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Abstract 
Traditional approaches for content-based image querying typically 
compute a single signature for each image based on color 
histograms, texture, wavelet transforms etc., and return as the 
query result, images whose signatures are closest to the signature 
of the query image. Therefore, most traditional methods 
break down when images contain similar objects that are scaled 
differently or at different locations, or only certain regions of the 
image match. 

In this paper, we propose WALRUS (WAveLet-based Retrieval 
of User-specified Scenes), a novel similarity retrieval algorithm 
that is robust to scaling and translation of objects within an image. 
WALRUS employs a novel similarity model in which each image 
is first decomposed into its regions, and the similarity measure 
between a pair of images is then defined to be the fraction of 
the area of the two images covered by matching regions from 
the images. In order to extract regions for an image, WALRUS 
considers sliding windows of varying sizes and then clusters 
them based on the proximity of their signatures. An efficient 
dynamic programming algorithm is used to compute wavelet- 
based signatures for the sliding windows. Experimental results 
on real-life data sets corroborate the effectiveness of WALRUS’s 
similarity model that performs similarity matching at a. region 
rather than an image granularity. 

1 Introduction 
Advances in image processing techniques, processor speeds 
and graphics capabilities of modern computers, coupled 
with the proliferation of the internet, have made hundreds 
of thousands of digital images easily accessible to users. 
Consequently, applications requiring content-based query- 
ing and searching of images abound, and can be found in a 
number of different domains that include data mining, mul- 
timedia messaging, medical imaging, weather prediction, 
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insurance, TV production, satellite image databases and E- 
commerce. 

1.1 Drawbacks of Existing Approaches 

Traditionally, the problem of “query by content”, or alter- 
nately, that of retrieving images that match a given query 
image from a large database of images has been solved by 
computing afeature signature for each image, mapping all 
signatures to d-dimensional points in some metric space 
(usually reducing dimensionality in the process), and build- 
ing an index on all signatures for fast retrieval. An appro- 
priate distance function (e.g., euclidean distance) is defined 
for each pair of signatures, and given a query, the index is 
used to efficiently locate signatures close to the query point. 
The set of images corresponding to the signatures are then 
returned to the user and constitute the result of the query. 

Typical methods for computing signatures include color 
histograms, which can be used to characterize the color 
composition of an image, regardless of its scale or orienta- 
tion [Nib93, FSN+95]. The problem with color histograms, 
however, is that they do not contain any shape, location 
or texture information. As a result, two images with sim- 
ilar color composition may in fact contain very different 
shapes, and thus be completely unrelated semantically. One 
approach to solving this problem is to define separate dis- 
tance functions for color, shape, and texture, and subse- 
quently combine them to derive the overall result. An al- 
ternate approach, proposed in [JFS95, WWFW98], is to use 
the dominant wuvelefs coefficients for an image as its sig- 
nature - since wavelets capture shape, texture and location 
information in a single unified framework, their use amelio- 
rates some of the problems with earlier algorithms. 

A drawback of the schemes from [Nib93, JFS95, WWFW981 
mentioned above is that they compute a single signature 
for the entire image. As a result, the methods usually fail 
when images contain similar objects, but at different loca- 
tions or in varying sizes. For example, consider the two 
images in Figure 1 for which matching objects (enclosed in 
dotted rectangles) comprise more than 50% of each image. 
However, since the similar objects are at different locations 
in the two images, and there is very little similarity among 
the remaining objects, both wavelet signatures as well as 
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Figure 1: Images with Similar Objects 

color histograms for the two images could be vastly differ- 
ent. Thus, the algorithms from [Nib93, JFS95, WWFW98] 
typically fail with respect to scaling and translation of ob- 
jects within images, because a single signature computed 
for the whole image cannot sufficiently capture the impor- 
tant properties of individual objects. In contrast, we would 
like to build a system that is robust with respect to resolution 
changes, dithering effects, color shifts, orientation, size, and 
location, not only of the whole image, but of its individual 
objects as well. 

A number of strategies for decomposing an image into 
its individual objects have been proposed in the literature 
[Smi97]. However, extracting regions. from an image is 
a very hard problem to solve. Approaches that involve 
manually extracting objects can be extremely tedious and 
time-consuming, and are therefore impractical for large 
image collections. Consequently, most image segmentation 
techniques rely on being able to identify region boundaries, 
sharp edges between objects, and on a number of other 
factors, such as color., shape, connectivity, etc. However, 
besides being computationally expensive, the schemes are 
frequently inaccurate in identifying objects and the used 
methods are generally not robust with respect to object 
granularity. The reason for this is that the definition of an 
object is largely subjective - as a result, a single method 
cannot successfully identify the “correct” objects for all 
applications, and may decompose what the user perceives 
as a single object into several smaller objects. A number of 
image segmentation techniques, therefore, utilize domain- 
specific constraints anld are thus application-specific. 

1.2 Our Contributions 

In this paper, we prolpose the WALRUS (WAveLet-based 
Retrieval of User-specified Scenes) similarity retrieval al- 
gorithm for the querying by content problem. Below, we 
present the main contributions of WALRUS over existing 
approaches. 

Novel Similarity Model for Matching Images. WAL- 
RUS’s image similarity model is designed specifically to 
address shortcomings with existing approaches for the cases 
when images contain .similar regions but the region in one 
image is a translation or a scaling of the matching region in 
the other. WALRUS achieves this by computing and com- 

