Query Processing Techniques for Arrays

Arunprasad P. Marathe and Kenneth Salem
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1 Canada
{apmarathe kmsalem}@db.uwaterloo.ca

Abstract

Arrays are an appropriate data model for images, gridded
output from computational models, and other types of
data. This paper describes an approach to array query
processing. Queries are expressed in AML, a logical
algebra that is easily extended with user-defined functions
to support a wide variety of array operations. For example,
compression, filtering, and algebraic operations on images
can be described. We show how AML expressions involving
such operations can be treated declaratively and subjected
to useful rewrite optimizations. We also describe a plan
generator that produces efficient iterator-based plans from
rewritten AML expressions.

1

Arrays are an appropriate data model for images,
gridded output from computational models, and many
other types of data. If arrays are to be supported in a
database system, there must be some language in which
queries against the stored arrays can be expressed. If
such queries are to be answered efficiently, the optimizer
must understand enough about arrays and the array
query language to generate efficient execution plans.
Efficiency is important because arrays may be very large
and array operations may be complex and costly.

Introduction

Figure 1 shows an array query example to which
we will refer throughout this paper. In the example,
the base data form a three dimensional array (array
A) representing a multi-spectral image generated from
the Landsat Thematic Mapper sensor. Two of the
array dimensions are spatial and the third is spectral.
The seven slices through the cube along the spectral
dimension are images of the same scene, each taken
using a sensor sensitive to electro-magnetic radiation

Permission to make digital or hard copies of all or part of this work for
personal or classroom usc is granted without fee provided that copiecs
are not made or distributed tor profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fec.

SIGMOD ‘99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

323

seven-band Thematic Mapper image

dim. 2

dim. 1

I
I
A
I
I

dim. 0

noise-reduced noise-reduced noise-reduced

band 3 band 4 band 7
T |
1 1
1 T
1 1
I 1
I 1
| [
I I
TVI (transformed vegetation index) band 3/band 7 ratio

Figure 1: Data Derived From a Multi-spectral Satellite
Image

in a different spectral band.

Figure 1 also shows several other arrays that might
be derived from the Thematic Mapper image. Array E
in Figure 1 holds the “transformed vegetation index”
(TVI) for the scene. A TVI value at a spatial position
in the scene represents the amount of green biomass
present there [9]. The TVI value at any position can
can be computed from the values of third and fourth
spectral bands at the corresponding position in the
Thematic Mapper image using the function:

by — b3

0.5
Feoi (b3, ba) = [54) +o.5] M

Another useful image that might be derived from
array A is a “band ratio” image, computed as the ratio
of two of the spectral bands of the Thematic Mapper
image. Ratioing can be a useful data analysis tool

fnr('UO, V1, U2y c00y '08) {
T + (v1 +vs +vs +v7)/4
y (v2 +vg + ve +v8)/4
z |z —y
if (lvo — z| > 22) V (Jvo — y| > 22) return y
else return vg

Figure 2: A Noise Reduction Filter. v is the original
cell value, v; through vg are the values of its eight
neighbors, numbered clockwise from the upper left.

because it can compensate for variations in absolute
brightness (cell values) in the original image that might
be caused by topographic features [9]. Array F in Figure
1 is a ratio of Thematic Mapper bands three and seven,
defined at each position by

Fratiolbo,br) = 22 2)
7

The Thematic Mapper image may include noise from
a variety of sources, and it is desirable to try to reduce
this noise before deriving arrays such as the TVI. In
Figure 1, both the TVI array and the band ratio array
are defined in terms of noise-reduced versions (arrays
B, C, and D) of the original Thematic Mapper bands.
Many types of noise reduction are possible; different
types are suitable for different applications. For the
purposes of the example, noise reduction is achieved
using a kind of convolution filter in which the noise-
reduced value of a particular cell is computed using the
original value in that cell and the values of its eight
immediate neighbors. The exact calculation, which is
adapted from [9] is shown in Figure 2.

