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Abstract

Traditional approaches for content-based image querying typically
compute a single signature for each image based on color
histograms, texture, wavelet transforms etc., and return as the
query result, images whose signatures are closest to the signature
of the query image. Therefore, most traditional methods
break down when images contain similar objects that are scaled
differently or at different locations, or only certain regions of the
image match.

In this paper, we propose WALRUS (WAveLet-based Retrieval
of User-specified Scenes), a novel similarity retrieval algorithm
that is robust to scaling and translation of objects within an image.
WALRUS employs a novel similarity model in which each image
is first decomposed into its regions, and the similarity measure
between a pair of images is then defined to be the fraction of
the area of the two images covered by matching regions from
the images. In order to extract regions for an image, WALRUS
considers sliding windows of varying sizes and then clusters
them based on the proximity of their signatures. An efficient
dynamic programming algorithm is used to compute wavelet-
based signatures for the sliding windows. Experimental results
on real-life data sets corroborate the effectiveness of WALRUS's
similarity model that performs similarity matching at a region
rather than an image granularity.

1

Advances in image processing techniques, processor speeds
and graphics capabilities of modern computers, coupled
with the proliferation of the internet, have made hundreds
of thousands of digital images easily accessible to users.
Consequently, applications requiring content-based query-
ing and searching of images abound, and can be found in a
number of different domains that include data mining, mul-
timedia messaging, medical imaging, weather prediction,
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insurance, TV production, satellite image databases and E-
commerce.

1.1

Traditionally, the problem of “query by content”, or alter-
nately, that of retrieving images that match a given query
image from a large database of images has been solved by
computing a feature signature for each image, mapping all
signatures to d-dimensional points in some metric space
(usually reducing dimensionality in the process), and build-
ing an index on all signatures for fast retrieval. An appro-
priate distance function (e.g., euclidean distance) is defined
for each pair of signatures, and given a query, the index is
used to efficiently locate signatures close to the query point.
The set of images corresponding to the signatures are then
returned to the user and constitute the result of the query.

Typical methods for computing signatures include color
histograms, which can be used to characterize the color
composition of an image, regardless of its scale or orienta-
tion [Nib93, FSN195]. The problem with color histograms,
however, is that they do not contain any shape, location
or texture information. As a result, two images with sim-
ilar color composition may in fact contain very different
shapes, and thus be completely unrelated semantically. One
approach to solving this problem is to define separate dis-
tance functions for color, shape, and texture, and subse-
quently combine them to derive the overall result. An al-
ternate approach, proposed in [JFS95, WWFW98], is to use
the dominant wavelets coefficients for an image as its sig-
nature — since wavelets capture shape, texture and location
information in a single unified framework, their use amelio-
rates some of the problems with earlier algorithms.

Drawbacks of Existing Approaches

A drawback of the schemes from [Nib93, JFS95, WWFW9§]

mentioned above is that they compute a single signature
for the entire image. As a result, the methods usually fail
when images contain similar objects, but at different loca-
tions or in varying sizes. For example, consider the two
images in Figure 1 for which matching objects (enclosed in
dotted rectangles) comprise more than 50% of each image.
However, since the similar objects are at different locations
in the two images, and there is very little similarity among
the remaining objects, both wavelet signatures as well as
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Figure 1: Irages with Similar Objects

color histograms for the two images could be vastly differ-
ent. Thus, the algorithms from [Nib93, JFS95, WWFW98]
typically fail with respect to scaling and translation of ob-
jects within images, because a single signature computed
for the whole image cannot sufficiently capture the impor-
tant properties of individual objects. In contrast, we would
like to build a system that is robust with respect to resolution
changes, dithering effects, color shifts, orientation, size, and
location, not only of the whole image, but of its individual
objects as well.

A number of strategies for decomposing an image into
its individual objects have been proposed in the literature
[Smi97]. However, extracting regions.from an image is
a very hard problem to solve. Approaches that involve
manually extracting objects can be extremely tedious and
time-consuming, and are therefore impractical for large
image collections. Consequently, most image segmentation
techniques rely on being able to identify region boundaries,
sharp edges between objects, and on a number of other
factors, such as color, shape, connectivity, etc. However,
besides being computationally expensive, the schemes are
frequently inaccurate in identifying objects and the used
methods are generally not robust with respect to object
granularity. The reason for this is that the definition of an
object is largely subjective — as a result, a single method
cannot successfully identify the “correct” objects for all
applications, and may decompose what the user perceives
as a single object into several smaller objects. A number of
image segmentation techniques, therefore, utilize domain-
specific constraints and are thus application-specific.

1.2

In this paper, we propose the WALRUS (WAveLet-based
Retrieval of User-specified Scenes) similarity retrieval al-
gorithm for the querying by content problem. Below, we
present the main contributions of WALRUS over existing
approaches.

Our Contributions

Novel Similarity Model for Matching Images. WAL-
RUS’s image similarity model is designed specifically to
address shortcomings with existing approaches for the cases
when images contain similar regions but the region in one
image is a translation or a scaling of the matching region in
the other. WALRUS achieves this by computing and com-
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paring signatures at the granularity of regions and not the
entire image. Thus, instead of storing a single signature
for each image as in [Nib93, JFS95, WWFW98], in WAL-
RUS, we build a set of a variable number of signatures for
an image, one signature for each image region. We then
define the similarity measure between the query image
and a target image T in terms of the fraction of the area of
the two images covered by matching pairs of regions from
Q@ and T (matching regions are determined based on the
distance between their signatures). Our experimental study
with real-life data sets indicates that, compared to existing
approaches, WALRUS’s similarity model results in signifi-
cant improvements in the quality of images retrieved.
Extraction of Regions and their Signatures. WALRUS
employs novel techniques for region extraction that are
computationally efficient, domain-independent and avoid
the complexity of traditional image segmentation algo-
rithms based on identification of region boundaries, connec-
tivity etc. To extract image regions and compute their sig-
natures, in WALRUS, we consider sliding windows of vary-
ing sizes within the image. For each window, we compute
signatures by mapping it to some d-dimensional space, and
then perform clustering on the signatures in order to group
windows with similar characteristics (e.g., color composi-
tion, texture) in a single cluster. Each cluster thus identifies
a region of the image with related pixel values and we use
the cluster representative (e.g., centroid) as the signature for
the region. Since our similarity model compares images at
the granularity of regions and regions represent variable-
sized windows at varying locations, WALRUS effectively
eliminates the scaling and translation problem, not only at
the image level, but also at the object level.

