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Abstract 

Warehouse views need to be updated when source 

data changes. Due to the constantly increasing size 

of warehouses and the rapid rates of change, there 

is increasing pressure to reduce the time taken for 

updating the warehouse views. In this paper we focus 

on reducing this “update window” by minimizing the 

work required to compute and install a batch of updates. 

Various strategies have been proposed in the literature 

for updating a single warehouse view. These algorithms 

typically cannot be extended to come up with good 

strategies for updating an entire set of views. We 

develop an efficient algorithm that selects an optimal 

update strategy for any single warehouse view. Based 

on this algorithm, we develop an algorithm for selecting 

strategies to update a set of views. The performance of 

these algorithms is studied with experiments involving 

warehouse views based on TPC-D queries. 

1 Introduction 
Data warehouses derive data from remote informa- 
tion sources in support of on-line analytical process- 
ing (OLAP). 0 ne of the main problems is updat- 
ing the derived data when the remote information 
sources change. During a warehouse update, called 
the “update window,” either OLAP queries are not 
processed or OLAP queries compete with the ware- 
house update for resources. To reduce OLAP down 

time or interference, it is critical to minimize the 
work involved in a warehouse update and shrink 
the update window. 
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The derived data at the warehouse is often stored 
in materialized views. Previous work ([6], [14]) 
has developed standard expressions for maintain- 
ing a large class of materialized views incremen- 
tally. However, there are still numerous alter- 
native “strategies” for implementing these expres- 
sions, and these strategies incur different amounts 
of work and lead to different update windows. 

EXAMPLE 1.1 Let us consider the warehouse 
depicted by the directed acyclic graph (DAG) 
shown in Figure 1. There are four materialized 
views: CUSTOMER, ORDER, LINEITEM, and 
V. The edge from V to CUSTOMER indicates 
that view V is defined on view CUSTOMER 
(and similarly for the other edges). Unlike V, 
the CUSTOMER, ORDER and LINEITEM views 
are defined on remote and possibly autonomous 
information sources. 

Periodically, the changes (i.e., inserted, deleted 
and updated tuples) of CUSTOMER, ORDER and 
LINEITEM are computed from the changes of 
remote information sources. View maintenance 
algorithms that handle remote and autonomous 
sources, like the ones developed in [17], may be 
used. Once the changes of these views are obtained, 
the changes of V need to be computed, and the 
changes of all the views need to be installed. There 
are many ways to perform these update tasks using 
standard view maintenance expressions. 

One strategy for updating V, denoted Strategy 1, 
is (as in [3]): 

1. Compute the changes of V considering at once 
all the changes of CUSTOMER, ORDER, LINE- 
ITEM, and using the prior-to-update states of 
these views. 

2. Install the changes of all four views. Installation 
of changes involves removing deleted tuples and 
adding inserted tuples. 
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ORDER LINEITEM CUSTOMER 

Figure 1: Example DAG of Materialized Views 

In Strategy 2, the changes of V are computed 
piecemeal, cons:idering the changes of each of its 
base .views one at a time: 
1. 

2. 

3. 

4. 

5. 

6. 
7. 

Compute the changes of I/only considering the 
changes of CUSTOMER (and the original state 
of the views). 
Install the changes of CUSTOMER. (The fol- 
lowing steps will see this new state.) 
Compute th,e changes of Vonly considering the 
changes of ORDER. 
Install the Changes of ORDER. (This new state 
will be seen by the next step.) 
Compute the changes of Vonly considering the 
changes of LJNEITEM. 
Install the c.hanges of LINEITEM. 
Install the c:hanges of V. 

In [8], the correctness of both these strategies 
was discussed. 1Specifically, it was shown that both 
strategies compute the same final “database state” 
(i.e., extension of all warehouse views). However, it 
was not shown how to choose among the strategies. 
The strategies can result in significantly different 
update windows as confirmed by our experiments. 

For the simple DAG of Figure 1, there are 11 
strategies in adldition to Strategies 1 and 2. For 
instance, a slight variant of Strategy 2 computes the 
changes of V based on the changes of LINEITEM 
first, then ORDER, and then CUSTOMER. In 
some cases, this variant may have a shorter update 
window than Strategy 2. 0 

The previous example illustrated that even for 
a single view, there are many update strategies. 
Finding optimal strategies for a single view is a 
challenge we address in this paper. In the next 
example, we illustrate that the update strategies for 
a DAG of views cannot be constructed by simply 
picking t,he stra.tegies for each view independently. 
In this paper, we also address the problem of finding 
optimal strategies for a DAG of views. 

EXA.MPLE 1.2 Let us consider the DAG shown 
in Figure 2. This DAG now includes a second 
view V’ defined over CUSTOMER, ORDER and 
LINEITEM. Say we update V using Strategy 
2 (Example l.l), and V’ is updated using the 
following Strakgy 3: 

1. 

2. 

3. 

4. 

5. 

ORDER LINEXTEM CUSTOMER 

Figure 2: More Complex DAG 

Compute the changes of V’ only considering the 
changes of LINEITEM. 
Install the changes of LINEITEM. (These changes 
are visible to the following step.) 

Compute the V’ changes considering the changes 
of CUSTOMER and ORDER. 
Install the changes of CUSTOMER and OR- 
DER. 
Install the changes of V’. 

Note that in Strategy 2, the fifth step occurs 
after the changes of CUSTOMER and ORDER, 
but not LINEITEM, have been installed. On the 
other hand, in Strategy 3 the third step occurs 
after the changes of LINEITEMhave been installed, 
but not the changes of CUSTOMER and ORDER. 
Since only one of these states can be achieiied,’ we 
cannot combine Strategy 2 and Strategy 3. On the 
other hand, it is possible to combine Strategy 1 and 
Strategy 3 in a consistent manner. 0 

The previous example showed that we may not 
be able to construct a correct strategy for a DAG 
of views by combining independently chosen single 
view strategies. Even if we can, the combined 
strategy may not be the best among all correct 
strategies. In this paper, we define formally the 
notion of a correct update strategy for a DAG of 
views, and we develop techniques to obtain correct 
and efficient update strategies for a DAG of views. 