This example illustrates several points. First, there is
a wide variety of complex, domain-specific transforma-
tions that might be applied to arrays. An array query
language that hopes to be able to express them must
either be very expressive or extensible. Second, there is
considerable room for query optimization. One oppor-
tunity for optimization is the regularity and structure
that may exist in complex-looking queries. In Figure
1, for example, given a particular cell in a derived ar-
ray such as array E, it is possible to determine exactly
which cells of the original Thematic Mapper image con-
tribute to its value. It is also possible to calculate those
cell values in any order. Techniques such as caching and
view materialization can be used to eliminate redundant
calculations, e.g., both the TVI array and the band ra-
tio array are derived from array B. Finally, the data
transformation functions themselves may have proper-
ties that can be exploited by an optimizer that under-
stands them. For example, the noise reduction tech-

324

nique used to produce arrays B, C, and D in Figure 1 is
a discrete two-dimensional convolution. An optimizer
with some knowledge of linear systems might be able to
infer that adding two noise-reduced images is equivalent
to applying noise reduction to their sum.

Array queries like those shown in Figure 1 can be de-
scribed using AML, the Array Manipulation Language,
which was introduced in [10]. The main contribution
of this paper is a collection of optimization techniques
for AML queries. We describe how these techniques
can be used to turn AML queries into efficient evalua-
tion plans. These techniques do not exploit all of the
opportunities for optimization described above, primar-
ily because AML itself does not (yet) capture every-
thing needed to exploit them. For example, the op-
timizer does not “understand” convolution. However,
AML is quite good at capturing structural regularity in
queries. The optimizer exploits this to reorder query
operators, eliminate unnecessary work, and minimize
space requirements. We demonstrate the impact of the
optimizer by comparing evaluation costs with and with-
out optimization for several of the queries from Figure
1.

2

The Array Manipulation Language (AML) was intro-
duced in [10]. AML is based on a simple array model.
An array A is defined by a shape A, a value domain
D4, and a mapping M 4.

A shape is an infinite vector of non-negative integers
that is used to define the length of A in each of
an infinite number of dimensions. The usual vector
subscripting notation, A[4], is used to denote the length
of A in dimension ¢. Subscripts begin at 0. When
shapes are written out explicitly, unspecified lengths are
assumed to be one. That is, {4, 3, 1,2} is shorthand for
the shape {4,3,1,2,1,1,1,---}. The dimensionality of
a shape, dim(A), is the smallest ¢ such that A[j] = 1
for all 7 > ¢. The dimensionality of an array is the
dimensionality of its shape.

A point, or cell, is also an infinite vector of non-
negative integers. A cell Z is said to be in 4 if £[s] < A[4]
for all « > 0. The mapping M4 maps each cell in A
to a value in the array’s domain D4. The size of A,
written |Al, is the number of cells in 4, or [[30, Al4].
We restrict ourselves to arrays of finite size.

AML consists of only three operators, each of which
transforms an array (or two arrays) into another array.
The operators are SUBSAMPLE, MERGE, and APPLY.
Precise operator definitions can be found in [10].

The Array Manipulation Language

2.1 The suBsAMPLE Operator

The SUBSAMPLE, or SUB, operator is used to eliminate
cells. It has as parameters a dimension number
and a binary pattern, or mask. Conceptually, the

binary patterns used by suB and the other AML
operators are of infinite length. When patterns are
written out explicitly, we represent them using a
finite pattern which is assumed to repeat iiself. For
example, the notation 101 represents the binary pattern
101101101101 ---, and the two notations 01 and 0101
represent the same binary pattern.

