
Shrinking the Warehouse Update Window

Wilburt Juan Labio, Ramana Yerneni, Hector Garcia.-Molina
Department of Computer Science

Stanford University
{wilburt,yerneni, hector}@cs.stanford.edu

Abstract

Warehouse views need to be updated when source

data changes. Due to the constantly increasing size

of warehouses and the rapid rates of change, there

is increasing pressure to reduce the time taken for

updating the warehouse views. In this paper we focus

on reducing this “update window” by minimizing the

work required to compute and install a batch of updates.

Various strategies have been proposed in the literature

for updating a single warehouse view. These algorithms

typically cannot be extended to come up with good

strategies for updating an entire set of views. We

develop an efficient algorithm that selects an optimal

update strategy for any single warehouse view. Based

on this algorithm, we develop an algorithm for selecting

strategies to update a set of views. The performance of

these algorithms is studied with experiments involving

warehouse views based on TPC-D queries.

1 Introduction
Data warehouses derive data from remote informa-
tion sources in support of on-line analytical process-
ing (OLAP). 0 ne of the main problems is updat-
ing the derived data when the remote information
sources change. During a warehouse update, called
the “update window,” either OLAP queries are not
processed or OLAP queries compete with the ware-
house update for resources. To reduce OLAP down

time or interference, it is critical to minimize the
work involved in a warehouse update and shrink
the update window.

p,=rmission to “lake digital or hard topics of all or part of this work fbl
personal 0r c,assroo~ LISA is granted without fee provided that Copies
are nc,t ,,,adc “,. (IistrilJuted ror profit or commercial advantage and that
copies bear tllis notice and the full citation on the tirst paw To COPY
ot\lcrwisc, to rcpu[>[ish, to post on scrvcrs or 10 redisrributc to lists.
requires prior specific permission andior a fee.
SIGMOD ‘99 Philadelphia PA
Copyright ACM 1999 l-58113-084-8/99/05...$5.00

The derived data at the warehouse is often stored
in materialized views. Previous work ([6], [14])
has developed standard expressions for maintain-
ing a large class of materialized views incremen-
tally. However, there are still numerous alter-
native “strategies” for implementing these expres-
sions, and these strategies incur different amounts
of work and lead to different update windows.

EXAMPLE 1.1 Let us consider the warehouse
depicted by the directed acyclic graph (DAG)
shown in Figure 1. There are four materialized
views: CUSTOMER, ORDER, LINEITEM, and
V. The edge from V to CUSTOMER indicates
that view V is defined on view CUSTOMER
(and similarly for the other edges). Unlike V,
the CUSTOMER, ORDER and LINEITEM views
are defined on remote and possibly autonomous
information sources.

Periodically, the changes (i.e., inserted, deleted
and updated tuples) of CUSTOMER, ORDER and
LINEITEM are computed from the changes of
remote information sources. View maintenance
algorithms that handle remote and autonomous
sources, like the ones developed in [17], may be
used. Once the changes of these views are obtained,
the changes of V need to be computed, and the
changes of all the views need to be installed. There
are many ways to perform these update tasks using
standard view maintenance expressions.

One strategy for updating V, denoted Strategy 1,
is (as in [3]):

1. Compute the changes of V considering at once
all the changes of CUSTOMER, ORDER, LINE-
ITEM, and using the prior-to-update states of
these views.

2. Install the changes of all four views. Installation
of changes involves removing deleted tuples and
adding inserted tuples.

383

ORDER LINEITEM CUSTOMER

Figure 1: Example DAG of Materialized Views

In Strategy 2, the changes of V are computed
piecemeal, cons:idering the changes of each of its
base .views one at a time:
1.

2.

3.

4.

5.

6.
7.

Compute the changes of I/only considering the
changes of CUSTOMER (and the original state
of the views).
Install the changes of CUSTOMER. (The fol-
lowing steps will see this new state.)
Compute th,e changes of Vonly considering the
changes of ORDER.
Install the Changes of ORDER. (This new state
will be seen by the next step.)
Compute the changes of Vonly considering the
changes of LJNEITEM.
Install the c.hanges of LINEITEM.
Install the c:hanges of V.

In [8], the correctness of both these strategies
was discussed. 1Specifically, it was shown that both
strategies compute the same final “database state”
(i.e., extension of all warehouse views). However, it
was not shown how to choose among the strategies.
The strategies can result in significantly different
update windows as confirmed by our experiments.

For the simple DAG of Figure 1, there are 11
strategies in adldition to Strategies 1 and 2. For
instance, a slight variant of Strategy 2 computes the
changes of V based on the changes of LINEITEM
first, then ORDER, and then CUSTOMER. In
some cases, this variant may have a shorter update
window than Strategy 2. 0

The previous example illustrated that even for
a single view, there are many update strategies.
Finding optimal strategies for a single view is a
challenge we address in this paper. In the next
example, we illustrate that the update strategies for
a DAG of views cannot be constructed by simply
picking t,he stra.tegies for each view independently.
In this paper, we also address the problem of finding
optimal strategies for a DAG of views.

EXA.MPLE 1.2 Let us consider the DAG shown
in Figure 2. This DAG now includes a second
view V’ defined over CUSTOMER, ORDER and
LINEITEM. Say we update V using Strategy
2 (Example l.l), and V’ is updated using the
following Strakgy 3:

1.

2.

3.

4.

5.

ORDER LINEXTEM CUSTOMER

Figure 2: More Complex DAG

Compute the changes of V’ only considering the
changes of LINEITEM.
Install the changes of LINEITEM. (These changes
are visible to the following step.)

Compute the V’ changes considering the changes
of CUSTOMER and ORDER.
Install the changes of CUSTOMER and OR-
DER.
Install the changes of V’.

Note that in Strategy 2, the fifth step occurs
after the changes of CUSTOMER and ORDER,
but not LINEITEM, have been installed. On the
other hand, in Strategy 3 the third step occurs
after the changes of LINEITEMhave been installed,
but not the changes of CUSTOMER and ORDER.
Since only one of these states can be achieiied,’ we
cannot combine Strategy 2 and Strategy 3. On the
other hand, it is possible to combine Strategy 1 and
Strategy 3 in a consistent manner. 0

The previous example showed that we may not
be able to construct a correct strategy for a DAG
of views by combining independently chosen single
view strategies. Even if we can, the combined
strategy may not be the best among all correct
strategies. In this paper, we define formally the
notion of a correct update strategy for a DAG of
views, and we develop techniques to obtain correct
and efficient update strategies for a DAG of views.