One could argue that standard database query 
optimizers may be able to generate efficient ware- 
house update strategies by leveraging their profi- 
ciency in finding good plans for a query or even 
a set of queries. However, today’s query opti- 
mizers assume that during the execution of the 
queries the database state does not change. As illus- 
trated by our examples, warehouse upda.te strate- 
gies employ sequences of computation and installa- 
tion steps. More importantly, each step may change 
the database state, which in turn affects the rest of 
the steps. Hence, picking the best strategy involves: 

l Choosing the set of queries (for update compu- 
tations) and data manipulation expressions; 

‘We do not assume that multiple versions of the ware- 
house data are maintained. 
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. Sequencing these queries and data manipulation 
expressions; and 

l Ensuring that the chosen sequence results in the 
correct final database state. 

To our knowledge, query optimizers do not handle 
these tasks. As a result, the warehouse administra- 
tor (WHA) is often saddled with the task of creat- 
ing “update scripts” for the warehouse views. Since 
there are many alternative update strategies, the 
WHA can easily pick an inefficient update strategy, 
or even worse an update strategy that incorrectly 
updates the warehouse. Furthermore, the WHA 
may have to change the script frequently, since what 
strategy is best depends on the current size of the 
warehouse views and the current set of changes. 

In this paper, we develop a framework for 
studying the space of update strategies. We make 
the following specific contributions: 

We characterize the correctness and optimality 
of update strategies for a DAG of views. 
We develop a very efficient algorithm called 
Min WorkSingle that finds an update strategy 
that minimizes the work incurred in updating 
a single materialized view. 

Based on Min WorkSingle, we develop an effi- 
cient heuristic algorithm called Min Work that 
produces a good update strategy for a general 
DAG of materialized views. We show that for a 
large class of DAGs, the Min Work update strat- 
egy is actually the least expensive. 

Based on performance experiments with a TPC- 
D scenario, we demonstrate that the Min WorkS- 
ingle and Min Work update strategies shrink the 
update window significantly. 

Preliminaries 
Warehouse Model: We model warehouse data 
using a wiew directed acyclic graph (VDAG). Each 
node in the graph represents a materialized view 
containing warehouse data. An edge (4 + K) 
indicates that view Vj is defined over view Vi. If 
a view V has no outgoing edges, this indicates that 
V is defined over remote information sources. For 
simplicity, we assume that a view V is defined only 
over remote information sources, or only over views 
at the warehouse. We call views defined over remote 
sources base views, and views defined over other 
views (at the warehouse) derived views. 

Figure 3 shows a simple example of a VDAG 
with three base views (i.e., VI,V~,V~) and two 
derived views (i.e., V4, Vs). As a more concrete 

example, Figure 4 shows the VDAG representation 
of a warehouse that contains six TPC-D relations 
as base views. In this example, ORDER and 
LINEITEM represent “fact tables,” and the other 
base views represent “dimension tables.” The 
derived views Q3, Q5 and QlO represent “summary 
tables” defined over the TPC-D base views. 

We define Level(V) to be the maximum distance 
of V to a base view. For instance, in Figure 3, 
LeveZ(V1) = 0, Level(V4) = 1, and Level(Vs) = 
2. We use MaxLevel to denote the maximum 
Level value of any view in a VDAG G. 
View Definitions and Maintenance Expres- 
sions: We associate with each view V a defini- 
tion Def(V). View definitions in our model involve 
projection, selection, join, and aggregation oper- 
ations. For instance, views Q3, Q5 and QlO of Fig- 
ure 4 may be defined using TPC-D queries that are 
SELECT-FROM-WHEREGROUPBY SQL statements. 

An edge (vj + K) in the VDAG means that 
E appears in Def(Q). Moreover, it implies that 
changes of Vi lead to Vj changes. We use delta 
relation 6V to represent the changes of V. 

The changes of the base views arrive periodically 
at the warehouse. The changes of the base views 
are then used to compute the changes of the 
derived views. If V is a derived view, view 
maintenance expressions based on Def(V) are 
used to compute 6V. For instance, if view 
Vl in Figure 3 is defined as gp( Vz x Vs), the 
following standard view maintenance expression 
([6], [14]) that uses three terms (i.e., ap(6V2xV3), 

gp(V2xSV3), a~(6VsxJV3)) computes SV4. 

sv, t ap(Sv~xVi) u (Tp(V2xSV3) 

u ap(GV2 XJVS) (1) 

Actually, the changes of a view V include inserted 
V tuples, called plus tuples, and deleted V tuples, 
called minus tuples. (In this paper, we represent 
an update as a deletion followed by an insertion.) 
For simplicity of presentation, we do not show 
explicitly the plus tuples and the minus tuples, 
instead lumping them together in a single delta 
relation. When executing maintenance expressions 
like (l), the plus and minus tuples in the delta 
relations must be handled “appropriately” [6]. 

After the changes of a view are computed, they 
are used in computing changes of other derived 
views, and installed. The install operation inserts 
the plus tuples, and deletes the minus tuples. 
Compute and Install Expressions: We abstract 
maintenance computations by the function Comp. 
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Q3 Q5 QlO 

ORDER LINEITEM CUSTOMER SUPPLIER NATION REGION 

Figure 3: Example VDAG Figure 4: VDAG of a TPC-D Warehouse 

The formula for Icomputing 6V from the changes of 
the set of views v is denoted by Comp( V, V). For in- 
stance, Comp( Vd, { Vz, Vs}) represents the SVZ com- 
putation of Exp:ression (1). As another example, 

Co7v(V4. {h)) P re resents the computation of the 
changes of V4 based solely on the changes of Vz, i.e., 
hV4 t ap(bVzx&). We use Inst(V) to denote the 
operation of inst,alling bV into V. 

3 View a.nd VDAG Strategies 
We now define view strategies which are used to 

update a single ‘view, and VDAG strategies which 
are used to update a VDAG of views. We also 

illustrate how one can define the space of correct 

VDAG strategies based on the notion of correct 
view strategies for the individual views. Finally, 

we formally define the “total-work minimization” 

problem as finding the correct VDAG strategy that 

incurs the minimum amount of work. 