Conceptually, suB slices its input array into slabs
along the specified dimension. The result consists of
the concatenation of those slices that correspond to
ones in the mask. Slabs that correspond to zeros are
eliminated. For example, suppose that A is the three-
dimensional Thematic Mapper array from Figure 1,
with dimensions zero and one as the spatial dimensions
and dimension two as the spectral dimension. The
AML expression suB2(0011000, A) slices the array in
the spectral dimension (dimension 2, denoted by the
subscript) and keeps the third and fourth slices, since
only the third and fourth bits of the mask are ones.
This has the effect of extracting the third and fourth
spectral bands from the original image. Combinations
of suBs in different dimensions can be used to slice and
dice arrays.

2.2

The MERGE operator is used to combine two arrays.
Like suB, it is parameterized by a dimension num-
ber and a binary pattern. Conceptually, MERGE
slices both input arrays into slabs along the speci-
fied dimension. The result is then produced by in-
terleaving slabs from the two arrays according to the
specified pattern until all of the slabs from both in-
put arrays have been included. Ones in the pat-
tern correspond to slabs from the first (left) input
array and zeros correspond to slabs from the sec-
ond (right) input. For example, the AML expression

The MERGE Operator

MERGE; (10, suB;(0010000, 4), suB2(0001000, 4)) is equiv-

alent to the expression suB2(0011000, A) given previ-
ously. The two nested SUB operators extract the third
and fourth spectral bands from array A. The outer
MERGE then re-stacks these two arrays in the spec-
tral dimension (dimension 2, again denoted by the sub-
script) to produce a single array with a spectral depth
of two.

There are two potential problems with the MERGE
operator as just defined. First, depending on the merge
pattern and the lengths of the two arrays in the merge
dimension, the MERGE may run out of slabs of one array
before running out of slabs of the other. Second, slabs of
the two arrays may differ in length in dimensions other
than the merge dimension. In this case, the result of the
MERGE would not be rectangular, and thus would not be
an array by our definitions. A third MERGE parameter,
called the fill value, is used to handle both of these cases.
Details can be found in [10]. Two arrays that can be

325

combined by a particular MERGE operation without the
use of the fill value are said to be compatible under that
MERGE operation. We will adopt the convention of not
including the fill value in a MERGE operation’s list of
parameters if the arrays being merged are compatible.

2.3 The ApPLY Operator

The final AML operator is APPLY. It is used to apply
a user-defined function to an array in a structured way.
An APPLY operator is parameterized by the function
it applies, and, optionally, by a set of binary patterns,
one per dimension. Any patterns that are not explicitly
supplied are assumed to consist entirely of ones.

The user-defined function maps sub-arrays of the
APPLY’s input to produce sub-arrays of the APPLY’s
output. The shape of the arrays mapped by a user-
defined function f is called the domain box of f, written
Df The range box of f, written Rf, is the shape of the
sub-arrays to which f maps.

The expression APPLY (f, A) applies function f to all
possible sub-arrays of A of shape 13f. The results
of these function applications, each of shape ﬁ,, are
concatenated to form the output array. In the output
array, the arrangement of the range boxes corresponds
to the arrangement of the domain boxes. That is, if
the lower left corner of a domain box is left of (below)
the lower left corner of another domain box, then the
former’s range box will be left of (below) the latter’s in
the output. Note that the domain boxes may overlap
in the input array, but the resulting range boxes do not
overlap in the result.

If an APPLY operator includes pattern parameters
and the patterns contain 0’s, then the function is not
applied to certain domain boxes. Specifically, if P;, the
pattern for dimension ¢, is zero at position j, then the
function is not applied to any domain box whose lower
left cell is located in the jth slab in dimension i. Figure
3 illustrates the behavior of APPLY with patterns that
contain zeros.

2.4

To define the arrays illustrated in Figure 1, three user-
defined functions are needed. These correspond to
functions fiyi, frr, and fratio described in Section 1.
The function fiv; has domain box Dyy; = {1,1,2} and
range box ﬁtv; = {1,1} since it operates on a pair
of spatially co-located cell values and produces from
them a single vegetation index value. Function f,, has
Dpy = {3,3} and R,., = {1,1} since it computes a
new cell value from the original cell value and its eight
spatial neighbors. Finally, fratio has the same domain
box and range box sizes as fi,i since it too computes a
single value from a pair of spectral intensities.

