
Bottom-Up Computation of Sparse and Iceberg CUBES

Kevin Beyer Raghu Ramakrishnan
Computer Sciences Department Computer Sciences Department

University of Wisconsin - Madison University. of Wisconsin - Madison
beyer@cs.wisc.edu raghu@cs.wisc.edu

Abstract

We introduce the Iceberg-CUBE problem as a reformulation
of the datacube (CUBE) problem. The Iceberg-CUBE
problem is to compute only those group-by partitions with
an aggregate value (e.g., count) above some minimum
support threshold. The result of Iceberg-CUBE can be
used (1) to answer group-by queries with a clause such as
HAVING COUNT(*) >= X, where X is greater than the
threshold, (2) for mining multidimensional association rules,
and (3) to complement existing strategies for identifying
interesting subsets of the CUBE for precomputation.

We present a new algorithm (BUC) for Iceberg-CUBE
computation. BUC builds the CUBE bottom-up; i.e., it
builds the CUBE by starting from a group-by on a single
attribute, then a group-by on a pair of attributes, then a
group-by on three attributes, and so on. This is the opposite
of all techniques proposed earlier for computing the CUBE,
and has an important practical advantage: BUC avoids
computing the larger group-bys that do not meet minimum
support. The pruning in BUC is similar to the pruning in
the Apriori algorithm for association rules, except that BUC
trades some pruning for locality of reference and reduced
memory requirements. BUC uses the same pruning strategy
when computing sparse, complete CUBES.

We present a thorough performance evaluation over a
broad range of workloads. Our evaluation demonstrates
that (in contrast to earlier assumptions) minimizing the
aggregations or the number of sorts is not the most
important aspect of the sparse CUBE problem. The
pruning in BUC, combined with an efficient sort method,
enables BUC to outperform all previous algorithms for
sparse CUBES, even for computing entire CUBES, and to
dramatically improve Iceberg-CUBE computation.

1 Introduction

Decision support systems frequently precompute many
aggregates to improve the response time of aggregation

Permission to make digital or hard topics of all or part of this work IhI
personal or classroom use is granrcd without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the tirst page. To copy
otheruisc, to rcpuhlish, tn post on scrvcrs or to rcdistrihutc to lisls.
requires prior spccitic permission andior a fee.

SIGMOD ‘99 Philadelphia PA
Copyright ACM 1999 I-581 13-084-8/99/05...$5.00

queries. The datacube (CUBE) operator [6] generalizes the
standard GROUP-BY operator to compute aggregates for
every combination of GROUP BY attributes. For example,
consider a relation Transaction(Product, Store, Customer,
Sales). The sum of Sales over the CUBE of Product, Store,
and Customer produces the sum of Sales for the entire
relation (i.e., no GROUP BY), for each Product (GROUP
BY Product), for each Store, for each Customer, for each
pair: (Product, Store), (Product, Customer), and (Store,
Customer), and finally for each (Product, Store, Customer)
combination. In OLAP parlance, the grouping attributes
are called dimensions, the attributes that are aggregated
are called measures, and one particular GROUP BY (e.g.,
Product, Store) in a CUBE computation is sometimes called
a cuboid or simply a group-by.

The basic CUBE problem is to compute all of the aggre-
gates as efficiently as possible. Simultaneously computing
the aggregates offers the opportunity to share partitioning
and aggregation costs between various group-bys. The chief
difficulty is that the CUBE problem is exponential in the
number of dimensions: for d dimensions, 2d group-bys are
computed. In addition, the size of each group-by depends
upon the cardinality of its dimensions. If every store sold
every product, then the (Product, Store) group-by would
have]Product] x IStore] result tuples. However, as the num-
ber of dimensions or the cardinalities increase, the product
of the cardinalities grossly exceeds the (fixed) size of the in-
put relation for many of the group-bys. Even in our small
example, if the data comes from a large department store, it
is highly unlikely that a given customer purchased even 5%
of the products, or shopped in more than 1% of the stores.

When the product of the cardinalities for a group-by is
large relative to the number of tuples that actually appear in
the result, we say the group-by is sparse. When the number
of sparse group-bys is large relative to the number of total
number of group-bys, we say the CUBE is sparse. As is well-
recognized, given the large result size for the entire CUBE,
especially on sparse datasets, it is important to identify (and
precompute) subsets of interest.

This paper addresses CUBE computation over sparse
CUBES and makes the following contributions:

1. We introduce a variant of the CUBE problem, called
Iceberg-CUBE in the spirit of [5], that allows us to
selectively compute only those partitions that satisfy
a user-specified aggregate condition (similar to SQL’s

359

HAVING clause). The Iceberg-CUBE formulation can
be viewed as a new dynamic subset selection strategy,
complementing earlier approaches that statically iden-
tify group-bys (ralther than partitions) to be precom-
puted 110, 8, 7, 3, 181. The Iceberg-CUBE formulation
also identifies precisely the subset of the CUBE that is
required to mine multidimensional association rules in
the framework described in [ll].

2. We present a simple and efficient algorithm, called BUC,
for the Iceberg-CUBE problem. BUC proceeds bottom-
up (it builds the CUBE by starting from a group-by
on a single attribute, then a group-by on a pair of
attributes, and so on) in contrast to all prior CUBE
algorithms. This feature enables the Iceberg aggregate
selections to be pushed into the CUBE computation
easily. We also outline an extension to compute precisely
the CUBE subset identified for precomputation by the
PBS algorithm [18].

3. We present an extensive performance evaluation based
upon a complete implementation of BUC. We focus our
comparison on the MemoryCube algorithm presented
in [14], which was shown to be superior to earlier
algorithms for co:mputing sparse CUBES. We show
that BUC outperforms MemoryCube on a wide range
of synthetic and real datasets, even when computing the
full CUBE. Further, since MemoryCube does not exploit
aggregate selections, BUC outperforms it significantly
for Iceberg-CUBE computation.

The rest of this paper is organized as follows: Section 2
discusses sparse CUBE& and we argue that the basic CUBE
problem is not appropriate for high dimensions. In Section 3,
we define the Iceberg-CUBE problem. Section 4 describes
the previous work on computing the CUBE. Most previous
work does not scale to sparse, high-dimensional CUBES
[14], and none can directly take advantage of the minimum
support threshold in Iceberg-CUBE. In Section 5, we present
a new algorithm for CUBE and Iceberg-CUBE computation
called Bottom-Up Cube (BUC). Our performance analysis is
described in Section 6. Our evaluation demonstrates that (in
contrast to earlier assumptions) minimizing the aggregations
or the number of sorts is not the most important aspect of
the sparse CUBE problem. The pruning in BUC, combined
with an efficient sort method, turns out to be the key to the
performance gains, evlen for full CUBES. We present our
conclusions in Section 7.