Computation of Signatures for Windows. In WALRUS,
we use the Haar wavelet [SDS96] transform for feature
extraction and dimensionality reduction for all windows.
(See Section 3.)

Even though computing the wavelet transform for an im-
age requires time linear in the size of the image, the compu-
tation could become expensive when applied to thousands
of windows within an image. WALRUS employs a dynamic
programming algorithm for efficiently computing wavelets
in the sliding variable-sized window framework by reusing
computation as much as possible. Compared to naive algo-
rithms, we show that the dynamic programming algorithm
can speed up computation of wavelet signatures by more
than an order of magnitude.

2 Related Work

Initial systems tackled the content-based image retrieval
problem by using color histograms, texture and shape
features. The most common systems in this class are IBM’s
QBIC system [Nib93, FSN*95], the Virage system [GJ97]
by Virage Inc., and the Photobook system [PPS95] from the
MIT Media Lab. These systems allow the user to specify
a particular color composition, texture, some shape feature,



and perhaps a partial sketch or painting. The user is also
required to place relative weights on these attributes in order
to arrive at the combined similarity measure. The systems
typically use a collection of features and distance metrics,
and usually require several indices, which can increase
both space and time requirements. In addition, the correct
weighing of the individual feature distances is hard to do
automatically and imposes a certain burden on the user.

Jacobs et al. [JFS95] addressed the problem by using
wavelets to capture color, texture and shape in a unified
framework, where the user is not required to specify any
parameters. They used the simple Haar wavelet transform
to compute a feature vector for each image. The wavelet
representation is truncated retaining only forty to sixty of
the largest magnitude coefficients, and harshly quantized
so that the magnitude of the coefficients is essentially
discarded and only their presence or absence is recorded.
The authors experimented with different color spaces and
image metrics, and found that the YIQ color space and a
weighted version of the Huffman bitmap distance metric
give best results for them. They also report experiments
on the performance of their method for rotated, scaled,
translated and color shifted images, which indicate a small
tolerance to these operations.

The WBIIS system developed by Wang et al. [WWFW98]
improved on the wavelet method of [JFS95] by using
Daubechies’ wavelets, a better distance metric, and a three-
step search process. They generalized the distance metric
to allow different weighing of the color components and the
different subbands but their approach also suffers from the
problem of correctly estimating these weights. The search
process is performed in three steps: first a crude selection is
done based on variances, then a refinement of the search is
performed by comparing wavelet feature vectors based on a
4-level Daubechies’ transform, and in the final stage, feature
vectors from a 5-level transform are compared. The authors
report better performance resuits than the other approaches
described but their system still cannot handle region queries,
translation, and scaling.

John Smith [Smi97] considered image query systems
that integrate spatial and feature information, both at the
image and region level. His system allows the user to
specify the spatial location of regions, both in absolute
terms as well as relative to each other. Each image
is decomposed into regions by reverse-mapping region
features from a finite library of patterns to the image. The
library is obtained off-line, does not change dynamically,
and it contains the feature representations for a fixed set of
regions. The drawbacks of this system are the inconsistent
quality of region segmentation and the limitations of the
region mapping. Each image can be decomposed only into a
pre-specified set of regions, so if the pattern library does not
contain the correct regions, performance could suffer. After
identifying the regions in an image, they are compared with
each other, and the image similarity is computed based on
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the location of regions, their size, and relative position.

Guibas, Rogoff, and Tomasi [GRT95] considered a
quadtree partitioning of an image where only windows with
uniformly consistent features are preserved and other win-
dows are discarded as containing multiple region informa-
tion. For each window a Fourier signature is computed and
compared to that of neighboring windows to determine if
they are sufficiently alike. This process results in a primi-
tive segmentation of the image, which the authors argue can
be used for image retrieval but do not give any experiments
to support it. The paper does consider three different spec-
tral distance measures, though, and compares them for seg-
mentation purposes. The drawback of this approach is again
the fact that windows’ sizes and locations are restricted, and
thus it will not be able to handle scaling and translation of
objects well.

3  Wavelets

Wavelets are useful for hierarchically decomposing func-
tions in ways that are both efficient and theoretically sound.
Broadly speaking, a wavelet representation of a function
consists of a coarse overall approximation together with de-
tail coefficients that influence the function at various scales
[SDS96]. The wavelet transform has excellent energy com-
paction and de-correlation properties, which can be used
to effectively generate compact representations that exploit
the structure of data. By using wavelet subband decom-
position, and storing only the most important subbands
(that is, the top coefficients), we can compute fixed-size
low-dimenstonal feature vectors independent of resolution,
image size and dithering effects. Also, wavelets are ro-
bust with respect to color intensity shifts, and can capture
both texture and shape information efficiently. Further-
more, wavelet transforms can generally be computed in lin-
ear time, thus allowing for very fast algorithms.

In this paper, we use Haar wavelets to compute fea-
ture signatures because they are the fastest to compute and
have been found to perform well in practice [JFS95]. Haar
wavelets enable us to speed up the wavelet computation
phase for thousands of sliding windows of varying sizes in
an image, and also facilitate the development of efficient
incremental algorithms for computing wavelet transforms
for larger windows in terms of the ones for smaller win-
dows. One disadvantage of Haar wavelets is that it tends to
produce blocky image artifacts for the most important sub-
bands. However, in our application, the images constructed
using signatures are never viewed and thus this is not our
concern. We discuss the Haar wavelet transform for one
and two dimensions in this section.

