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Abstract 

We introduce the Iceberg-CUBE problem as a reformulation 
of the datacube (CUBE) problem. The Iceberg-CUBE 
problem is to compute only those group-by partitions with 
an aggregate value (e.g., count) above some minimum 
support threshold. The result of Iceberg-CUBE can be 
used (1) to answer group-by queries with a clause such as 
HAVING COUNT(*) >= X, where X is greater than the 
threshold, (2) for mining multidimensional association rules, 
and (3) to complement existing strategies for identifying 
interesting subsets of the CUBE for precomputation. 

We present a new algorithm (BUC) for Iceberg-CUBE 
computation. BUC builds the CUBE bottom-up; i.e., it 
builds the CUBE by starting from a group-by on a single 
attribute, then a group-by on a pair of attributes, then a 
group-by on three attributes, and so on. This is the opposite 
of all techniques proposed earlier for computing the CUBE, 
and has an important practical advantage: BUC avoids 
computing the larger group-bys that do not meet minimum 
support. The pruning in BUC is similar to the pruning in 
the Apriori algorithm for association rules, except that BUC 
trades some pruning for locality of reference and reduced 
memory requirements. BUC uses the same pruning strategy 
when computing sparse, complete CUBES. 

We present a thorough performance evaluation over a 
broad range of workloads. Our evaluation demonstrates 
that (in contrast to earlier assumptions) minimizing the 
aggregations or the number of sorts is not the most 
important aspect of the sparse CUBE problem. The 
pruning in BUC, combined with an efficient sort method, 
enables BUC to outperform all previous algorithms for 
sparse CUBES, even for computing entire CUBES, and to 
dramatically improve Iceberg-CUBE computation. 

1 Introduction 

Decision support systems frequently precompute many 
aggregates to improve the response time of aggregation 
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queries. The datacube (CUBE) operator [6] generalizes the 
standard GROUP-BY operator to compute aggregates for 
every combination of GROUP BY attributes. For example, 
consider a relation Transaction(Product, Store, Customer, 
Sales). The sum of Sales over the CUBE of Product, Store, 
and Customer produces the sum of Sales for the entire 
relation (i.e., no GROUP BY), for each Product (GROUP 
BY Product), for each Store, for each Customer, for each 
pair: (Product, Store), (Product, Customer), and (Store, 
Customer), and finally for each (Product, Store, Customer) 
combination. In OLAP parlance, the grouping attributes 
are called dimensions, the attributes that are aggregated 
are called measures, and one particular GROUP BY (e.g., 
Product, Store) in a CUBE computation is sometimes called 
a cuboid or simply a group-by. 

The basic CUBE problem is to compute all of the aggre- 
gates as efficiently as possible. Simultaneously computing 
the aggregates offers the opportunity to share partitioning 
and aggregation costs between various group-bys. The chief 
difficulty is that the CUBE problem is exponential in the 
number of dimensions: for d dimensions, 2d group-bys are 
computed. In addition, the size of each group-by depends 
upon the cardinality of its dimensions. If every store sold 
every product, then the (Product, Store) group-by would 
have ]Product] x IStore] result tuples. However, as the num- 
ber of dimensions or the cardinalities increase, the product 
of the cardinalities grossly exceeds the (fixed) size of the in- 
put relation for many of the group-bys. Even in our small 
example, if the data comes from a large department store, it 
is highly unlikely that a given customer purchased even 5% 
of the products, or shopped in more than 1% of the stores. 

When the product of the cardinalities for a group-by is 
large relative to the number of tuples that actually appear in 
the result, we say the group-by is sparse. When the number 
of sparse group-bys is large relative to the number of total 
number of group-bys, we say the CUBE is sparse. As is well- 
recognized, given the large result size for the entire CUBE, 
especially on sparse datasets, it is important to identify (and 
precompute) subsets of interest. 

This paper addresses CUBE computation over sparse 
CUBES and makes the following contributions: 

1. We introduce a variant of the CUBE problem, called 
Iceberg-CUBE in the spirit of [5], that allows us to 
selectively compute only those partitions that satisfy 
a user-specified aggregate condition (similar to SQL’s 
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HAVING clause). The Iceberg-CUBE formulation can 
be viewed as a new dynamic subset selection strategy, 
complementing earlier approaches that statically iden- 
tify group-bys (ralther than partitions) to be precom- 
puted 110, 8, 7, 3, 181. The Iceberg-CUBE formulation 
also identifies precisely the subset of the CUBE that is 
required to mine multidimensional association rules in 
the framework described in [ll]. 

2. We present a simple and efficient algorithm, called BUC, 
for the Iceberg-CUBE problem. BUC proceeds bottom- 
up (it builds the CUBE by starting from a group-by 
on a single attribute, then a group-by on a pair of 
attributes, and so on) in contrast to all prior CUBE 
algorithms. This feature enables the Iceberg aggregate 
selections to be pushed into the CUBE computation 
easily. We also outline an extension to compute precisely 
the CUBE subset identified for precomputation by the 
PBS algorithm [18]. 

3. We present an extensive performance evaluation based 
upon a complete implementation of BUC. We focus our 
comparison on the MemoryCube algorithm presented 
in [14], which was shown to be superior to earlier 
algorithms for co:mputing sparse CUBES. We show 
that BUC outperforms MemoryCube on a wide range 
of synthetic and real datasets, even when computing the 
full CUBE. Further, since MemoryCube does not exploit 
aggregate selections, BUC outperforms it significantly 
for Iceberg-CUBE computation. 

The rest of this paper is organized as follows: Section 2 
discusses sparse CUBE& and we argue that the basic CUBE 
problem is not appropriate for high dimensions. In Section 3, 
we define the Iceberg-CUBE problem. Section 4 describes 
the previous work on computing the CUBE. Most previous 
work does not scale to sparse, high-dimensional CUBES 
[14], and none can directly take advantage of the minimum 
support threshold in Iceberg-CUBE. In Section 5, we present 
a new algorithm for CUBE and Iceberg-CUBE computation 
called Bottom-Up Cube (BUC). Our performance analysis is 
described in Section 6. Our evaluation demonstrates that (in 
contrast to earlier assumptions) minimizing the aggregations 
or the number of sorts is not the most important aspect of 
the sparse CUBE problem. The pruning in BUC, combined 
with an efficient sort method, turns out to be the key to the 
performance gains, evlen for full CUBES. We present our 
conclusions in Section 7. 

