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Abstract 
Pre-computation and materialization of views with aggregate 
functions is a common technique in Data Warehouses. Due to the 
complex structure of the warehouse and the different profiles of the 
users who submit queries, there is need for tools that will automate 
the selection and management of the materialized data. In this 
paper we present DynaMat, a system that dynamically materializes 

. information at multiple levels of granularity in order to match the 
demand (workload) but also takes into account the maintenance 
restrictions for the warehouse, such as down time to update the 
views and space availability. DynaMat unifies the view selection 
and the view maintenance problems under a single framework using 
a novel “goodness” measure for the materialized views. DynaMat 
constantly monitors incoming queries and materializes the best set 
of views subject to the space constraints. During updates, DynaMat 
reconciles the current materialized view selection and refreshes the 
most beneficial subset of it within a given maintenance window. 
We compare DynaMat against a system that is given all queries 
in advance and the pre-computed optimal static view selection. 
The comparison is made based on a new metric, the Detailed 
Cost Savings Ratio introduced for quantifying the benefits of view 
materialization against incoming queries. These experiments show 
that DynaMat’s dynamic view selection outperforms the optimal 
static view selection and thus, any sub-optimal static algorithm that 
has appeared in the literature. 

1 Introduction 
Materialized views represent a set of redundant entities 
in a data warehouse that are used to accelerate On-Line 
Analytical Processing (OLAP). A substantial effort of the 
academic community in the last years [HRU96, GHRU97, 
Gup97, BPT97, SDN98] has been for a given workload, 
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to select an appropriate set of views that would provide 
the best performance benefits. The amount of redundancy 
added is controlled by the data warehouse administrator 
who specifies the space that is willing to allocate for the 
materialized data. Given this space restriction and, if 
available, some description of the workload, these algorithms 
return a suggested set of views that can be materialized for 
better performance. 

This static selection of views however, contradicts the 
dynamic nature of decision support analysis. Especially 
for add-hoc queries where the expert user is looking for 
interesting trends in the data repository, the query pattern 
is difficult to predict. In addition, as the data and these 
trends are changing overtime, a static selection of views 
might very quickly become outdated. This means that 
the administrator should monitor the query pattern and 
periodically “re-calibrate” the materialized views by re- 
running these algorithms. This task for a large warehouse 
where many users with different profiles submit their queries 
is rather complicated and time consuming. Microsoft’s [Aut] 
is a step towards automated management of system resources 
and shows that vendors have realized the need to simplify 
the life of the data warehouse administrator. 

Another inherit drawback of the static view selection 
is that the system has no way of tuning a wrong 
selection, i.e use results of queries that couldn’t be 
answered by the materialized set. Notice that although 
OLAP queries take an enormous amount of disk I/O and 
CPU processing time to be completed, their output is, 
in many cases, relatively small. “Find the total 
volume of sales for the last 10 years" is 
a fine example of that. Processing this query might take 
hours of scanning vast tables and aggregating, while the 
result is just an g-byte float value that can be easily “cached” 
for future use. Moreover, during roll-up operations, when 
we access data at a progressively coarser granularity, future 
queries are likely to be totally computable out of the results 
of previous operations, without accessing the base tables at 
all. Thus, we expect a great amount of inter-dependency 
among a set of OLAP queries. 

Furthermore, selecting a view set to materialize is just 
the tip of the iceberg. Clearly, query performance is 
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tremendously improved as more views are materialized. 
With the ratio $$/dislc-volume constantly dropping, disk 
storage constraint is no longer the limiting factor in the 
view selection but the window to refresh the materialized 
set during updates. More materialization implies a larger 
maintenance window. This update window is the major data 
warehouse parameter., constraining over-materialization. 
Some view selection allgorithms [Gup97, BPT97] take into 
account the maintenance cost of the views and try to minimize 
both query-response time and the maintenance overhead 
under a given space restriction. In [TS97] the authors 
define the Data Warehouse configuration problem as a state- 
space optimization problem where the maintenance cost of 
the views needs to be minimized, while all the queries can 
be answered by the selected views. The trade-off between 
space of pre-computed1 results and maintenance time is also 
discussed in [DDJ+98]. However, none of these publications 
considers the dynamic nature of the view selection problem, 
nor they propose a solution that can adapt on the fly to 
changes in the workload. 

Our philosophy starts with the premise that a result is a 
terrible thing to waste and that its generation cost should be 
amortized over multiple uses of the result. This philosophy 
goes back to our earlier work on caching of query results on 
the client’s database ADMS+ architecture [RK86, DR92], 
the work on prolonging their useful life through incremental 
updates [Rou91] and their re-use in the ADMS optimizer 
[CR94]. This philosophy is a major departure from the static 
paradigm of pre-selecting a set of views to be materialized 
and run all queries aga.inst this static set. 

In this paper we present DynaMat, a system that 
dynamically materializes information at multiple levels of 
granularity in order to match the demand (workload) but 
also takes into account the maintenance restrictions for the 
warehouse, such as down time to update the views and 
space availability. DynaMat unifies the view selection and 
the view maintenance problems under a single framework 
using a novel “goodness” measure for the materialized 
views. DynaMat colnstantly monitors incoming queries 
and materializes the best set of views subject to the space 
constraints. During updates, DynaMat reconciles the current 
materialized view selection and refreshes the most beneficial 
subset of it within a given maintenance window. The critical 
performance issue is how fast we can incorporate the updates 
to the warehouse. Clearly if naive re-computation is assumed 
for refreshing materialized views, then the number of views 
will be minimum and lthis will lessen the value of DynaMat. 
On the other hand, efficient computation of these views 
using techniques like [AAD+96, HRU96, ZDN97, GMS93, 
GL95, JMS95, MQM97] and/or bulk incremental updates 
[RKR97] tremendously enhances the overall performance of 
the system. In DynaMat any of these techniques can be 
applied. In section 2.4.2 we propose a novel algorithm that 
based on the goodness measure, computes an update plan for 
the data stored in the system. 

