET i.

Figure 2: The partitioning techniques in the branch and
bound method

this optimistic bound is less than than the similarity
of the target to some solution R which has already
been determined, then the corresponding set may be
pruned from contention. This is because none of these
transactions can provide better similarity to the target
than R. This solution R defines a pessimistic bound
(or lower bound) on the quality of the optimal solution.
The overall idea of the branch and bound method is
illustrated in Figure 2. The process of pruning reduces
the size of the accessed space substantially, and thereby
leads to improved running times.

We know that each entry in the signature table
points to a set of transactions which corresponds to
a particular supercoordinate. It is the partitioning
created by these supercoordinates which may be used
in order to perform the branch and bound method.

Pseudocode for the branch and bound algorithm
is given in Figure 3. The description pertains to
the case when the single nearest neighbor needs to
be found. The modifications for the more general
problem are quite simple, and are discussed in Section
4.3. The first step is to compute the optimistic
bounds from the target transaction to each entry in the
signature table. We perform a main memory sort of
the entries in the signature table in decreasing order of
the optimistic bounds. This sort provides the order
in which the supercoordinates of the signature table
should be scanned. The purpose of the sorting is to
order the partitions created by the supercoordinates in
such a way that the partitions which are most likely to
contain the nearest transaction to the target are visited
first.

We scan the supercoordinates in the signature table
one by one, and compute the similarity between the
target transaction and the transactions indexed by that
entry. The similarity computation is illustrated in
the procedure EvaluateObjective(:,) of Figure 5. We
always keep track of the best candidate which has been
found so far. The similarity of this transaction to the

Algorithm BranchAndBound(TargetTransaction: T,
SignatureTableEntries:{1,...2%})

begin
for each table entry : do
begin
Opt(i) = FindOptimisticBound(T, 1);
end

Sort the entries in the table in decreasing order of Opt(7);
BestTransaction = A randomly chosen transaction;
{ BestTransaction keeps track of the transaction with
the highest similarity value among those scanned so far }
PessimisticBound = EvaluateObjective(BestTransaction, T');
BestValue = EvaluateObjective(BestTransaction, T);
for each table entry 1, in decreasing order of Opt(:) do
begin
if Opt(i) < PessimisticBound then prune entry i;
else
begin
T (z) = Transactions indexed by entry ;
for each transaction S € 7(3) do
if BvaluateObjective(S,T) > BestValue then
begin
BestValue = EvaluateObjective(S, T);
BestTransaction = S;
end
PessimisticBound = BestValue;
end
end;
return(BestTransaction);
end

Algorithm FindOptimisticBound(TargetTransaction: T,
Signature Table Entry:)
begin
Moyt = FindOptimisticMatch(T,1);
Dopt = FindOptimisticDist(T,1);
return(f(Mopt, Dopt));
end

Figure 3: The branch and bound algorithm for indexing
market baskets

Algorithm FindOptimisticDist(Target Transaction: T,
Signature Table Entry: 1)

{ This algorithm finds an optimistic (lower) bound on the
hamming distance between the target transaction and the
signature table entry 1. A detailed description of this
technique is provided in Section 4.1 of the paper }

Algorithm FindOptimisticMatch(Target Transaction: T,
Signature Table Entry: 1)

{ This algorithm finds an optimistic (upper) bound on the
matches between the target transaction and the signature
table entry :. A detailed description of this technique
is provided in Section 4.1 of the paper }

Figure 4: Evaluating the optimistic bounds on the
match and hamming distance

412

Algorithm Evaluate Objective(Transaction: S, Transaction: T)
begin

z = Number of matches between S and T;

y = Hamming Distance between S and T';

return(f(z,v));
end

Figure 5: Evaluating the objective function between
two transactions

target provides a pessimistic bound on the quality of
the similarity function between the target transaction
and any of the transactions in the database.®> As the
algorithm scans through the different supercoordinates,
it continues to update (increase) the pessimistic bound,
as better and better candidates are discovered. At the
same time, those entries for which the optimistic bound
is less than the current value of the pessimistic bound
are pruned from contention.