paring signatures at the granularity of regions and not the 
entire image. Thus, instead of storing a single signature 
for each image as in [Nib93, JFS95, WWFW98], in WAL- 
RUS, we build a set of a variable number of signatures for 
an image, one signature for each image region. We then 
define the similarity measure between the query image Q 
and a target image T in terms of the fraction of the area of 
the two images covered by matching pairs of regions from 
Q and T (matching regions are determined based on t.he 
distance between their signatures). Our experimental study 
with real-life data sets indicates that, compared to existing 
approaches, WALRUS’s similarity model results in signifi- 
cant improvements in the quality of images retrieved. 
Extraction of Regions and their Signatures. WALRlJS 
employs novel techniques for region extraction that are 
computationally efficient, domain-independent and avoid 
the complexity of traditional image segmentation algo- 
rithms based on identification of region boundaries, connec- 
tivity etc. To extract image regions and compute their sig- 
natures, in WALRUS, we consider sliding windows of vary- 
ing sizes within the image. For each window, we compute 
signatures by mapping it to some d-dimensional space, and 
then perform clustering on the signatures in order to group 
windows with similar characteristics (e.g., color composi- 
tion, texture) in a single cluster. Each cluster thus identifies 
a region of the image with related pixel values and we use 
the cluster representative (e.g., centroid) as the signature for 
the region. Since our similarity model compares images at 
the granularity of regions and regions represent variable- 
sized windows at varying locations, WALRUS effectively 
eliminates the scaling and translation problem, not only at 
the image level, but also at the object level. 
Computation of Signatures for Windows. In WALRUS, 
we use the Haar wavelet [SDS961 transform for feature 
extraction and dimensionality reduction for all windows. 
(See Section 3.) 

Even though computing the wavelet transform for an im- 
age requires time linear in the size of the image, the compu- 
tation could become expensive when applied to thousands 
of windows within an image. WALRUS employs a dynamic 
programming algorithm for efficiently computing wavelets 
in the sliding variable-sized window framework by reusing 
computation as much as possible. Compared to naive algo- 
rithms, we show that the dynamic programming algorithm 
can speed up computation of wavelet signatures by more 
than an order of magnitude. 

2 Related Work 
Initial systems tackled the content-based image retrieval 
problem by using color histograms, texture and shape 
features. The most common systems in this class are IBM’s 
QBIC system [Nib93, FSN+95], the Virage system [GJ97] 
by Virage Inc., and the Photobook system [PPS95] from the 
MIT Media Lab. These systems allow the user to spec:ify 
a particular color composition, texture, some shape feature, 
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and perhaps a partial sketch or painting. The user is also 
required to place relative weights on these attributes in order 
to arrive at the combined similarity measure. The systems 
typically use a collection of features and distance metrics, 
and usually require several indices, which can increase 
both space and time requirements. In addition, the correct 
weighing of the individual feature distances is hard to do 
automatically and imposes a certain burden on the user. 

Jacobs et al. [JFS95] addressed the problem by using 
wavelets to capture color, texture and shape in a unified 
framework, where the user is not required to specify any 
parameters. They used the simple Haar wavelet transform 
to compute a feature vector for each image. The wavelet 
representation is truncated retaining only forty to sixty of 
the largest magnitude coefficients, and harshly quantized 
so that the magnitude of the coefficients is essentially 
discarded and only their presence or absence is recorded. 
The authors experimented with different color spaces and 
image metrics, and found that the YIQ color space and a 
weighted version of the Huffman bitmap distance metric 
give best results for them. They also report experiments 
on the performance of their method for rotated, scaled, 
translated and color shifted images, which indicate a small 
tolerance to these operations. 

The WBIIS system developed by Wang et al. [WWFW98] 
improved on the wavelet method of [JFS95] by using 
Daubechies’ wavelets, a better distance metric, and a three- 
step search process. They generalized the distance metric 
to allow different weighing of the color components and the 
different subbands but their approach also suffers from the 
problem of correctly estimating these weights. The search 
process is performed in three steps: first a crude selection is 
done based on variances, then a refinement of the search is 
performed by comparing wavelet feature vectors based on a 
4level Daubechies’ transform, and in the final stage, feature 
vectors from a 5-level transform are compared. The authors 
report better performance results than the other approaches 
described but their system still cannot handle region queries, 
translation, and scaling. 

John Smith [Smi97] considered image query systems 
that integrate spatial and feature information, both at the 
image and region level. His system allows the user to 
specify the spatial location of regions, both in absolute 
terms as well as relative to each other. Each image 
is decomposed into regions by reverse-mapping region 
features from a finite library of patterns to the image. The 
library is obtained off-line, does not change dynamically, 
and it contains the feature representations for a fixed set of 
regions. The drawbacks of this system are the inconsistent 
quality of region segmentation and the limitations of the 
region mapping. Each image can be decomposed only into a 
pre-specified set of regions, so if the pattern library does not 
contain the correct regions, performance could suffer. After 
identifying the regions in an image, they are compared with 
each other, and the image similarity is computed based on 

the location of regions, their size, and relative position. 
Guibas, Rogoff, and Tomasi [GRT95] considered a 

quadtree partitioning of an image where only windows with 
uniformly consistent features are preserved and other win- 
dows are discarded as containing multiple region informa- 
tion. For each window a Fourier signature is computed and 
compared to that of neighboring windows to determine if 
they are sufficiently alike. This process results in a primi- 
tive segmentation of the image, which the authors argue can 
be used for image retrieval but do not give any experiments 
to support it. The paper does consider three different spec- 
tral distance measures, though, and compares them for seg- 
mentation purposes. The drawback of this approach is again 
the fact that windows’ sizes and locations are restricted, and 
thus it will not be able to handle scaling and translation of 
objects well. 

3 Wavelets 

Wavelets are useful for hierarchically decomposing func- 
tions in ways that are both efficient and theoretically sound. 
Broadly speaking, a wavelet representation of a function 
consists of a coarse overall approximation together with de- 
tail coefficients that influence the function at various scales 
[SDS96]. The wavelet transform has excellent energy com- 
paction and de-correlation properties, which can be used 
to effectively generate compact representations that exploit 
the structure of data. By using wavelet subband decom- 
position, and storing only the most important subbands 
(that is, the top coefficients), we can compute fixed-size 
low-dimensional feature vectors independent of resolution, 
image size and dithering effects. Also, wavelets are ro- 
bust with respect to color intensity shifts, and can capture 
both texture and shape information efficiently. Further- 
more, wavelet transforms can generally be computed in lin- 
ear time, thus allowing for very fast algorithms. 