3.1

Suppose we are given a one-dimensional pixel image I =
(2, 2, 5, 7). The Haar wavelet transform for the above
image can be calculated as follows. We first average the
values together pairwise to get a new lower resolution

One-Dimensional Haar Wavelets



image [2, 6]. Obviously, some information has been
lost in this averaging process. To be able to restore the
original four values of the image, we need to store some
detail coefficients, that capture the missing information.
In Haar wavelets, the difference of the (second of the)
averaged values from the average itself constitutes the detail
coefficients. Thus, for the first pair of averaged values, the
detail coefficient is O since 2-2 =0, while for the second we
need to store 1 since 7-6 = 1. Note that it is possible to
reconstruct the 4 pixels of the original image from the lower
resolution image containing the two averages and the two
detail coefficients. By repeating the above process on the
lower resolution image containing the averages recursively,
we get the following full decomposition:

Resolution Level | Averages | Detail Coefficients
2 [2,2,5,7]
1 [2, 61 [0, 1]
0 [4] [2]

We define the wavelet transform of the original image
with four pixels to be the single coefficient representing the
overall average of the pixel values followed by the detail
coefficients in the order of increasing resolution. Thus,
the one-dimensional Haar wavelet transform for the original
image is givenby I' = 1[4, 2, 0, 1].

Each entry in I’ is called a wavelet coefficient. Using
the wavelet transform of an image, rather than the image
itself has a number of advantages. One advantage is that
a large number of detail coefficients tend to be very small
values. Thus, truncating these small coefficients from the
transform introduces only small errors in the reconstructed
image, giving a form of “lossy” image compression.

Intuitively, the wavelet coefficients in the above example
carry different weights with respect to their importance for
the reconstructed image. For example, the overall average
of the whole data set is more important than any of the
detail coefficients because it affects the whole range of
reconstructed values. In order to equalize the importance
of all coefficients, we need to normalize the final wavelet
coefficients appropriately. We achieve this by dividing each

wavelet coefficient by V2", where i denotes the index of the
approximation level the coefficient appears in (where level 0
is the finest resolution level). Thus, the wavelet transform
for the previous example becomes I' = [4, 2, 0, 1/\/5].

3.2 Two-Dimensional Haar Wavelets

There are two ways in which wavelets can be used to trans-
form the pixel values in a two-dimensional image. Each of
these transforms is a two-dimensional generalization of the
one-dimensional wavelet transform described above. The
first is called standard decomposition. We do not describe
this method here because we use the second approach to
compute wavelet transforms in WALRUS.

The second transform is called non-standard decomposi-
tion. In this method, we perform one step of horizontal pair-
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wise averaging and differencing on the pixel values in each
row of the image. Next, we apply vertical pairwise averag-
ing and differencing to each column of the result. We then
repeat this process recursively only on the quadrant contain-
ing averages in both directions. The procedure for comput-
ing the wavelet transform W for a w x w image I using non-
standard decomposition is illustrated in Figure 2. In our co-
ordinate system, the coordinate of the upper left corner pixel
of I is [1,1], the lower left corner pixel is [1, n] and the up-
per right corner pixel is [, 1]. Each horizontal followed by
vertical pairwise averaging and differencing involves pixels
in the 2 x 2 box rooted at coordinates [2i — 1,25 — 1] for
1 <i,j < %. The horizontal and vertical averaging of pix-
els in each 2 x 2 box rooted at [2i — 1,25 — 1] results in 4
new pixel values and these are computed in Steps 3-6. The
upper left value (computed in Step 3) is the average of the
4 pixel values and is stored in a new % X 3 temporary ma-
trix A whose primary purpose is to store averages on which
the above averaging and differencing process will be recur-
sively applied. The remaining 3 new pixel values denoting
the upper right (Step 4), lower left (Step 5) and lower right
(Step 6) pixels are assigned to pixel [¢, 5] in the upper right,
lower left and lower right & x % quadrants of W, respec-
tively. These are the detail coefficients. Once the averages
for all the 2 x 2 boxes have been computed, the compute-
Wavelet procedure is recursively invoked on A in Step 9.
For the two-dimensional Haar transform, the normalization
factor is 2°.

4 Image Similarity Model

Computing signatures at the granularity of an entire image
may fail to capture the similarity between regions of two
images. WALRUS’s image similarity model is designed
specifically to address the above shortcomings with existing
approaches for the cases when images contain similar
regions but the region in one image is a translation or a
scaling of the matching region in the other. WALRUS
achieves this by computing and comparing signatures at
the granularity of regions and not the entire image. The
similarity measure between a pair of images is then defined
in terms of the fraction of the area covered by matching
regions of the two images. Note that we do permit overlap
between regions of an image.

We are now in a position to formally define WALRUS’s
similarity metric between two images () and T consisting
of regions Q1,...,Q@Qm and T1,..., Ty, respectively. The
following definitions make use of two user-specified parami-
eters € and &.

Definition 4.1: (Region similarity) A pair of regions is
considered to be similar if one’s signature lies within an
envelope of € width around the other.