The performance of the algorithm is sensitive to the
criterion used in order to sort the signature table en-
tries. This is because finding closely matching trans-
actions (and hence higher pessimistic bounds) earlier
on can significantly improve pruning performance. The
use of optimistic bounds in order to perform the sorting
is only one possible implementation of the algorithm.
Another interesting implementation would be to sort
the entries in the signature table based on the simi-
larity function between the respective supercoordinates
of the signature table entries and the target. In other
words, if B’ be the supercoordinate of the target, and
B; be the supercoordinate of signature table entry i,
then the sort order may be determined by using the
similarity function between B’ and B; for each i. This
provides a different order of search of the partitions,
though the optimistic bounds are still used in order to
evaluate the pruning criterion for a given signature ta-
ble entry. This can improve the performance when the
sort criterion is a better indication of the average case
similarity between the target and the transactions in-
dexed by a signature table entry. For the purposes of
this paper, we always use the optimistic bounds in or-
der to perform the sorting. It now remains to explain
how the optimistic bounds may be found.

4.1 Finding optimistic bounds

In order to find an optimistic bound on the similarity
between the target transaction and a supercoordinate
for the similarity function f(M, D), we first need to
find optimistic bounds on the values of M and D.
It follows from Lemma 2.1 that if M,,; and Do

3The correctness of this assertion is quite obvious, since the
value of the similarity function of the closest transaction to the
target in a subset of the database is a lower bound on the
similarity to the closest transaction in the database.

are the respective optimistic bounds on the values of
the match and hamming distance between the target
and the supercoordinate (all transactions indexed by
that supercoordinate), then an optimistic bound on
the similarity function may be computed by evaluating
f(Mops, Dopt). Note that D, is a lower bound,
whereas M,p: is an upper bound. This is because
lower values of the hamming distance imply greater
similarity, whereas higher values of the match function
imply greater similarity.

We will now discuss how M,: and D,: may
be determined. Let {Sj,...,Sk} be the sets of
signatures. Let r be the activation threshold, and r;
be the number of items common to each of the K
signature sets S; from the target transaction. Let B
be an entry in the signature table, and let the K
bits representing its supercoordinate be denoted by
{by...bx}. The bit b; corresponds to the signature S;.
The variable Dist will contain the optimistic (lower)
bound on the hamming distance between the target
transaction and the signature table entry B. In the
beginning, Dist is initialized to 0. In order to find an
optimistic (lower) bound on the hamming distance from
a target transaction to all transactions indexed by the
supercoordinate B we process each of the signature sets
S; for j € {1,...K} and add an amount to Dist, which
is calculated in the following way:

(1) For each j € {1,...,K} such that b; = 0, we
know that every transaction indexed by that entry
must have less than r items from S; in it. On the
other hand, if the target transaction has r; > r
items in common with that signature, we know
that an optimistic bound on the hamming distance
between the target and any transaction indexed by
that signature entry must be r; — r + 1. Thus,
for each j € {1,...K} such that b; = 0 we add
max{0,7; — r + 1} to Dist.

(2) For each j € {1,...,K} such that b = 1, we
know that every transaction indexed by that entry
must have at least r items from S; in it. On the
other hand, if the target transaction has r; < r
items common with that signature, we know that
an optimistic bound on the similarity between the
target and any transaction indexed by that signature
entry must be » — r;. Thus, for each such entry we
add max{0,r — r;} to Dist.

After all the K signatures have been processed, the
value of Dist represents an optimistic (lower) bound
on the hamming distance from the target to any
transaction indexed by that entry in the signature
table. At this stage, D,,; may be set to the value
of Dist. The above description pertains to the
FindOptimisticDist(:,-) of Figure 4. Correspondingly,
the procedure FindOptimisticMatch(-,-) of Figure 4

413

illustrates the method for finding the optimistic (upper)
bound on the number of matches. In order to find
optimistic bounds on the matches between the target
transaction and a signature entry, the method is very
similar. The variable Match denotes the optimistic
(upper) bound on the number of matches between the
target and any transaction indexed by supercoordinate
B. In order to determine the optimistic bounds, we
update Match in the following way for each signature
set:

(1) For each j € {1,...K} such that b; = 0, we add
min{r — 1,7;} to Match.

(2) For each j € {1,...K} such that b; = 1, we add ;
to Match.