In this paper, we use Haar wavelets to compute fea- 
ture signatures because they are the fastest to compute and 
have been found to perform well in practice [JFS95]. Haar 
wavelets enable us to speed up the wavelet computation 
phase for thousands of sliding windows of varying sizes in 
an image, and also facilitate the development of efficient 
incremental algorithms for computing wavelet transforms 
for larger windows in terms of the ones for smaller win- 
dows. One disadvantage of Haar wavelets is that it tends to 
produce blocky image artifacts for the most important sub- 
bands. However, in our application, the images constructed 
using signatures are never viewed and thus this is not our 
concern. We discuss the Haar wavelet transform for one 
and two dimensions in this section. 

3.1 One-Dimensional Haar Wavelets 

Suppose we are given a one-dimensional pixel image I = 
[2, 2, 5, 71. The Haar wavelet transform for the above 
image can be calculated as follows. We first average the 
values together pairwise to get a new lower resolution 
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image [2, 61. Obviously, some information has been 
lost in this averaging process. To be able to restore the 
original four values of the image, we need to store some 
detail coefJfcients, that capture the missing information. 
In Haar wavelets, the difference of the (second of the) 
averaged values from the average itself constitutes the detail 
coefficients. Thus, for the first pair of averaged values, the 
detail coefficient is 0 since 2-2 =0, while for the second we 
need to store I since ‘7-6 = 1. Note that it is possible to 
reconstruct the 4 pixels of the original image from the lower 
resolution image contalining the two averages and the two 
detail coefficients. By repeating the above process on the 
lower resolution image containing the averages recursively, 
we get the following fu.11 decomposition: 

We define the wavelet transform of the original image 
with four pixels to be the single coefficient representing the 
overall average of the pixel values followed by the detail 
coefficients in the order of increasing resolution. Thus, 
the one-dimensional Haar wavelet transform for the original 
image is given by I’ = [4,2,0, 11. 

Each entry in I’ is called a wuvelet coeflcienf. Using 
the wavelet transform of an image, rather than the image 
itself has a number of advantages. One advantage is that 
a large number of detail coefficients tend to be very small 
values. Thus, truncating these small coefficients from the 
transform introduces only small errors in the reconstructed 
image, giving a form of “lossy” image compression. 
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Intuitively, the wavelet coefficients in the above example 
carry different weights with respect to their importance for 
the reconstructed image. For example, the overall average 
of the whole data set is more important than any of the 
detail coefficients because it affects the whole range of 
reconstructed values. I[n order to equalize the importance 
of all coefficients, we need to normalize the final wavelet 
coefficients appropriately. We achieve this by dividing each 

wavelet coef’ficient by xfl, where i denotes the index of the 
approximation level the coefficient appears in (where level 0 
is the finest resolution level). Thus, the wavelet transform 
for the previous examplle becomes I’ = [4,2,0, l/A]. 

3.2 lhvo-Dimensional Haar Wavelets 

There are two ways in which wavelets can be used to trans- 
form the pixel values in a two-dimensional image. Each of 
these transforms is a two-dimensional generalization of the 
one-dimensional wavelet transform described above. The 
first is called standard decomposition. We do not describe 
this method here because we use the second approach to 
compute wavelet transforms in WALRUS. 

The second transform is called non-standard decomposi- 
tion. In this method, we perform one step of horizontal pair- 

wise averaging and differencing on the pixel values in each 
row of the image. Next, we apply vertical pairwise averag- 
ing and differencing to each column of the result. We then 
repeat this process recursively only on the quadrant contain- 
ing averages in both directions. The procedure for comput- 
ing the wavelet transform W for a w x w image I using non- 
standard decomposition is illustrated in Figure 2. In our co- 
ordinate system, the coordinate of the upper left corner pixel 
of I is [ 1 ,l], the lower left corner pixel is [ 1, n] and the up- 
per right corner pixel is [n, 11. Each horizontal followed by 
vertical pairwise averaging and differencing involves pixels 
in the 2 x 2 box rooted at coordinates [2i - 1,2j - l] for 
1 5 i, j 5 $. The horizontal and vertical averaging of pix- 
els in each 2 x 2 box rooted at [2i - 1,2j - l] results in 4 
new pixel values and these are computed in Steps 3-6. The 
upper left value (computed in Step 3) is the average of the 
4 pixel values and is stored in a new y x Y temporary ma- 
trix A whose primary purpose is to store averages on whic:h 
the above averaging and differencing process will be recur- 
sively applied, The remaining 3 new pixel values denoting 
the upper right (Step 4), lower left (Step 5) and lower right 
(Step 6) pixels are assigned to pixel [i, j] in the upper righIt, 
lower left and lower right 7 x 7 quadrants of W, respec- 
tively. These are the detail coefficients. Once the averages 
for all the 2 x 2 boxes have been computed, the compute- 
Wavelet procedure is recursively invoked on A in Step ‘3. 
For the two-dimensional Haar transform, the normalization 
factor is 2i. 

4 Image Similarity Model 
Computing signatures at the granularity of an entire image 
may fail to capture the similarity between regions of two 
images. WALRUS’s image similarity model is designe:d 
specifically to address the above shortcomings with existing 
approaches for the cases when images contain similar 
regions but the region in one image is a translation or a 
scaling of the matching region in the other. WALRUS 
achieves this by computing and comparing signatures at 
the granularity of regions and not the entire image. The 
similarity measure between a pair of images is then defined 
in terms of the fraction of the area covered by matching 
regions of the two images. Note that we do permit overlap 
between regions of an image. 

We are now in a position to formally define WALRUS:‘s 
similarity metric between two images Q and T consisting 
of regions QI, . . . , Qm and Tl, . . . , T,, respectively. The 
following definitions make use of two user-specified param- 
eters E and t. 