The main benefit of DynaMat, is that it represents a 
complete self-tunable solution that relieves the warehouse 
administrator from having to monitor and calibrate the 
system constantly. In our experiments, we compare 
DynaMat against a system that is given all queries in 
advance and the pre-computed optimal static view selection. 
These experiments show that the dynamic view selection 
outperforms the optimal static view selection and thus, 
any sub-optimal static algorithm proposed in the literature 
[HRU96, GHRU97, Gup97, BPT97]. 

The rest of the paper is organized as follows: Section 2 
gives an overview of the system’s architecture. Subsec- 
tions 2.2 and 2.3 discuss how stored results are being reused 
for answering a new query, whereas in section 2.4 we ad- 
dress the maintenance problem for the stored data. Section 3 
contains the experiments and in section 4 we draw the con- 
clusions. 

2 System overview 

DynaMat is designed to operate as a complete view 
management system, tightly coupled with the rest of the 
data warehouse architecture. This means that DynaMat 
can co-exist and co-operate with caching architectures that 
operate at the client site like [DFJ+96, KB96]. Figure 1 
depicts the architecture of the system. View Pool Y is the 
information repository that is used for storing materialized 
results. We distinguish two operational phases of the system. 
The first one is the “on-line” during which DynaMat answers 
queries posed to the warehouse using the Fragment Locator 
to determine whether or not already materialized results can 
be efficiently used to answer the query. This decision is 
based upon a cost model that compares the cost of answering 
a query through the repository with the cost of running the 
same query against the warehouse. A Directory Index is 
maintained in order to support sub-linear search in Y for 
finding candidate materialized results. This structure will 
be described in detail in the following sections. If the 
search fails to reveal an efficient way to use data stored 
in Y for answering the query then the system follows the 
conventional approach where the warehouse infrastructure 
(fact table+indices) is queried. Either-way, after the result is 
computed and given to the user, it is tested by the Admission 
Control Entity which decides whether or not it is beneficial 
to store it in the Pool. 

During the on-line phase, the goal of the system is to 
answer as many queries as possible from the pool, because 
most of them will be answered a lot faster from V than from 
the conventional methods. At the same time DynaMat will 
quickly adapt to new query patterns and efficiently utilize the 
system resources. 

The second phase of DynaMat is the update phase, during 
which updates received from the data sources get stored 
in the warehouse and materialized results in the Pool get 
refreshed. In this paper we assume, but we are not restri’cted 
to, that the update phase is “off-line” and queries are not 

372 



Figure 1: DynaMat’s architecture 

permitted during this phase. The maximum length of the 
update window W is specified by the administrator and 
would probably lead us to evict some of the data stored 
in the pool as not update-able within this time constraint. 

2.1 View Pool organization 

The View Pool utilizes a dedicated disk storage for managing 
materialized data. An important design parameter is the type 
of secondary storage organization that will be used. DynaMat 
can support any underling storage structure, as long as we can 
provide a cost model for querying and updating the views. 

Traditionally summary data are stored as relational tables 
in most ROLAP implementations, e.g [BDD+98]. However, 
tables alone are not enough to guarantee reasonable query 
performance. Scanning a large summary table to locate 
an interesting subset of tuples can be wasteful and in 
some cases slower than running the query against the 
warehouse itself, if there are no additional indices to support 
random access to the data. Moreover, relational tables 
and traditional indexing schemes, are in most cases space 
wasteful and inadequate for efficiently supporting bulk 
incremental update operations. More eligible candidate 
structures include multidimensional arrays like chunked files 
[SS94, DRSN98] and also Cubetrees [RKR97]. Cubetrees 
are multidimensional data structures that provide both 
storage and indexing in a single organization. In [RR981 we 
have shown that Cubetrees, when used for storing summary 
data, provide extremely fast update rates, better overall query 
performance and better disk space utilization compared to 
relational tables and conventional indexes. 

During the “on-line” phase of the warehouse, results from 
incoming queries are being added in the Pool. If the pool had 
unlimited disk space, the size of the materialized data would 
grow monotonically overtime. During an update phase ui, 
some of the materialized results may not be update-able 
within the time constraint of W and thus, will be evicted 
from the pool. This is the update time bound case shown 
in Figure 2 with the size of the pool increasing between the 
two update phases ut and ~2. The two local minimums 
correspond to the amount of materialized data that can be 
updated within W and the local maximums to the pool size 
at the time of the updates. 

Figure 2: The time bound case 

9 "2 

time 

Figure 3: The space bound case 

The space bound case is when the size of the pool is the 
constraining factor and not W. In this case, when the pool 
becomes full, we have to use some replacement policy. This 
can vary from simply not admitting more materialized results 
to the pool, to known techniques like LRU, FIFO etc, or to 
using heuristics for deciding whether or not a new result is 
more beneficial for the system than an older one. Figure 3 
shows the variations in the pool size in this case. Since we 
assumed a sufficiently large update window W, the stored 
results are always update-able and the actual content of the 
pool is now controlled by the replacement policy. 