One could argue that standard database query
optimizers may be able to generate efficient ware-
house update strategies by leveraging their profi-
ciency in finding good plans for a query or even
a set of queries. However, today’s query opti-
mizers assume that during the execution of the
queries the database state does not change. As illus-
trated by our examples, warehouse upda.te strate-
gies employ sequences of computation and installa-
tion steps. More importantly, each step may change
the database state, which in turn affects the rest of
the steps. Hence, picking the best strategy involves:

l Choosing the set of queries (for update compu-
tations) and data manipulation expressions;

‘We do not assume that multiple versions of the ware-
house data are maintained.

384

. Sequencing these queries and data manipulation
expressions; and

l Ensuring that the chosen sequence results in the
correct final database state.

To our knowledge, query optimizers do not handle
these tasks. As a result, the warehouse administra-
tor (WHA) is often saddled with the task of creat-
ing “update scripts” for the warehouse views. Since
there are many alternative update strategies, the
WHA can easily pick an inefficient update strategy,
or even worse an update strategy that incorrectly
updates the warehouse. Furthermore, the WHA
may have to change the script frequently, since what
strategy is best depends on the current size of the
warehouse views and the current set of changes.

In this paper, we develop a framework for
studying the space of update strategies. We make
the following specific contributions:

We characterize the correctness and optimality
of update strategies for a DAG of views.
We develop a very efficient algorithm called
Min WorkSingle that finds an update strategy
that minimizes the work incurred in updating
a single materialized view.

Based on Min WorkSingle, we develop an effi-
cient heuristic algorithm called Min Work that
produces a good update strategy for a general
DAG of materialized views. We show that for a
large class of DAGs, the Min Work update strat-
egy is actually the least expensive.

Based on performance experiments with a TPC-
D scenario, we demonstrate that the Min WorkS-
ingle and Min Work update strategies shrink the
update window significantly.

Preliminaries
Warehouse Model: We model warehouse data
using a wiew directed acyclic graph (VDAG). Each
node in the graph represents a materialized view
containing warehouse data. An edge (4 + K)
indicates that view Vj is defined over view Vi. If
a view V has no outgoing edges, this indicates that
V is defined over remote information sources. For
simplicity, we assume that a view V is defined only
over remote information sources, or only over views
at the warehouse. We call views defined over remote
sources base views, and views defined over other
views (at the warehouse) derived views.

Figure 3 shows a simple example of a VDAG
with three base views (i.e., VI,V~,V~) and two
derived views (i.e., V4, Vs). As a more concrete

example, Figure 4 shows the VDAG representation
of a warehouse that contains six TPC-D relations
as base views. In this example, ORDER and
LINEITEM represent “fact tables,” and the other
base views represent “dimension tables.” The
derived views Q3, Q5 and QlO represent “summary
tables” defined over the TPC-D base views.

We define Level(V) to be the maximum distance
of V to a base view. For instance, in Figure 3,
LeveZ(V1) = 0, Level(V4) = 1, and Level(Vs) =
2. We use MaxLevel to denote the maximum
Level value of any view in a VDAG G.
View Definitions and Maintenance Expres-
sions: We associate with each view V a defini-
tion Def(V). View definitions in our model involve
projection, selection, join, and aggregation oper-
ations. For instance, views Q3, Q5 and QlO of Fig-
ure 4 may be defined using TPC-D queries that are
SELECT-FROM-WHEREGROUPBY SQL statements.

An edge (vj + K) in the VDAG means that
E appears in Def(Q). Moreover, it implies that
changes of Vi lead to Vj changes. We use delta
relation 6V to represent the changes of V.

The changes of the base views arrive periodically
at the warehouse. The changes of the base views
are then used to compute the changes of the
derived views. If V is a derived view, view
maintenance expressions based on Def(V) are
used to compute 6V. For instance, if view
Vl in Figure 3 is defined as gp(Vz x Vs), the
following standard view maintenance expression
([6], [14]) that uses three terms (i.e., ap(6V2xV3),

gp(V2xSV3), a~(6VsxJV3)) computes SV4.

sv, t ap(Sv~xVi) u (Tp(V2xSV3)

u ap(GV2 XJVS) (1)

Actually, the changes of a view V include inserted
V tuples, called plus tuples, and deleted V tuples,
called minus tuples. (In this paper, we represent
an update as a deletion followed by an insertion.)
For simplicity of presentation, we do not show
explicitly the plus tuples and the minus tuples,
instead lumping them together in a single delta
relation. When executing maintenance expressions
like (l), the plus and minus tuples in the delta
relations must be handled “appropriately” [6].

After the changes of a view are computed, they
are used in computing changes of other derived
views, and installed. The install operation inserts
the plus tuples, and deletes the minus tuples.
Compute and Install Expressions: We abstract
maintenance computations by the function Comp.

385

Q3 Q5 QlO

ORDER LINEITEM CUSTOMER SUPPLIER NATION REGION

Figure 3: Example VDAG Figure 4: VDAG of a TPC-D Warehouse

The formula for Icomputing 6V from the changes of
the set of views v is denoted by Comp(V, V). For in-
stance, Comp(Vd, { Vz, Vs}) represents the SVZ com-
putation of Exp:ression (1). As another example,

Co7v(V4. {h)) P re resents the computation of the
changes of V4 based solely on the changes of Vz, i.e.,
hV4 t ap(bVzx&). We use Inst(V) to denote the
operation of inst,alling bV into V.

3 View a.nd VDAG Strategies
We now define view strategies which are used to

update a single ‘view, and VDAG strategies which
are used to update a VDAG of views. We also

illustrate how one can define the space of correct

VDAG strategies based on the notion of correct
view strategies for the individual views. Finally,

we formally define the “total-work minimization”

problem as finding the correct VDAG strategy that

incurs the minimum amount of work.