Definition 4.1: (Region similarity) A pair of regions is 
considered to be similar if one’s signature lies within an 
envelope of E width around the other. I 

Earlier we mentioned that the signature of a region is 
the centroid of the cluster of signatures for the region. 
Alternately, we can also consider as the signature of a 



procedure computeWavelet(1, W, 20) 
begin 
1. fori=ltoydo 
2. forj=ltoTdo{ 
3. A[i,j] := (1[2i - 1,2j - l] + 1[2i,2j - l] + 1[2i - 1,2j) + Z[2i,2j])/4 
4. W[$ +i,j] := (-1[2i - 1,2j - l] + Z[2i,2j - l] - Z[2i - 1,2j] + Z[2i,2j])/4 
5. W[i, f + j] := (-1[2i - 1,2j - 11 - Z[2i, 2j - 11 + Z[2i - 1,2j] + Z[2i,2j])/4 
6. W[T + i, t + j] := (1[2i - 1,2j - l] - 1[2i,2j - I] - I(2i - 1,2j] + 1[2i,2j])/4 
-7. 1 
8. ifw>2 
9. computeWavelet(A, IV, $) 
10. else 
11. W(1, I] = A[l, I] 
end 

Figure 2: Procedure for Computing the Wavelet Transform 

region, the bounding box of all signatures in the cluster 
for the region. As a consequence of Definition 4.1, when 
we use bounding boxes instead of centroids as signatures 
for regions, two regions are defined to be similar if the 
bounding rectangle for one after extending it by distance 
E overlaps with the rectangle of the other. 

Definition 4.2: (Similar region pair set) For images Q 
and T, the set of ordered pairs {(Qi,Ti), . . . , (Ql,Z”)} is 
referred to as a similar region pair set for Q and T if Qi is 
similar to Ti and for i # j, Qi # Qj, Ti # Tj. m 

Definition 4.3 (Image similarity) Two images Q and T are 
said to be similar if there exists a similar region pair set for 
Q and T { (Qi, Tl), . . ., (Ql, q)} such that: 

are4-(,l C&i)) + ar4Jf=1(Ti)) , 5‘ 
urea(Q) + area(T) - 

I 

In the above definition, ureu(U~,,(Qi)) is the number 
of pixels in Q covered by regions Qi, . . . , Qr considered 
together. Thus, two images are considered to be similar if 
the fraction of match area compared to the total area of the 
two images is above the user-specified threshold <. Note 
that, depending on the application, one could consider other 
variations for the similarity measure between images. One 
would be to simply measure the fraction of the query image 
Q covered by matching regions in Q; another, for images 
with different sizes would be to use twice the area of the 
smaller image in the denominator instead of the sum of the 
areas of the two images. 

5 The WALRUS Similarity Retrieval 
Algorithm 

5.1 Overview 

Below, we provide a brief overview of each step involved 
in processing a query image Q. Indexing of images is done 

only once at the beginning and when new images are added 
to the database, while the steps for querying need to be 
repeated for each query image. 

Generating Signatures for Sliding Windows: In the 
first step, each image is broken into sliding windows 
(which could overlap) with different sizes ranging from 
W,in x Wmin to wmas x wmo5. AS the signature for 
each window, we use the s2 coefficients from the lowest 
frequency band of the Haar wavelet transform for the 
window. 

Clustering the Sliding Windows: We next cluster the 
windows in the image using as the distance metric 
between a pair of windows, the euclidean distance 
between their signatures. Each cluster thus contains a 
set of similar windows which together define a region. 
The centroid of the cluster can be used as the signature 
for the region (alternately, the bounding box of all 
signatures in the cluster can be used as the signature, 
too). The query image is thus decomposed into a 
number of regions. 

Region Matching: For each region of the query image, 
we use a spatial index (R*-tree) to find all regions in 
the database that are similar, that is, regions whose 
signatures are within e distance of a region of the 
query. (In the image indexing phase, the regions of each 
image in the database computed in the previous step are 
indexed using their signatures). 

Image Matching: The previous step computes all the 
pairs of matching regions (Qi, Tj) for the query image 
Q and each target image T in the database. This 
information is used to compute the best similar region 
pair set for Q and T, that is, the one that covers the 
maximum area in the two images and thus maximizes 
the similarity measure between Q and T as defined in 
Definition 4.3. 

399 



(4 w3 (b) w4 ic) 

Figure 3: copyBlocks Procedure 

5.2 Computation o’f Wavelet Signatures for 
Windows 

In this subsection, we present a dynamic programming algo- 
rithm to efficiently compute wavelet signatures for sliding 
windows in an image. An image is a two dimensional array 
of pixel values. Images can be represented using a num- 
ber of different color spaces: RGB, HSV and YIQ, each of 
which store 3 color components for every pixel. The devel- 
opment in this section is for a single color value per pixel - 
the extension to multiple color channels is straightforward. 

The complexity of naively computing wavelet coeffi- 
cients of w x w windows rooted at every pixel in an nl x n2 
image is O(w2(nl - w)(n2 - w)), which could be pro- 
hibitive. Instead, in WALRUS, we use a dynamic program- 
ming algorithm that incrementally computes the coefficients 
for larger windows using those computed for smaller win- 
dows - our algorithm thus reuses the computation per- 
formed for smaller windows. In particular, assuming that 
we have computed signatures for windows of size $ x $, 
we can compute signatures for windows of size w x w using 
the signatures of the smaller windows of size g x y. 

Intuition: Let I be the w x w window whose wavelet 
transform, I/V, we would like to compute and let Il,Iz, 1s 
and 14 denote the four smaller $j x $j windows contained in 
it (see Figure 3(a)). Let WI, W2, Ws and Wd be the wavelet 
transforms for 11,12,1s and 14. 

Consider a further decomposition of each of I%‘~, W2, Ws 
and W4 into quadrants, and label them by 1, 2, 3 and 4 as 
shown in Figure 3(b). The quadrants 2, 3 and 4 denote the 
upper right, lower left and lower right detail coefficients 
generated by the first round of horizontal and vertical 
averaging and differencing on pixels in each of 11,12, Is 
and 14 by the computeWavelets procedure described in 
Section 3.2. Thus, were the computeWavelets procedure 
applied to I, then after the first round of averaging and 
differencing, the detail coefficients in the upper right, lower 
left and lower right quadrants of W would have values as 
shown in Figure 3(c). 