Earlier we mentioned that the signature of a region is
the centroid of the cluster of signatures for the region.
Alternately, we can also consider as the signature of a



procedure computeWavelet(I, W, w)
begin
1. fori=1to -‘%’-do

2. for j = 1 to ¥ do {

3. Ali, 7] == (I[26 — 1,25 — 1] + I[24,25 — 1] + I{2i — 1,25] + I[2i,27])/4

4, W% +14,5] i= (—1[2¢ = 1,25 — 1] + I{24,25 — 1] - IM2i — 1,25] + I[24,25])/4

5. Wi, 2 + 5] == (-T2 — 1,25 ~ 1] — I1[24,25 — 1] + I[2i — 1, 25] + I[2i,25])/4

3. W['—é’- +i, 5 + 4] = (I[2i — 1,25 — 1] — I{24,25 — 1] — I(2i — 1,25] + I[2¢,25])/4
8. ifw>2

9. computeWavelet(A, W, %

10. else

1. WL,1] = A[1,1]

end

Figure 2: Procedure for Computing the Wavelet Transform

region, the bounding box of all signatures in the cluster
for the region. As a consequence of Definition 4.1, when
we use bounding boxes instead of centroids as signatures
for regions, two regions are defined to be similar if the
bounding rectangle for one after extending it by distance
€ overlaps with the rectangle of the other.

Definition 4.2: (Similar region pair set) For images @
and T, the set of ordered pairs {(Q1,T41), ..., (Qi,T1)} is
referred to as a similar region pair set for @ and T if Q; is
similar to T; and fori # j, Q; # Q;, Ti # T;.

Definition 4.3 (Image similarity) Two images @ and T are
said to be similar if there exists a similar region pair set for

Qand T {(Q1,T1), ..., (Q1,T;)} such that:

area(Ui_,(Q:)) + area(Ui_,(T3))
area(Q) + area(T)

2¢

In the above definition, area(Ul_, (Q;)) is the number
of pixels in @@ covered by regions ()4, ..., Q; considered
together. Thus, two images are considered to be similar if
the fraction of match area compared to the total area of the
two images is above the user-specified threshold £. Note
that, depending on the application, one could consider other
variations for the similarity measure between images. One
would be to simply measure the fraction of the query image
@ covered by matching regions in @; another, for images
with different sizes would be to use twice the area of the
smaller image in the denominator instead of the sum of the
areas of the two images.

5 The WALRUS Similarity Retrieval
Algorithm
5.1 Overview

Below, we provide a brief overview of each step involved
in processing a query image (). Indexing of images is done
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only once at the beginning and when new images are added
to the database, while the steps for querying need to be
repeated for each query image.

¢ Generating Signatures for Sliding Windows: In the
first step, each image is broken into sliding windows
(which could overlap) with different sizes ranging from
Wmin X Wmin 10 Wmar X Wmaz. AS the signature for
each window, we use the s? coefficients from the lowest
frequency band of the Haar wavelet transform for the
window.

e Clustering the Sliding Windows: We next cluster the
windows in the image using as the distance metric
between a pair of windows, the euclidean distance
between their signatures. Each cluster thus contains a
set of similar windows which together define a region.
The centroid of the cluster can be used as the signature
for the region (alternately, the bounding box of all
signatures in the cluster can be used as the signature,
too). The query image is thus decomposed into a
number of regions.

¢ Region Matching: For each region of the query image,
we use a spatial index (R*-tree) to find all regions in
the database that are similar, that is, regions whose
signatures are within € distance of a region of the
query. (In the image indexing phase, the regions of each
image in the database computed in the previous step are
indexed using their signatures).

e Image Matching: The previous step computes all the
pairs of matching regions (Q;, T;) for the query image
Q@ and each target image T in the database. This
information is used to compute the best similar region
pair set for Q and T, that is, the one that covers the
maximum area in the two images and thus maximizes
the similarity measure between () and T as defined in
Definition 4.3.
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Figure 3: copyBlocks Procedure

5.2 Computation ¢f Wavelet Signatures for

Windows

In this subsection, we present a dynamic programming algo-
rithm to efficiently compute wavelet signatures for sliding
windows in an image. An image is a two dimensional array
of pixel values. Images can be represented using a num-
ber of different color spaces: RGB, HSV and YIQ, each of
which store 3 color components for every pixel. The devel-
opment in this section is for a single color value per pixel —
the extension to multiple color channels is straightforward.

The complexity of naively computing wavelet coeffi-
cients of w X w windows rooted at every pixel in an n; X ng
image is O(w?(n; — w)(n2 — w)), which could be pro-
hibitive. Instead, in WALRUS, we use a dynamic program-
ming algorithm that incrementally computes the coefficients
for larger windows using those computed for smaller win-
dows — our algorithm thus reuses the computation per-
formed for smaller windows. In particular, assuming that
we have computed signatures for windows of size “7’ X %,
we can compute signatures for windows of size w x w using
the signatures of the smaller windows of size & x %.
Intuition: Let I be the w X w window whose wavelet
transform, W, we would like to compute and let I, I, I3
and I, denote the four smaller ¥ 5 X 7 windows contained in
it (see Figure 3(a)). Let Wy, W5, W3 and W, be the wavelet
transforms for I, I, Is and 1.

Consider a further decomposition of each of Wy, Wy, W3
and Wy into quadrants, and label them by 1, 2, 3 and 4 as
shown in Figure 3(b). The quadrants 2, 3 and 4 denote the
upper right, lower left and lower right detail coefficients
generated by the first round of horizontal and vertical
averaging and differencing on pixels in each of I, I5, I3
and Iy by the computeWavelets procedure described in
Section 3.2. Thus, were the computeWavelets procedure
applied to I, then after the first round of averaging and
differencing, the detail coefficients in the upper right, lower
left and lower right quadrants of W would have values as
shown in Figure 3(c).

