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We explore the execution of queries with client-site user- 
defined functions (UDFs). Many UDFs can only be 
executed at the client site, for reasons of scalability, 
security, confidentiality, or availability of resources. How 
should a query with client-site UDFs be executed? We 
demonstrate that the standard execution technique for 
server-site UDFs performs poorly. Instead, we adapt well- 
known distributed database algorithms and apply them to 
client-site UDFs. The resulting query execution techniques 
are implemented in the Cornell Predator database system, 
and we present performance results to demonstrate their 
effectiveness. We also consider the question of query 
optimization in the context of client-site UDFs. The known 
techniques for expensive UDFs are inadequate because they 
do not take the location of the UDF into account. We 
present an extension of traditional ‘System-R’ optimizers 
that suitably optimize queries with client-site operations. 

praveen @cs.cornell.edu 
into SQL queries run at a server. Consider the following 
motivating example: 
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1. INTRODUCTION 
Optimization techniques have been studied thoroughly for 
object-relational SQL queries with expensive user-defined 
functions (UDFs). The assumptions made in these studies 
are that (a) the UDF’s cost is known a priori before its 
location in the plan is determined, (b) the cost is modeled 
on a per-tuple basis. These assumptions implicitly presume 
that the user is extending the server with a new function. 
However, experience with object-relational databases 
shows that extending the database server is difficult even 
for experienced programmers, and impossible for large 
numbers of non-expert users. In large-scale environments 
like the WWW, users need to incorporate client-site UDFs 

A DBMS offers stock market data to its clients over the 
WWW. The users connect to the database to analyze the 
per$ormance of companies and to extract the necessary 
information about prospective candidates for their 
investments. Sophisticated investors will have their own 
local collections of analysis algorithms and underlying 
data that must be integrated into the process of choosing 
and retrieving the desired information. 

Client-site UDFs integrate this user-specific functionality 
with the DBMS’ query processing. Figure 1 shows an 
example query that uses such UDFs. 

SELECT S.Name, S.Report 
FROM StockQuotes S 
WHERE S.Change / S.Close >= 0.1 AND 

ClientAnalysis(S.Quotes) > 500 

Figure 1: Use of a Client-Site UDF 

The investor requests names and financial reports of 
companies that accord to her criteria. The first predicate, 
filtering companies on a lo%+ uptick, can be expressed 
with simple SQL predicates and will be executed on the 
server. However, the second predicate involves a UDF that 
is executed on the client site. 
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Such client-site UDFs need to be supported for reasons of 
confidentiality, security, scalability, and the availability of 
client-specific resources: 

a) The investor’s analysis UDFs are valued assets that are 
ideally not revealed. 

b) The UDFs may not be trusted by the server. In earlier 
work [GMHE98], we showed that the server can trust 
UDFs written in Java to a certain extent, and we are 
developing further protection mechanisms [CSM98]. 
However, the security demands of the server constrain 
the UDFs. Further, many UDFs are not written in Java, 
and if these are allowed to run at the server, they could 
compromise its integrity. 

c) In the context of such expensive operations, there is a 
serious scalability concern, since resource-intensive 
UDFs of many users would together degrade the server 
performance. 

d) The UDFs may use data that resides exclusively on the 
client. This data may only be available in a client- 
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specific representation, or it might represent 
confidential inform.ation. 

In our research, the UDFs and their client-site execution 
environment were implemented in Java. However, there are 
many other architectural frameworks and distributed 
implementation models, like CORBA, DCOM, or 
JavaBeans, that we could have chosen instead, and to which 
our research results apply. 

For the rest of this paper, we will assume that the network 
connecting the clients with the server forms the bottleneck 
of client-site UDF execution. This applies for example to 
clients connected over the Internet, or over an asymmetric 
connection, where only the downlink has high bandwidth 
while the uplink will form the bottleneck. 

1.1 Summary of Contributions 
We believe that client-site UDFs are central to scalable 
object-relational applications. Existing query processing 
techniques for expens.ive UDFs are not appropriate for 
client-site UDFs. Indee.d, the use of traditional approaches 
leads to slow and inefficient execution. This can be 
explained by three key observations: 

b) 

c> 

Client-site UDF execution time can involve network 
latency, which needs to be hidden through 
concurrency. 

Client-site UDF performance can depend on the 
optimized usage of network bandwidth. Specifically, 
the asymmetry between client uplink and downlink 
needs to factor into query evaluation decisions. It may 
be possible to trade off ‘bandwidth on the uplink for 
bandwidth on the downlink. 

The optimal placement of client-site UDF operators in 
the query plan is different from the placement of 
expensive server-site UDFs. 

The primary contribution of the paper is the development of 
techniques to process and optimize queries with client-site 
UDFs. These techniques blend object-relational query 
processing with the distributed database algorithms. 
Specifically, our research makes the following 
contributions: 

1. We develop efficifent execution algorithms for client- 
site UDFs, and describe their implementation. 

2. We explore the tradeoffs between algorithms due to 
asymmetric network connections, and propose options 
that save bandwidth on the client’s uplink at the cost of 
increased traffic on the downlink. 

3. We present a simple cost model that allows us to 
determine the optimal choice of the execution 
algorithms and their parameters. 

4. We present performance results of the prototype 
implementation in the Cornell Predator database 
system. 

5. We develop query optimization techniques for complex 
queries with client-site UDFs. The techniques are 
extensions of a traditional System-R style optimizer. 