3.1 View Strategies
For a view V defined over R views VI, . . , V,, there
are many possib’le ways of updating V. We call
each way a view strategy. One view strategy for
V is to compute 6V based on all of the changes
{SVI, . . , 6Vn} simultaneously as shown below.

(Comp(V,{~,...,V,}),Inst(V1),...,

Inst(K/;,),Inst(V)) (2)

Notice that view strategy (2) has two “stages,”
a stage for propagating the underlying changes
(i.e., using the Comp expression), and a stage
for installing the changes (i.e., using the Inst
expressions). This is consistent with the framework
proposed in [3] that a view is updated using a

propagate stage .and an install stage. In this paper,
we call strategies like (2) dual-stage view strategies.

Another possible view strategy for V is to com-
pute 6V by considering each SK in {SVM, . . , 6Vn}
one at a time, as shown below.

(Comp(V, {VI}), Inst(K), . . . ,

Cov(K {Vn}), Inst(K), Inst(V) > (3)

Each Comp expression in view strategy (3) com-
putes a subset of the changes of V. We assume that

the changes computed by the various Comp expres-
sions for V are gathered in delta relation SV, and
eventually installed together by In&(V). We call
view strategies like (3) l-way view strategies. No-

tice that view strategy (3) propagates the changes
of VI first, then of Vz, and so on. For a view de-
fined over n views, there are a total of n! l-way

view strategies that can be obtained by using dif-
ferent change propagation orders.

Dual-stage view strategies as well as l-way view
strategies have been proposed in the literature ([8],
[3]). However, the issue of finding optimal view
strategies has not been studied.

Beyond the l-way and dual-stage view strategies,
there is a multitude of other correct view strategies.
To see this, we can look at a l-way view strategy as

one that partitions {WI, . . . , SVn} into n singleton
sets, and processes the sets, one at a time. On
the other hand, a dual-stage view strategy does not

partition {WI, . . . , JV,} at all, and processes all the

changes simultaneously. Other ways of partitioning
the view set will yield other view strategies.

Once the partitions are decided upon, the prop-
agation order among the various partitions needs
to be chosen. The combined choices of partitioning
and their order of processing yields numerous view

strategies that incur different amounts of work in
general. For instance, view Q3 defined on three
views, Q5 defined on 6 views, and QlO defined on 4
views have 13, 4683, and 75 view strategies respec-
tively. Furthermore, we are only counting “correct”
view strategies.

In Definition 3.1, we formally describe the notion
of correctness of a view strategy. Intuitively,

conditions Cl and C2 state that all the changes
must be propagated and installed by a correct

view strategy. That is, certain Comp and Inst
expressions must be in the correct view strategy.
On the other hand, conditions C3, C4, and C5
state that the Comp and Inst expressions must be
in a particular order. Specifically, condition C3
states that SVi must not be installed until all Comp
expressions that use it are done. Condition C4

386

states that when the changes of V are computed
using multiple Comp expressions, the changes of a
view used in a Comp expression must be installed
before the next Comp expression for V can be
executed. Condition C5 states that the changes
computed for V can only be installed after they
are completely computed. Finally, condition C6
states that there are no duplicate expressions in the
correct view strategy.

Definition 3.1 (Correct View Strategy) Let
Ei < Ei if expression E; is before expression Ei

in the view strategy. Given a view V defined over a
set of views V, a correct view strategy 2 for V is a
sequence of Comp and Inst expressions satisfying
the following conditions.

l Cl VQ E V: Comp(V, {. . r/; . .}) E 2’.

0 C2 VK E (VU {V}): Inst(K) E 2.

0 C3 VK E V: Comp(V, {. . .L$. . .}) < Inst(K).

a c4 vvi: vvj:

(Comp(V, {. . . r/; . . .}) < Comp(V, {. . . Vj . . .}))

* (Inst(K) < Comp(V, {. . .Vj . . .})).

0 C5 Vr/; E V: Comp(V, . . . r/;: . . .}) < Inst(V).

l C6 VEi E 2: VEj E 74 : (i # j) * (Ei # Ei)o

Notice that combinations of these conditions
avoid incorrect view strategies that are not explic-
itly prohibited in the conditions. For instance, be-
cause of conditions C3 and C4, it is not possible
to have two Comp expressions that propagate 6&
[12]. Note also that for a base view V which is not
defined over any warehouse views (i.e., V = { }),
V’s correct view strategy is (Inst(V)).

3.2 VDAG Strategies
Like a view strategy, a VDAG strategy is simply
a sequence of compute and install expressions.
Informally speaking, a correct VDAG strategy uses
a correct view strategy to update each VDAG view.

EXAMPLE 3.1 Consider the VDAG shown in
Figure 3. A VDAG strategy should indicate how
changes are propagated to all the views. One
possible VDAG strategy propagates the changes of
Vz to V4, then propagates the changes of V! to Vd,

then propagates the changes of V4 to Vg, and finally
propagates the changes of VI to Vs.

(Cov(V4, {v2)), Inst(b), Cov(V,, {V3)),

Inst(h), Cow+%, WI)), InsW),

Cov(Vs, WI)), Inst(Vl), Inst(Vs) > (4)

Note that VDAG strategy (4) “uses” (contains as
a subsequence) the following correct view strategies
for V4 and L’s respectively.

Comp(V4, {Vi}), Inst(b), Comp(v4, {v3)),

InSt(&), Inst(ti))

Comp(Vs, {V4}), Inst(V4), Comp(Vs, 1&l),

Inst(Vl), Id(h))

Also, for any base view K (i.e., VI, V2, Vs), VDAG
strategy (4) “uses” (Inst(K)). 0

The previous example illustrated that a correct
VDAG strategy uses correct view strategies to
update each view. However, we know that starting
from a set of correct view strategies, we may not
be able to construct a correct VDAG strategy
(Example 1.2, Section 1). In Section 5, we present
an algorithm that finds correct and efficient VDAG
strategies. In the rest of this section, we formalize
our notions of correctness and efficiency of VDAG
strategies. First, we define the concept of a view
strategy “used” by a VDAG strategy.