Depending on the workload, the disk space and the update 
window, the system will in some cases act as in time bound 
and in others as in space bound, or both. In such cases views 
are evicted from the pool, either because there is no more 
space or they can not be updated within the update window. 

2.2 Using MRFs as the basic logical unit of the pool 

A multidimensional data warehouse (MDW) is a data 
repository in which data is organized along a set of 
dimensions D = {dt , d2, . . . , d,}. A possible way to 
design a MDW is the star-schema [Kim961 which, for each 
dimension it stores a dimension table Dd that has di as its 
primary key and also uses a fact table F that correlates 
the information stored in these tables through the keys 
dl,... , d,,. The Data Cube operator [GBLP96] performs 
the computation of one or more aggregate functions for 
all possible combinations of grouping attributes (which are 
actually attributes selected from the dimension tables Di). 
The lattice [HRU96] representation of the Data Cube in 
Figure 4 shows an example for three dimensions, namely 
a, b and c. Each node in the lattice represents a view that 
aggregates data over the attributes present in that node. For 
example (ab) in an aggregate view over the a and b grouping 
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attributes.’ 

Figure 4: The Data Cube lattice for dimensions a, b and c 

150 product loo0 

Figure 5: Querying stored MRFs 

The lattice is frequently used by view selection algorithms 
[HRU96, GHRU97, SDN98] because it captures the compu- 
tational dependencies among the elements of the Data Cube. 
Such dependencies are shown in Figure 4 as directed edges 
that connect two views, if the pointed view computes the 
other one. In Figure 4 we show only dependencies between 
adjacent views and not those in the transitive closure of this 
lattice. For example, view (u) can be computed from view 
(ab), while view (abc) can be used to derive any other view. 

In this context, we assume that the warehouse workload is a 
collection of Multidimensional Range queries (MR-queries) 
each of which can be visualized as a hyper-plane in the Data 
Cube space using a n-dimensional “vector” 9’: 

f= {RI,&...,&,) (1) 

where & is a range in the dimension’s di domain. We restrict 
each range to be one of the followings: 

a full range: Ri =: (mind,, mazdi), where mind, and 
mUz& are the minimum and maximum values for key 
dj. 

a single value for da 

an empty range which denotes a dimension that is not 
present in the query. 

- 
‘For simplicity in the notation, in this paper we do not consider the case 

where the grouping is done over attributes other than the dimension keys di. 
However our framework is still applicable in the presence of more grouping 
attributes and hierarchies, u.sing the extensions of [HRU96] for the lattice. 

For instance, suppose that D = {product, store} is the set of 
dimensions in the MDW, with values 1 2 product _< 1000 
and 1 5 store 5 200 respectively. The hyper-plane 
f= {50,(1,200)} corresponds to the SQL query: 

select product, store, aggregate-list 
from F 
where product=50 
group by product, store 

where aggregate&t is a list of aggregate functions (e.g 
sumcount). If the grouping was done on attributes different 
than the dimension keys then the actual SQL description 
would include joins between some dimension tables and 
the fact table. This type of queries are called slice queries 
[GHRU97, BPT97, KR98]. We prefer the MR notation over 
the SQL description because it describes the workload in the 
Data Cube space independent of the actual schema of the 
MDW. 

The same notation permits us to represent the materialized 
results of MR queries which we call Multidimensional Range 
Fragments (MRFs). DynaMat maps each SQL query to 
one, or more, MR queries. Given such a MR-query and 
a cost model for accessing the stored MRFs, we want. to 
find the “best” subset of them in V to answer q. Based 
on the definition of MRFs, we argue that is doesn’t pay to 
check for combinations of materialized results for answering 
q. With extremely high probability, q is best computable 
out of a single fragment f or not computable at all. We 
will try to demonstrate this with the following example: 
Suppose that the previous query <= (50, (1,200)) is given. 
If no single MRF in the pool computes q. then a stored 
MRF that partially computes q is of the form (50, s-id} 
or {(l,lOOO),s-id}, where s-id is some store value, see 
Figure 5. In order to answer q there should be at least one 
such fragment for all values of s-id between 1 and 2100. 
Even if such a combination exists, it is highly unlikely Ithat 
querying 200 different fragments to get the complete result 
provides a cost-effective way to answer the query. 

MRFs provide a slightly coarser grain of materialization 
if we compare them with a system that materializes views 
with arbitrary ranges for the attributes. However, if we allow 
fragments with arbitrary ranges to be stored in the pool, then 
the probability that a single stored fragment can solely be 
used to answer a new query is rather low, especially if most 
of the materialized results are small, i.e they correspond to 
small areas in the n-dimensional space. This means that 
we will need to use combinations of stored fragments and 
perform costly duplicate eliminations to compute an answer 
for a given query. In the general case that k fragmlents 
compute some portion of the query there might be up to 2’ 
combinations that need to be checked for finding the most 
efficient way to answer the query. Having too many small 
fragments with possible overlapping sections which require 
additional filtering in the pool, results in poor performance 
not only during query execution but also during updates. In 
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most cases, updating fewer, larger fragments of views (as 
in a MRF-pool) is preferable. We denote the number of 
fragments in the pool as IV]. In section 2.4.2 we show that 
the overhead of computing an update plan for the stored data 
grows linearly with ]Vj2, making the MRF approach more 
scalable. 