2 Motivation 
Ross and Srivastava computed the full CUBE on a real 
nine-dimensional dataset containing weather conditions at 
various weather stations on land for September 1985 [14, 91. 
The dataset had 1,015,367 tuples (N39MB). The CUBE 
on this dataset produces 210,343,580 tuples (NBGB)-more 
than 200 times the input size! 

We break down the output size distribution for this 
dataset in Figure 1. In both the graphs, the x-axis is the 
number of output tuples in a group-by relative to the input 
size. Figure la shows; the number of group-bys that are 
smaller than a given relative size, and Figure lb shows the 

amount of space (relative to the input size) needed to build 
all the group-bys that are less than a given size. The graphs 
convey a number of interesting points: 

l About 20% of the group-bys performed very little 
aggregation (all of the group-bys with relative size of 
nearly 1). These group-bys are simply a projection of the 
input. (If the data were uniform and uncorrelated, then 
nearly 60% of the group-bys would perform little to no 
aggregation.) About 60% of the group-bys aggregated 
an average of no more than 4 tuples. 

l Computing all group-bys that aggregate at least .two 
input tuples on average (group-bys with relative size of 
0.5) requires about 50 times the input size versus the 
200 times for the full CUBE. Requiring an average of 10 
tuples to be aggregated (i.e., 0.001% of the input tuples) 
shrinks the space requirement to 5 times the input. 

l As noted in [14], simply writing the entire output to 
disk can take an inordinate amount of time, and (can 
easily dominate the cost of computing the CUBE. By 
selecting the group-bys (or group-by partitions) that 
perform at least a little aggregation, the output time 
can be significantly reduced. 

Because the space requirements for large CUBES are so 
high, often we cannot realistically compute the full CUBE. 
We need a way to choose what portion of the CUBE to 
compute. A number of researchers have proposed computing 
a subset of the group-bys instead of the entire datacube 1110, 
8, 7, 3, 181. The algorithms choose the group-bys to compute 
based on the available disk space, the expected size of the 
group-by, and the expected benefit of precomputing the 
aggregate. Under certain common conditions, [18] presents 
an algorithm called PBS that chooses to materialize the 
smallest group-bys (i.e., the fewest result tuples, which is the 
same as the group-bys that perform the most aggregation). 

Choosing a subset of the group-bys to compute is certainly 
a reasonable way to reduce the output of full CUBE 
computation, and we show in Section 6 that BUC works 
particularly well with PBS. However, statically choosing a 
subset of the group-bys is not the only way to reduce the 
output; the next section describes a new alternative. 

3 The Iceberg-CUBE Problem 
The Iceberg-CUBE problem is to compute all group-by 
partitions for every combination of the grouping attributes 
that satisfy an aggregate selection condition, as in the 
HAVING clause of an SQL query. For concreteness, we will 
discuss the condition that a partition contain at least N 
tuples; other aggregate selections can be handled as well, 
as described in Section 5.2. The parameter N is called 
the minimum support of a partition, or rninsup for short. 
Iceberg-CUBE with minsup of 1 is exactly the same as the 
original CUBE problem. Iceberg-CUBE with a minsup of 
N is easily expressed in SQL with the CUBE BY clause: 

SELECT A,B,C,COUNT(*) ,SUM(X) 
FROM R 
CUBE BY A.B,C 
HAVING COUNT(*) >s N 
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Figure 1: Space requirements for the weather ditaset 

The precomputed result of an Iceberg-CUBE can be used 
to answer GROUP BY queries on any combination of the 
dimensions (A, B, and C, in this case) that also contains a 
HAVING COUNT(*) >= M, where M >= N. The count 
does not need to be stored if all queries (explicitly or 
implicitly) contain HAVING COUNT(*) >= N. That is, the 
user is simply not interested in small group-by partitions. 

Iceberg-CUBE is not an entirely new problem, although 
this is the first time that it has been proposed for CUBE 
queries. The mining of multi-dimensional association 
rules (MDAR) uses a notion of minimum support that is 
equivalent to Iceberg-CUBE [ll]. MDA% have the form 
X j Y. X is called the body of the rule, and Y is called 
the head. X and Y are sets of conjunctive predicates. For 
the purposes of this discussion, each predicate essentially 
has the form attribute = value, although they are a bit more 
general in [ll]. The support for a rule X + Y in a relation 
R is the probability that a tuple of R contains both X and 
Y. In other words, the support is the count of tuples that 
are true for both X and Y divided by the number of tuples 
in R. The confidence of a rule is the probability that a 
tuple of R contains Y given that the tuple contains X (i.e., 
Prob(YIX) = count(X and Y) / count(X)). The goal of 
mining MDARs is to find rules with a support of at least 
the minsup and a confidence of at least minconf. 

The first step in mining MDARs, as with traditional 
association rules’ [2], is to find the rules that meet minimum 
support. This is precisely the Iceberg-CUBE problem where 
N = [RI * minsupMDAR. The results from Iceberg-CUBE 
can then be combined to find the rules that meet minimum 
confidence. 

A precomputed Iceberg-CUBE is also useful for comput- 

‘Note that the traditional association rule problem can be 
mapped to the MDAR problem be making each item an attribute 
(i.e., a dimension) with a value of zero or one (and using 
predicates with a value of 1). Unfortunately, BUC is ill-suited 
for this problem because (1) the dimensionality is extremely 
high (50,000 items is not uncommon), (2) the cardinality of 
every dimension is extremely low (only two values), and (3) the 
dimensions tend to be highly skewed. 

ing iceberg queries [5]. An iceberg query computes a sin- 
gle group-by and eliminates all tuples with an aggregate 
value below some threshold. For example: 

SELECT A,B.C,COUNT(*) 
FROM R 
GROUP BY A,B,C 
HAVING COUNT(*) >= N 

So the Iceberg-CUBE is essentially an iceberg query over a 
CUBE. Although we do not discuss this point further, the 
techniques of [5] can be used to refine BUC in some cases 
with large partitions. 