After processing the K signatures, the value of M,,; is
set to the value of Match. Once M.p: and D,y have
been determined, the optimistic bound on the similarity
of the target to a supercoordinate is determined by
computing f(Mops, Dopt). This is achieved by the
procedure FindOptimisticBound(-,-) of Figure 3.

4.2 Speeding up by early termination

The method can be speeded up significantly using early
termination methods. The idea in early termination
is that it is possible to terminate the algorithm after
searching a predefined percentage of the transactions.
The current best solution provides an approzimation
on the nearest neighbor. It is also possible to provide
an estimate of how close this solution is to the nearest
neighbor distance. Let S denote the set of table entries
which have not been explored till (early) termination.
Then an optimistic bound on the quality of the best
similarity of the target transaction to any transaction
indexed by the remaining signature table entries is given
by max;cs{Opt(:)} defined in Figure 3. If this value is
less than what was obtained at termination, then we
know that we have found the true nearest neighbor.
Otherwise, this value provides an upper bound on the
quality of the best possible solution. Another way in
which one could terminate the algorithm is when the
best transaction found so far is within a reasonable
similarity difference from the optimistic bounds of the
unexplored table entries. In this way it is possible to
provide a guarantee on the quality of the presented
solution.

4.3 Generalizations to other similarity and
range gqueries

This technique can be generalized easily to the k-
nearest neighbor problem. The only difference is that
at each stage of the algorithm, we maintain the k
best candidates found so far. The pessimistic bound
is determined by the similarity function of the target
transaction with the kth best candidate found so far. A

supercoordinate may be pruned if its optimistic bound
is less than this value.

Similarity queries for multiple targets can also be
supported by the signature table. Consider for example,
the case when the similarity of a transaction to a set
of targets is defined by the average similarity of the
transaction to each of the targets. In this case, the
optimistic bound for a signature table entry is obtained
by averaging the optimistic bounds of the signature
table entry to each of the different targets. The rest
of the algorithm is exactly the same.

Although the focus of this paper is on the similar-
ity search problem, we mention in the passing that
the techniques discussed in this paper can be easily
adapted in order to support range queries such as find-
ing all transactions whose similarity to the target is
larger than a predefined threshold ¢. The only modi-
fication required is to the pruning criterion. We need
to prune those entries of the signature table such that
their optimistic bounds are less than this user speci-
fied threshold ¢. More generally, if f1...f, be n simi-
larity functions, then the range query correponding to
fi(5+) > t1...fa(s,+) > tn can be resolved by prun-
ing those entries in the signature table if the optimistic
bounds corresponding to any of the similarity functions
are less than the corresponding threshold values.

5 Empirical Results

Synthetic methods for generating market basket data
have been discussed earlier by Agrawal et. al. [3].
This method was used in order to test the efficiency
of association rule algorithms on market basket data.
We used this data generation method in order to test
our algorithm.

The first step was to generate L = 2000 maximal
“potentially large itemsets”. These potentially large
itemsets capture the consumer tendencies of buying
certain itemns together. All transactions were obtained
by combining noisy variations of these potentially
large itemsets. @ We first picked the size of each
maximal itemset as a random variable from a Poisson
distribution with mean pz. Each successive itemset
was generated by picking half of its items from the
current itemset, and generating the othet half randomly.
This ensures that the potentially large itemsets often
have common items. Each itemset I has a weight wy
associated with it, which is chosen from an exponential
distribution with unit mean. The size of a transaction
was drawn from a Poisson distribution with mean pgp.
Each transaction was generated by assigning maximally
potentially large itemsets to it in succession. The
itemset was assigned to a transaction by rolling an L-
sided weighted die such that the weight of the side for
itemset I was defined by w;. If an itemset did not fit
exactly, it was assigned to the current transaction half

HAMMING DISTANCE: T10.56.0x

-
S

PRUNING EFFICENCY
-
&3

©
5

(3 - K15

palz —

. L R
3 4 s ‘ 7 [
DATABASE SIZE (NUMBER OF TRANSACTIONS) ey

Figure 6: Scaling of pruning performance with database
size (hamming distance)