3.1 View Strategies 
For a view V defined over R views VI, . . , V,, there 
are many possib’le ways of updating V. We call 
each way a view strategy. One view strategy for 
V is to compute 6V based on all of the changes 
{SVI, . . , 6Vn} simultaneously as shown below. 

(Comp(V,{~,...,V,}),Inst(V1),..., 

Inst(K/;,),Inst(V) ) (2) 

Notice that view strategy (2) has two “stages,” 
a stage for propagating the underlying changes 
(i.e., using the Comp expression), and a stage 
for installing the changes (i.e., using the Inst 
expressions). This is consistent with the framework 
proposed in [3] that a view is updated using a 

propagate stage .and an install stage. In this paper, 
we call strategies like (2) dual-stage view strategies. 

Another possible view strategy for V is to com- 
pute 6V by considering each SK in {SVM, . . , 6Vn} 
one at a time, as shown below. 

( Comp(V, {VI}), Inst(K), . . . , 

Cov(K {Vn}), Inst(K), Inst(V) > (3) 

Each Comp expression in view strategy (3) com- 
putes a subset of the changes of V. We assume that 

the changes computed by the various Comp expres- 
sions for V are gathered in delta relation SV, and 
eventually installed together by In&(V). We call 
view strategies like (3) l-way view strategies. No- 

tice that view strategy (3) propagates the changes 
of VI first, then of Vz, and so on. For a view de- 
fined over n views, there are a total of n! l-way 

view strategies that can be obtained by using dif- 
ferent change propagation orders. 

Dual-stage view strategies as well as l-way view 
strategies have been proposed in the literature ([8], 
[3]). However, the issue of finding optimal view 
strategies has not been studied. 

Beyond the l-way and dual-stage view strategies, 
there is a multitude of other correct view strategies. 
To see this, we can look at a l-way view strategy as 

one that partitions {WI, . . . , SVn} into n singleton 
sets, and processes the sets, one at a time. On 
the other hand, a dual-stage view strategy does not 

partition {WI, . . . , JV,} at all, and processes all the 

changes simultaneously. Other ways of partitioning 
the view set will yield other view strategies. 

Once the partitions are decided upon, the prop- 
agation order among the various partitions needs 
to be chosen. The combined choices of partitioning 
and their order of processing yields numerous view 

strategies that incur different amounts of work in 
general. For instance, view Q3 defined on three 
views, Q5 defined on 6 views, and QlO defined on 4 
views have 13, 4683, and 75 view strategies respec- 
tively. Furthermore, we are only counting “correct” 
view strategies. 

In Definition 3.1, we formally describe the notion 
of correctness of a view strategy. Intuitively, 

conditions Cl and C2 state that all the changes 
must be propagated and installed by a correct 

view strategy. That is, certain Comp and Inst 
expressions must be in the correct view strategy. 
On the other hand, conditions C3, C4, and C5 
state that the Comp and Inst expressions must be 
in a particular order. Specifically, condition C3 
states that SVi must not be installed until all Comp 
expressions that use it are done. Condition C4 
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states that when the changes of V are computed 
using multiple Comp expressions, the changes of a 
view used in a Comp expression must be installed 
before the next Comp expression for V can be 
executed. Condition C5 states that the changes 
computed for V can only be installed after they 
are completely computed. Finally, condition C6 
states that there are no duplicate expressions in the 
correct view strategy. 

Definition 3.1 (Correct View Strategy) Let 
Ei < Ei if expression E; is before expression Ei 

in the view strategy. Given a view V defined over a 
set of views V, a correct view strategy 2 for V is a 
sequence of Comp and Inst expressions satisfying 
the following conditions. 

l Cl VQ E V: Comp(V, {. . r/; . .}) E 2’. 

0 C2 VK E (VU {V}): Inst(K) E 2. 

0 C3 VK E V: Comp(V, {. . .L$. . .}) < Inst(K). 

a c4 vvi: vvj: 

(Comp(V, {. . . r/; . . .}) < Comp(V, {. . . Vj . . .})) 

* (Inst(K) < Comp(V, {. . .Vj . . .})). 

0 C5 Vr/; E V: Comp(V, . . . r/;: . . .}) < Inst(V). 

l C6 VEi E 2: VEj E 74 : (i # j) * (Ei # Ei)o 

Notice that combinations of these conditions 
avoid incorrect view strategies that are not explic- 
itly prohibited in the conditions. For instance, be- 
cause of conditions C3 and C4, it is not possible 
to have two Comp expressions that propagate 6& 
[12]. Note also that for a base view V which is not 
defined over any warehouse views (i.e., V = { }), 
V’s correct view strategy is ( Inst(V) ). 

3.2 VDAG Strategies 
Like a view strategy, a VDAG strategy is simply 
a sequence of compute and install expressions. 
Informally speaking, a correct VDAG strategy uses 
a correct view strategy to update each VDAG view. 

EXAMPLE 3.1 Consider the VDAG shown in 
Figure 3. A VDAG strategy should indicate how 
changes are propagated to all the views. One 
possible VDAG strategy propagates the changes of 
Vz to V4, then propagates the changes of V! to Vd, 

then propagates the changes of V4 to Vg, and finally 
propagates the changes of VI to Vs. 

( Cov(V4, {v2)), Inst(b), Cov(V,, {V3)), 

Inst(h), Cow+%, WI)), InsW), 

Cov(Vs, WI)), Inst(Vl), Inst(Vs) > (4) 

Note that VDAG strategy (4) “uses” (contains as 
a subsequence) the following correct view strategies 
for V4 and L’s respectively. 

Comp(V4, {Vi}), Inst(b), Comp(v4, {v3)), 

InSt(&), Inst(ti) ) 

Comp(Vs, {V4}), Inst(V4), Comp(Vs, 1&l), 

Inst(Vl), Id(h) ) 

Also, for any base view K (i.e., VI, V2, Vs), VDAG 
strategy (4) “uses” ( Inst(K) ). 0 

The previous example illustrated that a correct 
VDAG strategy uses correct view strategies to 
update each view. However, we know that starting 
from a set of correct view strategies, we may not 
be able to construct a correct VDAG strategy 
(Example 1.2, Section 1). In Section 5, we present 
an algorithm that finds correct and efficient VDAG 
strategies. In the rest of this section, we formalize 
our notions of correctness and efficiency of VDAG 
strategies. First, we define the concept of a view 
strategy “used” by a VDAG strategy. 