4 Previous CUBE Algorithms 
The CUBE was introduced in [6], and they outlined some 
useful properties for CUBE computation: (1) minimize data 
movement, (2) map string dimension attributes [and other 
types] to integers between zero and the cardinality of the 
attribute, and (3) use parallelism. Mapping dimensions to 
integers reduces space requirements (i.e., no long strings), 
eliminates expensive type interpretation in the CUBE code, 
and packing the domain between zero and the cardinality 
allows the dimensions to be used as array subscripts. 

Three types of aggregate functions were identified. Con- 
sider aggregating a set of tuples T. Let {&Ii = 1.. . n} 
be a any complete set of disjoint subsets of T such that 
U; Si = T, and ni Si = {}. 

l An aggregate function F is distributive if there is a 
function G such that F(T) = G({F(Si)li = 1.. .n}). 
SUM, MIN, and MAX are distributive with G = F. 
COUNT is distributive with G = SUM. 

l An aggregate function F is algebraic if there is a M- 
tuple valued function G and a function H such that 
F(T) = H({G(Si)(i = 1.. .n}), and M is constant 
regardless of ITI and n. All distributive functions are 
algebraic, as are Average, standard deviation, MaxN, 
and MinN. For Average, G produces the sum and count, 
and H divides the result. 
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Figure 2: 4-Dimensional Lattice Figure 3: Sample Processing Tree Figure 4: BUC Processing Tree 

l An aggregate function F is holistic if it not algebraic. 
For example, Median and Rank are holistic. 

Algebraic functions have the key property that more 
detailed aggregates (i.e., more dimensions) can be used to 
compute less detailed aggregates. This property induces a 
partial ordering (i.e., a lattice) on all of the group-bys of 
the CUBE. A group-by is called a child of some parent 
group-by if the parent can be used to compute the child 
(and no other group-by is between the parent and the child). 
Figure 2 depicts a sa:mple lattice where A, B, C, and D are 
dimensions, nodes represent group-bys, and the axes show 
the pare&child relationship. 

All of the algorithms use this lattice view of the problem. 
The goal is to take advantage of as much commonality 
as possible between a parent and child. In general, 
the algorithms recognize that group-bys with common 
attributes can share partitions, sorts, or partial sorts. 
The algorithms differ on exactly how they exploit this 
commonality. The following subsections provide details on 
each of the previous proposed algorithms. 

4.1 PipeSort, PipeHash, and Overlap 

l PipeSort, proposed in [16, l], searches the space of 
possible sort orde:rs for the best set of sorts that convert 
the CUBE lattice into a processing tree (e.g., Figure 3). 
The search attem.pts to minimize the number of sorts, 
while at the same time it seeks to compute a group-by 
from its smallest parent. The authors recognized that 
many of the sorts will have a common prefix, so they 
optimized the sorting procedures to take advantage of 
partial sorts. Except when sorting, PipeSort uses at 
most d + 1 memory cells for each of the simultaneous 
aggregates, where d is the number of dimensions. 

[14] points out that PipeSort performs at least 
( > 

r&l 

sorts, where d is the number of dimensions. When 
computing sparse CUBES, many of the intermediate 
results that are sorted cannot fit in memory, so external 
sort will be used. 

l PipeHash, also proposed in [lS, 11, computes a group-by 
from its smallest parent in the lattice. For example, 
if the attributes in Figure 2 are ordered such that 
A 5 B 5 C 5 D, and group-by size estimates are 
proportional to t:he product of the cardinalities (as is 

.CC’ 

the case with attribute independence assumptions), then 
the processing tree produced is shown in Figure 3. 
PipeHash uses a hash table for every simultaneously 
computed group-by. If all of the hash tables cannot. 
fit in memory, PipeHash partitions the data on s#orne 
attribute and processes each partition independently. 
PipeHash suffers from two problems. First, it does, 
not overlap as much computation as PipeSort because 
PipeSort computes multiple group-bys with one sort 
where as PipeHash must re-hash the data for every 
group-by. Second, PipeHash requires a significant 
amount of memory to store the hash tables for the group- 
bys even after partitioning. 

l Overlap, proposed in [4, 11, aims to overlap as much 
sorting as possible by computing a group-by fro:m a 
parent with the maximum sort-order overlap. The 
algorithm recognizes that if a group-by shares a prefix 
with its parent, then the parent consists of a number of 
partitions, one for each value of the prefix. For example, 
the ABC group-by has IAl partitions that can be sorted 
independently on C to produce the AC sort order. 

Overlap chooses a sort order for the root of the 
processing tree, and then all subsequent sorts are some 
suffix of this order. Once the processing tree is formed, 
Overlap tries to fit as many partitions in memory as 
possible to avoid writing intermediate results. If enough 
memory is available, Overlap can make one pass over a 
sorted input file. 

With the same assumptions on the lattice as we used for 
PipeHash, Overlap also produces the processing tree in 
Figure 3. Actually, under these assumptions, choosing 
the smallest parent minimizes the partition sizes and 
the number of partitions, which is ideal for Overlap. For 
example, BD could be computed from ABD, or BCD, 
but BCD produces partitions that are proportional 
to IBI while ABD produces partitions proportiona. to 
IBDI. CD could be computed from either ACD or 
BCD, either would produce the same partition sizes, 
but the number of partitions in BCD is proportional to 
IBI while ACD is proportional to IAl, so BCD produces 
fewer partitions. Thus, picking the smallest parent is 
quite similar to picking for the most overlap. 

[14] argues that the Overlap on sparse CUBES also 
produces a large amount of I/O by sorting intermed.iate 
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results (at least quadratic in the number of dimensions). 

Because these algorithms can generate significant I/O 
for intermediate results or require large amounts of main 
memory, we do not consider them further. 

4.2 ArrayCube 

An array-based algorithm for computing the CUBE was 
described in [19]; we call this ArrayCube. The algorithm 
is very similar to Overlap, except that it uses in-memory 
arrays to store the partitions and to avoid sorting. The 
algorithm expects its input to be in an array-based file- 
structure, but it can be extend to use relational input and 
output with little or no performance penalty. The input 
order for ArrayCube is slightly different from the input order 
for Overlap because the array file-structure is “chunked”. A 
chunk of a n-dimensional array is a n-dimensional subarray 
that corresponds loosely to a page. The array is stored 
in units of chunks. to provide multidimensional clustering; 
chunking is not useful for computing the cube. 