Given these functions, arrays illustrated in Figure 1
can be defined by the following AML expressions:

An Example

0 1 2 3 4
3
array A
: array B
o 1 2 3
B =APPLY(f, A, P0=0l 10, B, =1010)
D, ={22} R, ={21}

Figure 3: An Example of APPLY, from [10]

B = APPLY(far,5UB2(0010000, A)) (3)
C = APPLY(far,SUB2(0001000, A)) (4)
D = APPLY(fnr,SUB2(0000001, A)) (5)
E = APPLY(fiyi, MERGE2(10, B, C)) (6)
F = APPLY(fratio) MERGE(10,B,D)) (7)

Of course, it is not necessary to break the expressions
for intermediate arrays out in this way. A single AML
expression for array F, for example, can be obtained by
substituting for arrays B and D the AML expressions
that generate them.

3

AML offers several opportunities for optimization.
First, the structural regularity of the AML operators
makes it relatively easy to trace data lineage through
an AML expression. This allows AML expressions
to be rewritten to avoid the need to calculate or
retrieve values that are not required. Second, the AML
operators do not specify the order in which the cells of
their output arrays are generated. Order can have a
significant impact on the memory cost of a plan. This
can make the difference between an evaluation plan that
can execute entirely in memory and one that cannot.
The optimizer operates in three phases. The first is
a logical rewriting phase in which AML expressions are
transformed into equivalent expressions. The result of
this phase is an AML expression for which we hope to be
able to generate an efficient plan. A variety of rewrites
are performed, but the primary goal of this phase is
to push sUB operations down to eliminate unnecessary
data retrieval and processing. Plan generation occurs
in the second phase. The input to this phase is
the rewritten AML expression. The output is a plan

Query Optimization Overview

326

composed of physical operators. Physical operators are
“chunk” iterators. That is, they produce arrays a piece,
or chunk, at a time. The final phase is plan refinement.
The primary goal of the refinement phase is to minimize
the amount of memory required for plan evaluation by
determining the order in which each plan operator will
generate its output chunks.

There are numerous other possible optimizations
that our optimizer currently does not perform. It
does not select from among multiple access paths for
stored arrays, and it does not detect and exploit
common AML subexpressions. These problems are
also known in relational optimizers and we do not
expect that it would be too difficult to adapt relational
approaches to the array query optimizer. It performs
no optimizations that involve reordering or combining
APPLY operations. Doing so would require that the
optimizer understand something about the user-defined
functions being applied. This is an issue that we hope to
address in future work. Finally, the optimizer also does
not attempt parallelize query evaluation. Because our
plan operators are iterators, asynchronous pipelining
could be introduced through the use of an “exchange”
operator as was done in Volcano [5]. All of the
AML operators themselves are also well-suited to data-
parallel implementation. Fragmentation of arrays can
be accomplished easily using the SUB operator.

While we do not expect the optimizer to be the last
word in array query optimization, it does demonstrate
that some understanding of array operations can sub-
stantially improve the efficiency of useful array queries.
It also shows that AML, despite its simplicity, captures
enough about array queries to permit this.

4

A rewrite transforms an AML expression into another,
equivalent AML expression. Like many relational
optimizers, our AML optimizer performs a variety of
rewrites. The primary goal of the rewrites is to push
SUB operations as close to the leaf arrays as possible.

Figure 4 summarizes the rewrite rules that are used
to push suBs. In each case, the patterns used in
the rewritten expressions can be calculated from the
patterns in the original expression. The details of a few
of these rules, including calculation of the new patterns,
can be found in [10].