2 Motivation
Ross and Srivastava computed the full CUBE on a real
nine-dimensional dataset containing weather conditions at
various weather stations on land for September 1985 [14, 91.
The dataset had 1,015,367 tuples (N39MB). The CUBE
on this dataset produces 210,343,580 tuples (NBGB)-more
than 200 times the input size!

We break down the output size distribution for this
dataset in Figure 1. In both the graphs, the x-axis is the
number of output tuples in a group-by relative to the input
size. Figure la shows; the number of group-bys that are
smaller than a given relative size, and Figure lb shows the

amount of space (relative to the input size) needed to build
all the group-bys that are less than a given size. The graphs
convey a number of interesting points:

l About 20% of the group-bys performed very little
aggregation (all of the group-bys with relative size of
nearly 1). These group-bys are simply a projection of the
input. (If the data were uniform and uncorrelated, then
nearly 60% of the group-bys would perform little to no
aggregation.) About 60% of the group-bys aggregated
an average of no more than 4 tuples.

l Computing all group-bys that aggregate at least .two
input tuples on average (group-bys with relative size of
0.5) requires about 50 times the input size versus the
200 times for the full CUBE. Requiring an average of 10
tuples to be aggregated (i.e., 0.001% of the input tuples)
shrinks the space requirement to 5 times the input.

l As noted in [14], simply writing the entire output to
disk can take an inordinate amount of time, and (can
easily dominate the cost of computing the CUBE. By
selecting the group-bys (or group-by partitions) that
perform at least a little aggregation, the output time
can be significantly reduced.

Because the space requirements for large CUBES are so
high, often we cannot realistically compute the full CUBE.
We need a way to choose what portion of the CUBE to
compute. A number of researchers have proposed computing
a subset of the group-bys instead of the entire datacube 1110,
8, 7, 3, 181. The algorithms choose the group-bys to compute
based on the available disk space, the expected size of the
group-by, and the expected benefit of precomputing the
aggregate. Under certain common conditions, [18] presents
an algorithm called PBS that chooses to materialize the
smallest group-bys (i.e., the fewest result tuples, which is the
same as the group-bys that perform the most aggregation).

Choosing a subset of the group-bys to compute is certainly
a reasonable way to reduce the output of full CUBE
computation, and we show in Section 6 that BUC works
particularly well with PBS. However, statically choosing a
subset of the group-bys is not the only way to reduce the
output; the next section describes a new alternative.

3 The Iceberg-CUBE Problem
The Iceberg-CUBE problem is to compute all group-by
partitions for every combination of the grouping attributes
that satisfy an aggregate selection condition, as in the
HAVING clause of an SQL query. For concreteness, we will
discuss the condition that a partition contain at least N
tuples; other aggregate selections can be handled as well,
as described in Section 5.2. The parameter N is called
the minimum support of a partition, or rninsup for short.
Iceberg-CUBE with minsup of 1 is exactly the same as the
original CUBE problem. Iceberg-CUBE with a minsup of
N is easily expressed in SQL with the CUBE BY clause:

SELECT A,B,C,COUNT(*) ,SUM(X)
FROM R
CUBE BY A.B,C
HAVING COUNT(*) >s N

360

0 0.2 0.4 0.6 0.6 1 0 0.2 0.4 0.6 0.6 1
Group-by Size / Input Size Group-by Size I Input Size

(a) Group-by Size (b) Total Space Blow-up

Figure 1: Space requirements for the weather ditaset

The precomputed result of an Iceberg-CUBE can be used
to answer GROUP BY queries on any combination of the
dimensions (A, B, and C, in this case) that also contains a
HAVING COUNT(*) >= M, where M >= N. The count
does not need to be stored if all queries (explicitly or
implicitly) contain HAVING COUNT(*) >= N. That is, the
user is simply not interested in small group-by partitions.

Iceberg-CUBE is not an entirely new problem, although
this is the first time that it has been proposed for CUBE
queries. The mining of multi-dimensional association
rules (MDAR) uses a notion of minimum support that is
equivalent to Iceberg-CUBE [ll]. MDA% have the form
X j Y. X is called the body of the rule, and Y is called
the head. X and Y are sets of conjunctive predicates. For
the purposes of this discussion, each predicate essentially
has the form attribute = value, although they are a bit more
general in [ll]. The support for a rule X + Y in a relation
R is the probability that a tuple of R contains both X and
Y. In other words, the support is the count of tuples that
are true for both X and Y divided by the number of tuples
in R. The confidence of a rule is the probability that a
tuple of R contains Y given that the tuple contains X (i.e.,
Prob(YIX) = count(X and Y) / count(X)). The goal of
mining MDARs is to find rules with a support of at least
the minsup and a confidence of at least minconf.

The first step in mining MDARs, as with traditional
association rules’ [2], is to find the rules that meet minimum
support. This is precisely the Iceberg-CUBE problem where
N = [RI * minsupMDAR. The results from Iceberg-CUBE
can then be combined to find the rules that meet minimum
confidence.

A precomputed Iceberg-CUBE is also useful for comput-

‘Note that the traditional association rule problem can be
mapped to the MDAR problem be making each item an attribute
(i.e., a dimension) with a value of zero or one (and using
predicates with a value of 1). Unfortunately, BUC is ill-suited
for this problem because (1) the dimensionality is extremely
high (50,000 items is not uncommon), (2) the cardinality of
every dimension is extremely low (only two values), and (3) the
dimensions tend to be highly skewed.

ing iceberg queries [5]. An iceberg query computes a sin-
gle group-by and eliminates all tuples with an aggregate
value below some threshold. For example:

SELECT A,B.C,COUNT(*)
FROM R
GROUP BY A,B,C
HAVING COUNT(*) >= N

So the Iceberg-CUBE is essentially an iceberg query over a
CUBE. Although we do not discuss this point further, the
techniques of [5] can be used to refine BUC in some cases
with large partitions.

4 Previous CUBE Algorithms
The CUBE was introduced in [6], and they outlined some
useful properties for CUBE computation: (1) minimize data
movement, (2) map string dimension attributes [and other
types] to integers between zero and the cardinality of the
attribute, and (3) use parallelism. Mapping dimensions to
integers reduces space requirements (i.e., no long strings),
eliminates expensive type interpretation in the CUBE code,
and packing the domain between zero and the cardinality
allows the dimensions to be used as array subscripts.

Three types of aggregate functions were identified. Con-
sider aggregating a set of tuples T. Let {&Ii = 1.. . n}
be a any complete set of disjoint subsets of T such that
U; Si = T, and ni Si = {}.

l An aggregate function F is distributive if there is a
function G such that F(T) = G({F(Si)li = 1.. .n}).
SUM, MIN, and MAX are distributive with G = F.
COUNT is distributive with G = SUM.

l An aggregate function F is algebraic if there is a M-
tuple valued function G and a function H such that
F(T) = H({G(Si)(i = 1.. .n}), and M is constant
regardless of ITI and n. All distributive functions are
algebraic, as are Average, standard deviation, MaxN,
and MinN. For Average, G produces the sum and count,
and H divides the result.