Definition 3.2 (View Strategy Used by a 
VDAG Strategy) Given a VDAG strategy 2, 
and a view Vj defined over views V, the view 
strategy used by 2 for Vi is the subsequence $ 
of 2 composed of the following expressions: (1) 
Comp(vj,{...}); (2) Inst(Q); and (3) Inst(K), 
where Vi E V. 0 

The next definition formalizes the conditions that 
are required of a correct VDAG strategy. Condition 
C7 states that a correct VDAG strategy must 
update each view using a correct view strategy. 
Condition CS states that a correct VDAG strategy 
can only propagate changes of Vi after they have 
been computed. Condition CS implicitly imposes 
an order between expressions from view strategies 
of different views in the VDAG. 

Definition 3.3 (Correct VDAG Strategy) Given 
a VDAG G with views V and edges A, a correct 

VDAG strate y is a sequence of Comp and Inst 

expressions 2 such that 
0 C7: VVi E V: Y? uses a correct view strategy 

$ for K. 
. C8: tJx E v: vvj E v: vvk E v: 

(Comp(Vk, {. . .vj . . .}) E ? and 
Comp(~,{...K...})E?) * 

(Comp(Q, {. . .l$ . .}) < Comp(Vk, {. . .Vj . . .})). 
0 

3.3 Problem Statement 
We use a function World to represent the amount of 
work involved in executing an expression - Comp or 
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Inst. Given a L’DAG strategy 2 = (El, . . , E,), 
we define Worlc(?) as Ci=l,.n Work(&). Notice 

that Work(E;) depends on the expressions that 
precede Ei, since these expressions change the 

database state that Ei is executed in. The problem 

we address in this paper is stated as follows. 

Definition 3.4 (Total-Work Minimization 

Problem (TWM)) G iven a VDAG, find the cor- 

rect VDAG update strategy 2 such that Worle(?) 

is minimized. cl 

Since TWM is only concerned with correct VDAG 
strategies, henceforth, “VDAG strategies” refer 

only to “correct VDAG strategies.” Similarly, “view 

strategies” refer only to “correct view strategies.” 

To estimate MTorle( Ei), we adopt a metric called 

linear work metric. This is a simple metric that 
focuses on the es,sential components of the work in- 
volved in executing the Comp and Inst expressions. 

The algorithms that we develop produce optimal 
update strategies under the linear work metric. In 

Section 6, we study the relative performance of vari- 

ous update strategies for the TPC-D VDAG by exe- 

cuting the strategies on a commercial RDBMS, and 

measuring the corresponding update windows. Our 

study demonstrates that the strategies produced 

by our algorithms have significantly shorter update 

windows than conventional update strategies. The 

results of the study suggest that the linear work 

metric employed by our algorithms effectively tracks 

real-world execution of update strategies. 

The linear work metric is based on the following 
execution model of Comp expressions. Recall 

that Comp typically represents a maintenance 
expression with a set of terms (e.g., Expression 

(1) of Section 2 has three terms). Each term 

performs some computation by reading in views 
and delta relations, called operands. For example, 
assuming a view W is defined over VI, V2, and Vs, 

Comp(W, {VI}) h as a single term that reads in three 

operands (&‘I, L’z, V3) to compute changes to W. 
We consider an execution model that evaluates each 

term of a Comp expression separately. Thus, the 

work estimate for a Comp expression is obtained 

by estimating the work for each of its terms and 

adding up these estimates. 

Definition 3.5 (Linear Work Metric) The work 

estimate for an Inst expression is proportional to 
the size of the set of changes being installed. The 

estimate for a Comp expression is the sum of the 

estimates for each of its terms; the estimate for a 

term is proportional to the sum of the sizes of the 

operands of the term. Cl 

EXAMPLE 3.2 Consider the VDAG shown in 

Figure 3, with Vd defined as op (Vz x Vs) Comp( V, ,- 
{Vz}) has one term: ap(dV2 x Vs). Its work es- 
timate is c . Wzl + PiI), where c is a pro- 

portionality constant. Similarly, the estimate for 

Comp(h, (v2, v3)) can be derived (by considering 

its 3 terms) as c. ((16V2/ + I&l) + (ISV,l + IvZl) + 
(ISVzl + IS&l)). The work estimate for Inst(V4) is 

i . ISV4l, where i is a proportionality constant. q 

The estimates of the linear cost model for com- 

pute expressions make sense especially if the delta 
relations are small. If so, intermediate results in 

the evaluation of a term tend to be small. There- 
fore, the work incurred in evaluating a term is of- 

ten dominated by scanning into memory the term’s 

operands. 

4 Optimal View Strategy 
In this section, we present algorithm Min WorkS- 
ingle that produces an optimal view strategy for a 

given view, under the linear work metric. 

We showed previously that there are numerous 

possible view strategies for a single view. Fortu- 

nately, under the linear work metric, we can restrict 

our attention to l-way view strategies only. 

Theorem 4.1 For any given view, the best l-way 
view strategy is optimal over the space of all view 
strategies. 

The detailed proof of Theorem 4.1, and of other 
theorems and lemmas that follow, are furnished in 
[la]. The basic intuition is that in any view strategy 

for V that is not l-way, a Comp expression that 

computes the changes of V based on multiple views 
can be replaced by a set of Comp expressions each 

involving a single view such that the total work of 

this set of Comp expressions is smaller than the 

work incurred by the replaced Comp expression. 

Theorem 4.1 is very significant because it allows 

us to limit the search for an optimal view strategy 

to the set of l-way view strategies. Next, we 

will present another theorem that helps us avoid 
examining all the l-way view strategies and identify 

the best l-way strategy very efficiently. The 

following example illustrates how the various l-way 

view strategies differ in efficiency and it provides 

the basic intuition behind the next theorem. 
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EXAMPLE 4.1 Let us again consider view V4 

(Figure 3) defined over V2 and V3, and compare the 
two I-way view strategies for Vd shown below. 