Definition 3.2 (View Strategy Used by a
VDAG Strategy) Given a VDAG strategy 2,
and a view Vj defined over views V, the view
strategy used by 2 for Vi is the subsequence $
of 2 composed of the following expressions: (1)
Comp(vj,{...}); (2) Inst(Q); and (3) Inst(K),
where Vi E V. 0

The next definition formalizes the conditions that
are required of a correct VDAG strategy. Condition
C7 states that a correct VDAG strategy must
update each view using a correct view strategy.
Condition CS states that a correct VDAG strategy
can only propagate changes of Vi after they have
been computed. Condition CS implicitly imposes
an order between expressions from view strategies
of different views in the VDAG.

Definition 3.3 (Correct VDAG Strategy) Given
a VDAG G with views V and edges A, a correct

VDAG strate y is a sequence of Comp and Inst

expressions 2 such that
0 C7: VVi E V: Y? uses a correct view strategy

$ for K.
. C8: tJx E v: vvj E v: vvk E v:

(Comp(Vk, {. . .vj . . .}) E ? and
Comp(~,{...K...})E?) *

(Comp(Q, {. . .l$. .}) < Comp(Vk, {. . .Vj . . .})).
0

3.3 Problem Statement
We use a function World to represent the amount of
work involved in executing an expression - Comp or

387

Inst. Given a L’DAG strategy 2 = (El, . . , E,),
we define Worlc(?) as Ci=l,.n Work(&). Notice

that Work(E;) depends on the expressions that
precede Ei, since these expressions change the

database state that Ei is executed in. The problem

we address in this paper is stated as follows.

Definition 3.4 (Total-Work Minimization

Problem (TWM)) G iven a VDAG, find the cor-

rect VDAG update strategy 2 such that Worle(?)

is minimized. cl

Since TWM is only concerned with correct VDAG
strategies, henceforth, “VDAG strategies” refer

only to “correct VDAG strategies.” Similarly, “view

strategies” refer only to “correct view strategies.”

To estimate MTorle(Ei), we adopt a metric called

linear work metric. This is a simple metric that
focuses on the es,sential components of the work in-
volved in executing the Comp and Inst expressions.

The algorithms that we develop produce optimal
update strategies under the linear work metric. In

Section 6, we study the relative performance of vari-

ous update strategies for the TPC-D VDAG by exe-

cuting the strategies on a commercial RDBMS, and

measuring the corresponding update windows. Our

study demonstrates that the strategies produced

by our algorithms have significantly shorter update

windows than conventional update strategies. The

results of the study suggest that the linear work

metric employed by our algorithms effectively tracks

real-world execution of update strategies.

The linear work metric is based on the following
execution model of Comp expressions. Recall

that Comp typically represents a maintenance
expression with a set of terms (e.g., Expression

(1) of Section 2 has three terms). Each term

performs some computation by reading in views
and delta relations, called operands. For example,
assuming a view W is defined over VI, V2, and Vs,

Comp(W, {VI}) h as a single term that reads in three

operands (&‘I, L’z, V3) to compute changes to W.
We consider an execution model that evaluates each

term of a Comp expression separately. Thus, the

work estimate for a Comp expression is obtained

by estimating the work for each of its terms and

adding up these estimates.

Definition 3.5 (Linear Work Metric) The work

estimate for an Inst expression is proportional to
the size of the set of changes being installed. The

estimate for a Comp expression is the sum of the

estimates for each of its terms; the estimate for a

term is proportional to the sum of the sizes of the

operands of the term. Cl

EXAMPLE 3.2 Consider the VDAG shown in

Figure 3, with Vd defined as op (Vz x Vs) Comp(V, ,-
{Vz}) has one term: ap(dV2 x Vs). Its work es-
timate is c . Wzl + PiI), where c is a pro-

portionality constant. Similarly, the estimate for

Comp(h, (v2, v3)) can be derived (by considering

its 3 terms) as c. ((16V2/ + I&l) + (ISV,l + IvZl) +
(ISVzl + IS&l)). The work estimate for Inst(V4) is

i . ISV4l, where i is a proportionality constant. q

The estimates of the linear cost model for com-

pute expressions make sense especially if the delta
relations are small. If so, intermediate results in

the evaluation of a term tend to be small. There-
fore, the work incurred in evaluating a term is of-

ten dominated by scanning into memory the term’s

operands.

4 Optimal View Strategy
In this section, we present algorithm Min WorkS-
ingle that produces an optimal view strategy for a

given view, under the linear work metric.

We showed previously that there are numerous

possible view strategies for a single view. Fortu-

nately, under the linear work metric, we can restrict

our attention to l-way view strategies only.

Theorem 4.1 For any given view, the best l-way
view strategy is optimal over the space of all view
strategies.

The detailed proof of Theorem 4.1, and of other
theorems and lemmas that follow, are furnished in
[la]. The basic intuition is that in any view strategy

for V that is not l-way, a Comp expression that

computes the changes of V based on multiple views
can be replaced by a set of Comp expressions each

involving a single view such that the total work of

this set of Comp expressions is smaller than the

work incurred by the replaced Comp expression.

Theorem 4.1 is very significant because it allows

us to limit the search for an optimal view strategy

to the set of l-way view strategies. Next, we

will present another theorem that helps us avoid
examining all the l-way view strategies and identify

the best l-way strategy very efficiently. The

following example illustrates how the various l-way

view strategies differ in efficiency and it provides

the basic intuition behind the next theorem.

388

EXAMPLE 4.1 Let us again consider view V4

(Figure 3) defined over V2 and V3, and compare the
two I-way view strategies for Vd shown below.

(C~ww4, {b}), Insi Pi), CowwJ, wL3)),

rnst(v3), Inst(V4)) (5)

(Covpl, {v3}), ~~q43), c~wvi, wil),

Inst(v-2)) Inst(V4)) (6)
Clearly, the work incurred by the Inst expressions
are the same. This is not the case for the Comp

expressions. Although the same set of Comp
expressions are used, the view extensions accessed
by the Comp expressions are different.