HAMMING DISTANCE: T10.16.0800K

PERCENTAGE ACCURACY
T T

L L N L 2 . .
04 0,6 0.6 A 12 14 8 1.8
PERCENTAGE OF TRANSACTIONS AFTER WHICH TERMINATION 15 FORCED

Figure 7: Percentage accuracy scaling with different
levels of early termination (hamming distance)

of the time, and was moved to the next transaction
the rest of the time. In order to capture the fact that
the customers may not often buy all the items in a
potentially large itemset together, we added some noise
to the potentially large itemsets before adding them to a
transaction. For each itemset I, we decided a noise level
nr € (0,1). We generated a geometric random variable
G with parameter ny. While adding a potentially
large itemset to a transaction, we dropped min{G, |I|}
randomly chosen items from the transaction. The noise
level n; for each itemset I was chosen from a normal
distribution with mean 0.5 and variance 0.1.

We shall also briefly describe some of the symbols
which we have used in order to annotate the data.
The three primary factors which vary are the average
transaction size ur, the size of a maximal potentially
large itemset pz, and the number of transactions being
considered. A data set with ur = 10, pr = 4 and 100K
transactions is denoted by T10.14.D100K.

The algorithm was tested by varying the average
transaction size pur between b to 15 and setting uy = 6.

414

HAMMING DISTANCE (TERMINATION AT 2%): T10.18.0800K 00 MATCHMAMMING DISTANCE (TERMINATION AT 2%): Tx.16.DBO0K
100

PERCENTAGE ACCURACY
PERCENTAGE ACCURACY
® °
& 2

P
S

75

L " A L " . L L L] L X n . " " X L s

5 1] 7 L] 9 10 " 12 L&) 14 15 5 é 7] @ 10 11 12 3 14 15
AVERAGE TRANSACTION SZE AVERAGE TRANSACTION SZE
Figure 8: Percentage accuracy scaling with transaction Figure 11: Percentage accuracy scaling with transaction
size (hamming distance) size (match/hamming distance)
@ MATCHHAMMING DISTANCE : T10.16.Dx o7 COSINE FUNCTION: T10.16.0¢

© =
k4 &

PRUNNG EFFICEENCY
-
8

PRUNNG EFFICENCY

©
8

L3}

3 + 5 13 7 [1 2 3 4 5 [7]
DATABASE SZE (NUMBER OF TRANSACTIONS) it DATABASE 6iZE (NUMBER OF TRANSAGTIONS] e
Figure 9: Scaling of pruning performance with database Figure 12: Scaling of pruning performance with data-
size (match/hamming distance) base size (cosine)
MATCHHAMMING DISTANCE: T10.16.0800K COBINE FUNCTION: T10,%6.0800K

PERGENTAGE ACCURAGY

1 L L " s . s n) . L n s

02 04 0. 0.8 1 12 14 15 1.8 2 “02 [m) 1 12 " 16 1.8 2
PEACENTAGE OF TRANSACTIONS AFTER WHICH TERMINATION I8 FORCED PERCENTAGE OF TRANSACTIONS AFTER WHICH TEAMINATION 18 FORCED
Figure 10: Percentage accuracy scaling with different Figure 13: Percentage accuracy scaling with different
levels of early termination (match/hamming distance) levels of early termination (cosine)

415

COBNE F INCTION (TERMINATION AT 2%): T10.16.D800K

3
S
—

—— Kal§

=
X

s
S
T T
t
1
f
'
'
'
1
1
!
i
; 14
~ ’
b ’
.
’
’
R0

PERCENTAGE ACCURACY
o ol
1= o

-
7
’
’
’
’
K
’
4
’
’

&
T
.
’

~
)
T

& L
ﬂd 8 \ 10 1 12
AVERAGE TRANSAGTION SZE

Figure 14: Percentage accuracy scaling with transaction
size (cosine)

For all experiments, we fixed the value of the activation®
threshold to 1. We tested the algorithm for three
different objective functions; the hamming distance,
the match to hamming distance ratio, and the cosine
function.

We tested two performance functions with our algo-
rithm:
(1) Pruning efficiency: The pruning efficiency of the
algorithm was defined as the percentage of the data
which was pruned by the branch and bound technique
when the algorithm was run to completion.
(2) Accuracy: The accuracy was defined as the per-
centage of the time that the nearest neighbor was found
when the algorithm was terminated after accessing a
predetermined percentage of the data.