2.3 Answering queries using the Directory Index 

As we described, when a MR-query q is posted to the data 
warehouse, we scan V for candidate fragments that answer 
q. Given a MRF f and a query q, f answers q iff for 
every non-empty range Ri of the query, the fragment stores 
exactly the same range and for every empty range Ri = () 
the fragment’s corresponding range is either empty or spans 
the whole domain of dimension i2. We say in this case that 
hyper-plane f’covers $ 

Instead of testing all stored fragments against the query, 
DynaMat uses a directory, the Directory Index (see Figure l), 
to further prune the search space. This is actually a set of 
indices connected through the lattice shown in Figure 4. Each 
node has a dedicated index that is used to keep track of all 
fragments of the corresponding view that are stored in the 
pool. For each fragment f there is exactly one entry that 
contains the following info: 

l Hyper-plane fof the fragment 

l Statistics (e.g number of accesses, time of creation, last 
access) 

l Thefather off (explained below). 

For our implementation we used R-trees based on the 1 
hyper-planes to implement these indices. When a query q ar- 
rives, we scan using q’all views in the lattice, th_at might con- 
tain materialized results f whose hyper-planes f cover f. For 
example if 9’ = { (1, lOOO), 0, Smith} is the query hyper- 
plane for dimensions product, store and customer, then 
we first scan the R-tree index for view (product, customer) 
using rectangle ((1, lOOO>, (Smith, Smith)}. Figure 6 
depicts a snapshot of the corresponding R-tree for view 
(product, customer) and the search rectangle. The shaded 
areas denote MRFs of that view that are materialized in 
the pool. Since no fragment is found, based on the 
dependencies defined in the lattice, we also check view 
(product, store, customer) for candidate fragments. For 
this view, we “expand’ the undefined in q store dimen- 
sion and search the corresponding R-tree using rectangle 
~(l,lOOO), ( . mz7zstore, mux:s~ore), (Smith, Smith)}. If a 
fragment is found, we “collapse” the store column and ag- 
gregate the measure(s) to compute the answer for q. 

Based on the content of the pool V, there are three 
possibilities. The first is that a stored fragment f matches 
exactly the definition of the query. In this case, f is retrieved 

*In the latter case we have to perform an additional aggregation to 
compute the result, as will be explained. 

Ll LJW 

1 1ooo 
product 

Figure 6: Directory for view (product, customer) 

and returned to the user. If no exact match exists, assuming 
we are given a cost model for querying the fragments, we 
select the best candidate from the pool, to compute q. If view 
f is the materialized result of q, the fragment that was used 
to compute f is called thefurher of f and is denoted as f. If 
however no fragment in V can answer q, the query is handled 
by the warehouse. In both cases the result is passed to the 
Admission Control Entity that checks if it can be stored in 
the pool. 

As the number of MRFs stored in the pool is typically in 
the order of thousands, we can safely assume that in most 
cases the Directory Index will be memory resident. Our 
experiments validate this assumption and indicate that the 
look-up cost in this case is negligible. In cases where the 
index can not fit in memory, we can take advantage of the 
fact that the pool is reorganized with every update phase and 
use a packing algorithm [RL85] to keep the R-trees compact 
and optimized at all times. 

2.4 Pool maintenance 

For maintaining the MRF-pool, we need to derive a goodness 
measure for choosing which of the stored fragments we 
prefer. This measure is used in both the on-line and the 
update phases. Each time DynaMat reaches the space or time 
bounds we use the goodness for replacing MRFs. There can 
be many criteria to define such a goodness. Among those we 
tested, the following four showed the best results: 

l The time that the fragment was last accessed by the 
system to handle a query: 

goodness(f) = bstdceess(f) 

This information is kept in the Directory Index. Using 
this time-stamp as a goodness measure, results in an Least 
Recently Used (LRU) type of replacement in both cases. 

l The frequency of access freq(f) for the fragment: 

goodness(f) = freq(f) 

The frequency is computed using the statistics kept in the 
Directory Index and results in a Least Frequently used 
(LFU) replacement policy. 
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l The size size(f) of the result, measured in disk pages: 

goodness(f) = size(f) 

The intuition behind this approach is that larger fragments 
are more likely to be hit by a query. An additional 
benefit of keeping larger.results in the pool is that IV 1 gets 
smaller, resulting in faster look-ups using the Fragment 
Locator and less complexity while updating the pool. We 
refer to this case as the Smaller-Fragment-First (SFF) 
replacement policy. 

l The expected penalty rate of recomputing the fragment, 
if it is evicted, normalized by its actual size: 

goodness(f) = fre,4T~c~;‘f’ 

c(f) is the cost of rle-computing f for a future query. We 
used as an estimate of c(f) the cost of re-computing the 
fragment from its father, which is computable in constant 
time. This metric is similar to the one used in [SSV96] 
for their cache replacement and admission policy. We 
refer to this case as the Smaller Penalty First (SPF). 

In the remaining of this section we describe how the 
goodness measure is used to control the content of the pool. 