Suppose .4 is the y x $$ matrix of average values of 
2 x 2 boxes of pixels in I after the first round of averaging 
and differencing. Thus, the upper left quadrant of W is 
the wavelet ‘transform of A, and A consists of averages of 
2 x 2 boxes from II, I~,13 and I4 after the first round of 
averaging. Then, since quadrant 1 in each of WI, W2, Ws 
and W4 are the wavelet transforms of the averages of 2 x 2 

procedure computeSingleWindow(JV1 , W2, W3, W4, W, w) 
begin 
l.ifw=2{ 
2. W[l,l] := (wl[l,ll+ W2[1,1] + w3[1,1]+ W4[1,1])/4 
3. W[2,1] := (-Wl[l, 1]+ W2[1, l] - w3[1,1]+ W4(1,1])/4 
4. W[1,2] := (-Wl[l,l] - Wz[l,l] + w3[1,1]+ W4[1,1])/4 
5. W[2,2] := (Wl[l,l] - W2[1,1] - w3p,11+ W4[1,1])/4 
6. return 

1. 1 
8. copyBlocks( WI , W2, W3, W4, W, w) 
9. computeSingleWindow( WI , W2, W3, W4, W, $) 
end 

Figure 4: Procedure for Computing Wavelets for a Single 
Window 

boxes in II, 12, 13 and 4, respectively, after the first round 
of averaging, WI [l], . . . , W4[1] are the wavelet transforms 
for the four quadrants of A. Thus, since the upper left 
quadrant of W is the wavelet transform for A, we simply 
need to repeat the earlier steps with We [l], Wz[l], Ws[:l] 
and W4 [l] as the wavelet transforms for the four quadrants 
that comprise A and the upper left quadrant of W as thle 
target where the wavelet transform for A is to be stored. 

The above-described recursive process terminates when 
Wl[l], W2[1], Ws[l] and W4[1] each contain only a single 
value which is the average of all the pixel values in II, I2, l’s 
and 14, respectively. At this point, values for the four upper 
left pixels of W, W[l, 11, W[1,2], W[2, l] and W[2,2] 
can be computed by performing horizontal and vertical 
averaging over the four averages in We [l], . . . , W4 [l] as 
described in the computeWavelets procedure. 
Algorithm for Computing Wavelets for Single Window: 
The procedure for computing the wavelet transform for a 
w x w window from the wavelets for its four subwindows 
is as shown in Figure 4. WI, W2, W, and W4 are thle 
wavelet coefficients for the four $ x !$ subwindows of th.e 
window whose wavelet transform we wish to compute, and 
W is the target for the computed wavelet coefficients for 
the w x w window. If w is 2, then in steps 2-5, we simply 
perform horizontal and vertical averaging and differencing 
on the upper left pixel of each of WI, W2, Ws and W,i. 
Otherwise, the copyBlocks procedure is invoked which 
copies the upper right, lower left and lower right quadrants 
of WI, WZ, Ws and W4 to the corresponding quadrants of 
W as described in Figure 3. The procedure then calls itse.lf 
recursively to compute the coefficients for the upper left 
$ x y quadrant of W using the coefficients in the upper 
left 7 x y quadrants of WI, W2, W, and PV4. 

Note that since we are only interested in the s x s 
signature for each window, we are only interested in 
computing wavelet coefficients for the upper left s :K 
s matrix of W. From our earlier discussion on the 
computation of the wavelet transform for a single windovv, 
it follows that this can be computed by recursively invoking 
copyBlocks on the $ x $ upper left coefficients of the 
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wavelet transform for the four subwindows in the window. 
Thus, invoking procedure computeSingleWindow with w = 
s computes the upper left s x s wavelet matrix for W with 
the upper left f x t wavelet matrices of its four subwindows 
Wi , Wz, Ws and IV4 as the starting point. 

Algorithm for Computing Wavelets Signatures for Slid- 
ing Windows: We next show how we can use dynamic 
programming to compute signatures for multiple sliding 
windows in an nr x n2 image. Procedure computeslid- 
ingwindows in Figure 5 computes s x s signatures for all 
sliding windows in an image whose sizes are a power of 2 
and do not exceed w,,,. Procedure computeSlidingWin- 
dows also accepts as an input parameter the number of pix- 
els t by which to slide each window (that is, t is the hori- 
zontal/vertical distance between the upper left pixels of any 
two adjacent windows). The parameters s, wmaz and t are 
all required to be powers of 2. In a single iteration of the 
outermost for loop in Step 1, wavelet signatures are com- 
puted for all w x w windows in the image. In each succes- 
sive iteration, w is doubled, beginning with an initial value 
of 2 for w until it reaches the maximum window size wmaz. 
The wavelet signature for a window of size w and whose 
upper left pixel is at [i, j] is stored in Ww [i, j]. The wavelet 
signature for each w x w window is computed using those 
computed in the previous iteration for the four !$ x y sub- 
windows in it. W’[i, j] for every 1 x 1 window rooted at 
pixel [i, j] is initialized to the value of the pixel [i, j] (that 
is, the raw image intensity at a pixel is the signature for the 
1 x 1 window containing the pixel). 

In Step 2, we set dist, the distance between any two 
successive sliding windows to be the minimum of t and 
the window width w. This is for alignment reasons and to 
ensure that for any w x w window, the wavelet signatures 
for its four F x : subwindows have been computed in the 
previous iteration. 

In the for loops in steps 3 and 4, the coordinates [z, y] for 
the upper left corner pixel for each window is varied from 
1 to nr - w + 1 with increments of dist in the horizontal 
direction, and from 1 to ns - w + 1 with increments of 
dist in the vertical direction. Finally, in Step 7, procedure 
computeSingleWindow is invoked to compute the signature 
for the w x w window rooted at [z, y] from signatures for its 
four $! x y subwindows and the size of the signature to be 
computed min(w, s) is passed as a parameter. 

Therefore, if we want to generate signatures for all 
windows with sizes that are a power of 2 and range from 
Wmin x Wmin to Wmax x w,,,, passing wmas as input 
parameter to the dynamic programming algorithm generates 
all the desired signatures. 