Our conclusion is that a database system needs to recognize 
the special characteristics of client-site UDFs and apply 
appropriate query evaluation and optimization strategies to 
such queries. 

1.2 Related Work 
Our work on queries with client-site UDFs builds on 
existing work on expensive UDF execution and distributed 
query processing. The main issues are: (a) how should the 
UDFs be executed? (b) how should query plans be 
optimized? 

Client-site UDFs are expensive; they cannot simply be 
treated like built-in, cheap predicates. The existing research 
on the optimization of queries with expensive server-site 
functions is closely related. The execution of UDFs is 
considered straightforward; they are executed one at a time, 
with caching used to eliminate duplicate invocations. The 
process of efficient duplicate elimination by caching has 
been examined in [HN97]. Predicate Migration [HS93, 
He1951 determines the optimal interleaving of join operators 
and expensive predicates on a join tree by using the concept 
of a rank-order on the expensive predicates. The rank of an 
operation is determined by its per-tuple cost and its 
selectivity. The concept was originally developed in the 
context of join order optimization [IK84, KBZ86, SI92]. 
The Optimization Algorithm with Rank Ordering [CS971 
uses rank order to efficiently integrate predicate placement 
into a System-R style optimization algorithm. UDF 
optimization based on rank ordering assumes that the cost 
of UDF operators is only influenced by the selectivity of the 
preceding operators. We show in Section 5 that rank order 
does not apply well to client-site operations. Our 
optimization algorithm does not rely on it. Another 
approach models UDF application as a relational join 
[CGK89, CS931 and uses join optimization techniques. Our 
approach to optimization takes this route. 

There is a wealth of research on distributed join processing 
algorithms [SA80, ML861 that our work draws upon. The 
distribution of query processing between client and server 
has also been proposed independently of client-site UDFs 
in [FJK96], as a hybrid between data and query shipping. 
Joins with external data sources, specifically text sources, 
have been studied in [CDY95]. To avoid the per-tuple 
invocation overhead of accessing the text source, a semi- 
join strategy is proposed: Multiple requests are batched in a 
single conjunctive query and the set of results is joined 
internally. Earlier work on integration of foreign functions 
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[CS931 proposes the use of semantic information by the 
optimizer. Our work is complementary in that semantic 
information can be used in PREDATOR to transform UDF 
expressions [Sesh98]. We consider the execution of queries 
after such transformations have been applied. 

To summarize, our work is incremental in that it builds 
upon existing work in this area. However, the novel aspects 
of the work are: 

(a) We identify client-site UDFs as an important problem 
and adapt existing approaches to fit the new problem 
domain. 

(b) While earlier work modeled UDFs as joins for the 
purpose of optimization, we go further by using join 
algorithms also for the purpose of execution. 

(c) We identify and exploit important tradeoffs related to 
network asymmetry that lead to interesting 
optimization choices. 

2. Client-Site UDF Execution 
In this section we explore different execution techniques for 
a single client-site UDF applied to all the tuples of a 
relation. For now, we ignore the issue of query optimization 
and operator placement. In the first subsection, we expose 
the poor performance of a naive approach that treats client- 
site UDFs like expensive sever-site UDFs. The next 
subsection models UDFs as joins, leading to the 
development of evaluation algorithms that are based on 
distributed joins. 

In our terminology, the input relation consists of argument 
columns and non-argument columns. Argument columns 
are columns that are arguments to the UDF, like Quote. 
Non-argument-columns are for example Report and 
Name. We call columns that contain the results of the UDF 
application result columns. The input relation can have two 
different kinds of duplicates: those which are identical in all 
columns, called tuple duplicates, and those only identical in 
the argument columns, called argument duplicates. Simple 
predicates that rely on the values in the result columns, but 
can be executed on the client, for example 
ClientAnalysis(S.Quotes)>500, are called 
pushable predicates. Similarly, projections that can be 
applied immediately after the UDF are called pushable 
projections, as in our example the projection on Report 
and Name. 

2.1 Traditional UDF Execution 
Current object-relational databases support server-site 
UDFs. It is tempting to treat a client-site UDF as a server- 
site UDF that happens to make an expensive remote 
function call to the client. If ClientAnalysis were a 
server-site UDF, the established approach would be to wait 
for results of each UDF invocation before the next record is 
processed. This synchronous invocation is based on the 

assumption that the UDF execution utilizes the system 
reasonably: Under this assumption, concurrency of multiple 
invocations would only allow marginal gains. For a client- 
site UDF, this assumption is wrong because its execution 
time consists mainly of network latency and client-site 
processing. 
Thus, the encapsulation of the client communication within 
a generic black-box UDF makes some optimizations 
impossible. On each call to the UDF, the full latency of 
network communication with the client is incurred. This is 
because most iterator-model execution engines do not apply 
one operator of the query plan pipeline to multiple tuples 
concurrently. We show the timeline of execution in Figure 
2(a). 

UDF 

(4 
Server: 

Client: 

(4 
Figure 2: Timeline of Nonconcurrent and Concurrent 

Execution 

The key observation here is, that even if the client might not 
process multiple tuples concurrently, the network is capable 
of accepting further messages while others are already 
being transferred. This means that we can keep a number of 
messages concurrently in the pipeline that is formed by 
downlink, client, and uplink. We refer to this number as the 
pipeline concurrency factor. Figure 2(b) shows the timeline 
for a concurrency factor of 5. 