As noted in Figure 4, it may or may not be possible
to push a SUB operation into an APPLY from above,
or to pull a SUB out of an APPLY from below. The
former can occur when a SUB completely eliminates
the results of one or more of the applications of the
user-defined function. In that case, the pattern of the
APPLY operator can be rewritten to indicate that those
function applications can be skipped. The latter can
occur if the APPLY pattern contains enough zeros that

Query Rewriting

original rewritten
expression expression notes
suB;(P,susB;(Q, A)) sus;(P’, A)
suB,(P,susB;(Q, 4)) suB; (@, suB;(P, A)) 1# 7]

suB, (P, MERGE;(Q, A, B))

MERGE;(Q’, suB;(P’, A),suB;(P", B))

compatible MERGE only

suB,;(P,MERGE;(Q, A, B))

MERGE;(Q, sUB; (P, A), suB,(P, B))

1 # j, compatible MERGE only

suB;(P, APPLY (f, P;, A))

suB;(P’, APPLY (f, P/, A))

applicability depends on P and R[i]; P!
will have fewer ones than P;; all Pj, j # 4,
remain unchanged

APPLY(f, P;, A)

APPLY (f, P!, suB;(P’, A))

applicability depends on P; and Dy[4]; P!
will have fewer zeros than P;; all Pj, j # 1,

remain unchanged

Figure 4: Summary of Rewrite Rules for suB Pushdown

certain parts of the APPLY’s input array are not needed
for any of the function applications that are actually
being performed.

A nice feature of AML is that suB operations in
different dimensions are independent and can be pushed
down separately. For this reason, the optimizer’s
rewrite phase makes d passes over the AML expression,
where d is the largest suB dimension that occurs in the
expression. The ith pass moves from the root of the
expression towards the leaves pushing SUB operations
in dimension ¢ as far down as possible. When an APPLY
operation is encountered, the procedure tries to push
the suB into the APPLY from above, and then tries
to pull a suB out of the APPLY from below. The
combination of these two steps will push a suB through
an APPLY if the parameters of the two operations allow
it.

Leaves in the AML expression tree, which represent
stored arrays, are treated by the optimizer like APPLY
operations with no input. To convey this, we will
sometimes write APPLY (f4) to represent a stored array
A in an AML plan. The leaf array A is thought of as
consisting of sub-arrays produced by the application of
a “generator” function f4 by the leaf APPLY operator.
An array catalog associates with each stored array a
range box for that array’s generating function, as well
as other information such as the shape and domain of
the array.

The generator function’s range box can be used
to represent a logical grouping or clustering of the
array’s cells. Since leaf APPLYs have patterns like other
APPLYs, SUB operations can be pushed into the leaves
in the same way they can be pushed into other APPLY
operations. Such pushes indicate that certain logical
groups (range boxes) of data need not be generated. If
the physical clustering of the stored data is made to
correspond to the logical clustering described by the
generating function’s range box, this can be translated

327

directly by the physical operator implementing the
leaf APPLY into the elimination of unnecessary 1/0
operations. For example, range boxes corresponding
to row-slabs match nicely with a row-major physical
layout. Squarer range boxes can be used to suggest a
chunked physical layout as described in [13].

We define a cell in an array produced by an operator
in an AML expression to be dead if, under all possible
interpretations of the user-defined functions appearing
in the expression, a change in the cell’s value would not
affect the value of any cell in the final array produced
by that expression. A particular application of a user-
defined function by an APPLY operator is defined to be
useless if all of the cells in its range box are dead. The
top-down rewriting technique sketched above results in
an AML expression that involves no useless applications
of user-defined functions. In an AML expression with
n operators and a maximum SUB dimension of d,
pushing down suB operations takes O(dn) time since
the algorithm makes d top-down passes through the
expression tree.