361

ABCD

,-+9Y--l
ABC ABD ACD BCD

/rQz2%
Aww

biggestwABCD csmallest

ABC ABD ACD BCD

HA
AB AC A,D>y

A B C D

5 ABCD

4 ABC 6 ABD BACD 12BCD

-.I
3AB IAC 9AD IIBC 13BD 1.5

WWF
2A 10B 14C 16D

al:1 all 1 all

Figure 2: 4-Dimensional Lattice Figure 3: Sample Processing Tree Figure 4: BUC Processing Tree

l An aggregate function F is holistic if it not algebraic.
For example, Median and Rank are holistic.

Algebraic functions have the key property that more
detailed aggregates (i.e., more dimensions) can be used to
compute less detailed aggregates. This property induces a
partial ordering (i.e., a lattice) on all of the group-bys of
the CUBE. A group-by is called a child of some parent
group-by if the parent can be used to compute the child
(and no other group-by is between the parent and the child).
Figure 2 depicts a sa:mple lattice where A, B, C, and D are
dimensions, nodes represent group-bys, and the axes show
the pare&child relationship.

All of the algorithms use this lattice view of the problem.
The goal is to take advantage of as much commonality
as possible between a parent and child. In general,
the algorithms recognize that group-bys with common
attributes can share partitions, sorts, or partial sorts.
The algorithms differ on exactly how they exploit this
commonality. The following subsections provide details on
each of the previous proposed algorithms.

4.1 PipeSort, PipeHash, and Overlap

l PipeSort, proposed in [16, l], searches the space of
possible sort orde:rs for the best set of sorts that convert
the CUBE lattice into a processing tree (e.g., Figure 3).
The search attem.pts to minimize the number of sorts,
while at the same time it seeks to compute a group-by
from its smallest parent. The authors recognized that
many of the sorts will have a common prefix, so they
optimized the sorting procedures to take advantage of
partial sorts. Except when sorting, PipeSort uses at
most d + 1 memory cells for each of the simultaneous
aggregates, where d is the number of dimensions.

[14] points out that PipeSort performs at least
(>

r&l

sorts, where d is the number of dimensions. When
computing sparse CUBES, many of the intermediate
results that are sorted cannot fit in memory, so external
sort will be used.

l PipeHash, also proposed in [lS, 11, computes a group-by
from its smallest parent in the lattice. For example,
if the attributes in Figure 2 are ordered such that
A 5 B 5 C 5 D, and group-by size estimates are
proportional to t:he product of the cardinalities (as is

.CC’

the case with attribute independence assumptions), then
the processing tree produced is shown in Figure 3.
PipeHash uses a hash table for every simultaneously
computed group-by. If all of the hash tables cannot.
fit in memory, PipeHash partitions the data on s#orne
attribute and processes each partition independently.
PipeHash suffers from two problems. First, it does,
not overlap as much computation as PipeSort because
PipeSort computes multiple group-bys with one sort
where as PipeHash must re-hash the data for every
group-by. Second, PipeHash requires a significant
amount of memory to store the hash tables for the group-
bys even after partitioning.

l Overlap, proposed in [4, 11, aims to overlap as much
sorting as possible by computing a group-by fro:m a
parent with the maximum sort-order overlap. The
algorithm recognizes that if a group-by shares a prefix
with its parent, then the parent consists of a number of
partitions, one for each value of the prefix. For example,
the ABC group-by has IAl partitions that can be sorted
independently on C to produce the AC sort order.

Overlap chooses a sort order for the root of the
processing tree, and then all subsequent sorts are some
suffix of this order. Once the processing tree is formed,
Overlap tries to fit as many partitions in memory as
possible to avoid writing intermediate results. If enough
memory is available, Overlap can make one pass over a
sorted input file.

With the same assumptions on the lattice as we used for
PipeHash, Overlap also produces the processing tree in
Figure 3. Actually, under these assumptions, choosing
the smallest parent minimizes the partition sizes and
the number of partitions, which is ideal for Overlap. For
example, BD could be computed from ABD, or BCD,
but BCD produces partitions that are proportional
to IBI while ABD produces partitions proportiona. to
IBDI. CD could be computed from either ACD or
BCD, either would produce the same partition sizes,
but the number of partitions in BCD is proportional to
IBI while ACD is proportional to IAl, so BCD produces
fewer partitions. Thus, picking the smallest parent is
quite similar to picking for the most overlap.

[14] argues that the Overlap on sparse CUBES also
produces a large amount of I/O by sorting intermed.iate

362

results (at least quadratic in the number of dimensions).

Because these algorithms can generate significant I/O
for intermediate results or require large amounts of main
memory, we do not consider them further.

4.2 ArrayCube

An array-based algorithm for computing the CUBE was
described in [19]; we call this ArrayCube. The algorithm
is very similar to Overlap, except that it uses in-memory
arrays to store the partitions and to avoid sorting. The
algorithm expects its input to be in an array-based file-
structure, but it can be extend to use relational input and
output with little or no performance penalty. The input
order for ArrayCube is slightly different from the input order
for Overlap because the array file-structure is “chunked”. A
chunk of a n-dimensional array is a n-dimensional subarray
that corresponds loosely to a page. The array is stored
in units of chunks. to provide multidimensional clustering;
chunking is not useful for computing the cube.

This algorithm is unique in two regards. First, it requires
no tuple comparisons, only array indexing. Second, the
array file-structure offers compression as well aa indexing.
The other methods could benefit from compression as
well, and with the amount of redundancy in the CUBE
output, we expect high compression ratios. The algorithm
is most effective when the product of the cardinalities of
the dimensions is moderate. Unfortunately, if the data is
too sparse, this method becomes infeasible because the in-
memory arrays become too large to fit in main-memory.

4.3 PartitionedCube and MemoryCube

PartitionedCube and MemoryCube, described in [14], are
designed to work together. PartitionedCube partitions the
data on some attribute into memory-sized units (similar
to PipeHash but for a different reason), and MemoryCube
computes the CUBE on each in-memory partition. The key
observation they made is that buffering intermediate group-
bys in memory - something all the previous algorithms
do (except PipeSort, which does not buffer anything) -
requires too much memory for large sparse CUBES. Instead,
they chose to buffer the partitioned input data for repeated
in-memory sorts, similar to PipeSort, although they present
a new algorithm that picks the minimum number of sorts

(which is exactly the largest tier in the lattice =
(> hi;121 1.