Another problem of the traditional approach is the 
ignorance of network bandwidth. It is possible to vary the 
bandwidth usage using different execution techniques. 
Consider the UDF in Figure 1: It seems straightforward to 
simply send the argument column, Quotes, and receive 
back the * results. Then the selection, 
ClientAnalysis(S.Quotes)>500, can be applied 
on the server site. This technique is used for server-site 
UDFs. But depending on the networking environment the 
resulting performance might be far from optimal. For 
example, assume that the client’s uplink turns out to be the 
bottleneck, as is the case with modern communication 
channels like ADSL, cable modems, and some wireless 
networks. We might accept additional traffic on the 
downlink if we could in exchange reduce the load on the 
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uplink. We will explore different execution strategies that 
allow these kinds of tradeoffs. 

2.2 UDF Execution as a Join 
It is possible to model the UDF application on a table as a 
join operation: The user defined function in Figure 1 can be 
modeled as a virtual table with the following schema: 

ClientAnalysis ( 
< PriceQuoteArgument :: TimeSeries , 

Rating :: Integer > ) 
The PriceQuoteArgument column forms a key, and 
the only access path is an “indexed” access on this key 
value. Indexed access in this manner incurs costs 
independent of the size of the table. UDF execution as a 
join with such a UDF table, would work analogously to an 
equi-join with a relation indexed on the join columns. 

Since UDF application is modeled as a join, client-site UDF 
application is accordingly modeled as a multi-site join. We 
now examine distributed join algorithms as far as they 
apply to this context. 

2.3 Distributed Jloin Processing 
There are three standard distributed algorithms 
[SA80,ML86] to join an outer relation R and an inner F, 
residing on sites S(erver) and C(lient): 

. Join at S : Send F to S and join it there with R. Not 
feasible for UDF’s since the virtual table F cannot be 
shipped. 

l Join at C : Send 6: to C and join it there with F. 

l Semi-Join : Send a projection of R on its join columns 
to C, which returns all matching tuples of F to S, where 
they are joined with R. 

Identifying S with the, server and C with the client, we get 
two variants for client-site UDF application from the last 
two options. We will briefly introduce each one now, and 
go into more detail in the later part of this section. 

2.3.1 Semi-Join 
Semi-joins are a natural 'set-oriented' extension of the 
traditional ‘tuple-at-a-time’ UDF execution strategy. 
Consider the pseudo code below: 

For each batch of tuples in R: 
Step 0: Eliminate duplicates 
Step 1: Send a batch of unique 

S.x values to the client 
Step 2: Evaluate UDF(S.x) for all 

S.x values in the batch 
Step 3: Send results back to the 

server 
Step 4: Join each result with the 

corresponding tuples 

Note that steps 0 through 4 may be executed concurrently 
because they use different resources. If the batch sent in 

step 1 consists of only one argument tuple, then this is the 
‘tuple-at-a-time’ approach described in the previous section. 
If the entire relation R is sent as a batch we get a classical 
semi-join. The details of the different steps vary depending 
on the execution strategy. It is convenient to model this 
conceptually as below, where the different steps are 
identified as components of a pipeline, with the potential 
for pipeline concurrency. 

Server 

Sender Receiver 

I 11 I I l 1 3 
____________---_____- 4-c --------------------- 4 ----___----.-____- 

Figure 3: Semi-Join Architecture 

For server-site UDFs, it is considered acceptable if the 
execution mechanism blocks for each UDF call until the 
UDF returns the result. However, for client-site UDFs a 
large part of the over-all execution time for one tuple 
consists of network latencies -- steps 1 and 3 above. We can 
ship several tuples on the downlink at the same time while 
another tuple is processed by the UDF, and several results 
are being sent back over the uplink. Concurrency between 
the server, the client, and the network can hide the 
latencies. To obtain this goal we will architecturally 
separate the sender of the UDF’s arguments from the 
receiver of its results, and have them and the client work 
concurrently. These components form a pipeline, whose 
architecture is shown in Figure 3. 

The joining of the UDF results with the processed rela.tion 
depends in its complexity on the correspondence between 
the tuple streams received from the client and from the 
sender. If the sender eliminates duplicates, the receiver has 
to do an actual join between the two streams. Any join 
technique (for example, hash-join) is applicable at the 
receiver. If the sender sorts and groups its input on the 
argument column before sending it to the client, then the 
receiver has to perform a merge-join. 

2.3.2 Join at the Client 
Join at the client site is possible by sending the entire 
stream of tuples from the outer relation to the client. The 
UDF is applied to the arguments in each tuple, and the ZJDF 
result is added to the tuple and shipped back to the receiver. 
The sender and the receiver of the tuple streams on the 
server do not need to coordinate, since the entire tqples 
(with duplicates) flow through the client. (as shown in 
Figure 4). Note that this does not necessarily mean that the 
client makes duplicate UDF invocations: It can cache 
results, even with support from the server: The server can 
sort the outgoing stream of tuples on the argument 
attributes. 
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An advantage of the client-site join is that pushable 
selections and projections can be moved to the client site. 
This reduces the bandwidth used on the client-server 
uplink. On the other hand, we have to send back the full 
records minus applicable projections, and not just results, as 
for the semi-join. Considering non-argument columns, more 
data is also sent on the downlink. Further, on both downlink 
and uplink, the semijoin method eliminates argument 
duplicates, whereas the client-site join performs no 
duplicate elimination. 