Time and Space Complexity: The overall time complex- 
ity of computing signatures for all the sliding windows can 
be shown to be O(NSlog, wmaz) where N = n1n2 and 
s = 2. The total auxiliary memory space required by 
procedure computeSlidingWindows can also be shown to be 
exactly NS, which is desirable. (See [NRS98] for details.) 

procedure ComputeSlidingWindows(s, wrnaz, t) 
begin 
1. for each w E [2, umaz] and that is a power of 2 do { 
2. dist := min(w, t) 
3. fori=Otosdo 
4. forj=Otosdo{ 
5. z := i * dist + 1 
6. y:=j*dist+l 

I. 

8. 
computeSingleWind;w( W % [cc, y], W T [z + $, y], 

;: } 

I~[~,~ + $1, W 2 [z+ !$,Y + +I, WW[2,yl,min(w,s)) 

end 

Figure 5: Dynamic Programming Algorithm 

Discussion: The naive scheme for computing the wavelet 
signatures individually for all windows needs only w2 
space compared to the NS space required by the dynamic 
programming algorithm. However, the overall time 
complexity of the naive algorithm is O(Nwk,,) which 
can be much worse than the O(NS log, w,,,) complexity 
for our dynamic programming algorithm since typically, 
signatures are much smaller than the windows themselves 
and thus s << wmas. 

5.3 Clustering the Sliding Windows for an Image 

Since an image may generate a sizeable number of sliding 
windows, in order to guarantee low response times, we are 
interested in clustering algorithms with linear time com- 
plexity (most of the clustering algorithms in the literature 
have at least quadratic complexity [DH73]). Also, since 
we would like to ensure that a cluster contains windows 
that are fairly alike, we would like to be able to specify a 
threshold on the radius of the cluster - that is, the maxi- 
mum distance between the center of the cluster and a point 
in it. The pre-clustering phase of BIRCH [ZRL96], one of 
the state-of-the-art clustering algorithms for large data sets 
meets all of our requirements. The pre-clustering phase has 
time complexity that is linear in the input size and accepts 
an E, parameter which is the threshold on the cluster size. 

The threshold parameter cc and the signatures of all 
the sliding windows in an image are given as inputs to 
BIRCH’s pre-clustering algorithm. BIRCH, then, generates 
a set of clusters each of whose radius is generally within 
cc. The number of clusters typically increases with image 
complexity. 

Each cluster defines a region of the image. Either 
the centroid or the bounding box of the signatures for 
windows in the cluster can be used as the signature for the 
corresponding region. For each region, we also compute 
a bitmap for the pixels of the image covered by windows 
in its cluster. This information is needed in the final step 
by our similarity metric to compute the area of an image 
covered by multiple matching (and possibly overlapping) 
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regions. For each region, its signature along with its bitmap 
is stored in an R*-tree [BKSS90] which is an efficient disk- 
based index structure for the storage and retrieval of high- 
dimensional data points. Note that in the bitmap for a 
region, we don’t need to store a bit for each pixel - instead 
we could use a coarse representation in which a single bit 
is kept for each k x k: array of pixels, thus decreasing the 
storage overhead by a factor of lc2. 

5.4 Region Matching Algorithm 

The regions for database images, generated in the previous 
step, are stored in a disk-based spatial index. Each region 
is indexed using either the centroid or the bounding box 
for signatures in its cluster. Given a query image Q, its 
regions are extracted using steps identical to those used for 
the database images. Then, the index is probed to find 
all regions in the database whose signatures are within E 
distance of any of the query’s regions. Thus, if signatures 
are bounding rectangles, then the bounding rectangles of 
regions in the query image are extended by e and then the 
index is used to find all overlapping bounding rectangles in 
it. Since each bounding rectangle in the index represents 
a region belonging to an image in the database, this step 
effectively retrieves all database images that have at least 
one similar region with the query. 

5.5 Image Matching Algorithm 

For a query image Q, the previous region matching step re- 
trieves all the regions in the database that match every re- 
gion of Q. For a target image T, let (Qi, TI), . . . , (Qn, T,) 
be the matching pair ofregions belonging to Q and T. Note 
that a single region from Q can match a number of regions 
from T and vice versa. We use this information on matching 
regions and the bitmap of the pixels covered by each region 
(stored in the index along with the signature of each region) 
to compute the overall similarity measure between images 
Q and T as defined in Section 4. 

The quickest similarity metric to compute is one in which 
we simply union the bitmaps for the matching regions 
from Q and T, and then compute the area covered by the 
regions. The similarity is then the fraction of the total area 
of the two images that the computed area for the regions 
represents, as described in Definition 4.3. This is very fast 
(linear time complexity in n) and corresponds to relaxing 
the requirement that each region appear only once in a 
similar region pair set (see Definition 4.2). A drawback of 
this approach, however, is that the same query region may 
match a number of different regions in the target making 
the covered area in the target image large since all the 
matched regions get included in the computation of the area. 
However, this may be undesirable since very few regions 
from the query image :match regions in the target, and thus, 
the covered area in the query itself could be small. 

The above situation can be remedied by adopting the 
strict defin:ition of a similar region pair set (see Defini- 

tion 4.2) which restricts the relationship between regions of 
Q and T to be a one-to-one correspondence, that is, it pro- 
hibits a region from appearing multiple times in the similar 
region pair set. Ideally, we would like to compute the simi- 
lar region pair set that results in the maximum value for the 
similarity measure. However, since we permit overlap be- 
tween regions, the problem of determining such matching 
pairs of distinct regions from Q and T that maximize tlhe 
covered area is an NP-hard problem. 

Theorem 5.1: Given matching pairs of regions (91, Tl) 
..-(Qn,Td h P bl t e ro em of computing a similar region 
pair set with the maximum covered area is NP-hard. I 

Proof: See [NRS98]. I 

Therefore, we also propose a greedy heuristic for com- 
puting the similar region pair set with the maximum area. 
The basic idea is to iteratively choose the best pair of match- 
ing regions that maximizes the area covered by the regions. 
A detailed description of our greedy heuristic can be found 
in [NRS98]. The time complexity of the greedy algorithm is 
O(n2), where n is the number of matching pairs of regions 
from Q and T. 