This algorithm is unique in two regards. First, it requires 
no tuple comparisons, only array indexing. Second, the 
array file-structure offers compression as well aa indexing. 
The other methods could benefit from compression as 
well, and with the amount of redundancy in the CUBE 
output, we expect high compression ratios. The algorithm 
is most effective when the product of the cardinalities of 
the dimensions is moderate. Unfortunately, if the data is 
too sparse, this method becomes infeasible because the in- 
memory arrays become too large to fit in main-memory. 

4.3 PartitionedCube and MemoryCube 

PartitionedCube and MemoryCube, described in [14], are 
designed to work together. PartitionedCube partitions the 
data on some attribute into memory-sized units (similar 
to PipeHash but for a different reason), and MemoryCube 
computes the CUBE on each in-memory partition. The key 
observation they made is that buffering intermediate group- 
bys in memory - something all the previous algorithms 
do (except PipeSort, which does not buffer anything) - 
requires too much memory for large sparse CUBES. Instead, 
they chose to buffer the partitioned input data for repeated 
in-memory sorts, similar to PipeSort, although they present 
a new algorithm that picks the minimum number of sorts 

(which is exactly the largest tier in the lattice = 
( > hi;121 1. 

Once each partition for the first partitioning attribute 
is processed (which is half of the CUBE), the input is 
repartitioned on the next attribute. 

Since this algorithm is designed for sparse CUBES, we 
consider this to be the best existing algorithm for the 
CUBE problems discussed in this paper (sparse CUBES and 
Iceberg-CUBES). Therefore, we only compare BUC to this 
algorithm. 

In recent independent work, researchers at Columbia 
University also found that pushing the HAVING clause into 
CUBE computation is beneficial [15]. They describe how to 
take advantage of HAVING predicates in PartitionedCube/ 
MemoryCube. 

Procedure BottomUpCube(input, dim) 
[nputs: 

input: The relation to aggregate. 
dim: The starting dimension for this iteration. 

Zlobals: 
constant numDims: The total number of dimensions. 
constant cardinality[numDims]: The cardinality of 

each dimension. 
constant minsup: The minimum number of tuples in a 

partition for it to be output. 
outputrtec: The current output record. 
dataCount[numDims]: Stores the size of each partition. 

dataCount[i] is a list of integers of size 
cardinality[i]. 

kltputs: 
One record that is the aggregation of input. 
Recursively, outputs CUBE(dim, . . . , numDims) on 

input (with minimum support). 
Method: 
1: Aggregate(input); // Places result in outputRec 
2: if input.count() == 1 then // Optimization 

WriteAncestors(input[O], dim); return; 
3: write outputrtec; 
4: for d = dim ; d < numDims ; d++ do 
5: let C = cardinality[d]; 
6: Partition(input, d, C, dataCount[d]); 
7: let k = 0; 
a: for i = 0 ; i < C ; i++ do // For each partition 
9: let c = dataCount[d][i] 
.o: if c >= minsup then // The BUC stops here 
.l: outputRec.dim[d] = input[k].dim[d]; 
.2: BottomUpCube(input[k . . . ktc], d+l); 
.3: end if 
.4: k+=c; 
.5: end for 
.6: outputRec.dim[d] = ALL; 
7: end for 

Figure 5: Algorithm BottomUpCube (BUC) 

5 Algorithm Bottom-Up Cube 

We propose a new algorithm called BottomUpCube (BUC) 
for sparse CUBE and Iceberg-CUBE computation. The idea 
in BUC is to combine the I/O efficiency of PartitionedCube/ 
MemoryCube, but to take advantage of minimum support 
pruning like Apriori [2]. BUC was inspired by the algorithms 
in [14], particularly PartitionedCube. BUC is similar to 
a version of algorithm PartitionedCube that never calls 
MemoryCube. 

To achieve pruning, BUC proceeds from the bottom of the 
lattice (i.e., the smallest / most aggregated group-bys), and 
works its way up towards the larger, less aggregated group- 
bys. All of the previous algorithms compute in the opposite 
direction. Since parent group-bys are used to compute 
child group-bys, the algorithms cannot avoid computing the 
parents. 

The details of BUC are in Figure 5. The first step 
is to aggregate the entire input (line 1) and write the 
result (line 3). (Line 2 is an optimization that we discuss 
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below. For now we ignore that line.) For each dimension The pruning is similar to the pruning in Apriori [2]. The 

d between dim and numDims, the input is partitioned on major difference between Apriori (appropriately adapted 

dimension d (line 6). On return from Partitiono, datacount for Iceberg-CUBE computation) and BUC is that Apriori 

contains the number of records for each distinct value of processes the lattice breadth first instead of depth first. In 

the d-th dimension. Line 8 iterates through the partitions our example, Apriori would compute the A, B, C, and 

( i.e., each distinct value). If the partition meets minimum D group-bys in one pass of the input. A candidate set 

support (which is always true for full CUBES because would be created from all the partitions that meet minimum 

minsup is one), the partition becomes the input relation in support. For example, if (a3) and (b2) made minimum 

the next recursive call to BottomUpCube, which computes support, then (a3, b2) would be added to the candidate set. 

the (Iceberg) CUBE on the partition for dimensions d + 1 The input would be read a second time and the candidate 

to numDims. Upon return from the recursive call, we pairs would be pruned for minimum support. Now the 

continue with the next partition of dimension d. Once all remaining pairs are combined to form the candidate triples. 

the partitions are processed, we repeat the whole process for If (a3, b2), (a3, c5), and (b2, c5) all made minimum support, 

the next dimension. then (a3, b2, c5) is a candidate in the third pass. 