Server ,_____ -__ -__- ----------- ------------- _-. ----. 
C lient UDF Execution 

Figure 4: Client-Site Join Architecture 

Downlin k: 
CSJ 
A \ 

Uplin k: 

SJ 

-11 

Arguments Non-Arguments Results 

Figure 5: Tradeoffs between Client-Site Join and Semi-Join 

The difference between semi-join and client-site join is 
visualized in Figure 5. The upper graphic shows what is 
being sent by each join method; the lower one shows what 
is being returned. The horizontals correspond to the 
transferred columns while the verticals correspond to rows. 
We will quantify and experimentally evaluate these 
tradeoffs in the next section. 

3. Implementation 
We have implemented relational operators that execute 
client-site UDFs in the Cornell PREDATOR ORDBMS. All 

server components were implemented in C++ and all client- 
site components are written in Java. Three different 
execution strategies can be used: 

a) Naive tuple-at-a-time execution 

b) Semi-join 

c) Client-site join 

We first describe the implementation of the algorithms, and 
then compare their performance. Our goals for the 
performance evaluation are: 

. Demonstrate the problems of the naive evaluation 
strategy. 

. Show the tradeoffs between semi-join and client-site 
join evaluation of the UDF. 

3.1 Join Implementation 
We will first describe the semi-join implementation, then 
discuss how we control concurrency to evaluate the ndive 
approach, and finally, we discuss the client-site join. 

3.1.1 Semi-Join 

This relational operator implements the semi-join of a 
server-site table with the non-materialized UDF table on the 
client site. In our architecture (see Figure 3), the server side 
consists of three components: the sender, the receiver, and 
the buffer, with which both communicate records. The 
sender gets the input records from the child operators and, 
after sending off the argument columns, enqueues them on 
the buffer. The receiver dequeues the records from the 
buffer and then attempts to receive the corresponding 
results from the client. Sender and receiver are 
implemented as threads, running concurrently. The buffer 
as a shared data structure is needed to keep the full records, 
while only the arguments are sent to the client. Also, 
records whose argument columns form duplicates of earlier 
records have to be joined with cached results at the 
receiver. 

3.1.2 Concurrency 

The size of the buffer that holds records that are between 
sender and receiver corresponds to the pipeline 
concurrency factor: The number of tuples that are on the 
network or the client concurrently. A concurrency factor of 
1 corresponds to one-tuple-at-a-time evaluation. 

How large should the concurrency factor be? Analytically, 
we would expect that the number of records between sender 
and receiver should be at least the number of records that 
can be processed by the pipeline sender - client - receiver in 
the time that it takes for one tuple to pass through this 
pipeline. Let B be the bandwidth of the pipeline: the 
minimum of the bandwidths of the downlink, the client 
UDF processor, and the uplink. Let T be the execution time 
of the pipeline: the time that it takes for one argument to 
travel to the client, for the result to be computed, and to be 
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returned to the serve:r. The number of records that can be 
processed in this time is simply B * T - the pipeline 
concurrency factor that saturates the pipeline. 

3. I .3 Client-Site Join 
The client.-site join uses a variation of this architecture: The 
sender dispatches the whole records to the client, which 
sends back the records with the additional argument 
column. We have the same components as above, but 
without the buffer between sender and receiver. The client- 
site join does not require any synchronization between both 
components, in contrast to the semi-join, where the buffer is 
used to synchronize sender and receiver. Prototype 
mechanisms allow lthe server to specify the argument 
columns and some simple pushable projections and 
selections to the client. 

3.2 Cost Model 
We show in the performance evaluation section that the 
network latency problems of tuple-at-a-time UDF execution 
can be solved through concurrency (either semi-join or 
client-site join). Consequently, we focus in our cost-model 
on these two smarter algorithms. Both algorithms incur 
nearly identical costs at the client and on the server. We 
assume that neither client nor server is the pipeline 
bottleneck, and propose a simple cost model based on 
network bandwidth. We do recognize that this is a 
simplification and tlhat a mixture of server, client and 
network costs may be more appropriate in certain 
environments (as was shown for distributed databases 
[ML86]). We also ignore the possibly significant cost of 
server-site duplicate elimination because the issues are well 
understood [HN97] and not central to the algorithms that 
we propose. 

3.2.1 Cost Modeljbr Semi-Join and Client-Site Join 
We now analyze and empirically evaluate the involved 
tradeoffs with respect to the factors that were visualized in 
Figure 5. To quantif,y the amount of data sent across the 
network, we define the following parameters: 

l A : Size of the argument columns / Total size of the 

input records 

. D : Number of different argument tuples / Cardinality 

of the input relation 

. S : Selectivity of the pushable predicates 

. P : Size of output record after pushable projections / 

Size of output record before 

l I : Size of one input record 

. R : Size of one UDF result 

l N : Asymmetry of the network: (bandwidth of the 

downlink / bandwidth of the uplink.) 