Suppose A is the % x % matrix of average values of
2 x 2 boxes of pixels in I after the first round of averaging
and differencing. Thus, the upper left quadrant of W is
the wavelet transform of A4, and A consists of averages of
2 x 2 boxes from I, I, I3 and I, after the first round of
averaging. Then, since quadrant 1 in each of Wy, W,, W3
and W; are the wavelet transforms of the averages of 2 x 2

wxw

400

procedure computeSingleWindow(W , Wo, W3, W4, W, w)
begin

Lifw=2{

2 W[l,l] = (W, [1,1]+W2[1,1]+W3[1,1]+W4[1,1])/4
3. W(2,1] := (=W [1,1] + Wa[L, 1] — Wa[1, 1] + W4[1, 1)) /4
4 W[112] :=( WI[L ] W2[1 1]+W3[111]+W4[1)1])/4
5. W(2,2]:= (W1[1,1] - Wa(1,1] - W3[1, 1] + Wa[L,1])/4
6. return

7.}

8. copyBlocks(Wy, Wa, W3, Wy, W,w)
9. computeSingleWindow(Wy , Wa, W3, Wy, W, %)
end

Figure 4: Procedure for Computing Wavelets for a Single
Window

boxes in I, Is, I3 and I4, respectively, after the first round
of averaging, W1 (1], ..., W4[1] are the wavelet transforms
for the four quadrants of A. Thus, since the upper left
quadrant of W is the wavelet transform for A, we simply
need to repeat the earlier steps with W, (1], W[1], W3[1]
and Wy[1] as the wavelet transforms for the four quadrants
that comprise A and the upper left quadrant of W as the
target where the wavelet transform for A is to be stored.
The above-described recursive process terminates when
W11}, W3 [1], W3[1] and W,[1] each contain only a single
value which is the average of all the pixel valuesin I, Iz, I3
and I, respectively. At this point, values for the four upper
left pixels of W, W[1,1], W[1,2],W[2,1] and W2, 2]
can be computed by performing horizontal and vertical
averaging over the four averages in Wh[l],..., Wy[1] as
described in the computeWavelets procedure.
Algorithm for Computing Wavelets for Single Window:
The procedure for computing the wavelet transform for a
w x w window from the wavelets for its four subwindows
is as shown in Figure 4. W;, W3, W3 and W; are the
wavelet coefficients for the four & x & subwindows of the
window whose wavelet transform we wish to compute, and
W is the target for the computed wavelet coefficients for
the w X w window. If w is 2, then in steps 2-5, we simply
perform horizontal and vertical averaging and differencing
on the upper left pixel of each of Wy, W,, W3 and Wy,
Otherwise, the copyBlocks procedure is invoked which
copies the upper right, lower left and lower right quadrants
of Wy, Ws, W3 and Wj to the corresponding quadrants of
W as described in Figure 3. The procedure then calls itself

recursively to compute the coefficients for the upper left
w

5 X % quadrant of W using the coefficients in the upper
left £ x £ quadrants of W1, W, W3 and Wy.

Note that since we are only interested in the s x s
signature for each window, we are only interested in
computing wavelet coefficients for the upper left s x
s matrix of W. From our earlier discussion on the
computation of the wavelet transform for a single window,
it follows that this can be computed by recursively invoking

copyBlocks on the § x § upper left coefficients of the



wavelet transform for the four subwindows in the window.
Thus, invoking procedure computeSingleWindow with w =
s computes the upper left s x s wavelet matrix for W with
the upper left § x 5 wavelet matrices of its four subwindows
W1, Wa, W3 and Wy as the starting point.

Algorithm for Computing Wavelets Signatures for Slid-
ing Windows: We next show how we can use dynamic
programming to compute signatures for multiple sliding
windows in an n; X ny image. Procedure computeSlid-
ingWindows in Figure 5 computes s x s signatures for all
sliding windows in an image whose sizes are a power of 2
and do not exceed wpqaz. Procedure computeSlidingWin-
dows also accepts as an input parameter the number of pix-
els t by which to slide each window (that is, ¢ is the hori-
zontal/vertical distance between the upper left pixels of any
two adjacent windows). The parameters s, w4 and t are
all required to be powers of 2. In a single iteration of the
outermost for loop in Step 1, wavelet signatures are com-
puted for all w x w windows in the image. In each succes-
sive iteration, w is doubled, beginning with an initial value
of 2 for w until it reaches the maximum window size Wy ,qz.
The wavelet signature for a window of size w and whose
upper left pixel is at [, j] is stored in Wi, j]. The wavelet
signature for each w x w window is computed using those
computed in the previous iteration for the four % x % sub-
windows in it. W1[i, j] for every 1 x 1 window rooted at
pixel [¢, 7] is initialized to the value of the pixel [z, 7] (that
is, the raw image intensity at a pixel is the signature for the
1 x 1 window containing the pixel).

In Step 2, we set dist, the distance between any two
successive sliding windows to be the minimum of ¢ and
the window width w. This is for alignment reasons and to
ensure that for any w x w window, the wavelet signatures
for its four ¥ x ¥ subwindows have been computed in the
previous iteration.

In the for loops in steps 3 and 4, the coordinates [z, y] for
the upper left corner pixel for each window is varied from
1 to n;y — w + 1 with increments of dist in the horizontal
direction, and from 1 to ny — w + 1 with increments of
dist in the vertical direction. Finally, in Step 7, procedure
computeSingleWindow is invoked to compute the signature
for the w x w window rooted at [z, y] from signatures for its
four & x ¥ subwindows and the size of the signature to be
computed min(w, s) is passed as a parameter.

Therefore, if we want to generate signatures for all
windows with sizes that are a power of 2 and range from
Wmin X Wmin 10 Wmaz X Wmag, PASSINE Wnae as input
parameter to the dynamic programming algorithm generates
all the desired signatures.