For images T whose similarity to the query image Q 
exceeds the threshold t, we can perform an additional 
refined matching phase with more detailed signatures if the 
resulting increase in response time is acceptable. 

6 Experimental Results 
In this section, we study the performance of WALRIJS 
and demonstrate its effectiveness for similarity retrieval on 
images. We first show that our dynamic programming 
algorithm for computing wavelet signatures for sliding 
windows is more than an order of magnitude faster than 
the naive scheme. We then compare the quality of the 
images retrieved by WALRUS and WBIISI [WWFW98], an 
image indexing and retrieval system developed at Stanford 
University. Our results indicate that, in general, the images 
returned by WALRUS are semantically more similar to the 
query image that those returned by WBIIS. 

In all of our experiments, we used euclidean distance as 
the distance metric. We performed experiments using a Sun 
Ultra-2/200 machine with 5 12 MB of RAM and running 
Solaris 2.5. 

6.1 Algorithms 

The WBIIS algorithm uses Daubechies wavelets to compute 
a single signature for each image, and a brief description of 
it was presented earlier in Section 2. 

Our WALRUS implementation currently handles several 
color spaces for images including YCC and RGB. We 
present the result with YCC space only in the paper due 
to the lack of space. Additional results with different color 
spaces can be found in [NRS98]. We implemented both 
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the naive algorithm as well as our dynamic programming 
algorithm for computing wavelet signatures for sliding 
windows. In our implementation of WALRUS, to develop 
portions of our code, we used the following libraries that are 
available for free on the internet. 

BIRCH Clustering Algorithm: We used the pre- 
clustering phase of the BIRCH implementation2 provided 
to us by the authors of [ZRL96]. We set parameter values to 
the default values suggested in [ZRL96]. (See [NRS98] for 
details.) 

R*-tree packages: To build the disk-based R*-tree in- 
dex, we used the GiST C++ library3 that is an implementa- 
tion of the Generalized Search Tree, a template index struc- 
ture that makes it easy to implement any type of hierarchi- 
cal access method. Currently, the libgist distribution comes 
prepackaged with a B-tree and an R-tree extension. 
ImageMagick Library: The ImageMagick4 image dis- 
play program can read and write many of the more popu- 
lar image formats including JPEG, TIFF, PNM, GIF, and 
Photo CD. In addition, it can convert image files into dif- 
ferent color spaces, resize, rotate, sharpen, color reduce, or 
add special effects to an image. The ImageMagick library 
can handle a number of color spaces including RGB, XYZ, 
YCC, YIQ and YUV. WALRUS uses the ImageMagick li- 
brary to display images as well as to convert them to specific 
formats and color spaces. 

6.2 Data Sets 

In order to evaluate the quality of images retrieved by 
WALRUS, we used a real-life image dataset called mix 
from the web site for the image search engine WBIIS at 
Stanford University. This dataset was provided to us by 
James Wang at Stanford University who downloaded it from 
VIRAGE’s web site a few years ago. The mist database 
contains 10000 images stored in JPEG format, each of 
whose sizes is either 85 x 128,96 x 128 or 128 x 85. 

6.3 Effectiveness of Dynamic Programming 
Algorithm 

We measured the execution times of our algorithm and 
the naive algorithm for a wide range of parameter values. 
Three important factors that affect the performance of 
the algorithms are: image size, sliding window size and 
signature size. We fixed the image size to be 256 x 256, 
and varied the sliding window size and signature size (we 
set the distance between any two adjacent sliding windows 
to be 1 pixel). We excluded from our measurements of the 
execution time, the time spent for reading the image; thus, 
the running times represent the actual wavelet computation 
times for all sliding windows in the image. 

Figure 6(a) plots the running times of both algorithms for 
computing 2 x 2 signatures as the sliding window size is 

varied from 2 x 2 to 128 x 128. The numbers 2i along 
the x-axis represent a window size of 2i x 2i. Since the 
sliding window size is always a power of two, the x-axis 
is shown in log scale. Observe that the execution time 
increases slowly for the dynamic programming algorithm 
as the window size increases. However, the performance 
of the naive algorithm degrades significantly as the window 
size grows. The reason for this is that the time complexity of 
the naive algorithm is proportional to the square of window 
size, while the execution time of the dynamic programming 
algorithm is proportional to the logarithm of the window 
size. For a window size of 128 x 128, the naive algorithm 
is about 17 times slower than our dynamic programming 
algorithm, and its running time is close to 25 seconds. 

Figure 6(b) shows the execution times for the algorithms 
as we increase signature sizes for a fixed sliding window 
size of 128 x 128. From the graph, it follows that the 
execution time of the dynamic programming algorithm 
increases slowly as the signature size is increased, while 
that of the naive algorithm stays almost constant at 25 
seconds. However, even for signature sizes as large as 
32 x 32, the dynamic programming algorithm is almost 
5 times faster than the naive algorithm. Since typical 
signature sizes can be expected to be between 2 x 2 and 
8 x 8 (due to the inability of existing indices to handle high- 
dimensional data), in most practical situations, our dynamic 
programming algorithm should be far superior to the naive 
algorithm. 

6.4 Effectiveness of WALRUS’s Similarity Model 

In order to determine the effectiveness of WALRUS’s new 
similarity model, we compared how semantically related 
images retrieved by WALRUS and WBIIS are, to a given 
query image. Due to space constraints, we show here only 
the results obtained for one query image. The results with 
other query images are presented in [NRS98]. 

The query image that we consider contains red flowers 
with green leaves in the background (see Figure 7(a)). The 
query image has an Id of 866 in the mist database. The top 
14 similar images found by WBIIS are as shown in Figure 7 
in the increasing order of rank. As we can see from the 
figure, some of the returned images are very different from 
the query image. For example, the image in Figure 7(d) 
is a wall with orange and dark brown bricks. The image 
in Figure 7(g) is a picture of sunset on the ocean, while 
Figure 7(k) contains a yellow dog sitting on a green lawn. 