On a per-tuple basis, a semi-join will send the (duplicatce 
free) argument columns: 

D * ( A * I ) (semi-join, data on down/ink, 
per record) 

The client will return the results without applying any 
selections or projections: 

N * D * R (semi-join, data on uplink, per record) 

The client-site join will send the full input records, without 
eliminating duplicates: 

I (client-site join, data on down/ink, 
per record) 

The client will return the received records, together with the 
UDF results, after applying pushable projections and 
selections: 

N * (I+R) * P * S (client-site join, data on up/ink, 
per record) 

The bandwidth cost incurred at the bottleneck link is the 
maximum of the costs incurred at each link. N, the network 
asymmetry weights these costs in the direct comparison. 
The link with maximum cost will be the link whose used 
bandwidth is closer to its capacity and who will thus 
determine the turnaround for the join execution. 

4. Performance Measurements 
We present the results of four experiments: First, we 
demonstrate the problems of the naive approach by 
measuring the influence of the pipeline concurrency factor. 
The next two experiments show the tradeoffs between semi.. 
join and client-site join on a symmetric and an asymmetric: 
network. Finally we show these tradeoffs in thei] 
dependence on the size of the returned results for different 
selectivities. 

Our results show that client-site joins are superior to semi.- 
joins for a significant part of the space of UDF applicat:ions. 
Performance improvements are derived by exploiting the 
tradeoffs between both join methods, especially in the 
context of asymmetric networks. 

All of our experiments were executed with the serve] 
running on a 300Mhz Pentium PC with 130 Mbytes of 
memory. The client ran as a Java program on a 150Mhz 
Pentium PC with 80 Mbytes of memory, connected over a 
28.8KBit phone connection. The asymmetric network was 
modeled on a lOMbit Ethernet connection by returning A’ 
times as many bytes as actually stated. 

4.1 Concurrency 
We evaluated the effect of the concurrency factor on 

performance for the following simple query: 
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SELECT UDF(R.DataObject) FROM Relation R 
Relation is a table of 100 DataObjects, each of the 
same size. UDF is a simple function that returned another 
object ofthe same size. 

Figure 6 gives the overall execution time of the query in 
seconds, plotted against the concurrency factor (number of 
records in the downlink-client-uplink pipeline) on the x- 
axis, for object sizes 100,500, and 1000 bytes. 

Our analysis suggested that the optimal concurrency factor 
is bandwidth times latency: the number of tuples that can be 
processed concurrently while one tuple travels through the 
whole pipeline. Following our assumption, the network is 
the bottleneck and its bandwidth limits the overall 
throughput. In this graph, we can observe that the optimal 
level for 1000 bytes is reached at 5 and for 500 bytes at 10: 
This would correspond to 5000 bytes as the product of 
bandwidth and latency. Presumably, for 100 byte object, the 
optimal concurrency level would be 50. 

~OIJOO 4 ‘“t ~ 

6 11 16 
Pipeline Concumncy Factor 

I-IOOBYles ----5ooB~es .-.....1oooBytes I 

Figure 6: Effect of Concurrency 

The presented data were determined with a non-threaded 
implementation of the presented architecture: This 
facilitates the simple manipulation of the concurrency 
factor. All further experiments ran on an implementation 
that simply uses different threads for sender and receiver. 
Running these as separate threads naturally saturates the 
pipeline between them. 

4.2 Client-Site Join and Semi- Join on a 
Symmetric Network 
Our analysis suggests that the uplink bandwidth required by 
the client-site join is linear in the selectivity while the 
downlink bandwidth is independent of the selectivity. For 
the total execution time, this means that as long as the 
downlink is the bottleneck, selectivity will have no effect, 
but when the uplink becomes the bottleneck, the execution 
time will increase linearly with selectivity. The semi-join is 
not affected by a change in selectivity. 

We measured the overall execution time for the query in 
Figure 7. Relation has 100 rows, each consisting of two 
data objects, together of size 1000 bytes. A was fixed at 
50%: The Argument and the NonArgument object were 
each 500 bytes. The projection factor, P, is adjusted to the 
result size, such that: P*(Z+R) = Z*(I-A)+R, meaning that 
no arguments have to be returned by the client-site join, 
only the non-argument columns and the results. UDF~ takes 
an object from the Argument column and returns true or 
false, while UDF2 takes the same object and returns a result 
of known size. 

SELECT R.Argument, R.NonArgument, 
UDF2(R.Argument) 
FROM Relation R 
WHERE UDFl(R.Argument) 

Figure 7: Measured Query 

In Figure 8, we plot the overall execution time of the client- 
site join relative to that of the semi-join against the 
selectivity of UDFl on the x-axis. Thus, the line at y = I.0 
represents the execution time of the semi-join. We varied 
the selectivity from 0 to 1.0 and plot curves for result sizes 
100, 1000,2000, and 5000 bytes. The execution time of a 
semi-join is independent of the selectivity because semi- 
joins do not apply predicates early on the client. Thus all 
client-site join execution time values of one curve are given 
relative to the same constant. In this, as in all other 
experiments, we set D=I. 

I..... loosytes-~-~loooBytes ---2000Byles--50006ytes 

Figure 8: Client-Site Join versus Semi-Join on a Symmetric 
Network 

We will first discuss the shape of each curve, meaning the 
slope of the different linear parts, and then its height. It can 
be observed that for each result size the curve runs flat up 
to a certain point and from then on rises linearly. For the 
flat part of the curve the downlink is the bottleneck of the 
client-site join’s execution. Only from a certain selectivity 
on will its uplink form the bottleneck and thus determine 
the shape of the curve. For result size 1000 bytes, this point 
is at selectivity 0.6, when the returned data volume (S * 
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(P*(I+R)) = 0.6 * l500) approaches the received data 
volume (I := 1000). The larger the result size, the earlier this 
point will be reached because the ratio of received to 
returned data changes in favor of the latter. The received 
data are independent of the selectivities: As long as the 
downlink dominates, the curve is constant. The increasing, 
right part of the curves is part of a linear function going 
through the origin of the graphs: At zero selectivity the 
uplink would incur no cost. Its cost is linear in the amount 
of data sent on it, which is linear in the selectivity of the 
predicate. 