Time and Space Complexity: The overall time complex-
ity of computing signatures for all the sliding windows can
be shown to be O(N S logy Wiasx) Where N = ning and
S = s2.  The total auxiliary memory space required by
procedure computeSlidingWindows can also be shown to be
exactly V.S, which is desirable. (See [NRS98] for details.)
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procedure ComputeSlidingWindows(s, wmaz, 1)
begin

1. for each w € [2, wimaz] and that is a power of 2 do {
2. dist :=min{w,t)

3. fori=0to 2= do
ist

4. forj=0to 22=2 do {
5 T=1ixdist+ 1
6. y=j7*xdist+1
7. computeSingle Window(W 2 [z, 4], w¥ z+ %,y
@ :

g %[w,y+ %}]1W2 [l‘—i—%,y-*— %],Ww[x,y],mm(w,s))
9. }
end

Figure 5: Dynamic Programming Algorithm
Discussion: The naive scheme for computing the wavelet

signatures individually for all windows needs only w?
space compared to the NS space required by the dynamic
programming algorithm. However, the overall time
complexity of the naive algorithm is O(Nw?2,,,) which
can be much worse than the O(N .S log, wmaz) complexity
for our dynamic programming algorithm since typically,
signatures are much smaller than the windows themselves
and thus s << Wmaz-
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Since an image may generate a sizeable number of sliding
windows, in order to guarantee low response times, we are
interested in clustering algorithms with linear time com-
plexity (most of the clustering algorithms in the literature
have at least quadratic complexity [DH73]). Also, since
we would like to ensure that a cluster contains windows
that are fairly alike, we would like to be able to specify a
threshold on the radius of the cluster — that is, the maxi-
mum distance between the center of the cluster and a point
in it. The pre-clustering phase of BIRCH [ZRL96], one of
the state-of-the-art clustering algorithms for large data sets
meets all of our requirements. The pre-clustering phase has
time complexity that is linear in the input size and accepts
an €. parameter which is the threshold on the cluster size.

The threshold parameter €. and the signatures of all
the sliding windows in an image are given as inputs to
BIRCH'’s pre-clustering algorithm. BIRCH, then, generates
a set of clusters each of whose radius is generally within
€. The number of clusters typically increases with image
complexity.

Each cluster defines a region of the image. Either
the centroid or the bounding box of the signatures for
windows in the cluster can be used as the signature for the
corresponding region. For each region, we also compute
a bitmap for the pixels of the image covered by windows
in its cluster. This information is needed in the final step
by our similarity metric to compute the area of an image
covered by multiple matching (and possibly overlapping)

Clustering the Sliding Windows for an Image



regions. For each region, its signature along with its bitmap
is stored in an R*-tree [BKSS90] which is an efficient disk-
based index structure for the storage and retrieval of high-
dimensional data points. Note that in the bitmap for a
region, we don’t need to store a bit for each pixel — instead
we could use a coarse representation in which a single bit
is kept for each k x k array of pixels, thus decreasing the
storage overhead by a factor of k2.
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The regions for database images, generated in the previous
step, are stored in a disk-based spatial index. Each region
is indexed using either the centroid or the bounding box
for signatures in its cluster. Given a query image @, its
regions are extracted using steps identical to those used for
the database images. Then, the index is probed to find
all regions in the database whose signatures are within €
distance of any of the query’s regions. Thus, if signatures
are bounding rectangles, then the bounding rectangles of
regions in the query image are extended by € and then the
index is used to find all overlapping bounding rectangles in
it. Since each bounding rectangle in the index represents
a region belonging to an image in the database, this step
effectively retrieves all database images that have at least
one similar region with the query.

Region Matching Algorithm

5.5

For a query image Q, the previous region matching step re-
trieves all the regions in the database that match every re-
gion of Q. For a target image T', let (Q1,T1), ..., (Qn,Th)
be the matching pair of regions belonging to ¢} and T'. Note
that a single region from @ can match a number of regions
from T and vice versa. We use this information on matching
regions and the bitmap of the pixels covered by each region
(stored in the index along with the signature of each region)
to compute the overall similarity measure between images
Q@ and T as defined in Section 4.

The quickest similarity metric to compute is one in which
we simply union the bitmaps for the matching regions
from @ and T, and then compute the area covered by the
regions. The similarity is then the fraction of the total area
of the two images that the computed area for the regions
represents, as described in Definition 4.3. This is very fast
(linear time complexity in n) and corresponds to relaxing
the requirement that each region appear only once in a
similar region pair set (see Definition 4.2). A drawback of
this approach, however, is that the same query region may
match a number of different regions in the target making
the covered area in the target image large since all the
matched regions get included in the computation of the area.
However, this may be undesirable since very few regions
from the query image match regions in the target, and thus,
the covered area in the query itself could be small.

The above situation can be remedied by adopting the
strict definition of a similar region pair set (see Defini-

Image Matching Algorithm
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tion 4.2) which restricts the relationship between regions of
Q@ and T to be a one-to-one correspondence, that is, it pro-
hibits a region from appearing multiple times in the similar
region pair set. Ideally, we would like to compute the simi-
lar region pair set that results in the maximum value for the
similarity measure. However, since we permit overlap be-
tween regions, the problem of determining such matching
pairs of distinct regions from @ and T that maximize the
covered area is an NP-hard problem.

Theorem 5.1: Given matching pairs of regions (Q1,T1)
-+ (Qn,Ty), the problem of computing a similar region
pair set with the maximum covered area is NP-hard. 1l

Proof: See [NRS98]. 1

Therefore, we also propose a greedy heuristic for com-
puting the similar region pair set with the maximum area.
The basic idea is to iteratively choose the best pair of match-
ing regions that maximizes the area covered by the regions.
A detailed description of our greedy heuristic can be found
in [NRS98]. The time complexity of the greedy algorithm is
O(n?), where n is the number of matching pairs of regions
fromQ and T'.

For images T whose similarity to the query image @)
exceeds the threshold £, we can perform an additional
refined matching phase with more detailed signatures if the
resulting increase in response time is acceptable.

6

In this section, we study the performance of WALRUS
and demonstrate its effectiveness for similarity retrieval on
images.  We first show that our dynamic programming
algorithm for computing wavelet signatures for sliding
windows is more than an order of magnitude faster than
the naive scheme. We then compare the quality of the
images retrieved by WALRUS and WBIIS! [WWFW98], an
image indexing and retrieval system developed at Stanford
University. Our results indicate that, in general, the images
returned by WALRUS are semantically more similar to the
query image that those returned by WBIIS.