Once each partition for the first partitioning attribute
is processed (which is half of the CUBE), the input is
repartitioned on the next attribute.

Since this algorithm is designed for sparse CUBES, we
consider this to be the best existing algorithm for the
CUBE problems discussed in this paper (sparse CUBES and
Iceberg-CUBES). Therefore, we only compare BUC to this
algorithm.

In recent independent work, researchers at Columbia
University also found that pushing the HAVING clause into
CUBE computation is beneficial [15]. They describe how to
take advantage of HAVING predicates in PartitionedCube/
MemoryCube.

Procedure BottomUpCube(input, dim)
[nputs:

input: The relation to aggregate.
dim: The starting dimension for this iteration.

Zlobals:
constant numDims: The total number of dimensions.
constant cardinality[numDims]: The cardinality of

each dimension.
constant minsup: The minimum number of tuples in a

partition for it to be output.
outputrtec: The current output record.
dataCount[numDims]: Stores the size of each partition.

dataCount[i] is a list of integers of size
cardinality[i].

kltputs:
One record that is the aggregation of input.
Recursively, outputs CUBE(dim, . . . , numDims) on

input (with minimum support).
Method:
1: Aggregate(input); // Places result in outputRec
2: if input.count() == 1 then // Optimization

WriteAncestors(input[O], dim); return;
3: write outputrtec;
4: for d = dim ; d < numDims ; d++ do
5: let C = cardinality[d];
6: Partition(input, d, C, dataCount[d]);
7: let k = 0;
a: for i = 0 ; i < C ; i++ do // For each partition
9: let c = dataCount[d][i]
.o: if c >= minsup then // The BUC stops here
.l: outputRec.dim[d] = input[k].dim[d];
.2: BottomUpCube(input[k . . . ktc], d+l);
.3: end if
.4: k+=c;
.5: end for
.6: outputRec.dim[d] = ALL;
7: end for

Figure 5: Algorithm BottomUpCube (BUC)

5 Algorithm Bottom-Up Cube

We propose a new algorithm called BottomUpCube (BUC)
for sparse CUBE and Iceberg-CUBE computation. The idea
in BUC is to combine the I/O efficiency of PartitionedCube/
MemoryCube, but to take advantage of minimum support
pruning like Apriori [2]. BUC was inspired by the algorithms
in [14], particularly PartitionedCube. BUC is similar to
a version of algorithm PartitionedCube that never calls
MemoryCube.

To achieve pruning, BUC proceeds from the bottom of the
lattice (i.e., the smallest / most aggregated group-bys), and
works its way up towards the larger, less aggregated group-
bys. All of the previous algorithms compute in the opposite
direction. Since parent group-bys are used to compute
child group-bys, the algorithms cannot avoid computing the
parents.

The details of BUC are in Figure 5. The first step
is to aggregate the entire input (line 1) and write the
result (line 3). (Line 2 is an optimization that we discuss

363

al P a2

I a4
I I I

Figure 6: BUC Partitioning

below. For now we ignore that line.) For each dimension The pruning is similar to the pruning in Apriori [2]. The

d between dim and numDims, the input is partitioned on major difference between Apriori (appropriately adapted

dimension d (line 6). On return from Partitiono, datacount for Iceberg-CUBE computation) and BUC is that Apriori

contains the number of records for each distinct value of processes the lattice breadth first instead of depth first. In

the d-th dimension. Line 8 iterates through the partitions our example, Apriori would compute the A, B, C, and

(i.e., each distinct value). If the partition meets minimum D group-bys in one pass of the input. A candidate set

support (which is always true for full CUBES because would be created from all the partitions that meet minimum

minsup is one), the partition becomes the input relation in support. For example, if (a3) and (b2) made minimum

the next recursive call to BottomUpCube, which computes support, then (a3, b2) would be added to the candidate set.

the (Iceberg) CUBE on the partition for dimensions d + 1 The input would be read a second time and the candidate

to numDims. Upon return from the recursive call, we pairs would be pruned for minimum support. Now the

continue with the next partition of dimension d. Once all remaining pairs are combined to form the candidate triples.

the partitions are processed, we repeat the whole process for If (a3, b2), (a3, c5), and (b2, c5) all made minimum support,

the next dimension. then (a3, b2, c5) is a candidate in the third pass.

Figure 4 shows the ESUC processing tree (i.e., how it covers
the lattice). The numbers indicate the order in which BUC
visits the group-bys. Figure 6 illustrates how the input
is partitioned during l;he first four calls to BottomUpCube
(assuming minsup is one). First BUC produces the empty
group-by. Next, it partitions on dimension A, producing
partitions al to a4, and then it recurses on partition al.
The al partition is aggregated and produces a single tuple
for the A group-by. Next, it partitions the al partition
on dimension B. It recurses on the (al,bl) partition and
writes a (al,bl) tuple for the AB group-by. Similarly for
(al,bl, cl), and then (al,bl,cl,dl), but this time it does
not enter the loop at line 4. Instead it simply returns only
to recurse again on the (al,bl,cl,d2) partition. BUC then
returns twice and then recurses on the (al, bl, c2) partition.
When this is complete, it partitions the (al, bl) partition on
D to produce the (al, bl, D) aggregates.

Apriori can prune group-bys one step earlier than BlJC.
For example, if the partition (a3) met minimum support
but (b2) did not, BUC will consider the (a3, b2) partition
but Apriori will not. The problem with using Apriori is the
candidate set usually cannot fit in memory because little
pruning is expected during first few passes of the input.
BUC trades pruning for locality of reference and reduced
memory requirements.

We implemented the modified Apriori algorithm and
compared it to BUC. As expected, when the output sizle is
large, Apriori needs too much memory and performs terrilbly.
We then compared the algorithms with extremely skewed
input: all duplicates. Apriori needed very little memory,
but it still performed significantly worse than BUC.

Once the (al, bl) partition is completely processed, BUC
proceeds to (al, b2). This partition consists of a single tuple.
If we ignore line 2 for the moment, then BUC will recurse
for (al, b2, c), (al, b2, c, d), and (al, b2, d) aggregating and
partitioning a single tuple. While the result is correct, it’s a
fruitless exercise. We add line 2 to the algorithm so that the
aggregates on this tuple are computed just once, and then
the result tuple is written to each of its ancestor group-bys
in WriteAncestors b:y simply setting the dimension values

5.2 Additional Pruning Functions

As described in [13], functions other than count can be used
for pruning. The pruning function must be monotonic.’ For
any two sets (of tuples, in our case) S and T such that S E T,
a function f is monotonicly decreasing if f(S) <= f(T). (If
f is monotonically increasing, the inequality in the prune
expression must be reversed. We are actually interested in
monotonically decreasing boolean functions, true < false: if
f(T) is false then f(S) is false for any subset S of T). Count
is monotonicly decreasing, since the count of a subset is

‘The functions are called anti-monotonic in [13].

appropriately (in this case: (al, b2), (al, b2, c), (al, b2, c, d),
and (al, b2, d)).