We tested the scalability of the algorithm with re-
spect to three different parameters:
(1) Database Size: We tested how the performance
of the algorithm varied with the the number of transac-
tions in the database. We found that the performance
of the algorithm in terms of pruning efficiency improved
with database size. This is highly desirable, because the
problem of similarity indexing is most relevant for very
large databases.
(2) Transaction Size: As the average transaction size
increases, the similarity search problem becomes more
difficult because of the increased density of the data.
We tested the performance variation of the algorithm
with increasing transaction size.
(3) Memory Availability: The size of the signature
table is constrained by the amount of available mem-
ory. The amount of available memory determines the
value of the signature cardinality K. We tested how the

*We found from our empirical experiments that for larger
transaction sizes, higher values of the activation threshold
provided better performance. The empirical studies presented
in this paper do not take such improvements into account. A
detailed study of this performance dependence will be provided
in an expanded version of this paper.

416

performance of the algorithm was affected for differing
values of K. Again, we reached the conclusion that the
performance of the algorithm in terms of accuracy and
pruning efficiency improved with memory availability.

The scalability with increasing database size and
memory availability are clearly greatly advantageous
features, given the current trends.

Since we observed very similar results for all the
similarity functions that we tested, we shall restrict
ourselves to explaining the performance results for only
one of the objective functions. The performance results
for the others are very similar, and are provided as
confirmation of the flexibility of our index structure
in being able to support different similarity functions
efficiently at query time.

‘We tested the variation in pruning performance of the
algorithm with increasing database size. The transac-
tions were generated from the distribution T10.16.Dx,
where z denotes the varying database size. The per-
formance results for the hamming distance function are
indicated in Figure 6. On the X-axis we have indicated
the database size in number of transactions, whereas
on the Y-axis we have indicated the pruning perfor-
mance of the algorithm in terms of the percentage of
the transactions pruned. We have illustrated three
curves, one each for the values of the signature para-
meters K = 13, 14, and 15. For these values of K, the
number of signature table entries are 2!3, 2!* and 2!°
respectively. In this range of values for K, the signature
table can easily fit into memory. In fact, it is possible
to use substantially larger values of K for better query
performance.

As is apparent from Figure 6, the algorithm pruned
96% to 99% percent of the transactions when the value
of the signature cardinality K was 15. Furthermore, the
performance of the algorithm improved substantially
when the database sizes were increased. The reason for
this is as follows: after evaluating a fixed percentage of
the transactions, the value of the pessimistic bound in
the case of larger databases is higher. The pessimistic
bound is defined by the value of the similarity functions
of the closest transaction to the target among those
evaluated so far. Hence, for larger database sizes it is
statistically expected to be higher. Since a signature
table entry is pruned only when its optimistic bound is
less than this global pessimistic bound, it is expected
that the pruning is more likely for a given signature
table entry for larger databases. To understand this
point better, let us consider a database which contains
only two transactions. After evaluating one of the
transactions, the other transaction cannot be pruned
from contention unless the similarity function for the
first transaction is larger than the optimistic bound to
the signature table entry for the second tramsaction.
On the other hand, in a database containing a million

transactions, the value of the pessimistic bound is
substantially higher after evaluating half a million of
the transactions. Therefore, the likelihood of many of
the remaining signature table entries getting pruned
is also substantially higher. This characteristic of the
algorithm is quite desirable, since the entire relevance of
the similarity search problem is motivated by the issue
of reducing disk I/O in very large databases.

The performance of the algorithm for differing values
of the signature cardinality K is because of the fact
that higher values of K create a more fine grained
partitioning. Therefore the optimistic and pessimistic
bounds are more accurate and the probability of
pruning is much higher. Note that the values of
K which we have illustrated are quite conservative;
in real systems we would pick higher values of K
(dictated by main memory constraints), and therefore
the corresponding pruning performances would also be
substantially better.

Figure 7 illustrates the accuracy of the algorithm
for the hamming distance function for varying levels
of early termination for the data set T10.16.D800K.
We varied the termination criterion from 0.2% of the
transactions to a maximum of 2%. As illustrated, the
algorithm finds the nearest neighbor more than 90% of
the time when K = 15 and the early termination level
is larger than 1%.