Figure 4 shows the ESUC processing tree (i.e., how it covers 
the lattice). The numbers indicate the order in which BUC 
visits the group-bys. Figure 6 illustrates how the input 
is partitioned during l;he first four calls to BottomUpCube 
(assuming minsup is one). First BUC produces the empty 
group-by. Next, it partitions on dimension A, producing 
partitions al to a4, and then it recurses on partition al. 
The al partition is aggregated and produces a single tuple 
for the A group-by. Next, it partitions the al partition 
on dimension B. It recurses on the (al,bl) partition and 
writes a (al,bl) tuple for the AB group-by. Similarly for 
(al,bl, cl), and then (al,bl,cl,dl), but this time it does 
not enter the loop at line 4. Instead it simply returns only 
to recurse again on the (al,bl,cl,d2) partition. BUC then 
returns twice and then recurses on the (al, bl, c2) partition. 
When this is complete, it partitions the (al, bl) partition on 
D to produce the (al, bl, D) aggregates. 

Apriori can prune group-bys one step earlier than BlJC. 
For example, if the partition (a3) met minimum support 
but (b2) did not, BUC will consider the (a3, b2) partition 
but Apriori will not. The problem with using Apriori is the 
candidate set usually cannot fit in memory because little 
pruning is expected during first few passes of the input. 
BUC trades pruning for locality of reference and reduced 
memory requirements. 

We implemented the modified Apriori algorithm and 
compared it to BUC. As expected, when the output sizle is 
large, Apriori needs too much memory and performs terrilbly. 
We then compared the algorithms with extremely skewed 
input: all duplicates. Apriori needed very little memory, 
but it still performed significantly worse than BUC. 

Once the (al, bl) partition is completely processed, BUC 
proceeds to (al, b2). This partition consists of a single tuple. 
If we ignore line 2 for the moment, then BUC will recurse 
for (al, b2, c), (al, b2, c, d), and (al, b2, d) aggregating and 
partitioning a single tuple. While the result is correct, it’s a 
fruitless exercise. We add line 2 to the algorithm so that the 
aggregates on this tuple are computed just once, and then 
the result tuple is written to each of its ancestor group-bys 
in WriteAncestors b:y simply setting the dimension values 

5.2 Additional Pruning Functions 

As described in [13], functions other than count can be used 
for pruning. The pruning function must be monotonic.’ For 
any two sets (of tuples, in our case) S and T such that S E T, 
a function f is monotonicly decreasing if f(S) <= f(T). (If 
f is monotonically increasing, the inequality in the prune 
expression must be reversed. We are actually interested in 
monotonically decreasing boolean functions, true < false: if 
f(T) is false then f(S) is false for any subset S of T). Count 
is monotonicly decreasing, since the count of a subset is 

‘The functions are called anti-monotonic in [13]. 

appropriately (in this case: (al, b2), (al, b2, c), (al, b2, c, d), 
and (al, b2, d)). 

The elimination of the aggregation and partitioning of 
single tuple partitions is a key factor in the success of BUC 
on sparse CUBES because many partitions have a single 
tuple. Figure 1 shows that 20% of the group-bys consisted 
almost entirely of single tuple partitions! On one generaked 
dataset, this optimization improved the computation by 
more than 40%. 

5.1 Iceberg-CUBE with BUC 

To this point, we considered only full CUBE computation 
(i.e., minsup = 1). The optimization for a single tuple 
partition is similar to how BUC processes an Iceberg-CUBE. 
When a small partition is found, instead of writing for all 
of the group-bys, BUC simply skips the partition (line 10) 
and does not consider any of the partition’s ancestors. The 
pruning is correct because the partition sizes are always 
decreasing when BUC recurses, and therefore none of the 
ancestors can have minimum support. 
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certainly larger than the count of the superset. Min and max 
are monotonic, as is the sum of positive numbers. Also, if f 
and g are two monotonically decreasing boolean functions, 
then f A g and f V g are both monotonically decreasing 
boolean functions. 

Average, however, is not monotonic. [13] describes how 
some non-monotonic functions can still be used to prune by 
replacing it with a conservative monotonic function. For 
example, if the average of positive numbers must be above 
X, we can prune with the sum above X and the minimum 
below X. If the sum of both positive and negative numbers 
must be above X, then we can prune with the sum of only 
the positive numbers above X. 

These additional pruning functions can be quite useful in 
practice. For example, we can prune aggregates with little 
sales (HAVING SUM(sales) >= S), or those aggregates that 
do not include any young or old people (HAVING MIN(age) 
<= young OR MAX(age) >= old). These functions can 
not only be used for aggregate precomputation, but also for 
mining multi-dimensional association rules. 

To use additional pruning predicates in BUC, add: 
if CanPrune then return; 

after the call to Aggregate0 and before line 2 (where 
CanPrune is the pruning predicate). 

The class of predicates that BUC can use for pruning 
is by no means the only useful HAVING predicates. For 
example, consider HAVING COUNT(*) < X. In this case, 
the user wants the groups with little aggregation, which 
occur towards the top of the lattice. Now, the previous 
CUBE algorithms can prune their computation, but BUC 
cannot. When computing large CUBES however, this 
predicate will not reduce the output size much, so the output 
time will dominate the cost of computation. Note that even 
if a predicate cannot be used for pruning in BUC, it can still 
be used for reducing the CUBE output. 

5.3 Partitioning 

The majority of the time in BUC is spent partitioning the 
data, so optimizing Partition0 is important. When ‘input’ 
does not fit in main memory, the data must be partitioned 
to disk. This can be done with hash-partitioning, followed 
by a partitioning within each bucket (which hopefully now 
fits in main memory), or external-sort can be used. When 
performing an external partitioning, the aggregation step 
(at line 1 of BUC) can be combined with the partitioning. 

Once ‘input’ fits in main memory, which hopefully occurs 
after partitioning on the first dimension, we can use in- 
memory sorting or hashing to partition the data. Note 
that once ‘input’ fits into memory on some call to BUC, 
for all recursive calls from that point, ‘input’ will fit in 
memory. Therefore, an implementation of BUC should have 
BUC-External and BUC-Internal, where processing starts 
with BUC-External and switches to BUC-Internal when the 
input fits in memory. Our current implementation does not 
perform external partitioning. 

Our implementation uses a linear sorting method called 
CountingSort [17]. CountingSort excels at sorting large lists 
that have a sort key of moderate cardinality (i.e., many 
duplicates). The algorithm requires that the sort key be 
an integer value between zero and its cardinality, and that 

the cardinality is known in advance. When an attribute of a 
relation meets this property, we say the attribute is packed. 