To illustrate, we use V,l to denote Vz after 6Vz is
installed. Similarly, Vi denotes V’s after SVs is in-
stalled. In general, the expression Comp(V4, { Vz})

in view strategy (5) uses SV,, and V’, and possi-
bly V4. On the other hand, the same expression

CompW, lv21) in view strategy (6) uses JV,, and
V,l, and possibly V4. Hence, the only difference in
the use of Comp(V4, { Vz}) in the two view strate-
gies is that V,l is used in view strategy (6), while V3

is used in view strategy (5).
In general, the earlier SV3 is installed in a view

strategy, the more often will Vi be used by the
compute expressions in the view strategy. If it so
happens that Vi is larger than Vs, then using Vi

is more expensive than using Vs. In this case, it is
good to delay the installation of SV3. On the other
hand, if Vi is smaller than V3, then it is good to
install SV3 as early as possible.

In fact, under a linear work metric we can
be much more precise about the installation and
propagation order of the various changes. For
instance, if we first propagate and install the
changes of Vs (as in view strategy (6)), any
subsequent compute expression that used to access
Vs, will access Vi instead. Hence, the work
incurred by these compute expressions is increased
by c . ([&‘I - IV! I). Similarly if we first propagate
and install the changes to Vz (as in view strategy
(5)), the work incurred by subsequent compute
expressions is increased by c . (IV.1 - IVzl). Hence,
in this example, we would want to propagate and
install the changes of Vs before the changes of Vz if

(Iv;l - Ivd < W,l - Ivzl). 0

The example illustrated how an optimal l-way
view strategy for some view V can be obtained.
Assuming V is defined over the views V, we first
obtain a view ordering $ that arranges the views
in Y in increasing IV[(- IVi I values based on the

Algorithm 4.1 Min WorkSingle

Input: V, defined over views V
Output: an optimal view strategy -z’ for V

1. Pt()

2. For each K E V estimate IV,‘1 - 1x1 based
on the current set of changes

3. 3 t views in V ordered by increasing
Iv,ll- 1x1 values

4. For each V; E d in order
5. Append Comp(V, {K}) to 2
6. Append Znst(K) to 2

7. Append In&(V) to 2
8. Return ? 0

Figure 5: Min WorkSingle Algorithm

current set of changes. Given 9, an optimal l-
way view strategy is the one that propagates and
installs the changes in an order consistent with ?.
A l-way view strategy for V is consistent with a
view ordering ? if for any Inst(b$) that is before
Inst(vj) in the strategy (vi # V, vj # V), then K
is before Vj in 9’.

Theorem 4.2 Given a view V defined over the

views V, let the view ordering 9 arrange the views

in increasing 16’1 - Ir/;l valffes, for each r/; E V.

Then, a l-way view strategy for V that is consistent

with V will incur the least amount of work among

all the l-way view strategies for V.

Based on Theorem 4.1 and Theorem 4.2, algorithm
Min WorkSingle (F igure 5) produces an optimal
view strategy. The view strategy produced by
Min WorkSingle is shown to be correct in [12].

We summarize the behavior of algorithm Min-
WorkSingle in the following theorem.

Theorem 4.3 Given a view defined over n other
views, Min WorkSingle finds an optimal view strat-
egy for the view in O(n log n) time.

5 Minimizing Total Work
We have seen that for a derived view V, a l-
way view strategy consistent with a certain view
ordering based on the current set of changes of
the views that V is defined on is optimal. In
this section, we show a similar result for VDAG
strategies. That is, for a VDAG, we show that a
“l-way VDAG strategy” consistent with a certain
ordering of all the VDAG views based on the
current set of changes is optimal among all VDAG
strategies. Based on this result, we present an
efficient algorithm to find optimal VDAG strategies.

389

Unlike in the case of view strategies, it is not
always possible to obtain a “l-way VDAG strategy”
consistent with a given view ordering. In such
cases, our algorithm finds a modified view ordering
for which an efficient “l-way VDAG strategy” that
is consistent wit.h the modified view ordering can
be obtained. In this section, we also identify
large classes of VDAGs for which optimal VDAG
strategies are guaranteed by our algorithm

5.1 Optimal1 VDAG Strategies
Intuitively, a VDAG strategy that uses good view
strategies for its derived views tends to incur less
amount of work than one that uses worse view
strategies. In the following theorem we capture the
relationship between optimal VDAG strategies and
the view strategies they use.

Theorem 5.1 Given a VDAG G, a VDAG strat-

egy for G that uses optimal view strategies for all

the views of G is optimal over all VDAG strategies

for G.

Observe that all VDAG strategies for G incur the
same amount of work for their Inst expressions. In
the proof (see [12]), we further argue that a VDAG
strategy that uses optimal view strategies minimizes
the work incurred by the Comp expressions.

From Section 4., we know that given a view I$ that
is defined over views Vi, the l-way view strategy 3
that is consistent with z that orders the views in
Vi in increasing IV’\ - jV(values is optimal. It can
be shown that z? is also consistent with the view
ordering 9 h d t at or ers all of the VDAG views in
increasing IV’\ - IV\ values. This view ordering is
called it desired view ordering.

We say a VDAG strategy is a l-way VDAG
strategy if it only uses l-way view strategies.
Furthermore, a VDAG strategy is consistent with
i?‘fX 1 1 1 on y uses view strategies that are consistent
with 9. Clearly, a l-way VDAG strategy that
is consistent with a desired view ordering uses
only optimal view strategies. It follows from
Theorem 5.1 that this VDAG strategy is optimal.

Theorem 5.2 For any VDAG G, a l-way VDAG
strategy for G that is consistent with a desired view

ordering is an optimal VDAG strategy for G.

We illustrate the interaction between Theorem 5.1
and Theorem 5.2 by the following example.

EXAMPLE 5.1 Consider the VDAG shown in
Figure 6. Let (IV,‘1 - IV41) < (IV,l(- I&l) <

(IQ’I - WI) < (IW - lW < (IV41 - IW based

on the current set of changes. That is, a desired
view ordering d is (V4, V2, VI, v3, Vs).

A l-way VDAG strategy consistent with the
desired view ordering is

(Comp(V4, {V2}), Inst(%),Comp(V4, {KS}),

Inst(V3), Comp(V,, {Vi)), rnst(V,),

Comp(K5, {VI}), Inst(ti), Imt(Ki) >.