In all of our experiments, we used euclidean distance as
the distance metric. We performed experiments using a Sun
Ultra-2/200 machine with 512 MB of RAM and running
Solaris 2.5.

Experimental Results

6.1 Algorithms

The WBIIS algorithm uses Daubechies wavelets to compute
a single signature for each image, and a brief description of
it was presented earlier in Section 2.

Our WALRUS implementation currently handles several
color spaces for images including YCC and RGB. We
present the result with YCC space only in the paper due
to the lack of space. Additional results with different color
spaces can be found in [NRS98]. We implemented both

Lhttp:/fwww-asd-test.stanford.edu/Zwang/imsearch.



the naive algorithm as well as our dynamic programming
algorithm for computing wavelet signatures for sliding
windows. In our implementation of WALRUS, to develop
portions of our code, we used the following libraries that are
available for free on the internet.

BIRCH Clustering Algorithm: We used the pre-
clustering phase of the BIRCH implementation? provided
to us by the authors of [ZRL96]. We set parameter values to
the default values suggested in [ZRL96]. (See [NRS98] for
details.)

R*-tree packages:  To build the disk-based R*-tree in-
dex, we used the GiST C++ library? that is an implementa-
tion of the Generalized Search Tree, a template index struc-
ture that makes it easy to implement any type of hierarchi-
cal access method. Currently, the libgist distribution comes
prepackaged with a B-tree and an R-tree extension.
ImageMagick Library: The ImageMagick?* image dis-
play program can read and write many of the more popu-
lar image formats including JPEG, TIFF, PNM, GIF, and
Photo CD. In addition, it can convert image files into dif-
ferent color spaces, resize, rotate, sharpen, color reduce, or
add special effects to an image. The ImageMagick library
can handle a number of color spaces including RGB, XYZ,
YCC, YIQ and YUV. WALRUS uses the ImageMagick li-
brary to display images as well as to convert them to specific
formats and color spaces.

6.2 Data Sets

In order to evaluate the quality of images retrieved by
WALRUS, we used a real-life image dataset called misc
from the web site for the image search engine WBIIS at
Stanford University. This dataset was provided to us by
James Wang at Stanford University who downloaded it from
VIRAGE’s web site a few years ago. The misc database
contains 10000 images stored in JPEG format, each of
whose sizes is either 85 x 128, 96 x 128 or 128 x 85.

6.3 Effectiveness of Dynamic Programming

Algorithm

We measured the execution times of our algorithm and
the naive algorithm for a wide range of parameter values.
Three important factors that affect the performance of
the algorithms are: image size, sliding window size and
signature size. We fixed the image size to be 256 x 256,
and varied the sliding window size and signature size (we
set the distance between any two adjacent sliding windows
to be 1 pixel). We excluded from our measurements of the
execution time, the time spent for reading the image; thus,
the running times represent the actual wavelet computation
times for all sliding windows in the image.

Figure 6(a) plots the running times of both algorithms for
computing 2 x 2 signatures as the sliding window size is

2http://www.cs.wisc.edu/zhang/birch.htrol.
3http:/fepoch.CS.Berkeley. EDU:8000/gist/libgistv1.
4http://www.wizards.dupont.com/cristy/ImageMagick.html.
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varied from 2 X 2 to 128 x 128. The numbers 2¢ along
the x-axis represent a window size of 2¢ x 2¢. Since the
sliding window size is always a power of two, the x-axis
is shown in log scale. Observe that the execution time
increases slowly for the dynamic programming algorithm
as the window size increases. However, the performance
of the naive algorithm degrades significantly as the window
size grows. The reason for this is that the time complexity of
the naive algorithm is proportional to the square of window
size, while the execution time of the dynamic programming
algorithm is proportional to the logarithm of the window
size. For a window size of 128 x 128, the naive algorithm
is about 17 times slower than our dynamic programming
algorithm, and its running time is close to 25 seconds.

Figure 6(b) shows the execution times for the algorithms
as we increase signature sizes for a fixed sliding window
size of 128 x 128. From the graph, it follows that the
execution time of the dynamic programming algorithm
increases slowly as the signature size is increased, while
that of the naive algorithm stays almost constant at 25
seconds. However, even for signature sizes as large as
32 x 32, the dynamic programming algorithm is almost
5 times faster than the naive algorithm. Since typical
signature sizes can be expected to be between 2 x 2 and
8 x 8 (due to the inability of existing indices to handle high-
dimensional data), in most practical situations, our dynamic
programming algorithm should be far superior to the naive
algorithm.

6.4  Effectiveness of WALRUS’s Similarity Model

In order to determine the effectiveness of WALRUS’s new
similarity model, we compared how semantically related
images retrieved by WALRUS and WBIIS are, to a given
query image. Due to space constraints, we show here only
the results obtained for one query image. The results with
other query images are presented in [NRS98].

The query image that we consider contains red flowers
with green leaves in the background (see Figure 7(a)). The
query image has an Id of 866 in the misc database. The top
14 similar images found by WBIIS are as shown in Figure 7
in the increasing order of rank. As we can see from the
figure, some of the returned images are very different from
the query image. For example, the image in Figure 7(d)
is a wall with orange and dark brown bricks. The image
in Figure 7(g) is a picture of sunset on the ocean, while
Figure 7(k) contains a yellow dog sitting on a green lawn.

In all, about 7 images are semantically unrelated to the
query image. One of the reasons for this is that WBIIS
generates a single wavelet signature for each image in
the database. Since wavelets capture location, color and
texture information, a number of images returned by WBIIS
contain either green or red in similar locations as the query
image. For instance, figures 7(h) and 7(k) have green in
the background, while figures 7(d) and 7(g) have red/orange
towards the center of the image. All of these images are
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very different from the origina image having red flowers
with green leaves in the background.