The elimination of the aggregation and partitioning of
single tuple partitions is a key factor in the success of BUC
on sparse CUBES because many partitions have a single
tuple. Figure 1 shows that 20% of the group-bys consisted
almost entirely of single tuple partitions! On one generaked
dataset, this optimization improved the computation by
more than 40%.

5.1 Iceberg-CUBE with BUC

To this point, we considered only full CUBE computation
(i.e., minsup = 1). The optimization for a single tuple
partition is similar to how BUC processes an Iceberg-CUBE.
When a small partition is found, instead of writing for all
of the group-bys, BUC simply skips the partition (line 10)
and does not consider any of the partition’s ancestors. The
pruning is correct because the partition sizes are always
decreasing when BUC recurses, and therefore none of the
ancestors can have minimum support.

364

certainly larger than the count of the superset. Min and max
are monotonic, as is the sum of positive numbers. Also, if f
and g are two monotonically decreasing boolean functions,
then f A g and f V g are both monotonically decreasing
boolean functions.

Average, however, is not monotonic. [13] describes how
some non-monotonic functions can still be used to prune by
replacing it with a conservative monotonic function. For
example, if the average of positive numbers must be above
X, we can prune with the sum above X and the minimum
below X. If the sum of both positive and negative numbers
must be above X, then we can prune with the sum of only
the positive numbers above X.

These additional pruning functions can be quite useful in
practice. For example, we can prune aggregates with little
sales (HAVING SUM(sales) >= S), or those aggregates that
do not include any young or old people (HAVING MIN(age)
<= young OR MAX(age) >= old). These functions can
not only be used for aggregate precomputation, but also for
mining multi-dimensional association rules.

To use additional pruning predicates in BUC, add:
if CanPrune then return;

after the call to Aggregate0 and before line 2 (where
CanPrune is the pruning predicate).

The class of predicates that BUC can use for pruning
is by no means the only useful HAVING predicates. For
example, consider HAVING COUNT(*) < X. In this case,
the user wants the groups with little aggregation, which
occur towards the top of the lattice. Now, the previous
CUBE algorithms can prune their computation, but BUC
cannot. When computing large CUBES however, this
predicate will not reduce the output size much, so the output
time will dominate the cost of computation. Note that even
if a predicate cannot be used for pruning in BUC, it can still
be used for reducing the CUBE output.

5.3 Partitioning

The majority of the time in BUC is spent partitioning the
data, so optimizing Partition0 is important. When ‘input’
does not fit in main memory, the data must be partitioned
to disk. This can be done with hash-partitioning, followed
by a partitioning within each bucket (which hopefully now
fits in main memory), or external-sort can be used. When
performing an external partitioning, the aggregation step
(at line 1 of BUC) can be combined with the partitioning.

Once ‘input’ fits in main memory, which hopefully occurs
after partitioning on the first dimension, we can use in-
memory sorting or hashing to partition the data. Note
that once ‘input’ fits into memory on some call to BUC,
for all recursive calls from that point, ‘input’ will fit in
memory. Therefore, an implementation of BUC should have
BUC-External and BUC-Internal, where processing starts
with BUC-External and switches to BUC-Internal when the
input fits in memory. Our current implementation does not
perform external partitioning.

Our implementation uses a linear sorting method called
CountingSort [17]. CountingSort excels at sorting large lists
that have a sort key of moderate cardinality (i.e., many
duplicates). The algorithm requires that the sort key be
an integer value between zero and its cardinality, and that

the cardinality is known in advance. When an attribute of a
relation meets this property, we say the attribute is packed.

Our implementation of BUC assumes that all of the
dimensions are packed. This same assumption is used in 1191.
This assumption is reasonable because strings and other
types are usually mapped into integers to save space and
eliminate type interpretation. Also, in a star-schema [12],
the dimension values are often system generated integers
that are used as keys to the dimension tables. If the
dimensions are not packed in the input, they can be packed
when the input is first read by creating a hashed symbol
table for each dimension as described in [6], and the mapping
can be reversed when tuples are output (or a simple pre- and
post-processing pass can be used).

We found the use of CountingSort to be an important
optimization to BUC. For example, when sorting one
million records with widely varied key cardinality and
skew, QuickSort ran between 3 and 10 times slower than
CountingSort. CountingSort is faster not only because it
sorts in O(N) time, but also because it does not perform any
key comparisons. When using CountingSort, we do not even
need comparisons to find the partition boundaries, because
the counts computed in CountingSort can be saved for use
in BUC.

CountingSort cannot be easily used in other CUBE
algorithms because they perform sorts on several dimensions
(composite keys). (However, CountingSort is a stable sort.
This means that a sort on a composite key can be achieved
by calling CountingSort for each key attribute in reverse
order.)

Unfortunately, the advantage of CountingSort over Quick-
Sort slowly degrades as the ratio of the number of tuples to
the cardinality decreases. When the number of tuples is
significantly less than the cardinality of the partitioning di-
mension, QuickSort is faster than CountingSort. BUC pro-
duces many sorts with small partitions, so our implementa-
tion switches to QuickSort when the number of tuples in the
partition is less than l/4 the cardinality. (Also, QuickSort
switches to InsertionSort when the number of tuples is less
than 12.)

5.3.1 Dimension Ordering

The performance of BUC is sensitive to the ordering of the
dimensions. The goal of BUC is to prune as early as possible;
i.e., BUC wants to find partitions that do not meet minimum
support (or the other pruning criteria, or that only have one
tuple). For best performance, the most discriminating
dimensions should be used first. Remember that the first
dimension is used in half of the group-bys, so it has the
most potential for savings.

How discriminating a dimensions is depends upon several
factors:

l Cardinality: The cardinality of a dimension (the
number of distinct values) determines the number of
partitions that are created. The higher the cardinality,
the smaller the partitions, and therefore the closer BUC
is to pruning some computation.

l Skew: The skew in a dimension affects the size of
each partition. Skewed dimensions also have a smaller

365

effective cardinality when used as the second or later
partitioning attribute because it is likely that infrequent
values will not appear in some partition. The more
uniform a dimension (i.e., the less skew), the better it is
for pruning.

l Correlation: If a dimension is correlated with an earlier
partitioning dimension, then its effective cardinality is
reduced. Correlation decreases pruning.

We experimented with two heuristics for ordering the
dimensions. The first heuristic is to order the dimensions
based on decreasing cardinality. The second heuristic is
to order the dimensions based on increasing maximum
number of duplicates. When the data is not skewed, the
two heuristics are equivalent. Section 6.5 gives a synthetic
example where the second heuristic out-performs the first,
but on we found little difference on real datasets.