The performances of the algorithm for varying trans-
action sizes on the hamming distance function are il-
lustrated in Figures 8. The early termination level was
fixed at 2%. It is apparent that the accuracy of the algo-
rithm is reduced for longer transaction sizes. The reason
for this is that for longer transaction sizes, each transac-
tion activated a larger number of signatures. Therefore,
most transactions mapped on to signature table entries
which had a larger number of 1 bits. This resulted in
a slight reduction of the pruning efficiency. For longer
transaction sizes, it is more desirable to choose higher
values of the signature cardinality K and also higher
values of the activation threshold.

The performances of the algorithm for the same
evaluation criteria but a different similarity function
(match to hamming distance ratio) are illustrated in
Figures 9, 10, and 11; and the performances for the
cosine function are illustrated in Figures 12, 13 , and
14 respectively. For a given set of data, exactly the
same signature table was used in order to test all the
three similarity functions. As illustrated, the trends
in these curves are very similar to the corresponding
performance curves for the hamming distance function.
This is evidence of the robustness and flexibility of
our technique for using different similarity functions at
query time.

5.1 Performance of inverted indices

417

| Avg. Tr. Size | Percentage Accessed ||

5 3.32
8 7.45
10 9.37
12 14.50
15 20.10

Table 1: Minimum Percentage of transactions accessed
by an inverted index (without scattering)

Since market basket data are high dimensional Boolean
data, one possible alternative for this problem is
the inverted index. An inverted index for an item
stores all the Transaction Identifiers (TIDs), such
that the corresponding transactions contain that item.
Although the inverted index is vey well suited to queries
which are based on the number of matches between
the target record and the transactions, they are not
so well suited to more sophisticated similarity functions
of both the match and the hamming distance, or for
complex multi-target variations of similarity queries.
For each of the items in the target transaction, it is
necessary to access all the transactions indexed by the
items in the target, and calculate the similarity between
the transactions and the target. Thus, the actual
transactions need to be accessed from the database in a
two phase process. In the first phase, all the TIDs of the
transactions which contain any of the target items are
found using the inverted index. In the second phase, the
transactions are accessed from the original database,
and the similarity of each of these transactions to the
target is calculated. As we see from Table 1, the
proportion of transactions which need to be accessed
is quite considerable when the transaction sizes are
larger. Furthermore, we need to go back to the original
database in order to calculate the similarity of each such
transaction to the target. Since these transactions may
not lie on contiguous pages, this may result in a page-
scattering effect (or random disk access effect), which
worsens the performance further. In other words, since
the transactions are scattered over many different pages
and all database accesses are granular in terms of page
sizes, this may result in many unnecessary transactions
being retrieved. This effect is such that even if 5% of
the transactions in the database need to be accessed, it
may be required to access almost the entire database.
Table 1 does not take this effect into account. Clearly,
the effect of page scattering may result in almost all the
transactions in the entire database being accessed for
most of the cases illustrated in Table 1. In comparison,
the signature table is able to find the best solution a
large percentage of time at an early termination level of
0.2 — 2% of the transactions.

6 Conclusions and Summary

In this paper, we discussed a technique for indexing
market basket data. The technique can be adapted in
order to resolve approzimate similarity queries. The
method for building the index structure is independent
of the similarity function which can be specified at query
time. The method shows very good pruning and ac-
curacy performance and scales well with database size
and memory availability. The query processing tech-
niques discussed in this paper have the potential to
be extended to more complex similarity functions with
multiple targets, or range queries with multiple similar-
ity functions. Our future research will concentrate on
these techniques.

References

[1] C. C. Aggarwal, J. L. Wolf, P. S. Yu, M. Epelman.
The S-Tree: An efficient index for multi-dimensional
objects. Proceedings of the International Sympo-
sium on Spatial Databases. pages 350-370, Berlin,
Germany, July 1997.

[2] R. Agrawal, T. Imielinski, A. Swami. Mining
Association Rules between sets of items in very
large databases. Proceedings of the ACM SIGMOD
Conference, pages 207-216, 1993.