In contrast, the top 14 matching images retrieved by
WALRUS are as shown in Figure 8. As the images
illustrate, all images except the image in Figure 8(m)
contain either red or pink flowers. Even the image in
Figure 8(m) that is unrelated to the query image has a girl
windsurfing with a red color sail in the picture. One of
the reasons why WALRUS performs so well is that in the
matching images containing red/pink flowers, the flowers
appear at different locations in the images and in different
sizes. In the query image, the fairly large bunch of red
flowers appear somewhat in the center, dightly shifted to
the left. However, in figures 8(f), 8(g) and 8(0), the flowers
are placed more towards the right, while in figures 8(b),
8(e), 8(j), 8(k) and 8(n), flowers are distributed all over

(c51865Jpg

(h) 86.jpg

(m) 822.jpg
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(d) 1002.jpg (e) 881.jpg

(i) 845.jpg (j) 1610.jpg

(o) 825.jpg

(n) 826.jpg

Figure 7: Images Found by WBIIS

the image. Also, figures 8(c), 8(d), 8(i) and 8(I) contain
a single flower (and not a large bunch) close to the center
of the picture. Thus, since WALRUS's similarity model is
more robust with respect to the scale and position of image
objects, it is more effective in identifying related images
(containing similar regions but at different locations or in
varying sizes).

In WALRUS, the images shown in Figure 8 were re-
trieved using the following values for the various parame-
ters. A fixed window size of 64 x 64 was used for diding
windows and 0.05 was employed for €., the epsilon value
for clustering. A 2 x 2 signature was used for each color
space, and the cluster centroid was chosen as the represen-
tative for the corresponding region. Thus, the resulting sig-
nature for each image region was a 12-dimensiona point.
Also, with each region, we stored a 16 x 16 (32 byte) bitmap
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(f) 865.jpg (2) 885.jpg

(k) 881.jpg (1) 896.jpg

in the index. The epsilon value, €, which is the distance be-
tween the signatures of matching regions was set to 0.085
and the color space used was YCC. In the image match-
ing step, we used the quick algorithm for computing the
similarity measure between images that simply unions the
matching regions between the query image and the target
image retrieved using the disk-based index, and then com-
putes the matching area fraction.  Thus, even with very
simple matching agorithms, using WALRUS, we were able
find similar images effectively.

6.5

To get a fed for query response times with WALRUS, we
measured the time WALRUS takes to retrieve similar im-
ages for the query image in Figure 8(a) when the querying
epsilon, ¢, is varied from 0.05 to 0.09. Two important fac-
tors that affect query response times in WALRUS are 1) the
region selectivity, that is, the number of matching regions
retrieved for a query, and 2) the number of database images
containing the matching regions. In the experiments we per-
formed to see the effects these parameters have on query re-
sponse times, we set the cluster epsilon, ¢, to be 0.05 and
stored images using Y CC. With this cluster epsilon, WAL-
RUS extracted 18 regions from the query image. We used
64 x 64 as the diding window size, 2 x 2 signatures (for
each color channel) and used the cluster centroid as the rep-
resentative signature for each region.

We list in Table 1 the response time, the average number
of regions retrieved per region of the query image and
the total number of distinct images that contain regions
matching at least one of the query image's regions, as the

Query Response Time

(c) 883.jp

(h) 812.jpg

(m) 1764.jpg
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(1) 816.jpg (7) 824.jpg

(n) 878.jpg

Figure 8: Images Found by WALRUS (YCC)

(0) 4674.jpg

querying epsilon is varied from 0.05 to 0.09. The response
time includes the time to perform al steps of WALRUS —
this includes reading the image file from disk, converting
it into YCC format, computing wavelet signatures for the
64 x 64 diding windows, clustering the windows using
BIRCH, retrieving similar regions for each query region
from the disk-based R*-tree index, and matching images
based on the fraction of the area covered by similar regions.

From Table 1, it follows that ase isincreased, the average
number of matching regions per region of the query image
increases (which is not surprising). As a result, more images
need to be processed and consequently, the query response
times increase, too. However, the query response times
range from 5 seconds to about 20 seconds, which are quite
reasonable. The results thus indicate that WALRUS is
practical to use even though it uses a very general similarity
model.

6.6  Number of Regions Per Image

We also computed the average number of regions generated
for the query image (in Figure 8(a)) as €. is varied from
0.025 to 0.1. The average number of clusters generated with
RGB s typically four times more than the corresponding
number for YCC. Also, the number of clusters generated
decreases as ¢, is increased. Due to the lack of space, we
present details in [NRS98].

7

WALRUS employs a novel similarity model in which each
image is first decomposed into its regions, and the similarity
measure between a pair of images is then defined to be the

Conclusions



Querying Epsilon (¢) | Response Time (sec) | Avg. No. of Regions Retrieved | No. of Distinct Images
0.05 5.19 15 65
0.06 6.67 49.9 153
0.07 9.42 148.3 344
0.08 13.61 834.9 718
0.09 19.86 890.7 1287

Table 1: Query Response Time (Selectivity)

fraction of the area of the two images covered by matching
regions from the images. In order to extract regions
for an image, WALRUS considers sliding windows of
varying sizes and then clusters them based on the proximity
of their signatures. An efficient dynamic programming
algorithm is used to compute wavelet-based signatures for
the sliding windows. Thus, unlike traditional approaches
for content-based image querying that typically compute
a single signature for each image, in WALRUS, we build
a set of a variable number of signatures for an image,
one signature for each image region. Furthermore, by
performing similarity matching at the region rather than
image granularity, WALRUS’s image similarity model can
handle the cases when images contain similar regions but
the region in one image is a translation or a scaling of the
matching region in the other. Experimental results on real-
life data sets suggest that the images retrieved by WALRUS
are semantically more related to the query image than those
retrieved by traditional methods. Our experiments also
indicate that it is possible to easily obtain more than an
order of magnitude speedup with the dynamic programming
algorithm for computing wavelet signatures compared to
naive algorithms.
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