2.4.1 Pool maintenance during queries 

As long as there is enough space in the pool, results from 
incoming queries are always stored in V. In cases where we 
hit the space constraint, we have to enforce a replacement 
policy. This decision is made by our replace algorithm 
using the goodness me:asure of the fragments. The algorithm 
takes as input the current state of the pool Y, the new 
computed result f and the space restriction S. A stored 
fragment is considered for eviction only if its goodness is less 
than that of the new result. At a first step a set Fevi,wled of such 
fragments with the smaller goodness values is constructed. 
If during this process ‘we can not find candidate victims the 
search is aborted and the new result is denied storage in 
the pool. When a fragment fvietim is evicted the algorithm 
updates the father pointer for all other fragments that point 
to fvietim * In section 2.4.2 we discuss the maintenance of 
the father pointers. 

2.4.2 Pool maintenance during updates 

When the base relations (sources) are updated, the data 
stored in the MDW, and therefore the fragments in the 
pool, have to be updlated too. Different update policies 
can be implemented, depending on the types of updates, the 
properties of the data sources and the aggregate functions 
that are being computed by the views. Several methods have 
been proposed [AAD+96, HRU96, ZDN97] for fast (re)- 
computation of Data Cube aggregates. On the other hand, 
incremental maintenance algorithms have been presented 

[GMS93, GL95, JMS9.5, MQM97, RKR97] that handle 
grouping and aggregation queries. 

For our framework, we assume that the sources provide 
the differentials of the base data, or at least the log files are 
available. If this is the case, then an incremental update 
policy can be used to refresh the pool. In this scenario we 
also assume that all interesting aggregate functions that are 
computed are self-maintainable [MQM97] with respect to 
the updates that we have. This means that a new value for 
each function can be computed solely from the old value a.nd 
from the changes to the base data. 

Computing an initial update plan 

Given a pool with IV1 being in the order of thousands, our 
goal is to derive an update plan that allows us to refresh as 
many fragments as possible within a given update window 
W. Computing the deltas for each materialized result is 
unrealistic, especially if the deltas are not indexed somehow. 
In our initial experiments we found out that the time spent 
on querying the sources to get the correct deltas for each 
fragment is the dominant factor. For that reason our pool 
maintenance algorithm extracts, in a preprocessing step, all 
the necessary deltas and stores them in a separate view 
dV materialized as a Cubetree. This provides a efficient 
indexing structure for the deltas against multidimensional 
range queries. The overhead of loading a Cubetree with the 
deltas is practically negligible3 compared to the benefit of 
having the deltas fully indexed. Assume that IO?.“& and h!i& 
are the minimum and maximum values for dimension di t.hat 
are stored in all fragments in the pool. These statistics are 
easy to maintain in the Directory Index. View dV includes 
all deltas within the hyper-plane: 

d’; = {(lowdl, hidI), . . . , (low&, hid,)} 

For each fragment f in V we consider two alternative ways 
of doing the updates: 

We can query dV to get the updates that are necessary for 
refreshing f and then update the fragment incrementaJly. 
We denote the cost of this operation as Uc~(f). It 
consists of the cost of running the MR-quexy {against dV 
to get the deltas and the cost of updating f incrementally 
from the result. 

If the fragment was originally computed out of another 
result f we estimate the cost of recomputing f from its 
father f’, after f’has been updated. The cost of computing 
f from its father is denoted as lJCB(f) and includes the 
cost of running MR-query jagainst the fragment f, plus 
the cost of materializing the result. 

The system computes the costs for the two4 alternatives 
and picks the minimum one, denoted as VC(f) for e.ach 

3Cubetree’s loading rate is about 12GB/hour in a Ultra 60 with a single 
SCSI drive. 

4A third alternative, is to recompute each fragment from the sources. 
This case is not considered here, because the incremental approach is 
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fragment. Obviously, this plan is not always the best one. 
There is always the possibility that another result fr has 
been added in the pool after f was materialized. Since 
the selection of the father of f was done before fl was 
around, as explained in section 2.3, the above plan does 
not consider recomputing f from fi. An eager maintenance 
policy of the father pointers would be to refine them whenever 
necessary, e.g set father(f) = f, , if it is more cost effective 
to compute f from fr than from its current father f. We have 
decided to be sloppy and not refine the father pointers based 
on experiments that showed negligible differences between 
the lazy and the eager policy. The noticeable benefit is 
that the lazy approach reduces the worst case complexity of 
the replace and the makeFeasible algorithm that is 
discussed in the next section from O(]V13) down-to 0( ]Vl*), 
thus making the system able to scale for large number of 
fragments. By the end of this phase, the system has computed 
the initial update plan, which directs the most cost-effective 
way to update each one of the fragments using one of the two 
alternatives, i.e incrementally from dV or by re-computation 
from another fragment. 

Computing a feasible update plan for a given window 

The total updatecostof the pool is UC(V) = CfEv UC(f). 
If this cost is greater than the given update window W we 
have to select a portion of V that will not be materialized 
in the new updated version of the pool. Suppose that we 
choose to evict some fragment f. If f is the father of another 
fragment f&j/d that iS to be recomputed from f, then the 
real reduction in the update cost of the pool is less than 
UC(f), since the update cost of fchj,d increases. For the lazy 
approach for maintaining the father pointer we fomm-d the 
f UtheT pointer for fchi/d: set f ai%?r( fchild) = father(f). 
We now have to check if recomputing f&&j from father(f) 
is still a better choice than incrementally updating fchild from 
dV. If UCneW (f,-hjld) is the new update cost for f&ifd then 
the potential update delta, i.e the reduction in UC(V), if we 
evict fragment f is: 

Udella(f) = UC(f)-c (UCnew(fchild)-UCo’d(fchild)) 