Our implementation of BUC assumes that all of the 
dimensions are packed. This same assumption is used in 1191. 
This assumption is reasonable because strings and other 
types are usually mapped into integers to save space and 
eliminate type interpretation. Also, in a star-schema [12], 
the dimension values are often system generated integers 
that are used as keys to the dimension tables. If the 
dimensions are not packed in the input, they can be packed 
when the input is first read by creating a hashed symbol 
table for each dimension as described in [6], and the mapping 
can be reversed when tuples are output (or a simple pre- and 
post-processing pass can be used). 

We found the use of CountingSort to be an important 
optimization to BUC. For example, when sorting one 
million records with widely varied key cardinality and 
skew, QuickSort ran between 3 and 10 times slower than 
CountingSort. CountingSort is faster not only because it 
sorts in O(N) time, but also because it does not perform any 
key comparisons. When using CountingSort, we do not even 
need comparisons to find the partition boundaries, because 
the counts computed in CountingSort can be saved for use 
in BUC. 

CountingSort cannot be easily used in other CUBE 
algorithms because they perform sorts on several dimensions 
(composite keys). (However, CountingSort is a stable sort. 
This means that a sort on a composite key can be achieved 
by calling CountingSort for each key attribute in reverse 
order.) 

Unfortunately, the advantage of CountingSort over Quick- 
Sort slowly degrades as the ratio of the number of tuples to 
the cardinality decreases. When the number of tuples is 
significantly less than the cardinality of the partitioning di- 
mension, QuickSort is faster than CountingSort. BUC pro- 
duces many sorts with small partitions, so our implementa- 
tion switches to QuickSort when the number of tuples in the 
partition is less than l/4 the cardinality. (Also, QuickSort 
switches to InsertionSort when the number of tuples is less 
than 12.) 

5.3.1 Dimension Ordering 

The performance of BUC is sensitive to the ordering of the 
dimensions. The goal of BUC is to prune as early as possible; 
i.e., BUC wants to find partitions that do not meet minimum 
support (or the other pruning criteria, or that only have one 
tuple). For best performance, the most discriminating 
dimensions should be used first. Remember that the first 
dimension is used in half of the group-bys, so it has the 
most potential for savings. 

How discriminating a dimensions is depends upon several 
factors: 

l Cardinality: The cardinality of a dimension (the 
number of distinct values) determines the number of 
partitions that are created. The higher the cardinality, 
the smaller the partitions, and therefore the closer BUC 
is to pruning some computation. 

l Skew: The skew in a dimension affects the size of 
each partition. Skewed dimensions also have a smaller 

365 



effective cardinality when used as the second or later 
partitioning attribute because it is likely that infrequent 
values will not appear in some partition. The more 
uniform a dimension (i.e., the less skew), the better it is 
for pruning. 

l Correlation: If a dimension is correlated with an earlier 
partitioning dimension, then its effective cardinality is 
reduced. Correlation decreases pruning. 

We experimented with two heuristics for ordering the 
dimensions. The first heuristic is to order the dimensions 
based on decreasing cardinality. The second heuristic is 
to order the dimensions based on increasing maximum 
number of duplicates. When the data is not skewed, the 
two heuristics are equivalent. Section 6.5 gives a synthetic 
example where the second heuristic out-performs the first, 
but on we found little difference on real datasets. 

5.4 Collapsing Duplicates 
In the presence of high skew or correlation, a few group-by 
values can account for most of the tuples in the input. For 
example, when computing CUBE(A, B, C, D), the partition 
(~3, b2, c7,d4) could contain 90% of the original input. 
When this occurs, it is worthwhile to collapse the duplicate 
partitioning values to a singe tuple (using aggregation). 

If skewed data is expected to be common, we suggest 
changing the top-level call to BUC to collapse duplicates. 
This can be done by making a copy of the BUC procedure 
called BUC-Dedup and starting the computation at BUC- 
Dedup. Then, replace the Partition0 function at line 6 of 
BUC-Dedup with a function that not only partitions the 
data on dimension d but collapses all of the duplicates on 
dimensions d . . . numl;‘ims - 1. 
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Collapsing duplicates has three disadvantages. First, if 
the data has few duplicates, there is a modest extra cost 
of trying to eliminate them. Second, the ‘input’ to BUC 
is now the result of aggregation, and if a large number of 
aggregates are computed on a small number of measure 
fields, less tuples will fit in memory. Third, and most 
importantly, holistic aggregate functions can no longer be 
computed because the ,4ggregate() function at line 1 receives 
partially aggregated data. 

5.4.1 Switching To Array&be 
BUC can perform poorly when each recursive partitioning 
does not significantly reduce the input size. For example, 
consider computing the CUBE on a relation that is 64 times 
the size of main memory, with ten dimensions that each have 
two distinct values. In this case, BUC needs to partition on 
six attributes before the input fits in memory. The CUBE 
is actually dense, not sparse, so previous algorithms, in 
particular ArrayCube 1191, will perform better than BUC. 

However, this effect can occur even when computing a 
sparse CUBE. Consider the previous example again, but say 
one dimension (call it .A) has a cardinality of 100,000. The 
result CUBE is much more sparse, but half the group-bys 
are just as dense as they were before (i.e., the ones that do 
not use A). If A is used as the first partitioning attribute, 
then BUC efficiently computes all the group-bys on A, but 
performs poorly on the remaining group-bys. 

We suggest switching from BUC to ArrayCube whenever 
the product of the remaining cardinalities is reasonably 
small but the number of input tuples is still large. The 
switch can occur at any point, but a logical choice would 
be to use ArrayCube on the last dimensions during to 
topmost call to BUC. For example, when computing 
CUBE(A, B, C, D), if A is large but B, C, and D are small, 
use BUC to compute all the group-bys that use A, and use 
ArrayCube to compute the remaining group-bys starting at 
group-by BCD (refer to Figure 4). 

When switching to ArrayCube, we can no longer prune 
any of the computation, although the output can still be 
pruned. However, all of the group-bys must be relatively 
small (and therefore aggregate many records) to fit in 
memory, which implies that most of those group-bys iare 
likely to be computed in any case. Another downside 
to using ArrayCube is that it does not support holistic 
aggregate functions. 