4,1 Other Rewrites

The optimizer makes two additional passes over the
AML query expression in addition to the pass that per-
forms suB pushdown. The first of these, which occurs
before the pushdown pass, puts the expression into a
canonical form in which all merged arrays are merge
compatible. This is important because the rewrites that
interchange SUBSAMPLE and MERGE operations, shown
in Figure 4, are valid only if the arrays being merged are
compatible. These rewrites introduce additional MERGE
operations and array constants into the AML expres-
sion. The remaining pass, which occurs after SUB push-
down, replaces null subexpressions with equivalent null
array constants. The worst case time for the first pass
is O(nd) for an expression with n operations and max-
imum dimensionality d. This is because each MERGE

operation may require the addition of up to d additional
MERGESs in case the arrays being merged are incompat-
ible in all dimensions. The final pass takes time O(n).

4.2

Figure 5 shows an AML expression that retrieves a sub-
sampled version of the TVI array (array E) from Figure
1, as well as an optimized version of the same query.
The sub-sampled version of the array is obtained by
discarding every other row and column of the original
array, to obtain an array one quarter the size of the
original. This is implemented by the two sUB operations
at the front of the original AML expression. The
optimized expression is obtained under the assumption
that the range box shape for the stored array A has
unit length in the spectral dimension, i.e., Ra2) =
1. In other words, the array A is logically clustered
by spectral band, and can be “generated” a band at
a time. This allows the SUB operations that select
particular spectral bands to be pushed into the leaf
APPLY operators. If this were not the case, there
would be additional sUB, operations in front of each
leaf APPLY in E’.

In this example, rewriting pushes the two initial
SUB operations through the application of f;,; and
into the applications of f,,. This is the reason for
the patterns (Pp and P;) in the APPLY operators that
apply far. The patterns cause those ApPLYs to skip
the calculation of noise-reduced cell values that will
not be used to compute TVI values in the final array.
However, the SUB operations cannot be pushed through
the applications of f,, because f, uses a domain box
of shape {3,3} to calculate each output value. Thus,
every cell in the input array is needed to calculate at
least one live output cell. Had the suB operations been
used to select, for example, the lower left corner of the
TVI array rather than every other row and column,
then it would have been possible to push the suBs all
the way through the applications of f,, and into the
leaves.

An Example

5 Plan Generation

The plan generator maps a logical AML expression
to a plan. In general, a plan is a directed graph
of physical operators, where arcs represent data flow.
Since the optimizer currently does not detect common
subexpressions, the plans it produces are always trees.

Each plan operator (except leaf operators) consumes
one or more input arrays and produces a single output
array. Plan operators are iterators, which means that
they produce and consume arrays a piece at a time
[6]. Every operator expects its inputs to consist of
non-overlapping array chunks of a particular shape and
produces non-overlapping array chunks of a particular
shape at its output. Each operator produces its

328

Operator Input | Special
Name Streams | Parameters
APPLY P 1 function ap-
plication mask, function
reference
LEAF_P 0 function application
mask, array reference
COMBINE_P >0 combination map
REGROUP_P 1
REORDER_P 1

Figure 6: Physical Operators

output chunks in a particular order (e.g., row major
or column major) and expects input chunks to appear
in a particular order. If two operators are connected
by an arc in a plan, the producer’s output chunk shape
and chunk order must match the input chunk shape and
chunk order expected by the consumer.

Each type of physical operator has a set of parame-
ters, the values of which help to define its exact behav-
ior. All operators have parameters that specify input
and output chunk shapes and chunk order. In addition,
there are parameters that are specific to particular types
of operators.

The plan generator produces plans in which the chunk
orders of the operators are left unspecified. In the
plan refinement phase, described in Section 6, operator
chunk orders are determined and modifications may be
made to the originally-generated plan.

5.1 Physical Operators

The physical operators used in our system are summa-
rized in Figure 6. Specifics of particular operators are
discussed in the following subsections.

5.1.1 The APPLY_P and LEAF_P Operators

The APPLY.P operator implements the logical APPLY
operation, while LEAF_P provides access to stored
arrays. Because leaf arrays are treated like APPLY
operations in AML, LEAF_P operations look much like
APPLY_P operations, but without children.