If the initial plan is not feasible, we discard at a first step 
all fragments whose update cost UC(f) is greater than the 
window W. If we still hit the time constraint, we evict 
more fragments from the pool. In this process, there is no 
point in evicting fragments whose U&rta value is less or 
equal to zero. Having such fragments in the pool reduces 
the total update cost because all their children are efficiently 
updated from them. For the remaining fragments we use the 
goodness measure to select candidates for eviction until the 
remaining set is update-able within the given window W. If 
the goodness function is computable in constant time, the 

expected to be faster. However, for sources that do not provide their 
differentials during updates, we can consider using this option. 

cost for k evictions is O(lclV)). In the extreme case where 
W is too small that only a few fragments can be updated this 
leads to an 0( lVl*) total cost for computing a feasible update 
plan. However, in many cases just a small fraction of the 
stored results will be discarded resulting in close to 0( IV I) 
complexity. 

3 Experiments 

The comparison and analysis of the different aspects of the 
system made in this section is based on a prototype that we 
have developed for DynaMat. This prototype implements 
the algorithms and different policies that we present in this 
paper as well as the Fragment Locator and the Directory 
Index, but not the pool architecture. For the latter we used 
the estimator of the Cubetree Datablade [ACT971 developed 
for the Informix Universal Server for computing the cost of 
querying and updating the fragments. 

We have created a random MR-query generator that 
is tuned to provide different statistical properties for the 
generated query sets. A important issue for establishing 
a reasonable set of experiments was to derive the measures 
to base the comparisons upon. The Cost Saving Ratio (CSR) 
was defined in [SSV96] as a measure of the percentage of 
the total cost of the queries saved due to hits in their cache 
system. This measure is defined as: 

csR = $i,cih; 
( cirt 

where ci is the cost of execution of query qi without using 
their cache, hi is the number of times that the query was 
satisfied in the cache and ri is the total number of references 
to that query. This metric is also used in [DRSN98] for 
their experiments. Because query costs vary widely, CSR is 

more appropriate metric than the common hit ratio: g. 
However, a drawback in the above definition for our case, 
is that it doesn’t capture the different ways that a query qi 
might “hit” the Pool. In the best scenario, qi exactly matches 
a fragment in V. In this case the savings is defined as c;, 
where ci is the cost of answering the query at the MDW. 
However, in cases where another result is used for answering 
qi the actual savings depend on how “close” this materialized 
result is to the answer that we want to produce. If cf is cost 
of querying the best such fragment f for answering qi, the 
savings in this case is ci - cf. 5 To capture all cases we define 
the savings provided by the pool V for a query instance qi as: 

1 0 if qi can not be answered by V 
Si= Cj if there is an exact match for qi in V 

cj - Cj if f from V was used to answer qi 

using the above formula we define the Detailed Cost Saving 

5ci and cf do not include the cost to fetch the result which is payable 
even if an exact match is found. 
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Figure 7: The time bound case, first 15x1500 queries 

Ratio as: 

D(J’SR = e 
I ca 

DCSR provides a more accurate measure than CSR for OLAP 
queries. CSR uses a “binary” definition of a bit: a query hits 
the pool or not. For instance if a query is computed at the 
MDW with cost ci = 10, 000 and from some fragment f with 
cost CJ = 9,500, CSR will return a savings of 10,000 for the 
“hit”, while DCSR will credit the system will only 500 units 
based on the previous formula. DCSR captures the different 
levels of effectiveness of the materialized data against the 
incoming queries and describes better the performance of 
the system. 

The rest of this section is organized as follows: Subsec- 
tion 3.1 makes a direct comparison of the different ways 
to define the goodness as described in 2.4. Subsection 3.2 
compares the performance of DynaMat against a system that 
uses the optimal static view selection policy. All experi- 
ments were ran using #an Ultra SPARC 60 with 128MB of 
main memory. 

3.1 Comparison of different goodness policies 

In this set of experiments we compare the DCSR under the 
four different goodness policies LRU, LFU, SFF and SPF. 
We used a synthetically generated dataset that models super- 
market transactions, alrganized by the star schema. The 
MDW had 10 dimensions and a fact table containing 20 
million tuples. We assumed 50 update phases during the 
measured life of the system. During each update phase we 
generated 250,000 new tuples for the fact table that had to 
be propagated to the stored fragments. The size of the full 
Data Cube for this base data after all updates where applied 
was estimated to be about 708GB. We generated 50 query 
sets with 1,500 MR-queries each, that were ran between the 
updates. These queriles were selected uniformly from all 
21° = 1,024 different views in the Data Cube lattice. In 
order to sirnulate hot .spots in the query pattern the values 
asked by the queries for each dimension are following the 
80-20 law: 80% of the times a query was accessing data from 
20% of the dimension’s domain. We also ran experiments 
for uniform and Gaussian distributions for the query values 
but are not presented here as they were similar to the 80-20% 
distribution. 