The flatness of the left part of each curve is caused by the 
dominance of the downlink for such selectivities. Savings 
on the uplink cannot lower the execution time any more. 
The height of the flat part of the curve reflects the relative 
execution time of the semi-join. With larger result sizes the 
left part of the curve will run deeper, because of the 
relatively higher costs of the up-link dominated semi-join, 
compared to the downlink-dominated client-site join. For 
example, the curve for 2000 goes flat at 0.5 (1000 bytes on 
semi-join downlink / 2000 bytes on client-site join uplink). 

4.3 Client-Site Join and Semi-Join on an 
Asymmetric Network 
In this experiment, we explored the same tradeoffs as above 
in a changed setting: The network is asymmetric with the 
downlink bandwidth being hundred times as much as that of 
the uplink (N=IOO).. This choice was motivated by 
assuming a lOMbit ca.ble connection as a downlink that is 
multiplexed among a group of cable customers. With a 
28.8Kbit uplink this would result in N = 350 for exclusive 
cable access and, as a rough estimate, N = 100 after 
multiplexing the lOMbit cable. 

2.L 1 

Figure 9: Client-Site Jloin versus Semi-Join on Asymmetric 
Network 

The same query as above is executed (Figure 7). The 
argument columns consist of 4000 bytes and the non- 

argument columns of 1000 ( A=80% ), and again, only the 
non-argument columns and the results are returned after the 
pushable projections (P*(Z+R)=Z*(l-A)+R). The selectivity 
is varied along the x-axis from 0 to 1 and we give curves for 
result sizes 500, 1000, and 5000 bytes. The relative 
execution time of the client-site join with respect to the 
semi-join is given in Figure 9. 

As our cost model predicts, the bandwidth of the uplink 
depends linearly on the selectivity. The flat part of the 
curves in the last graph is absent because the downlink 
never forms a bottleneck. Our model predicts a selectivity 
of less than: I/(N*(I+R)*P) = 0.0083 to make the downlink 
the bottleneck of the lowest curve (result size 5000 bytes). 

4.4 Influence of the Result Size 
Finally, we fixed the selectivity S and varied the result size 
R along the x-axis from 0 to 2000 bytes. Four different 
curves are shown, for selectivities 25%, 50%, 75%, and 
100%. The argument size was 100 bytes; the overall input 
size 500 bytes. Again, only non-arguments and results are 
returned and, as in the second experiment, the networ:k is 
symmetric. The resulting execution times of the client-site 
join relative to those of the semi-join are presented in 
Figure 10. 

3.6 
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Figure 10: Influence of the Result Size 

It can be seen that the client-site join will only be cheape:r if 
the pushable predicates are selective enough to reduce the 
uplink stream sufficiently and if the results are large enough 
to realize the gain in comparison to the records that have to 
be shipped on the downlink. The steep initial decline of the 
curve represents the change from a downlink bottleneck to 
an uplink bottleneck. While the former is disadvantagelous 
for the client-site join, the latter emphasizes the role of 
pushed down predicates and projections. The crossing 
points of the curves with the 1.0 line satisfies, as expect.ed, 
that the client-site join’s returned data times the selectivity 
are equal to the semi-join’s returned data. The curve for 
selectivity 1.0 will never cross that line. The curves 
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asymptotically approach the horizontal lines that 
correspond to their selectivity. 

5. Query Optimization 
We showed that existing UDF execution algorithms are 
inadequate for client-site UDF queries and we proposed 
alternatives. Now we show that existing query optimization 
techniques are also inadequate. There are two reasons for 
this: 

(a> 

@I 

Multiple client-site operations can exhibit interactions 
that affect their cost. Even for plans with a single 
client-site UDF these interactions are relevant, because 
the result operator of every plan, which ships the 
results to the client, should modeled like a client-site 
“output” UDF. 

The cost of the client-site join is sensitive to the 
number of duplicates in its input stream. 

The existing approaches rely on the concept of a rank order: 
Every operation has a rank, defined as its cost per tuple 
divided over one minus its selectivity. Unless otherwise 
constrained, expensive operations appear in the plan 
ordered by ascending rank. The validity of rank-order 
optimization algorithms is based on two assumptions that 
are violated by client-site UDFs: 

a) The per-tuple execution cost of an operation is known 
a priori, independent of its position in the query plan. 

b) The total execution cost of an operation is its per-tuple 
cost times the size of the input after duplicate removal. 
UDFs can be pulled up over a join, without suffering 
additional invocations on duplicates in the argument 
columns. 

Neither assumption is valid for network-intensive client-site 
UDFs. The cost of a client-site operation is strongly 
dependent on its location next to other such operations with 
which it can be combined. And client-site joins as well as 
combinations of semi-joins are dependent on the number of 
duplicates. 