5.4 Collapsing Duplicates
In the presence of high skew or correlation, a few group-by
values can account for most of the tuples in the input. For
example, when computing CUBE(A, B, C, D), the partition
(~3, b2, c7,d4) could contain 90% of the original input.
When this occurs, it is worthwhile to collapse the duplicate
partitioning values to a singe tuple (using aggregation).

If skewed data is expected to be common, we suggest
changing the top-level call to BUC to collapse duplicates.
This can be done by making a copy of the BUC procedure
called BUC-Dedup and starting the computation at BUC-
Dedup. Then, replace the Partition0 function at line 6 of
BUC-Dedup with a function that not only partitions the
data on dimension d but collapses all of the duplicates on
dimensions d . . . numl;‘ims - 1.

366

Collapsing duplicates has three disadvantages. First, if
the data has few duplicates, there is a modest extra cost
of trying to eliminate them. Second, the ‘input’ to BUC
is now the result of aggregation, and if a large number of
aggregates are computed on a small number of measure
fields, less tuples will fit in memory. Third, and most
importantly, holistic aggregate functions can no longer be
computed because the ,4ggregate() function at line 1 receives
partially aggregated data.

5.4.1 Switching To Array&be
BUC can perform poorly when each recursive partitioning
does not significantly reduce the input size. For example,
consider computing the CUBE on a relation that is 64 times
the size of main memory, with ten dimensions that each have
two distinct values. In this case, BUC needs to partition on
six attributes before the input fits in memory. The CUBE
is actually dense, not sparse, so previous algorithms, in
particular ArrayCube 1191, will perform better than BUC.

However, this effect can occur even when computing a
sparse CUBE. Consider the previous example again, but say
one dimension (call it .A) has a cardinality of 100,000. The
result CUBE is much more sparse, but half the group-bys
are just as dense as they were before (i.e., the ones that do
not use A). If A is used as the first partitioning attribute,
then BUC efficiently computes all the group-bys on A, but
performs poorly on the remaining group-bys.

We suggest switching from BUC to ArrayCube whenever
the product of the remaining cardinalities is reasonably
small but the number of input tuples is still large. The
switch can occur at any point, but a logical choice would
be to use ArrayCube on the last dimensions during to
topmost call to BUC. For example, when computing
CUBE(A, B, C, D), if A is large but B, C, and D are small,
use BUC to compute all the group-bys that use A, and use
ArrayCube to compute the remaining group-bys starting at
group-by BCD (refer to Figure 4).

When switching to ArrayCube, we can no longer prune
any of the computation, although the output can still be
pruned. However, all of the group-bys must be relatively
small (and therefore aggregate many records) to fit in
memory, which implies that most of those group-bys iare
likely to be computed in any case. Another downside
to using ArrayCube is that it does not support holistic
aggregate functions.

This optimization is at odds with collapsing duplicates. If
we reconsider the first example in this section (10 dimensions
each with cardinality of 2), collapsing duplicates on r;he
original input will reduce the relation to at most 21° = 1024
tuples. More work needs to be done to determine which
strategy is best.

5.5 Using BUC with PBS
BUC works well with the PickBySize (PBS) algorithm for
choosing group-bys to precompute [18]. PBS chooses the
group-bys with the smallest expected (output) size (i.e., the
group-bys that perform the most aggregation). PBS chooses
entire group-bys, not partitions like Iceberg-CUBE.

Since PBS chooses by the size of the group-by, if some
node is chosen, then all of its children must have been
chosen. For example, if ABC is selected, then AB, AC,
BC, A, B, C, and the empty group-by must all be selected.
Selecting group-bys this way produces a frontier in the
lattice. Every group-by below the frontier is selected.
Another interesting point from [18] is that the BPUS
algorithm in [lo] also tends to pick group-bys towards the
bottom of the lattice.

BUC can easily be extended to compute only select,ed
aggregates. When PBS is used, BUC can stop when it hits
the frontier. This means that BUC can compute only t.he
selected group-bys, an no others.

5.6 Minimizing Aggregations
Since BUC proceeds bottom-up, it does not take advantatge
of algebraic functions to reduce the aggregation costs. 0n
the positive side, BUC can efficiently compute holistic func-
tions, unlike most of the previous algorithms (MemoryCube
can efficiently compute holistic functions as well.) In our ex-
periments we found that aggregation costs were only small
percent of the processing costs. Even when computing 16
aggregates on a full CUBE, less than l/4 of the proce,ss-
ing time was attributed to aggregation (see Section 6.:3).
However, BUC can take advantage of algebraic functions by
aggregating the results of the recursive call from any one it-
eration of the loop at line 8. This complicates the algorithm
a bit, and when we implemented it, BUC actually ran more
slowly!

5.7 Memory Requirements

BUC relies on a significant, but reasonable, amount of
working memory. As mentioned previously, BUC tries to
fit a partition of tuples in memory as soon as possible.
Say the partition has N tuples, and each tuple requires T
bytes. Our implementation uses pointers to the tuples, and
CountingSort requires a second set of pointers for temporary
use. Let Cl . . . Cd be the cardinality of each dimension, and
c maz: be the maximum cardinality. CountingSort uses C,,,
counters, and BUC uses c C; counters. If the counters and
pointers are each four bytes, the total memory requirement
in bytes for BUC is:

d

N(T+8) +4cCi +4C,,,
i=l

The memory requirements can be reduced by switching
to QuickSort. When using QuickSort, the second set of
pointers and all of the counters are not needed. Also, the
counters in BUC are not necessary to use CountingSort. If
the counters are not used, BUC will have to search for the
partition boundaries.

6 Performance Analysis
We received an executable for MemoryCube from Prof. Ken
Ross. Receiving his executable not only saved us time,
but also allowed us to do a fair comparison with code that
they optimized. Their implementation included a number
of performance improvements that are not described in [14],
but they are expected to appear in the forthcoming journal
version of the paper. It is sufficient to say that they report
this version is three times faster than the original version
used in [I4].

We implemented BUC for main memory only (no external
partitioning). The implementation of MemoryCube had the
same restriction because it did not come with Partitioned-
Cube. This is not a problem because PartitionedCube /
MemoryCube and BUC have equivalent I/O performance.
We ran our tests on a 300MHz Sun Ultra 10 Workstation
with 256MB of RAM. We measured the elapsed time, but
since the implementation of MemoryCube reads text files,
we did not count the time to read the file, and we did not
output any results. The input to the programs was all inte-
ger data, and all the dimensions were packed between 0 and
their cardinality. We estimated the I/O time based upon
the number of tuples in the input and output, assuming no
partitioning was required. Our system had a sequential I/O
rate of 5MB/sec, so we used that figure in estimating I/O
times.