The above VDAG strategy is optimal and uses the
following optimal view strategies for V4 and VS:

(Comp(v4, {1/2}), In4!2), Cow(V4, {K31Jr

Inst&), Instpq).

(Comp(V,, {1/4)), Inst(W, ComP(vS, {hl),
Inst(V1), Inst(vj)).

0

5.2 Expression Graphs
We have established that a l-way VDAG strategy
consistent with a desired view ordering is optimal.
Here, we describe our approach to constructing such
a VDAG strategy.

For a given VDAG G, all possible l-way VDAG
strategies for G have the same set of expressions,
called the l-way expressions of G. The set of
l-way expressions of a given VDAG G contains
Comp(&, {K}) whenever view I$ is defined over
view Vi in G. Also included is an Inst(&) ex-

pression for each view r/; in G. The various l-way
VDAG strategies for G differ in the sequencing of
the l-way expressions of G. The correctness con-
ditions (of Section 3) impose certain dependencies
among these l-way expressions (e.g., for any two
derived views I$ and vj, Comp(vj, {vi}) must fol-
low Comp(K, { . . .})) . Additional dependencies are
imposed when we attempt to find VDAG strategies
that are consistent with a particular view order-
ing (e.g., for a derived view V defined over views
K and 4, if r/; precedes Vj in the view ordering,
Comp(V, { IJ$}) must precede Comp(V, {Vi})). A l-
way VDAG strategy for G consistent with a given
view ordering is a permutation of the set of l-way
expressions of G that satisfies all dependencies.

We use the notion of an expression graph to
capture the set of l-way expressions of a VDAG
and their dependencies. Given a VDAG G and a
view orderin

3
t’, the expression graph of G with

respect to denoted EG(G, ?), has the l-way
expressions of’G as its nodes. The expression graph
has an edge from expression Ej to expression Ei if a.
dependency dictates that Ej must follow Ei. Once
we construct an expression graph for a VDAG with

390

Inst(V5)

“5

%

/‘\
“1 v2 v3

Figure 6: VDAG

\
Comp(V5, fV4)) - Inst(V4)Z Comp(V5, (Vl)) - Inst(V1)

IN-=--==-
Comp(V4, (V2)) -- Inst(V2)Z Comp(V4, (V3)) +-.- Inst(V3)

V-------

Figure 7: Expression Graph (EG)

respect to a desired view ordering, we can obtain
an optimal VDAG strategy by topologically sorting
the expression graph.
Theorem 5.3 Given a VDAG G, if EG(G, 9)

is acyclic where 3 is a desired view ordering,

a topological sort of EG(G, 3) yields an optimal

VDAG strategy for G. 0

We now illustrate the generation of an optimal
VDAG strategy, based on this theorem.
EXAMPLE 5.2 Consider the VDAG shown in
Figure 6. Let a desired view ordering 9 be
(V4, V2, VI, V3, b’s) based on the current set of
changes (as in Example 5.1).

Figure 7 shows the expression graph constructed
from the VDAG and the view ordering 3. Each
derived view has a set of Comp expressions, one
for each view it is defined over. Each view in the
VDAG has an Inst expression.

The edges of the expression graph indicate the de-
pendencies. For instance, the edge from Comp(Vs,-

{ Vd}) to Comp(V4, {Vz}) indicates that the former
should appear after the latter in any l-way VDAG
strategy for this VDAG due to C8.

Some edges of the expression graph are shown
with a label d to emphasize that the correspond-
ing dependencies are due to the view ordering with
which the l-way VDAG strategy should be consis-
tent. For instance, the edge from Comp(V4, { Vs})
to Comp(V4, { Vz}) indicates that 3 requires that
the changes of V, be propagated before the changes
of Vs (note that Vz < V3 in 3).

The expression graph of this example happens to
be acyclic. So, a topological sort of the graph is
possible, and yields a l-way VDAG strategy that is
consistent with the view ordering 3. For instance,
we can obtain the following VDAG strategy:

(ComP(V,, {V2)), ~~44>, ComdV,, {W),

Inst(h), Comp(V5, V4)), Inst(W,

Comp(V5, -VI)), Inst(Vl), Ins@%) >.

Note that this is the same optimal VDAG strategy
that we discussed in Example 5.1. 0

5.3 Classes of VDAGs with Optimal

VDAG Strategies
We have seen that whenever the constructed ex-
pression graph with respect to a desired view or-
dering is acyclic, we can obtain an optimal VDAG
strategy in a straightforward manner. The acyclic-
ity of the expression graph depends not only on
the VDAG but also on the desired view ordering
being considered. The view ordering in turn de-
pends on the current set of changes. In general, a
given VDAG may have an acyclic expression graph
with one desired view ordering (i.e., based on a set
of changes) and a cyclic expression graph with an-
other desired view ordering (i.e., based on another
set of changes). However, there are specific classes
of VDAGs which will always have acyclic expres-
sion graphs. For these classes of VDAGs, we can
always find optimal VDAG strategies in a straight-
forward manner no matter what changes are being
propagated. We identify two such classes of VDAGs
below.

Definition 5.1 (Tree VDAGs) A tree VDAG is
one in which no view is used in the definition of
more than one other view. 0

Lemma 5.1 FOT a tree VDAG, every view ordering

results in an acyclic expression graph. 0

Definition 5.2 (Uniform VDAGs) A uniform

VDAG is one in which every derived view at Level i

is defined over views all of which are at Level (i- 1).
0

Lemma 5.2 FOT a uniform VDAG, every view

ordering results in an acyclic expression graph. 0

Note that the classes of uniform VDAGs and tree
VDAGs are incomparable. The VDAG in Figure 6
is a tree VDAG but not a uniform VDAG. On
the other hand, the TPC-D VDAG (Figure 4) is
a uniform VDAG but not a tree VDAG.

5.4 Min Work Algorithm
Based on our observations above, we develop
an algorithm called Min Work to generate VDAG
strategies that minimize the total amount of work.