In all, about 7 images are semantically unrelated to the 
query image. One of the reasons for this is that WBIIS 
generates a single wavelet signature for each image in 
the database. Since wavelets capture location, color and 
texture information, a number of images returned by WBIIS 
contain either green or red in similar locations as the query 
image. For instance, figures 7(h) and 7(k) have green in 
the background, while figures 7(d) and 7(g) have red/orange 
towards the center of the image. All of these images are 
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(b) Signature Size

very different from the original image having red flowers
with green leaves in the background.

In contrast, the top 14 matching images retrieved by
WALRUS are as shown in Figure 8. As the images
illustrate, all images except the image in Figure 8(m)
contain either red or pink flowers. Even the image in
Figure 8(m) that is unrelated to the query image has a girl
windsurfing with a red color sail in the picture. One of
the reasons why WALRUS performs so well is that in the
matching images containing red/pink flowers, the flowers
appear at different locations in the images and in different
sizes. In the query image, the fairly large bunch of red
flowers appear somewhat in the center, slightly shifted to
the left. However, in figures 8(f), 8(g) and 8(o), the flowers
are placed more towards the right, while in figures 8(b),
8(e), 8(j), 8(k) and 8(n), flowers are distributed all over

the image. Also, figures 8(c), 8(d), 8(i) and 8(l) contain
a single flower (and not a large bunch) close to the center
of the picture. Thus, since WALRUS’s similarity model is
more robust with respect to the scale and position of image
objects, it is more effective in identifying related images
(containing similar regions but at different locations or in
varying sizes).

In WALRUS, the images shown in Figure 8 were re-
trieved using the following values for the various parame-
ters. A fixed window size of 64 x 64 was used for sliding
windows and 0.05 was employed for ec, the epsilon value
for clustering. A 2 x 2 signature was used for each color
space, and the cluster centroid was chosen as the represen-
tative for the corresponding region. Thus, the resulting sig-
nature for each image region was a 12-dimensional point.
Also, with each region, we stored a 16 x 16 (32 byte) bitmap
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in the index. The epsilon value, e, which is the distance be-
tween the signatures of matching regions was set to 0.085
and the color space used was YCC. In the image match-
ing step, we used the quick algorithm for computing the
similarity measure between images that simply unions the
matching regions between the query image and the target
image retrieved using the disk-based index, and then com-
putes the matching area fraction. Thus, even with very
simple matching algorithms, using WALRUS, we were able
find similar images effectively.

6.5 Query Response Time

To get a feel for query response times with WALRUS, we
measured the time WALRUS takes to retrieve similar im-
ages for the query image in Figure 8(a) when the querying
epsilon, E, is varied from 0.05 to 0.09. Two important fac-
tors that affect query response times in WALRUS are 1) the
region selectivity, that is, the number of matching regions
retrieved for a query, and 2) the number of database images
containing the matching regions. In the experiments we per-
formed to see the effects these parameters have on query re-
sponse times, we set the cluster epsilon, cc, to be 0.05 and
stored images using YCC. With this cluster epsilon, WAL-
RUS extracted 18 regions from the query image. We used
64 x 64 as the sliding window size, 2 x 2 signatures (for
each color channel) and used the cluster centroid as the rep-
resentative signature for each region.

We list in Table 1 the response time, the average number
of regions retrieved per region of the query image and
the total number of distinct images that contain regions
matching at least one of the query image’s regions, as the

querying epsilon is varied from 0.05 to 0.09. The response
time includes the time to perform all steps of WALRUS -
this includes reading the image file from disk, converting
it into YCC format, computing wavelet signatures for the
64 x 64 sliding windows, clustering the windows using
BIRCH, retrieving similar regions for each query region
from the disk-based R*-tree index, and matching images
based on the fraction of the area covered by similar regions.

From Table 1, it follows that as E is increased, the average
number of matching regions per region of the query image
increases (which is not surprising). As a result, more images
need to be processed and consequently, the query response
times increase, too. However, the query response times
range from 5 seconds to about 20 seconds, which are quite
reasonable. The results thus indicate that WALRUS is
practical to use even though it uses a very general similarity
model.

6.6 Number of Regions Per Image
We also computed the average number of regions generated
for the query image (in Figure 8(a)) as ec is varied from
0.025 to 0.1. The average number of clusters generated with
RGB is typically four times more than the corresponding
number for YCC. Also, the number of clusters generated
decreases as ec is increased. Due to the lack of space, we
present details in [NRS98].

7 Conclusions
WALRUS employs a novel similarity model in which each
image is first decomposed into its regions, and the similarity
measure between a pair of images is then defined to be the
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Response Time (set) Avg. No. of Regions Retrieved No. of Distinct Images 
5.19 15 65 

6.67 49.9 153 

9.42 148.3 344 

13.61 834.9 718 

19.86 890.7 1287 

Table 1: Query Response Time (Selectivity) 

fraction of the area of the two images covered by matching 
regions from the im.ages. In order to extract regions 
for an image, WALRUS considers sliding windows of 
varying sizes and then clusters them based on the proximity 
of their signatures. An efficient dynamic programming 
algorithm is used to c,ompute wavelet-based signatures for 
the sliding windows. Thus, unlike traditional approaches 
for content-based image querying that typically compute 
a single signature for each image, in WALRUS, we build 
a set of a variable number of signatures for an image, 
one signature for each image region. Furthermore, by 
performing similarity matching at the region rather than 
image granularity, WALRUS’s image similarity model can 
handle the cases when images contain similar regions but 
the region in one image is a translation or a scaling of the 
matching region in the other. Experimental results on real- 
life data sets suggest that the images retrieved by WALRUS 
are semantically more related to the query image than those 
retrieved by traditional methods. Our experiments also 
indicate that it is possible to easily obtain more than an 
order of magnitude spe:edup with the dynamic programming 
algorithm for computing wavelet signatures compared to 
naive algorithms. 
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