6.1 Full CUBE Computation
The first experiment compares BUC with MemoryCube
for full CUBE computation. We randomly generated one
million tuples. We varied the number of dimensions (group-
by attributes) from 2 to 11 (11 was a compiled limit for
MemoryCube). We repeated the experiment with three
different cardinalities: 10, 100 and 1000 (all dimensions had
the same cardinality). The results are shown in Figure 7.
The graphs show a number of interesting points:

The CUBE gets more sparse as the number of dimen-
sions increases and as the cardinality increases. As a
result, the output gets extremely large, so the output
time dominates the cost of computation. The same re-
sult was observed in [14].

With a cardinality of 10, BUC and MemoryCube have
comparable performance. BUC begins to improve on
MemoryCube at 10 dimensions.

As cardinality increases, the time for MemoryCube
marginally increases or stays about the same. BUC,
however, dramatically improves as the cardinality in-
creases. With 11 dimensions and a cardinality of 1000,
BUC is over 4 times faster than MemoryCube. The rea-
son that BUC improves so much is that the CUBE is get-
ting significantly more sparse as cardinality increases3
so BUC can stop partitioning and aggregating and sim-
ply write the answer to all ancestors. (Even though we
do not output the result, we still make the correct num-
ber of calls the output function.)

6.2 Iceberg-CUBE Computation
This experiment explores the effect of minimum support
pruning in BUC. The input is the 11 dimensional data from
the previous section. The cardinality is again 10, 100, or
1000. The minimum support was 1 (i.e., full CUBE), 2,
10, or 100. (Remember that the minimum support is the
minimum number of records for a group-by partition to be
output. A minimum support of 10 is 0.001% of the data.)

The results are shown in Figure 8 and Figure .9. A
minimum support of 10 decreases the time for BUC
significantly: 37%, 75%, and 85% for cardinalities 10, 100,
and 1000 respectively. In addition, Memory&be now takes
twice as long as BUC for a cardinality of 10. The other major
effect is the I/O time no longer dominates the computation,
even with a minimum support of 2.

6.3 Additional Aggregates
BUC does not try to share the computation of aggregates
between parent and child group-bys, only the partitioning
costs. To verify that partitioning is the major expense, not
aggregation, we computed a full CUBE on 10 dimensional
data with a cardinality of 100 and one million tuples. The
results are shown in Figure 10. Computing one aggregate
accounts for less than 7% of the total cost. Computing
16 aggregates is still only 23% of the total cost. If
any algorithm sacrifices partitioning to try and overlap
the aggregate computations, these percentages will only
decrease. This suggests that optimizing the partitioning is
the right approach for sparse CUBES.

6.4 PBS
We ran an experiment to determine how BUC and Mem-
oryCube compare when used with PBS. We generated a
10 dimensional dataset with a cardinality of 100. Since
all the dimensions are the same, every group-by with the
same number of dimensions has the same estimated size

3Even though the CUBE gets more sparse as dimensionality
increases, the problem is still exponentially harder, so BUC can
never get faster with added dimensions.

367

Cardinality = 10 Cardinality = 100

-_I~ ~~~ 500 .__ ___ _, _- ..,. ..-..;... ..--. .- ;;

2 4 Dimensions8 6 10 2 4 6 8 IO 2 4 6 8 10
Dimensions Dimensions

Figure 7: Full CUBE computation

Dimensions = 11

0 10 20 30 40 50 60 70 80 90 100
Minimum Support

Figure 8: BUC with min. support

Cardinality = 1000

---Et MemolyCube

0 2 4 6 0 10
Max Group-by Attributes

Figure 11: Limited dimensions

20 40 60 80 100 20 40 60 80 100
Minimum Support Minimum Support

Figure 14: Weather data Figure 15: Mail-order sales data

Dimensions = 11

0 10 20 30 40 50 60 70 80 90 100
Minimum Support

Figure 9: Est. I/O with min. support Figure 10: Additional aggregates

1000

500

0
0 1 2 3

Skew

Figure 12: Increasing skew Figure 13: Skewed dimension order

2000

1500
‘Ei
z

i!
1000

F
500

0

600
f

500 .-.. _.: ..-. .- _......... - ._:_

4oo /i-+--T-T
300 ._ _. ___. i. ._-_ .-__ _. ..- j.--.. .-.

2o~/ ; ; /
100 .-----.- I.-- - ._ ..-.--- .--i-... ..-_.

0 4 8 12 16
Number of Aggregates

I + Skew First

0
; -+- Skew Last

0 2 4 6 8 10
Number of Skewed Dimensions

368

(e.g., IABj = JACI =]BC]). The implementation of Mem-
oryCube had an option to limit the maximum number of
attributes used in a group-by (i.e., the maximum number of
non-ALL values), and we implemented the same feature in
BUC. We varied the maximum number of grouping dimen-
sions from 0 to 10. Figure 11 shows that MemoryCube and
BUC followed a similar trend, but that BUC was always sig-
nificantly faster. The performance of MemoryCube did not
change between 0 and 2 dimensions, probably because their
implementation is not optimized for this case.

6.5 Skew

As mentioned previously, BUC is sensitive to skew in the
data. In all of the previous experiments, the data was
generated uniformly (i.e., no skew). We ran an experiment
on 10 dimensional data with cardinality of 100 that varied
the skew simultaneously in all dimensions. We used a Zipf
distribution to generate the data. Zipf uses a parameter cr
to determine the degree of skew. When o = 0, the data is
uniform, and as (Y increases, the skew increases rapidly: at
Q: = 3, the most frequent value occurred in about 83% of
the tuples.

The results in Figure 12 show that the performance of
BUC does degrade as skew increases. BUC with a minimum
support of 100 even converges on BUC for full CUBE.
The performance of MemoryCube, however, improved with
skew because the implementation collapses duplicate group-
by values. We added the duplicate collapsing code to
BUC as described in Section 5.4. This version is called
BUC-Dedup in the graph. With this modification, BUC
degraded until the deduplication compensated for the loss
of pruning. At which point, BUC and MemoryCube have
similar performance.

We ran another experiment were we varied the number of
skew dimensions, each with the same cardinality. Figure 13
shows that placing the skewed dimensions last in the
dimension ordering is significantly better than placing the
skewed dimensions first.

6.6 Weather Data
Figure 14 shows the time for MemoryCube and BUC on a
real nine-dimensional dataset containing weather conditions
at various weather stations on land for September 1985 [9].
The dataset contained 1,015,367 tuples. The attributes were
ordered by cardinality: station-id (7037), longitude (352),
solar-altitude (179), latitude (152), present-weather (lOl),
day (30), weather-change-code (lo), hour (8), and brightness
(2). Many of the attributes were highly skewed, and some
of the attributes were significantly correlated (e.g., only one
station was at one (latitude, longitude)).