( C~ww4, {b}), Insi Pi), CowwJ, wL3)), 

rnst(v3), Inst(V4) ) (5) 

( Covpl, {v3}), ~~q43), c~wvi, wil), 

Inst( v-2)) Inst( V4) ) (6) 
Clearly, the work incurred by the Inst expressions 
are the same. This is not the case for the Comp 

expressions. Although the same set of Comp 
expressions are used, the view extensions accessed 
by the Comp expressions are different. 

To illustrate, we use V,l to denote Vz after 6Vz is 
installed. Similarly, Vi denotes V’s after SVs is in- 
stalled. In general, the expression Comp( V4, { Vz}) 

in view strategy (5) uses SV,, and V’, and possi- 
bly V4. On the other hand, the same expression 

CompW, lv21) in view strategy (6) uses JV,, and 
V,l, and possibly V4. Hence, the only difference in 
the use of Comp(V4, { Vz}) in the two view strate- 
gies is that V,l is used in view strategy (6), while V3 

is used in view strategy (5). 
In general, the earlier SV3 is installed in a view 

strategy, the more often will Vi be used by the 
compute expressions in the view strategy. If it so 
happens that Vi is larger than Vs, then using Vi 

is more expensive than using Vs. In this case, it is 
good to delay the installation of SV3. On the other 
hand, if Vi is smaller than V3, then it is good to 
install SV3 as early as possible. 

In fact, under a linear work metric we can 
be much more precise about the installation and 
propagation order of the various changes. For 
instance, if we first propagate and install the 
changes of Vs (as in view strategy (6)), any 
subsequent compute expression that used to access 
Vs, will access Vi instead. Hence, the work 
incurred by these compute expressions is increased 
by c . ([&‘I - IV! I). Similarly if we first propagate 
and install the changes to Vz (as in view strategy 
(5)), the work incurred by subsequent compute 
expressions is increased by c . (IV.1 - IVzl). Hence, 
in this example, we would want to propagate and 
install the changes of Vs before the changes of Vz if 

(Iv;l - Ivd < W,l - Ivzl). 0 

The example illustrated how an optimal l-way 
view strategy for some view V can be obtained. 
Assuming V is defined over the views V, we first 
obtain a view ordering $ that arranges the views 
in Y in increasing IV[( - IVi I values based on the 

Algorithm 4.1 Min WorkSingle 

Input: V, defined over views V 
Output: an optimal view strategy -z’ for V 

1. Pt() 

2. For each K E V estimate IV,‘1 - 1x1 based 
on the current set of changes 

3. 3 t views in V ordered by increasing 
Iv,ll- 1x1 values 

4. For each V; E d in order 
5. Append Comp(V, {K}) to 2 
6. Append Znst(K) to 2 

7. Append In&(V) to 2 
8. Return ? 0 

Figure 5: Min WorkSingle Algorithm 

current set of changes. Given 9, an optimal l- 
way view strategy is the one that propagates and 
installs the changes in an order consistent with ?. 
A l-way view strategy for V is consistent with a 
view ordering ? if for any Inst(b$) that is before 
Inst(vj) in the strategy (vi # V, vj # V), then K 
is before Vj in 9’. 

Theorem 4.2 Given a view V defined over the 

views V, let the view ordering 9 arrange the views 

in increasing 16’1 - Ir/;l valffes, for each r/; E V. 

Then, a l-way view strategy for V that is consistent 

with V will incur the least amount of work among 

all the l-way view strategies for V. 

Based on Theorem 4.1 and Theorem 4.2, algorithm 
Min WorkSingle (F igure 5) produces an optimal 
view strategy. The view strategy produced by 
Min WorkSingle is shown to be correct in [12]. 

We summarize the behavior of algorithm Min- 
WorkSingle in the following theorem. 

Theorem 4.3 Given a view defined over n other 
views, Min WorkSingle finds an optimal view strat- 
egy for the view in O(n log n) time. 

5 Minimizing Total Work 
We have seen that for a derived view V, a l- 
way view strategy consistent with a certain view 
ordering based on the current set of changes of 
the views that V is defined on is optimal. In 
this section, we show a similar result for VDAG 
strategies. That is, for a VDAG, we show that a 
“l-way VDAG strategy” consistent with a certain 
ordering of all the VDAG views based on the 
current set of changes is optimal among all VDAG 
strategies. Based on this result, we present an 
efficient algorithm to find optimal VDAG strategies. 
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Unlike in the case of view strategies, it is not 
always possible to obtain a “l-way VDAG strategy” 
consistent with a given view ordering. In such 
cases, our algorithm finds a modified view ordering 
for which an efficient “l-way VDAG strategy” that 
is consistent wit.h the modified view ordering can 
be obtained. In this section, we also identify 
large classes of VDAGs for which optimal VDAG 
strategies are guaranteed by our algorithm 

5.1 Optimal1 VDAG Strategies 
Intuitively, a VDAG strategy that uses good view 
strategies for its derived views tends to incur less 
amount of work than one that uses worse view 
strategies. In the following theorem we capture the 
relationship between optimal VDAG strategies and 
the view strategies they use. 

Theorem 5.1 Given a VDAG G, a VDAG strat- 

egy for G that uses optimal view strategies for all 

the views of G is optimal over all VDAG strategies 

for G. 

Observe that all VDAG strategies for G incur the 
same amount of work for their Inst expressions. In 
the proof (see [12]), we further argue that a VDAG 
strategy that uses optimal view strategies minimizes 
the work incurred by the Comp expressions. 

From Section 4., we know that given a view I$ that 
is defined over views Vi, the l-way view strategy 3 
that is consistent with z that orders the views in 
Vi in increasing IV’\ - jV( values is optimal. It can 
be shown that z? is also consistent with the view 
ordering 9 h d t at or ers all of the VDAG views in 
increasing IV’\ - IV\ values. This view ordering is 
called it desired view ordering. 