391

Algorithm 5.1 ModifyOrdering
Input: VDAG G, view ordering

Output: modified view ordering 3

1.3,()
2. For 1 = 0 to MaxLevel(G

3. ti: t subsequence of 4 composed of all
and only views with a Level value of 1

4. Append $ to 3

5. IReturn 3 0

Algorithm 5.2 Min Work
Input: VDAG G with nodes V and edges A
Output: l-way VDAG strategy 2

1. &-()
2. For each vi E V estimate IV;‘1 - IV;1

based on the current set of changes
3. 3 t V ordlered by increasing 1 K’I - I K I
4. EG t Con.structEG(G,?)
5. If EG is acyclic then

6. ?f t topological sort of EG
7. Else

8. 3 c ModifyOrdering

9. EG’ t C’onstructEG(G, 3)
10. ? t to,pological sort of EG’

11. Return ?! 0

Figure 8: Min Work Algorithm

In particular, Min Work relies on the approach
of expression gr.aph construction in order to find
good VDAG strategies. The algorithm is formally
presented in Algorithm 5.2 of Figure 8.

Min Work first computes a desired view ordering

based on the current set of changes. Then it con-
structs the expression graph of the VDAG with re-
spect to this desired view ordering. The routine
ConstructEG for constructing the expression graph
is not shown here due to space constraints (see [12]).
ConstructEG includes one node for each l-way ex-
pression of G. It then connects the nodes based on
dependencies imposed by the correctness conditions
and by the given view ordering. If the constructed
expression graph is acyclic, Min Work obtains the
optimal VDAG strategy by a topological sort of the
expression graph. Otherwise, it computes a mod-
ified view ordering (using ModifyOrdering shown
in Algorit)hm 5.1) which is guaranteed to yield an
acyclic expression graph of the VDAG . Then, it
generates a VDAG strategy for the input VDAG
that is consistent with this modified view ordering.

It is clear tha.t given a VDAG that results in
an acyclic expression graph, Min Work produces an

optimal VDAG strategy. This leads to the following
result that follows from Theorem 5.3, Lemma 5.1
and Lemma 5.2.

Theorem 5.4 Given a VDAG G, and a desired

view ordering 7, Min Work produces optimal VDAG

strategies if EG(G, d) is acyclic. In particular,
Min Work always produces optimal VDAG strategies
for tree VDAGs and uniform VDAGs. Cl

When the given VDAG results in a cyclic expres-
sion graph with respect to the desired view ordering,
Min Work produces a l-way VDAG strategy that is

consistent with a view ordering 3 that is produced
by ModifyOrdering based on the desired view order-

ing. ModifyOrdering produces 3 by first ordering
the views based on their Level values (i.e., lower
level views first). ModifyOrdering then orders the
views with the same Level value based on the de-
sired view ordering. The following theorem ensures
that Min Work will always be able to generate a l-
way VDAG strategy no matter how complex the
input VDAG is.

Theorem 5.5 Given a VDAG G and a view or-

dering 9, we can come up with a view orderin 3

= ModifyOrdering(G, d) such that EG(G, V) is 3

acyclic. That is, Min Work will always succeed in

producing a VDAG strategy. cl

The use of a modified view ordering when a
desired view ordering yields cyclic expression graphs
may lead Min Work to produce sub-optimal VDAG
strategies. However, the modified view ordering

reflects as much of the desired view ordering as
possible. This results in Min Work producing
efficient plans, when it misses optimal plans.

In [12], we show that Min Work has a worst
case time complexity of O(n3) where n is the
number of views in the VDAG. We also discuss
how Min Work can be implemented very easily using
stored procedures.

Finally, we also develop in [12] a different search
algorithm that finds the optimal l-way VDAG
strategy for any VDAG. As expected, the algorithm
is less efficient than Min Work and has a worst case
time complexity of O(n! . n3).

6 Experiments
We have developed algorithms that minimize the
work incurred in view or VDAG strategies. How-
ever, minimizing the work incurred may not trans-
late to the minimization of the update window.

392

In order to understand how well the strategies
generated by our algorithms perform in practice, we
conducted a series of experiments. In particular,
we tested various strategies using Microsoft SQL
Server 6.5 running on a workstation with a Pentium
II 300 MHz processor and 64 MB of RAM. In our
experiments, we measured the actual time it took
to execute the strategies. The results show that the
strategies generated by our algorithms do indeed
yield short update windows.

In all of the experiments, we used the TPC-D
warehouse shown in Figure 4. The base views CUS-
TOMER (denoted C for conciseness), ORDER (0))
LINEITEM (L), SUPPLIER (S), NATION (N)
and REGION (R) are copies of TPC-D relations
populated with synthetic data obtained from [5].
The derived views Q3, 95 and QlO were defined
using the TPC-D “Shipping Priority” query, “Lo-
cal Supplier” query, and “Returned Item Report-
ing” query respectively.

Unless otherwise specified, the remote informa-
tion sources were changed so that base views C, 0,
L, S, and N decreased in size by 10%. Base view
R, the smallest of the six, was left unchanged. Ac-
cording to the sizes of the base views, the desired
view ordering is (L, 0, C, S, N, R).

146.25 sed

View Strategies

Figure 9: Q3 View Strategies

Experiment 1: In the first experiment, we
examined the various view strategies for Q3. Since
Q3 is only defined over 3 views, there were only 13
view strategies to compare, one from each partition.
Figure 9 shows the result of the experiment. Each
bar depicts a view strategy, and the height of the
bar gives the amount of time it took to perform the
view strategy. The graph shows numerous results.

First, the graph shows that l-way view strategies
update 93 in the least amount of time.

Second, the graph shows that the Min WorkSingle
view strategy, which propagates the changes of L,

then of 0, and then of C, does not update Q3
in the least amount of time. The view strategy
that performs the best in this case propagates the
changes of L, then of C and then of 0. The
update window of the Min WorkSingle view strategy
is however very close to the optimal. Recall that
we proved that Min WorkSingle produces an optimal
view strategy under the linear work metric. In the
experiment, we used a real system whose behavior
naturally deviates from the strictly linear work
metric. Thus, Min WorkSingle ends up with a
strategy that is slightly away from the optimum.

Finally, the graph shows that various view strate-
gies have significantly different update windows.