This experiment shows that BUC is effective on real data,
even with high skew and correlation, BUC is 2 times faster
than MemoryCube for full CUBE computation, and 3.5
times faster when minimum support is 10. The graph also
shows that a minimum support of just 2 tuples significantly
reduces the I/O cost (4.3 times faster). With a minimum
support of 10, the I/O costs drop drastically (39 times faster
than full CUBE). We also ran BUC with the code to collapse
duplicates. For full CUBE, this version of BUC ran in 167
seconds, which is a 20% improvement,

6.7 Mail-order Data

We ran MemoryCube and BUC on a second real dataset.
This data is sales data from a mail-order clothing company.
We limited the dataset to two million tuples to keep the
relation in memory. The dataset has ten dimensions: the
first three digits of the customer’s zip code (920), product
number (793), add space in the catalog (361), order date
(319), page in the catalog (212), category (40), colors (21),
gender of the product (8), catalog id (2), and focus indicator

(2). This dataset contains extreme correlation. The
product number, page, category, colors, gender, and focus
attributes are all strongly correlated. Collapsing duplicates
on all of the group-bys (i.e., creating the (01, Dz, . . . , Diu))
produced less than 1.4 million distinct tuples.

The results of the experiment are depicted in Figure 15.
Even with the correlation, BUC is still 2 times faster than
MemoryCube for a full CUBE. With duplicate elimination,
BUC becomes 8 times faster than MemoryCube, and with
a minimum support of 10, BUC is 14.6 times faster!

7 Conclusions

We introduced the Iceberg-CUBE problem and demon-
strated its viability as an alternative to static selection of
group-bys. We discussed how Iceberg-CUBE relates to full
CUBE computation, multi-dimensional association rules,
and iceberg queries.

We presented a novel algorithm called BUC for Iceberg-
CUBE and sparse CUBE computation. BUC builds the
CUBE from the most aggregated group-bys to the least
aggregated, which allows BUC to share partitioning costs
and to prune the computation. We also described how BUC
complements group-by selection algorithms like PBS. BUC
can be extended to support dimension hierarchies, and it can
be easily parallelized. Exactly the best way to implement
these features is left for future research.

Our experiments demonstrated that BUC is significantly
faster at computing full sparse CUBES than its closest
competitor, MemoryCube. For example, BUC was eight
times faster than MemoryCube on one real datsset. For
Iceberg-CUBE queries, our experiments also showed that
BUC improves upon its own performance, with speedups of
up to four times with a minimum support of ten tuples.

Acknowledgements
We thank Prof. Ed Robertson for his comments on a
previous version of this paper. We are particularly grateful
to Prof. Ken Ross for his helpful comments and for
supplying his implementation of MemoryCube. We also
thank the anonymous referees for their comments. This
work was supported in part by ORD contract 144-ET33 and
NSF research grant IIS-

References

[l] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta,
J. F. Naughton, R. Ramakrishnan, and S. Sarawagi.
On the computation of multidimensional aggregates. In
Proc. of the 22nd VLDB Conf., pages 506-521, 1996.

369

PI

PI

[41

[51

[‘31

PI

PI

PI

PO1

Pll

R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. of the 20th VLDB Conf.,
pages 487-499, Santiago, Chile, Sept. 1994.

E. Baralis, S. Paraboschi, and E. Teniente. Materialized
view selection in a multidimensional database. In Proc.
of the 23rd VLDB Conf., pages 98-112, Delphi, Greece,
1997.

P. M. Deshpande, S. Agarwal, J. F. Naughton, and
R. Ramakrishnan. Computation of multidimensional
aggregates. Technical Report 1314, University of
Wisconsin - Madison, 1996.

M. Fang, N. Shivakumar, H. Garcia-Molina, R. Mot-
wani, and J. D. Ullman. Computing iceberg queries
efficien.tly. In Proc. of the 24th VLDB Conf., pages
299-310, New York, New York, August 1998.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Datacube: A relational aggregation operator generaliz-
ing group-by, cros,s-tab, and sub-totals. In Proc. of the
IEEE ICDE, pages 152-159, 1996.

H. Gupta. Selection of views to materialize in a data
warehouse. In Proc. of the 6th ICDT, pages 98-112,
Delphi, Greece, 1!)97.

H. Gupta, V. Harinarayan, A. Rajaraman, and J. D.
Ullman. Index selection for OLAP. In Proc. of the
13th ICDE, pages 208-219, Manchester, UK, 1997.

C. Hahn, S. Warren, and J. London. Edited syn-
optic cloud reports from ships and land stations
over the globe, 1982-1991. http://cdiac.esd.ornl.gov/-
cdiac/ndps/ndp026b.html, http://cdiac.esd.ornl.gov/-
ftp/ndp026b/SEP85L.Z, 1994.

V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes effeciently. In Proc. of the
ACM SIGMOD Conf., pages 205-216, 1996.

M. Kamber, J. Han, and J. Y. Chiang. Metarule-
guided mining of multi-dimensional association rules
using data cubes. In Proceeding of the 3rd Intl. Conf.
on Knowledge Discovery and Data Mining, Newport
Beach, CA, Aug. 1997. Also Techical Report CS-
TR 97-10, School of Computing Science, Simon Fraser
University, May 1’997.

[12] R. Kimball. The Data Warehouse Toolkit. John Wiley
and Sons, Inc, 1996.

[13] R. T. Ng, L. V. :Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of con-
strained associations rules. In Proc. of the ACM-
SIGMOD Conf. on Management of Data, pages 13-24,
Seattle, WA, June 1998.

[14] K. A. Ross and D. Srivastava. Fast computation of
sparse datacubes. In Proc. of the 23rd VLDB Conf.,
pages 116-125, Athens, Greece, 1997.

Ll51

WI

P71

P81

P91

K. A. ROSS and K. A. Zaman. Optimizing selections
over data cubes. Technical Report CUCS-018-98,
Columbia University, Nov 1998. http://www.cs.-
columbia.edu/ library/l998.html.

S. Sarawagi, R. Agrawal, and A. Gupta. On computing
the data cube. Technical Report RJ10026, IBM
Almaden Research Center, San Jose, CA, 1996.

R. Sedgewick. Algorithms in C, chapter Chapter 8, page
112. Addison-Wesley Publishing Company, 1990.

A. Shukla, P. M. Deshpande, and J. F. Naughton. Ma-
terialized view selection for multidimensional datasets.
In Proc. of the 24th VLDB Conf., pages 488-499, New
York, New York, August 1998.

Y. Zhao, P. M. Deshpande, and J. F. Naughton. An
array-based algorithm for simultaneous multidimen-
sional aggregates. In Proc. of the ACM SIGMOD Coiqf.,
pages 159-170, 1997.

370