We say a VDAG strategy is a l-way VDAG 
strategy if it only uses l-way view strategies. 
Furthermore, a VDAG strategy is consistent with 
i?‘fX 1 1 1 on y uses view strategies that are consistent 
with 9. Clearly, a l-way VDAG strategy that 
is consistent with a desired view ordering uses 
only optimal view strategies. It follows from 
Theorem 5.1 that this VDAG strategy is optimal. 

Theorem 5.2 For any VDAG G, a l-way VDAG 
strategy for G that is consistent with a desired view 

ordering is an optimal VDAG strategy for G. 

We illustrate the interaction between Theorem 5.1 
and Theorem 5.2 by the following example. 

EXAMPLE 5.1 Consider the VDAG shown in 
Figure 6. Let (IV,‘1 - IV41) < (IV,l( - I&l) < 

(IQ’I - WI) < (IW - lW < (IV41 - IW based 

on the current set of changes. That is, a desired 
view ordering d is ( V4, V2, VI, v3, Vs ). 

A l-way VDAG strategy consistent with the 
desired view ordering is 

( Comp(V4, {V2}), Inst(%),Comp(V4, {KS}), 

Inst(V3), Comp(V,, {Vi)), rnst(V,), 

Comp(K5, {VI}), Inst(ti), Imt(Ki) >. 

The above VDAG strategy is optimal and uses the 
following optimal view strategies for V4 and VS: 

( Comp(v4, {1/2}), In4!2), Cow(V4, {K31Jr 

Inst&), Instpq ). 

( Comp(V,, {1/4)), Inst(W, ComP(vS, {hl), 
Inst(V1), Inst(vj) ). 

0 

5.2 Expression Graphs 
We have established that a l-way VDAG strategy 
consistent with a desired view ordering is optimal. 
Here, we describe our approach to constructing such 
a VDAG strategy. 

For a given VDAG G, all possible l-way VDAG 
strategies for G have the same set of expressions, 
called the l-way expressions of G. The set of 
l-way expressions of a given VDAG G contains 
Comp(&, {K}) whenever view I$ is defined over 
view Vi in G. Also included is an Inst(&) ex- 

pression for each view r/; in G. The various l-way 
VDAG strategies for G differ in the sequencing of 
the l-way expressions of G. The correctness con- 
ditions (of Section 3) impose certain dependencies 
among these l-way expressions (e.g., for any two 
derived views I$ and vj, Comp(vj, {vi}) must fol- 
low Comp( K, { . . .})) . Additional dependencies are 
imposed when we attempt to find VDAG strategies 
that are consistent with a particular view order- 
ing (e.g., for a derived view V defined over views 
K and 4, if r/; precedes Vj in the view ordering, 
Comp( V, { IJ$}) must precede Comp( V, {Vi})). A l- 
way VDAG strategy for G consistent with a given 
view ordering is a permutation of the set of l-way 
expressions of G that satisfies all dependencies. 

We use the notion of an expression graph to 
capture the set of l-way expressions of a VDAG 
and their dependencies. Given a VDAG G and a 
view orderin 

3 
t’, the expression graph of G with 

respect to denoted EG(G, ?), has the l-way 
expressions of’G as its nodes. The expression graph 
has an edge from expression Ej to expression Ei if a. 
dependency dictates that Ej must follow Ei. Once 
we construct an expression graph for a VDAG with 
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Figure 6: VDAG 

\ 
Comp(V5, fV4)) - Inst(V4)Z Comp(V5, (Vl)) - Inst(V1) 

IN-=--==- 
Comp(V4, (V2)) -- Inst(V2)Z Comp(V4, (V3)) +-.- Inst(V3) 

V------- 

Figure 7: Expression Graph (EG) 

respect to a desired view ordering, we can obtain 
an optimal VDAG strategy by topologically sorting 
the expression graph. 
Theorem 5.3 Given a VDAG G, if EG(G, 9) 

is acyclic where 3 is a desired view ordering, 

a topological sort of EG(G, 3) yields an optimal 

VDAG strategy for G. 0 

We now illustrate the generation of an optimal 
VDAG strategy, based on this theorem. 
EXAMPLE 5.2 Consider the VDAG shown in 
Figure 6. Let a desired view ordering 9 be 
( V4, V2, VI, V3, b’s ) based on the current set of 
changes (as in Example 5.1). 

Figure 7 shows the expression graph constructed 
from the VDAG and the view ordering 3. Each 
derived view has a set of Comp expressions, one 
for each view it is defined over. Each view in the 
VDAG has an Inst expression. 

The edges of the expression graph indicate the de- 
pendencies. For instance, the edge from Comp(Vs,- 

{ Vd}) to Comp(V4, {Vz}) indicates that the former 
should appear after the latter in any l-way VDAG 
strategy for this VDAG due to C8. 

Some edges of the expression graph are shown 
with a label d to emphasize that the correspond- 
ing dependencies are due to the view ordering with 
which the l-way VDAG strategy should be consis- 
tent. For instance, the edge from Comp(V4, { Vs}) 
to Comp(V4, { Vz}) indicates that 3 requires that 
the changes of V, be propagated before the changes 
of Vs (note that Vz < V3 in 3). 

The expression graph of this example happens to 
be acyclic. So, a topological sort of the graph is 
possible, and yields a l-way VDAG strategy that is 
consistent with the view ordering 3. For instance, 
we can obtain the following VDAG strategy: 

( ComP(V,, {V2)), ~~44>, ComdV,, {W), 

Inst(h), Comp(V5, V4)), Inst(W, 

Comp(V5, -VI)), Inst(Vl), Ins@%) >. 

Note that this is the same optimal VDAG strategy 
that we discussed in Example 5.1. 0 

5.3 Classes of VDAGs with Optimal 

VDAG Strategies 
We have seen that whenever the constructed ex- 
pression graph with respect to a desired view or- 
dering is acyclic, we can obtain an optimal VDAG 
strategy in a straightforward manner. The acyclic- 
ity of the expression graph depends not only on 
the VDAG but also on the desired view ordering 
being considered. The view ordering in turn de- 
pends on the current set of changes. In general, a 
given VDAG may have an acyclic expression graph 
with one desired view ordering (i.e., based on a set 
of changes) and a cyclic expression graph with an- 
other desired view ordering (i.e., based on another 
set of changes). However, there are specific classes 
of VDAGs which will always have acyclic expres- 
sion graphs. For these classes of VDAGs, we can 
always find optimal VDAG strategies in a straight- 
forward manner no matter what changes are being 
propagated. We identify two such classes of VDAGs 
below. 