Experiment 2: In the next experiment, we
focused on the derived view Q5 which is defined
over the 6 base views. Since Q5 is much more
complex than Q3, it was too time consuming to
examine all of the view strategies of Q5. Instead,
we examined only the Min WorkSingle view strategy
and the dual-stage view strategy. Recall that the
dual-stage view strategy is the one with a compute
stage and an install stage, as proposed in [3]. The
results show that the update window of the dual-
stage view strategy is over 6 times longer than that
of the Min WorkSingle view strategy.

Experiment 3: In this experiment, we again focus
on Q3. Each of C, 0, and L is decreased in size by
a percentage p of its initial size, for various values
of p (from 1% to 10%). When comparing view
strategies, we only considered the Min WorkSingle
view strategy, the best 2-way view strategy in
Figure 9, and the dual-stage view strategy. For
all values of p, the Min WorkSingle view strategy
performed better than both the 2-way view strategy
and the dual-stage view strategy.

Experiment 4: So far, we have considered up-
dating a single view. In this experiment, we study
the quality of Min Work VDAG strategies. Note
that, since the TPC-D VDAG is uniform, Min-
Work is guaranteed to pick an optimal VDAG strat-
egy under the linear work metric. We check how
good the Min Work VDAG strategy is by com-
paring it with two others: a “dual-stage” VDAG
strategy that only uses dual-stage view strategies,
and a l-way VDAG strategy that propagates the
changes in an order opposite that of the Min Work
VDAG strategy. Min Work uses the view ordering
(L, 0, C, S, N, R), and so the third VDAG strategy
in our experiment uses the order (R, N, S, C, 0, L).
We call this strategy RNSCOL. As expected, the

393

Min Work strategy performed the best. In particu-

lar, it is 5.6 times better than the dual-stage VDAG

strategy, and is 1.11 times better than the RNSCOL

VDAG strategy.

More details about the experiments and an

extended discussion of the results appear in [12].

7 Related Work
There has been a significant amount of work in

minimizing warehouse maintenance time. The

techniques proposed solve various sub-problems.

One of the sub-problems is the efficient main-

tenance of base views ([11],[7],[1]). In this paper,
we concentrate on derived view maintenance. Un-
like base view maintenance, derived view mainte-

nance competes with OLAP queries for resources,

and thus is one of the main problems that today’s
warehouses face.

Another important sub-problem is choosing the
views to materialize in the warehouse so that

some measure like query time, is minimized while

satisfying a given storage or maintenance time
constraint ([9],[:10],[2],[16]). The warehouse design

algorithms are complementary to the algorithms we

present. That is,, most of the design algorithms do

not specify how views are actually updated. Our

Min Work algorithm can be used for this purpose.

Another sub-problem that needs to be answered

is deciding when1 to update the warehouse [4]. The

algorithms we present are used when changes are

actually propagated. Hence, the algorithms we

present are com:plementary.

The only work that we know of that is concerned
with the actual algorithm for propagating changes

is [13]. More spe:cifically, [13] proposed to represent
the changes of summary tables as a summary delta.
Since a summary delta can be incorporated into a

summary table very efficiently, the main problem is
computing the summary delta. The algorithms we
present here can be used to compute the summary

deltas more efficiently

Finally, the only work that we know of that

handles a hierarchy of views instead of a single view
is [15]. In [15], they focus more on the problem of
maintaining views in a distributed warehouse (i.e.,

a set of data marts) consistently.

8 CJonclusion
We have solved the “total-work minimization”

(TWM) problern that warehouse administrators
face today. To solve TWM, we presented Min-

WorkSingle that identifies optimal view strategies

for updating single views. We then presented Min-

Work, an efficient heuristic algorithm that finds an

optimal solution for a large class of VDAGs. Min-

Work significantly extends the l-way view strategy

([8]) to the more practical setting of a VDAG of

views. Experiments on a TPC-D VDAG showed

that the strategies produced by MinWorkSinyle
and Min Work are very efficient under commercial

RDBMS work metrics, and shrink the update win-

dow significantly.

References
[II

PI

[31

[41

I51

[cl

PI

[Sl

PI

IlO1

[llI

I121

t131

Ll41

[I51

1161

1171

D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek.
Efficient view maintenance in data warehouses. In
SIGMOD, pages 417-425,1997.

E. Baralis, S. Paraboschi, and E. Teniente. Materialized
view selection in a multi-dimensional datacube. In
VLDB, pages 156-165, 1997.

L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and
H. Trickey. Algorithms for deferred view maintenance.
In SIGMOD, 1996.

L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S. Mumick,
and K. A. Ross. Supporting multiple-view maintenance
policies. In SIGMOD, pages 405-416, 1997.

T. Committee. Transaction Processing Council. Avail-
able at: http://www.tpc.org/.

T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. In SIGMOD, pages 328-339,
1995.

A. Gupta, H. Jagadish, and I. S. Mumick. Data
integration using self-maintainable views. In EDBT,
1996.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In SIGMOD, pages
157-166, 1993.

H. Gupta. Selection of views to materialize in a data
warehouse. In ICDT, 1997.

V. Harinarayan, A. Rajaraman, and J. Ullman. Im-
plementing data cubes efficiently. In SIGMOD, pages
205-216, 1996.

P. Huyn. Multiple-view self-maintenance in data
warehousing environment. In VLDB, pages 26-35, 1997.

W. J. Labio, R. Yerneni, and H. Garcia-Molina.
Shrinking the warehouse update window. Technical
report, Stanford University, 1999. Available at http:-
//www-db.stanford.edu/pub/papers/setvm.ps.

I. S. Mumick, D. Quass, and B. S. Mumick. Mainte-
nance of data cubes and summary tables in a warehouse.
In SIGMOD, pages lOO-111,1997.

D. Quass. Maintenance expressions for views with
aggregation. In In Workshop on Materialized Views:
Techniques and Applications, June 1996.

I. Stanoi, D. Agrawal, and A. E. Abbadi. Decentral-
ized incremental maintenance of multi-view data ware-
houses. Technical report, UC Santa Barbara, 1999.
http://www.cs.ucsb.edu/ ioana/TRCS99-04.ps.

3. Yang, K. Karlapalem, and Q. Li. Algorithms
for materialized view design in a data warehousing
environment. In VLDB, pages 136-145,1997.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom.
View maintenance in a warehousing environment. In
SIGMOD, pages 316-327,1995.

394