Figure 8: The time bound case, remaining 35x1500 queries 

Figure 9: The space bound case 

For the first experiment we tested the time-bound case. 
The size of the pool was chosen large enough to guarantee 
no replacement during queries and the time allowed for 
updating the fragments was set to 2% of WD~~~-C,,~~, where 
~~~~~~~~~~ is the estimated time to update the full Data 
Cube. For a more clear view we plot in Figure 7 the DCSR 
overtime for the first 15 sets of queries, starting with an 
empty pool. In the graph we plot the cumulative value of 
DCSR at the beginning of each update phase, for all queries 
that happened up to that phase. The DCSR value reaches 
41.4% at the end of the first query period of 1,500 queries 
that were executed against the initially empty pool. This 
shows that simply by storing and reusing computed results 
from previous queries, we cut down the cost of accessing 
the MDW to 58.6%. Figure 8 shows how DCSR changes 
for the remaining queries. All four policies quickly increase 
their savings, by refining the content of the pool while doing 
updates, up to a point where all curves flatten out. At all 
times, SPF policy is the winner with 60.71% savings for the 
whole run. The average I/O per query, was 94.84, 100.08, 
106.18 and 109.09 MB/query for the SPF, LFU, LRU and 
SFF policies respectively. The average write-back I/O cost 
due to the on-the-fly materialization was about the same in 
all cases (E 19.8MB/query). For the winner SPF policy the 
average time spend on searching the Directory Index was 
negligible (about Odmsecs/query). Computing a feasi.ble 
update plan took on the average 37msecs, and Slmsecs in 
the worst case. The number of MRFs stored in the pool by 
the end of the last update phase was 206. 

Figure 9 depicts DCSR overtime in the space-bound c:ase 
for the last 35 sets of queries, calculated at the beginning 
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Figure 10: The space & time bound case 

of each update phase. In this experiment there was no time 
restriction for doing the updates, and the space that was 
allocated for the pool was set to 14GB, i.e 2% of the full 
Data Cube size. In this case, the content of the pool is 
managed by the replace algorithm, as the limited size of 
the pool results in frequent evictions during the on-line mode. 
Again the SPF policy showed the best performance with a 
DCSR of 59.58%. For this policy, the average time spend on 
the replace algorithm, including any modifications on the 
Directory Index, was less that 3msecs per query. Computing 
the initial update plan for the updates, as explained in 
section 2.4.2, took 1Omsecs on the average. Since there was 
no time restriction and thus, the plan was always feasible, 
there was no additional overhead for refining this plan. The 
final number of fragments in the pool was 692. 

In a final experiment we tested the four policies for the 
general case, where the system is both space and time bound. 
We varied the time window for the updates from 0.2% up 
to 5% of ~~~~~~~~~~ and the size of the pool from 0.2% 
up to 5% of the full Data Cube size, both in 0.2% intervals. 
Figure 10 shows the DCSR for each pair of time and space 
settings for the SPF policy, that outperformed the other 
three. We can see that even with limited resources DynaMat 
provides substantial savings. For example, with just 1.2% 
of disk space and 0.8% time window for the updates, we get 
over 50% savings compared to accessing the MDW. 

3.2 Comparison with the optimal static view selection 

In the experiments in the previous section we saw that 
the SPF policy provides the best goodness definition for 
a dynamic view (fragment) selection during both updates 
(time bound case) and queries (space bound case), or both. 
An important question however is how the system compares 
with a static view selection algorithm [HRU96, GHRU97, 
Gup97, BPT97] that considers only fully materialized views. 
Instead of comparing each one of these algorithms with 
our approach, we implemented SOLVE, a module that 
given a set of queries, the space and time restrictions, 
it searches exhaustively all feasible view selections and 
returns the optimal one for these queries. For a Data Cube 

100 
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view 

Figure 11: DCSR per view for uniform queries on the views 

lattice with n dimensions and no hierarchies there are 2” 
different views. A static view selection, depending on the 
space and time bounds, contains some combination of these 
views. For for n = 6, the search space contains 226 = 
l8,446,744,073,709,551,616possiblecombinationsofthe 
64 views of the lattice. Obviously some pruning can be 
applied. For example, if a set of views is found feasible there 
is no need to check any of its subsets. Additional pruning 
of large views is possible depending on the space and time 
restrictions that are specified, however for non trivial cases 
this exhaustive search is not feasible even for small values 
ofn. 

We used SOLVE to compute the optimal static view 
selection for a six-dimensional subset of our supermarket 
dataset, with 20 million tuples in the fact table. There 
were 40 update phases, with 100 thousand new tuples being 
added in the fact table each time. The time window for 
the updates was set to the estimated 2% of that of the full 
Data Cube (WD~~~-C~~~). We created 40 sets of 500 MR- 
queries each, that were executed between the updates. These 
queries targeted uniformly the 64 different views in the 6- 
dimensional Data Cube lattice. This lack of locality of the 
queries represents the worst-case scenario for the dynamic 
case that needs to adapt on-the-fly to the incoming query 
pattern. For the static view selection this was not an issue, 
because SOLVE was given all queries in advance. The 
optimal set returned, after 3 days of computations in an 
Ultra SPARC 60, includes 23 out of the 64 full-views in 
the 6-dimensional Data Cube. The combined size of these 
views when stored as Cubetrees in the disk is 28 1MB (1.6% 
of the full Data Cube). For the most strict and unfavorable 
comparison for the dynamic case, we set the size of the pool to 
the same number. Since the dynamic system started with an 
empty pool, we used the first 10% of the queries as a training 
set and measured system’s performance for the remaining 
90%. We used the SPF policy to measure the goodness of 
the MRFs for the dynamic approach. 

The measured cumulative DCSR for the two systems was 
about the same: 64.04% for the dynamic and 62.06% for the 
optimal static. The average I/O per query for the dynamic 
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Figure 12: Dynamic vs, Optimal-Static selection varying the 