This optimization is at odds with collapsing duplicates. If 
we reconsider the first example in this section (10 dimensions 
each with cardinality of 2), collapsing duplicates on r;he 
original input will reduce the relation to at most 21° = 1024 
tuples. More work needs to be done to determine which 
strategy is best. 

5.5 Using BUC with PBS 
BUC works well with the PickBySize (PBS) algorithm for 
choosing group-bys to precompute [18]. PBS chooses the 
group-bys with the smallest expected (output) size (i.e., the 
group-bys that perform the most aggregation). PBS chooses 
entire group-bys, not partitions like Iceberg-CUBE. 

Since PBS chooses by the size of the group-by, if some 
node is chosen, then all of its children must have been 
chosen. For example, if ABC is selected, then AB, AC, 
BC, A, B, C, and the empty group-by must all be selected. 
Selecting group-bys this way produces a frontier in the 
lattice. Every group-by below the frontier is selected. 
Another interesting point from [18] is that the BPUS 
algorithm in [lo] also tends to pick group-bys towards the 
bottom of the lattice. 

BUC can easily be extended to compute only select,ed 
aggregates. When PBS is used, BUC can stop when it hits 
the frontier. This means that BUC can compute only t.he 
selected group-bys, an no others. 

5.6 Minimizing Aggregations 
Since BUC proceeds bottom-up, it does not take advantatge 
of algebraic functions to reduce the aggregation costs. 0n 
the positive side, BUC can efficiently compute holistic func- 
tions, unlike most of the previous algorithms (MemoryCube 
can efficiently compute holistic functions as well.) In our ex- 
periments we found that aggregation costs were only small 
percent of the processing costs. Even when computing 16 
aggregates on a full CUBE, less than l/4 of the proce,ss- 
ing time was attributed to aggregation (see Section 6.:3). 
However, BUC can take advantage of algebraic functions by 
aggregating the results of the recursive call from any one it- 
eration of the loop at line 8. This complicates the algorithm 
a bit, and when we implemented it, BUC actually ran more 
slowly! 



5.7 Memory Requirements 

BUC relies on a significant, but reasonable, amount of 
working memory. As mentioned previously, BUC tries to 
fit a partition of tuples in memory as soon as possible. 
Say the partition has N tuples, and each tuple requires T 
bytes. Our implementation uses pointers to the tuples, and 
CountingSort requires a second set of pointers for temporary 
use. Let Cl . . . Cd be the cardinality of each dimension, and 
c maz: be the maximum cardinality. CountingSort uses C,,, 
counters, and BUC uses c C; counters. If the counters and 
pointers are each four bytes, the total memory requirement 
in bytes for BUC is: 

d 

N(T+8) +4cCi +4C,,, 
i=l 

The memory requirements can be reduced by switching 
to QuickSort. When using QuickSort, the second set of 
pointers and all of the counters are not needed. Also, the 
counters in BUC are not necessary to use CountingSort. If 
the counters are not used, BUC will have to search for the 
partition boundaries. 

6 Performance Analysis 
We received an executable for MemoryCube from Prof. Ken 
Ross. Receiving his executable not only saved us time, 
but also allowed us to do a fair comparison with code that 
they optimized. Their implementation included a number 
of performance improvements that are not described in [14], 
but they are expected to appear in the forthcoming journal 
version of the paper. It is sufficient to say that they report 
this version is three times faster than the original version 
used in [I4]. 

We implemented BUC for main memory only (no external 
partitioning). The implementation of MemoryCube had the 
same restriction because it did not come with Partitioned- 
Cube. This is not a problem because PartitionedCube / 
MemoryCube and BUC have equivalent I/O performance. 
We ran our tests on a 300MHz Sun Ultra 10 Workstation 
with 256MB of RAM. We measured the elapsed time, but 
since the implementation of MemoryCube reads text files, 
we did not count the time to read the file, and we did not 
output any results. The input to the programs was all inte- 
ger data, and all the dimensions were packed between 0 and 
their cardinality. We estimated the I/O time based upon 
the number of tuples in the input and output, assuming no 
partitioning was required. Our system had a sequential I/O 
rate of 5MB/sec, so we used that figure in estimating I/O 
times. 

6.1 Full CUBE Computation 
The first experiment compares BUC with MemoryCube 
for full CUBE computation. We randomly generated one 
million tuples. We varied the number of dimensions (group- 
by attributes) from 2 to 11 (11 was a compiled limit for 
MemoryCube). We repeated the experiment with three 
different cardinalities: 10, 100 and 1000 (all dimensions had 
the same cardinality). The results are shown in Figure 7. 
The graphs show a number of interesting points: 

The CUBE gets more sparse as the number of dimen- 
sions increases and as the cardinality increases. As a 
result, the output gets extremely large, so the output 
time dominates the cost of computation. The same re- 
sult was observed in [14]. 

With a cardinality of 10, BUC and MemoryCube have 
comparable performance. BUC begins to improve on 
MemoryCube at 10 dimensions. 

As cardinality increases, the time for MemoryCube 
marginally increases or stays about the same. BUC, 
however, dramatically improves as the cardinality in- 
creases. With 11 dimensions and a cardinality of 1000, 
BUC is over 4 times faster than MemoryCube. The rea- 
son that BUC improves so much is that the CUBE is get- 
ting significantly more sparse as cardinality increases3 
so BUC can stop partitioning and aggregating and sim- 
ply write the answer to all ancestors. (Even though we 
do not output the result, we still make the correct num- 
ber of calls the output function.) 

6.2 Iceberg-CUBE Computation 
This experiment explores the effect of minimum support 
pruning in BUC. The input is the 11 dimensional data from 
the previous section. The cardinality is again 10, 100, or 
1000. The minimum support was 1 (i.e., full CUBE), 2, 
10, or 100. (Remember that the minimum support is the 
minimum number of records for a group-by partition to be 
output. A minimum support of 10 is 0.001% of the data.) 

The results are shown in Figure 8 and Figure .9. A 
minimum support of 10 decreases the time for BUC 
significantly: 37%, 75%, and 85% for cardinalities 10, 100, 
and 1000 respectively. In addition, Memory&be now takes 
twice as long as BUC for a cardinality of 10. The other major 
effect is the I/O time no longer dominates the computation, 
even with a minimum support of 2. 