We propose an extension of the standard System-R 
optimization algorithm for such queries. As a running 
example, we will use the query in Figure 11. A client tries 
to find cases in which his analysis results in the same rating 
than that of a broker. Ratings contains the ratings of 
many companies’ stocks by several brokers. 

SELECT S.Name, E.BrokerName 
FROM StockQuotes S, Estimations E 
WHERE S.Name = E.CompanyName AND 

ClientAnalysis(S.Quotes)=E.Rating 

Figure 11: Example Query : Placement of Client-Site UDF 
ClientAnalysis 

5.1 UDF Interactions 
It is important to observe that the execution costs of a 
client-site UDF depend on the operations executed before 
and after it. If a client-site operation’s input is produced by 
another client-site operation, the intermediate result does 
not have to be shipped back to the server. If such operations 
share arguments, they can be executed on the client as a 
group and the arguments are shipped only once. For 
example, a client-site UDF that is executed immediately 
before the result operator can be executed together with it, 
without ever shipping back its results. We will first discuss 
the case of client-site joins, then that of semi-joins. 

5.1. I Client-Site Join Interactions 
Consider our example from Figure 11 :There are only two 
possible orderings of the operators, one executing the 
client-site function before the join, one after it. In the latter 
case there are three different options. We describe all four 
plans in more detail and give possible motivations: 

4 

b) 

c) 

4 

UDF before the ioin: The result of the UDF can be 
used during the join, for example, to use an index on 
Rating. This also avoids duplicates that the join 
might generate. 

UDF after the ioin: The number of tuples and/or the 
number of distinct argument tuples in the relation 
might be reduced by the join. 

UDF and uushable operations after ioin: If the UDF 
uses the client-site-join algorithm, the selection can be 
pushed down to the client site, reducing the size of the 
result stream. Further, projections may also be pushed 
to the client. In this example, only Name and 
BrokerName of the selected records are returned to 
the server. 

UDF combined with result deliverv: For many queries, 
the results need to be delivered to the client. Since 
there is no other server-site operation between the UDF 
and the final result operator, the UDF with the 
pushable operations can be executed in combination 
with the final operator. This avoids the costs of 
returning intermediate results from the client and also 
the costs of shipping the final results. 

It can be seen that the locations of UDFs in the query plan 
(a vs. b) determines the available options for 
communication cost optimizations: The cost of a UDF 
application is dependent on the operators before and after 
it! These locations and the locations of pushable predicates 
need special consideration during plan optimization. 
Similar observations can be made about semi-joins, which 
we consider in the following section. 

51.2 Semi-Join Interactions 
Semi-joins differ from client-site joins in their interactions: 
Neither the final result operator, nor pushable selections or 
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projections are relev,ant for grouping. There are three 
motivations for grouping semi-joins: 

l The result of one client-site UDF is input to another. 
This avoids sending the results back on the uplink and 
transferring them, with the other arguments of the 
second UDF, on the downlink. The superset of the 
arguments is sent to the first and only duplicates on this 
superset are eliminated. 

. The arguments of one function are a subset of the 
arguments of another. This saves the costs of sending 
the subset twice, but implies transferring all duplicates 
that are not also duplicates in all of the superset’s 
columns. 

l The argument coulumn sets of two functions intersect. 
In this case it can be that we save communication costs 
when sending the superset instead of the two subsets. 
We avoid sending columns repeatedly, but we also 
have to consider the cost of sending the duplicates on 
each subset that are not duplicates on the whole 
superset. 

As an example, consider the query in Figure 11 with an 
additional expression in the select clause: 
Volatility(S.Quotes, S.FuturePrices).The 
client requests an esti:mation of the price volatility for the 
company stocks select.ed in the query, as computed by the 
client-site IJDF. 

The first two options are extensions of client-site join 
option (a), while the last two are extensions of(b) and (c): 

a) 

b) 

c> 

Volatility is pushed down to the location of 
ClientAnalysis, so that both can be executed 
together: The columns Quotes and Futures are 
shipped once for both UDFs. This saves shipping 
Quotes twice, but it does not allow the elimination of 
all duplicates in this column. Identical quotes that are 
paired with different Futures objects have to be 
shipped sever al times. In this plan, 
ClientAnalysis does not benefit from the join’s 
selectivity, Volatility waives both the join’s and 
the selection’s selectivities. 

ClientAnalysis is executed before the join, for 
example, because its result is used for index access to 
Estimates. Volatility is executed after the last 
selection, to benefit from combined selectivity. It is not 
joined with the result operator as a client-site join 
because then its arguments would have to be sent with 
duplicates. 

If ClientAnalysis is moved after the join, it can 
be executed together with Volatility. Both benefii 
from the join’s selectivity, while the duplicates 
generated by the join in both needed input columns can 

be eliminated. Again, the input of Cl ientAnalys is 
might involve some duplicates. 

d) To avoid all duplicates on Quotes, 
ClientAnalysis is executed separately, with the 
selection pushed down. Volatility is also not 
merged with the result operator, to avoid duplicates in 
its input columns. 

5.2 Optimization Algorithm 
We start by presenting the basics of System-R style 
optimization with standard extensions for expensive server- 
site UDFs. Then we present our modifications for deal.ing 
with client-site UDFs using client-site joins and semi-joins. 

5.2.1 System-R Optimizer 

System R [S+79] uses a bottom-up strategy to optimize a 
query involving the join of N relations. Three basic 
observations influence the algorithm: 

. Joins are commutative 

. Joins are associative 

. The result of a join does not depend on the algorithm 
used to compute it. 