Definition 5.1 (Tree VDAGs) A tree VDAG is 
one in which no view is used in the definition of 
more than one other view. 0 

Lemma 5.1 FOT a tree VDAG, every view ordering 

results in an acyclic expression graph. 0 

Definition 5.2 (Uniform VDAGs) A uniform 

VDAG is one in which every derived view at Level i 

is defined over views all of which are at Level (i- 1). 
0 

Lemma 5.2 FOT a uniform VDAG, every view 

ordering results in an acyclic expression graph. 0 

Note that the classes of uniform VDAGs and tree 
VDAGs are incomparable. The VDAG in Figure 6 
is a tree VDAG but not a uniform VDAG. On 
the other hand, the TPC-D VDAG (Figure 4) is 
a uniform VDAG but not a tree VDAG. 

5.4 Min Work Algorithm 
Based on our observations above, we develop 
an algorithm called Min Work to generate VDAG 
strategies that minimize the total amount of work. 
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Algorithm 5.1 ModifyOrdering 
Input: VDAG G, view ordering 

Output: modified view ordering 3 

1.3,() 
2. For 1 = 0 to MaxLevel(G 

3. ti: t subsequence of 4 composed of all 
and only views with a Level value of 1 

4. Append $ to 3 

5. IReturn 3 0 

Algorithm 5.2 Min Work 
Input: VDAG G with nodes V and edges A 
Output: l-way VDAG strategy 2 

1. &-() 
2. For each vi E V estimate IV;‘1 - IV;1 

based on the current set of changes 
3. 3 t V ordlered by increasing 1 K’I - I K I 
4. EG t Con.structEG(G,?) 
5. If EG is acyclic then 

6. ?f t topological sort of EG 
7. Else 

8. 3 c ModifyOrdering 

9. EG’ t C’onstructEG(G, 3) 
10. ? t to,pological sort of EG’ 

11. Return ?! 0 

Figure 8: Min Work Algorithm 

In particular, Min Work relies on the approach 
of expression gr.aph construction in order to find 
good VDAG strategies. The algorithm is formally 
presented in Algorithm 5.2 of Figure 8. 

Min Work first computes a desired view ordering 

based on the current set of changes. Then it con- 
structs the expression graph of the VDAG with re- 
spect to this desired view ordering. The routine 
ConstructEG for constructing the expression graph 
is not shown here due to space constraints (see [12]). 
ConstructEG includes one node for each l-way ex- 
pression of G. It then connects the nodes based on 
dependencies imposed by the correctness conditions 
and by the given view ordering. If the constructed 
expression graph is acyclic, Min Work obtains the 
optimal VDAG strategy by a topological sort of the 
expression graph. Otherwise, it computes a mod- 
ified view ordering (using ModifyOrdering shown 
in Algorit)hm 5.1) which is guaranteed to yield an 
acyclic expression graph of the VDAG . Then, it 
generates a VDAG strategy for the input VDAG 
that is consistent with this modified view ordering. 

It is clear tha.t given a VDAG that results in 
an acyclic expression graph, Min Work produces an 

optimal VDAG strategy. This leads to the following 
result that follows from Theorem 5.3, Lemma 5.1 
and Lemma 5.2. 

Theorem 5.4 Given a VDAG G, and a desired 

view ordering 7, Min Work produces optimal VDAG 

strategies if EG(G, d) is acyclic. In particular, 
Min Work always produces optimal VDAG strategies 
for tree VDAGs and uniform VDAGs. Cl 

When the given VDAG results in a cyclic expres- 
sion graph with respect to the desired view ordering, 
Min Work produces a l-way VDAG strategy that is 

consistent with a view ordering 3 that is produced 
by ModifyOrdering based on the desired view order- 

ing. ModifyOrdering produces 3 by first ordering 
the views based on their Level values (i.e., lower 
level views first). ModifyOrdering then orders the 
views with the same Level value based on the de- 
sired view ordering. The following theorem ensures 
that Min Work will always be able to generate a l- 
way VDAG strategy no matter how complex the 
input VDAG is. 

Theorem 5.5 Given a VDAG G and a view or- 

dering 9, we can come up with a view orderin 3 

= ModifyOrdering(G, d) such that EG(G, V ) is 3 

acyclic. That is, Min Work will always succeed in 

producing a VDAG strategy. cl 

The use of a modified view ordering when a 
desired view ordering yields cyclic expression graphs 
may lead Min Work to produce sub-optimal VDAG 
strategies. However, the modified view ordering 

reflects as much of the desired view ordering as 
possible. This results in Min Work producing 
efficient plans, when it misses optimal plans. 

In [12], we show that Min Work has a worst 
case time complexity of O(n3) where n is the 
number of views in the VDAG. We also discuss 
how Min Work can be implemented very easily using 
stored procedures. 

Finally, we also develop in [12] a different search 
algorithm that finds the optimal l-way VDAG 
strategy for any VDAG. As expected, the algorithm 
is less efficient than Min Work and has a worst case 
time complexity of O(n! . n3). 

6 Experiments 
We have developed algorithms that minimize the 
work incurred in view or VDAG strategies. How- 
ever, minimizing the work incurred may not trans- 
late to the minimization of the update window. 
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In order to understand how well the strategies 
generated by our algorithms perform in practice, we 
conducted a series of experiments. In particular, 
we tested various strategies using Microsoft SQL 
Server 6.5 running on a workstation with a Pentium 
II 300 MHz processor and 64 MB of RAM. In our 
experiments, we measured the actual time it took 
to execute the strategies. The results show that the 
strategies generated by our algorithms do indeed 
yield short update windows. 