average number of grouping attributes per query 

system was 108.llMB and the average write-back I/O cost 
2.18MB. For the optimal static selection the average I/O per 
query is 112.94MB and no write-back, without counting the 
overhead of materializing the statically selected views for 
the first time. 

For a more clear view on the performance differences 
between the static and the dynamic approach, we computed 
the DCSR per view and plotted them in decreasing order of 
savings in Figure 11. Notice that the x-axis labeling does 
not correspond to the same views for the two lines. The 
plot shows that the sta&ic view selection performs well for 
the 23 materialized views, however for the rest 41 views its 
savings drops to zero. DynaMat on the other hand provides 
substantial savings for almost all the views. On the right hand 
side of the graph are the larger views of the Data Cube. Since 
most results from queries on these views are too big to fit 
in the pool, even DynaMat’s performance decreases because 
they can not be materialized in the shared disk space. 

Figure 12 depicts the performance of both systems for a 
non-uniform set of queries where the access to the views 
is skewed. The skewness is controlled by the number of 
grouping attributes in each query. As this number increases,6 
it favors accesses on views from the upper levels of the Data 
Cube lattice, which views are bigger in size and need larger 
update window. These views, because of the space and 
time constraints are not in the static optimal selection. On 
the other hand, the dynamic approach materializes results 
whenever possible an,d for this reason it is more robust 
than the static selection, as the workload shifts to the larger 
views of the lattice. As the average number of grouping 
attributes per query reaches 6, almost all queries in the 
workload access the s:ingle top-level six-dimensional view 
of the lattice. DynaMa,t adapts nicely to such workload and 
allocates most of the pool space to MRFs of that view. That 
explains the performance of DynaMat going up at the right 
hand side of the graph. 

The pool size in the above experiments was set to 1.6% 
of the full Data Cube as this was the actual size of the views 

- 
6Having three grouping attributes per query, on the average, corresponds 

to the previous uniform view selection. 
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Figure 13: DCSR per view for space = 10% 
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Figure 14: Dynamic vs Optimal-Static selection for drill- 
down/roll-up queries 

used by the optimal static selection. This number however 
is rather small for todays standards. We ran two more 
experiments with pool size 5% (878MB) and 10% (1.7GB) 
of the full Data Cube size. The optimal static selection does 
not refine the selected views because of the update window 
constraint (2%). DynaMat, on the other hand, capitalizes the 
extra disk space and increases the DCSR from 64.04%~ to 
68.34 and 78.22% for the 5% and 10% storage. Figure 13 
depicts the computed DCSR per view for this case. As more 
disk space is available, DynaMat achieves even more savings 
by materializing more fragments from the larger views of the 
Data Cube. 

In the previous experiment the queries that we ran were 
selected uniformly from all 64 views in the Data Cube lattice. 
This is the worst case scenario for DynaMat which galins 
a lot more from locality of follow-up queries. Often in 
OLAP, users do drill-downs or roll-ups, where starting 
from a computed result, they refine their queries and ask 
for a more or less detailed view of the data respectively. 
DynaMat can enormously benefit from the roll-up queries 
because these queries are always computable from results 
that were previously added in the pool. To simulate such a 
workload we tuned our query-generator to provide 40 sets 
of 500 queries each with the following properties: 40% of 
the times a user asks a query for a randomly selected view 
from the Cube, 30% of the times the user performs a roll-up 
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operation on the last reported result and 30% of the times the 
user performs a drill-down. 

For this experiment, we used the previous set up for the 
2% and 10% time and space bound and we re-computed 
the optimal static selection for the new queries. Figure 14 
depicts DCSR for this workload. Compared to the previous 
example, DynaMat further increases its savings (83.84%) by 
taking advantage of the locality of the roll-up queries. 

4 Conclusions 

In this paper we presented DynaMat, a view management 
system that dynamically materializes results from incoming 
queries and exploits them for future reuse. DynaMat 
unifies view selection and view maintenance under a single 
framework that takes into account both the time and space 
constraints of the system. We have defined and used the 
Multidimensional Range Fragments (MRFs) as the basic 
logical unit of materialization. Our experiments show that 
compared to the conventional static paradigm that considers 
only full views for materialization, MRFs provide a finer 
and more appropriate granularity of materialization. The 
operational and maintenance cost of the MRFs, which 
includes any directory look-up operations during the online 
mode and the derivation of a feasible update plan during 
updates, remains practically negligible, in the order of 
milliseconds. 

We compared DynaMat against a system that is given 
all queries in advance and the pre-computed optimal static 
view selection. These experiments indicate that DynaMat 
outperforms the optimal static selection and thus any sub- 
optimal view selection algorithm that has appeared in the 
literature. Another important result that validates the 
importance of DynaMat, is that just l-2% of the Data Cube 
space and l-2% of the update window for the full Data Cube 
are sufficient for substantial performance improvements. 

However, the most important feature of DynaMat is that it 
represents a complete self-tunable system that dynamically 
adjusts to new patterns in the workload. DynaMat relieves 
the warehouse administrator from having to monitor and 
calibrate the system constantly regardless of the skewness of 
the data and/or of the queries. Even for cases that there is 
no specific pattern in the workload, like the uniform queries 
used for some of our experiments, DynaMat manages to 
pick a set of MRFs that outperforms the optimal static view 
selection. For more skewed query distributions, especially 
for workloads that include a lot of roll-up queries, the 
performance of DynaMat is even better. 
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