Consequently, dynamic programming techniques may be 
applied. 

Initially, the algorithm determines the cheapest plans .that 
access each of the individual relations. In the next step, the 
algorithm examines all possible joins of two relations and 
finds the cheapest evaluation plan for each pair. In the next 
step, it finds the cheapest evaluation plans for each three- 
relation join. With each step, the sizes of the constructed 
plans grow, until finally we have the cheapest plan for a 
join of N relations. At each step, the results from the 
previous steps are utilized. 

This last of the above three observations is not totally 
justified, because the physical properties of the result of a 
join can affect the cost of some subsequent joins (thereby 
violating the dynamic programming assumptions that allow 
expensive plans to be pruned). The System R optimizer 
deals with this by maintaining the cheapest plan for every 
possibly useful interesting property, thereby growing the 
search space. 

5.2.2 Client-Site Join Optimization 

We aim at defining an optimization algorithm that can 
handle queries with client-site UDFs. Our strategy is to treat 
client-site UDFs in the same way as join operators in the 
System R optimization algorithm. A comparable approach 
has been followed in the case of expensive UDFs [CGK89], 
but for client-site operations we also have to consider the 
physical location of operations (like [FJK96][SA80]). 

Our running example will be the construction of the optimal 
plan for the query in Figure 11, as executed by our 
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optimization algorithm The steps of the algorithm, are 
shown as horizontal layers in Figure 12. 

We introduce a new bi-valued physical property, a plan’s 
site, indicating the location of its result. In a server-site plan 
(cornered boxes), the last applied operation is executed on 
the server and thus the result is located on the server. In a 
client-site plan (round boxes), the result is located on the 
client. As an example for a client-site plan, take the plan 
that applies ClientAnalysis on relation S, resulting in 
a relation residing on the client. Joining S with E forms a 
server-site plan because the result of the join resides on the 
server. 

Step 2 

Step 1 

Figure 12: Client-Site Join Optimization of the Query in 
Figure 11 

When applying the next operation to a plan, the optimizer 
has to determine the communication costs with respect to 
the plan’s site. A join (performed on the server) applied on a 
client-site plan requires that the records are shipped from 
the client to the server, while a client-site function applied 
on a server-site plan requires the opposite. Take the 
application of the final result operator to the right plan in 
step 3: it will not incur any additional communication costs 
because the relation already resides on the client. 

A client-site UDF is executed by a join with a given inner 
table - the virtual UDF table. To unify our handling of 
virtual and real joins we consider joins as operations with a 
given inner table. Every relation in the query introduces 
such a join operator. In our example we have to consider 
three operations: the join with S, the join with E, and the 
client-site join with ClientAnalysis. The application 
of a real join to a yet empty plan simply results in the base 
relation of that join. A virtual join cannot be applied to an 
empty plan. 

5.2.3 Semi-Join Optimization 
For the semi-join UDF optimization we need to capture the 
fact that the results of plans after a semi-join are distributed 
between client and server. To do so, we introduce locations 
for each column of the intermediate results as physical 
properties. As an example consider again the plans for the 
query of Figure 11, extended with 

Volatility(S.Quotes, S.FuturePrices) in 
the select clause. We show part of the optimization process 
in Figure 13, omitting all plans that do not start with the 
join of S and E. 

The initial plan, S@E, can be extended by applying either 
ClientAnalysis or Volatility. Each client-site 
UDF can deliver its result column and its argument columns 
on the client site, available for any further operation. If 
Volatility is applied first, ClientAnalysis can 
follow without shipping its arguments because its 
arguments are already on the client. The application of 
Volatility after ClientAnalysis, on the left side 
of the tree, cannot use the Quotes column on the client: 
Duplicates were eliminated on it that were originally paired 
with different FuturePrices values. Everything has to 
be shipped back to the server before the adequate columns 
can be transferred. Similarly, server-site operations, like the 
selection, always ship everything back to the server before 
their execution. 
step 4 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... 

Step 2 
. . . . m . . . . * . . . . . . . . . . . . . . . . . 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Step 1 

Figure 13: Semi-Join Optimization for the Query in 
Figure 11 

5.2.4 Features of the Optimization Algorithm 
The key characteristics of the optimization algorithm are: 

For query nodes that apply client-site UDFs, additional 
physical properties are introduced: the location of the 
optimized subplan’s result, and the subset of its 
columns that resides on the client 

The number of joins in the plan is 2(tioins~c~s~udfs), that 
is, the algorithm is exponential in the number of real 
joins plus the number of client-site UDFs. 

Simple, pushable selections and projections are not 
modeled as operations, although they are, where 
possible, pushed to the client. 
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l Grouping of client-site operations, motivated by shared 
arguments or by result dependencies, is integrated in a 
uniform way, using the location property. 

6. Conclusions 
Client-site query extensions (UDFs) will play an 
increasingly importanlt role in extensible database systems 
due to scalability, confidentiality, and security issues. We 
demonstrate that existing UDF evaluation and optimization 
algorithms are inappropriate for client-side UDFs. We 
present more efficient evaluation algorithms, and we study 
their performance tradeoffs through implementation in the 
Cornell PREDATOR database system. We also present a 
query optimization algorithm that handles the client-site 
UDFs appropriately and finds an efficient query plan. 
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