[3] R. Agrawal, R. Srikant. Fast Algorithms for Mining
Association Rules in Large Databases. Proceedings
of the 20th VLDB Conference, pages 478-499, 1994.

[4] S. Arya. Nearest Neighbor Searching and Applica-
tions. Ph. D. Thesis, University of Maryland, Col-
lege Park, MD, 1995.

[5] N. Beckman, H.-P. Kriegel, R. Schneider, B. Seeger.
The R*-Tree: An Efficient and Robust Method for
Points and Rectangles. Proceedings of the ACM
SIGMOD Conference. 322-331, 1990.

[6] S. Berchtold, C. Béhm, H.-P. Kriegel. The Pyramid
Technique: Towards Breaking the Curse of Dimen-
sionality. Proceedings of the ACM SIGMOD Con-
ference, pages 142-153, June 1998.

[7] S. Berchtold, B. Ertl, D. Keim, H.-P. Kriegel., T.
Seidl. Fast Nearest Neighbor Search in High Dimen-
sional Spaces. Proceedings of the 1/th International
Conference on Data Engineering, Orlando, 1998.

[8] C. Faloutsos. Signature Files. Information Re-
trieval: Data Structures and Algorithms, W. B.
Frakes, R. Baeza-Yates (Ed.), pages 44-65, 1992.

[9] C. Faloutsos, R. Chan. Fast Text Access Methods
for Optical and Large Magnetic Disks: Designs and
Performance Comparison. Proceedings of the 14th
VLDB Conference, pages 280-293, 1988.

418

[10] C. Faloutsos, S. Christodoulakis. Description and
Performance Analysis of Signature File Methods.
ACM TOOIS, 5 (3), pages 237-257, 1987.

[11] W. B. Frakes, R. Baeza-Yates (Editors). Infor-
mation Retrieval: Data Structures and Algorithms.
Prentice Hall PTR, New Jersey, 1992.

{12] A. Guttman. R-Trees: A Dynamic Index Structure
for Spatial Searching. Proceedings of the ACM
SIGMOD Conference, 47-57, 1984.

[13] K. Hinrichs, J. Nievergelt. The Grid File: A Data
Structure to Support Proximity Queries on Spatial
Objects. Proceedings of the WG’83, 100-113, 1983.

[14] R. Jain, D. A. White. Similarity Indexing: Algo-
rithms and Performance. Proceedings of SPIE Stor-
age and Retrieval for Image and Video Databases
IV, Vol. 2670, San Jose, CA, pages 62-75, 1996.

[156] N. Katayama, S. Satoh. The SR-Tree: An Index
Structure for High Dimensional Nearest Neighbor
Queries. Proceedings of the ACM SIGMOD Cornfer-
ence. pages 369-380, 1997.

(16] K.-I. Lin, H. V. Jagadish, C. Faloutsos. The TV-
tree: An Index Structure for High Dimensional
Data. VLDB Journal, 3 (4), pages 517-542, 1992.

[17] N. Roussopoulos, S. Kelley, F. Vincent. Nearest
Neighbor Queries. Proceedings of the ACM SIG-
MOD Conference, pages 71-79, 1995.

[18] G. Salton. Automatic Text Processing: The Trans-
formation, Analysis, and Retrieval of Information
by Computer. Addison-Wesley Publishing.

{19] R. Sibson. SLINK: An optimally efficient algorithm:
for the single link cluster method. Computer
Journal, Volume 16, pages 30-34, 1973.

[20] T. Seidl, H.-P. Kriegel. Optimal Multi-Step k-
Nearest Neighbor Search. Proceedings of the ACM
SIGMOD Conference, pages 154-165, 1998.

[21] T. Seidl, H.-P. Kriegel. Efficient User-Adaptable
Similarity Search in Large Multimedia Databases.
Proceedings of the 23rd VLDB Conference, 1997.

[22] T. Sellis, N. Roussopoulos, C. Faloutsos. The
R+ Tree: A Dynamic Index for Multidimensional
Objects. Proceedings of the 15th VLDB Conference,
pages 507-518, 1987.

[23] D. A. White, R. Jain. Similarity Indexing with
the SS-Tree. Proceedings of the 12th International

Conference on Data FEngineering, New Orleans,
USA, pages 516-523, February 1996.