In all of the experiments, we used the TPC-D 
warehouse shown in Figure 4. The base views CUS- 
TOMER (denoted C for conciseness), ORDER (0)) 
LINEITEM (L), SUPPLIER (S), NATION (N) 
and REGION (R) are copies of TPC-D relations 
populated with synthetic data obtained from [5]. 
The derived views Q3, 95 and QlO were defined 
using the TPC-D “Shipping Priority” query, “Lo- 
cal Supplier” query, and “Returned Item Report- 
ing” query respectively. 

Unless otherwise specified, the remote informa- 
tion sources were changed so that base views C, 0, 
L, S, and N decreased in size by 10%. Base view 
R, the smallest of the six, was left unchanged. Ac- 
cording to the sizes of the base views, the desired 
view ordering is ( L, 0, C, S, N, R ). 

146.25 sed 

View Strategies 

Figure 9: Q3 View Strategies 

Experiment 1: In the first experiment, we 
examined the various view strategies for Q3. Since 
Q3 is only defined over 3 views, there were only 13 
view strategies to compare, one from each partition. 
Figure 9 shows the result of the experiment. Each 
bar depicts a view strategy, and the height of the 
bar gives the amount of time it took to perform the 
view strategy. The graph shows numerous results. 

First, the graph shows that l-way view strategies 
update 93 in the least amount of time. 

Second, the graph shows that the Min WorkSingle 
view strategy, which propagates the changes of L, 

then of 0, and then of C, does not update Q3 
in the least amount of time. The view strategy 
that performs the best in this case propagates the 
changes of L, then of C and then of 0. The 
update window of the Min WorkSingle view strategy 
is however very close to the optimal. Recall that 
we proved that Min WorkSingle produces an optimal 
view strategy under the linear work metric. In the 
experiment, we used a real system whose behavior 
naturally deviates from the strictly linear work 
metric. Thus, Min WorkSingle ends up with a 
strategy that is slightly away from the optimum. 

Finally, the graph shows that various view strate- 
gies have significantly different update windows. 

Experiment 2: In the next experiment, we 
focused on the derived view Q5 which is defined 
over the 6 base views. Since Q5 is much more 
complex than Q3, it was too time consuming to 
examine all of the view strategies of Q5. Instead, 
we examined only the Min WorkSingle view strategy 
and the dual-stage view strategy. Recall that the 
dual-stage view strategy is the one with a compute 
stage and an install stage, as proposed in [3]. The 
results show that the update window of the dual- 
stage view strategy is over 6 times longer than that 
of the Min WorkSingle view strategy. 

Experiment 3: In this experiment, we again focus 
on Q3. Each of C, 0, and L is decreased in size by 
a percentage p of its initial size, for various values 
of p (from 1% to 10%). When comparing view 
strategies, we only considered the Min WorkSingle 
view strategy, the best 2-way view strategy in 
Figure 9, and the dual-stage view strategy. For 
all values of p, the Min WorkSingle view strategy 
performed better than both the 2-way view strategy 
and the dual-stage view strategy. 

Experiment 4: So far, we have considered up- 
dating a single view. In this experiment, we study 
the quality of Min Work VDAG strategies. Note 
that, since the TPC-D VDAG is uniform, Min- 
Work is guaranteed to pick an optimal VDAG strat- 
egy under the linear work metric. We check how 
good the Min Work VDAG strategy is by com- 
paring it with two others: a “dual-stage” VDAG 
strategy that only uses dual-stage view strategies, 
and a l-way VDAG strategy that propagates the 
changes in an order opposite that of the Min Work 
VDAG strategy. Min Work uses the view ordering 
( L, 0, C, S, N, R), and so the third VDAG strategy 
in our experiment uses the order ( R, N, S, C, 0, L ). 
We call this strategy RNSCOL. As expected, the 
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Min Work strategy performed the best. In particu- 

lar, it is 5.6 times better than the dual-stage VDAG 

strategy, and is 1.11 times better than the RNSCOL 

VDAG strategy. 

More details about the experiments and an 

extended discussion of the results appear in [12]. 

7 Related Work 
There has been a significant amount of work in 

minimizing warehouse maintenance time. The 

techniques proposed solve various sub-problems. 

One of the sub-problems is the efficient main- 

tenance of base views ([11],[7],[1]). In this paper, 
we concentrate on derived view maintenance. Un- 
like base view maintenance, derived view mainte- 

nance competes with OLAP queries for resources, 

and thus is one of the main problems that today’s 
warehouses face. 

Another important sub-problem is choosing the 
views to materialize in the warehouse so that 

some measure like query time, is minimized while 

satisfying a given storage or maintenance time 
constraint ([9],[:10],[2],[16]). The warehouse design 

algorithms are complementary to the algorithms we 

present. That is,, most of the design algorithms do 

not specify how views are actually updated. Our 

Min Work algorithm can be used for this purpose. 

Another sub-problem that needs to be answered 

is deciding when1 to update the warehouse [4]. The 

algorithms we present are used when changes are 

actually propagated. Hence, the algorithms we 

present are com:plementary. 

The only work that we know of that is concerned 
with the actual algorithm for propagating changes 

is [13]. More spe:cifically, [13] proposed to represent 
the changes of summary tables as a summary delta. 
Since a summary delta can be incorporated into a 

summary table very efficiently, the main problem is 
computing the summary delta. The algorithms we 
present here can be used to compute the summary 

deltas more efficiently 

Finally, the only work that we know of that 

handles a hierarchy of views instead of a single view 
is [15]. In [15], they focus more on the problem of 
maintaining views in a distributed warehouse (i.e., 

a set of data marts) consistently. 

8 CJonclusion 
We have solved the “total-work minimization” 

(TWM) problern that warehouse administrators 
face today. To solve TWM, we presented Min- 

WorkSingle that identifies optimal view strategies 

for updating single views. We then presented Min- 

Work, an efficient heuristic algorithm that finds an 

optimal solution for a large class of VDAGs. Min- 

Work significantly extends the l-way view strategy 

([8]) to the more practical setting of a VDAG of 

views. Experiments on a TPC-D VDAG showed 

that the strategies produced by MinWorkSinyle 
and Min Work are very efficient under commercial 

RDBMS work metrics, and shrink the update win- 

dow significantly. 
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