6.3 Additional Aggregates 
BUC does not try to share the computation of aggregates 
between parent and child group-bys, only the partitioning 
costs. To verify that partitioning is the major expense, not 
aggregation, we computed a full CUBE on 10 dimensional 
data with a cardinality of 100 and one million tuples. The 
results are shown in Figure 10. Computing one aggregate 
accounts for less than 7% of the total cost. Computing 
16 aggregates is still only 23% of the total cost. If 
any algorithm sacrifices partitioning to try and overlap 
the aggregate computations, these percentages will only 
decrease. This suggests that optimizing the partitioning is 
the right approach for sparse CUBES. 

6.4 PBS 
We ran an experiment to determine how BUC and Mem- 
oryCube compare when used with PBS. We generated a 
10 dimensional dataset with a cardinality of 100. Since 
all the dimensions are the same, every group-by with the 
same number of dimensions has the same estimated size 

3Even though the CUBE gets more sparse as dimensionality 
increases, the problem is still exponentially harder, so BUC can 
never get faster with added dimensions. 
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(e.g., IABj = JACI = ]BC]). The implementation of Mem- 
oryCube had an option to limit the maximum number of 
attributes used in a group-by (i.e., the maximum number of 
non-ALL values), and we implemented the same feature in 
BUC. We varied the maximum number of grouping dimen- 
sions from 0 to 10. Figure 11 shows that MemoryCube and 
BUC followed a similar trend, but that BUC was always sig- 
nificantly faster. The performance of MemoryCube did not 
change between 0 and 2 dimensions, probably because their 
implementation is not optimized for this case. 

6.5 Skew 

As mentioned previously, BUC is sensitive to skew in the 
data. In all of the previous experiments, the data was 
generated uniformly (i.e., no skew). We ran an experiment 
on 10 dimensional data with cardinality of 100 that varied 
the skew simultaneously in all dimensions. We used a Zipf 
distribution to generate the data. Zipf uses a parameter cr 
to determine the degree of skew. When o = 0, the data is 
uniform, and as (Y increases, the skew increases rapidly: at 
Q: = 3, the most frequent value occurred in about 83% of 
the tuples. 

The results in Figure 12 show that the performance of 
BUC does degrade as skew increases. BUC with a minimum 
support of 100 even converges on BUC for full CUBE. 
The performance of MemoryCube, however, improved with 
skew because the implementation collapses duplicate group- 
by values. We added the duplicate collapsing code to 
BUC as described in Section 5.4. This version is called 
BUC-Dedup in the graph. With this modification, BUC 
degraded until the deduplication compensated for the loss 
of pruning. At which point, BUC and MemoryCube have 
similar performance. 

We ran another experiment were we varied the number of 
skew dimensions, each with the same cardinality. Figure 13 
shows that placing the skewed dimensions last in the 
dimension ordering is significantly better than placing the 
skewed dimensions first. 

6.6 Weather Data 
Figure 14 shows the time for MemoryCube and BUC on a 
real nine-dimensional dataset containing weather conditions 
at various weather stations on land for September 1985 [9]. 
The dataset contained 1,015,367 tuples. The attributes were 
ordered by cardinality: station-id (7037), longitude (352), 
solar-altitude (179), latitude (152), present-weather (lOl), 
day (30), weather-change-code (lo), hour (8), and brightness 
(2). Many of the attributes were highly skewed, and some 
of the attributes were significantly correlated (e.g., only one 
station was at one (latitude, longitude)). 

This experiment shows that BUC is effective on real data, 
even with high skew and correlation, BUC is 2 times faster 
than MemoryCube for full CUBE computation, and 3.5 
times faster when minimum support is 10. The graph also 
shows that a minimum support of just 2 tuples significantly 
reduces the I/O cost (4.3 times faster). With a minimum 
support of 10, the I/O costs drop drastically (39 times faster 
than full CUBE). We also ran BUC with the code to collapse 
duplicates. For full CUBE, this version of BUC ran in 167 
seconds, which is a 20% improvement, 

6.7 Mail-order Data 

We ran MemoryCube and BUC on a second real dataset. 
This data is sales data from a mail-order clothing company. 
We limited the dataset to two million tuples to keep the 
relation in memory. The dataset has ten dimensions: the 
first three digits of the customer’s zip code (920), product 
number (793), add space in the catalog (361), order date 
(319), page in the catalog (212), category (40), colors (21), 
gender of the product (8), catalog id (2), and focus indicator 

(2). This dataset contains extreme correlation. The 
product number, page, category, colors, gender, and focus 
attributes are all strongly correlated. Collapsing duplicates 
on all of the group-bys (i.e., creating the (01, Dz, . . . , Diu)) 
produced less than 1.4 million distinct tuples. 

The results of the experiment are depicted in Figure 15. 
Even with the correlation, BUC is still 2 times faster than 
MemoryCube for a full CUBE. With duplicate elimination, 
BUC becomes 8 times faster than MemoryCube, and with 
a minimum support of 10, BUC is 14.6 times faster! 

7 Conclusions 

We introduced the Iceberg-CUBE problem and demon- 
strated its viability as an alternative to static selection of 
group-bys. We discussed how Iceberg-CUBE relates to full 
CUBE computation, multi-dimensional association rules, 
and iceberg queries. 

We presented a novel algorithm called BUC for Iceberg- 
CUBE and sparse CUBE computation. BUC builds the 
CUBE from the most aggregated group-bys to the least 
aggregated, which allows BUC to share partitioning costs 
and to prune the computation. We also described how BUC 
complements group-by selection algorithms like PBS. BUC 
can be extended to support dimension hierarchies, and it can 
be easily parallelized. Exactly the best way to implement 
these features is left for future research. 

Our experiments demonstrated that BUC is significantly 
faster at computing full sparse CUBES than its closest 
competitor, MemoryCube. For example, BUC was eight 
times faster than MemoryCube on one real datsset. For 
Iceberg-CUBE queries, our experiments also showed that 
BUC improves upon its own performance, with speedups of 
up to four times with a minimum support of ten tuples. 
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