Both physical operators take a function application
mask as a parameter. The mask plays the same role
as the pattern arguments to the AML APPLY operator,
i.e., it specifies which of the possible result chunks are
to be generated. An APPLY_P operator uses the mask
to avoid generating output chunks that are not needed.
The LEAF_P operator may be able to use its mask to
avoid unnecessary 1/0.

suB;(01,suBo(01, APPLY (ftvi, MERGE2 (10, APPLY (f5,, SUB2(0010000, 4)), APPLY(fn,, SUB2(0001000, 4))))))

Figure 5: Original (E) and Rewritten (E’) Expressions for the Subsampled TVI Image

E =
E APPLY (ftyi, MERGE2(10,
APPLY (fnr, Po = 01, Py = 01, APPLY (f4, P> = 0010000)),
APPLY (fnr, Po = 01, P, = 01, APPLY (f4, P> = 0001000))))
5.1.2 The COMBINE_P Operator

A COMBINE_P operator implements a tree of AML suB
and MERGE operations. It has as many input streams
as the leaves of that tree. Such a tree can be thought of
as implementing a function that maps the cells of the
leaf arrays to the cells of the root array. The function
is one-to-one and onto, and is, in general, partial.

Each COMBINE_P operation takes a combination map
as a parameter. The combination map encodes the
mapping function from input cells to output cells. The
AML suB and MERGE operations are such that the
mapping function can be expressed as a mapping of
input slabs (in each dimension) to output slabs. That is,
in every dimension, if two cells are located in the same
slab in the input, then both cells will be mapped to a
common slab in the output if they are mapped at all.
The number of slabs of an array A is Z?;'S(A) A[4] while
the number of cells is [[#7™(4) 4[i]. Since the former is
usually much smaller than the latter, the combination
map has a compact encoding. The encoding can be
computed easily from the patterns used by the suB and
MERGE operations that the COMBINE_P implements.

QOur COMBINE.P operator expects input chunks of
unit shape and produces output chunks of unit shape.
This restriction results in a very simple implementation
of cOMBINE_P. For this reason, COMBINE_P does not
take chunk sizes as parameters.

5.1.3 The REGROUP_P and REORDER_P

Operators

The REGROUP_P and REORDER_P operators are used to
ensure that a stream of chunks has particular properties
that are expected by downstream operators. The
REGROUP_P operator is used to change the chunk shape.
It takes a stream of chunks of one shape as input, and
produces a stream of chunks of another shape as output.
This requires that the REGROUP_P operator buffer a
certain amount of data, a topic to which we will return
in Section 6.

As its name suggests, the REORDER_P operator
changes the order in which chunks appear in a stream.
All other operators produce output chunks in the same
order in which they consume input chunks. If a chunk
producer wishes to use one chunk order and the chunk
consumer wishes to use another, a REORDER_P operator

329

Figure 7: Plan for a SUBSAMPLE/MERGE Tree

must be inserted between them to re-order the chunks.

5.2 Generating the Initial Plan

The initial plan is generated by a recursive, top-down
translation of the optimized AML expression tree. The
action taken by the translator depends on the type of
node it encounters in the expression tree:

o If the root node of the expression tree is a non-leaf
APPLY operation with domain box ﬁf and range
box ff,, an APPLY_P operator and a REGROUP_P
operator are added to the plan. The REGROUP.P
operator precedes the APPLY_P and ensures that its
input chunks are of the appropriate shape. The
input chunk shape of the APPLY P matches the
APPLY’s Dy, the output chunk shape matches its Ry,
and the application mask is taken from the APPLY’s
patterns.

If the root node of the expression tree is a SUB or
a MERGE, the translator finds the maximal tree of
sUB and MERGE operations rooted at that node. The
tree is translated into an n-ary COMBINE_P operator
and n REGROUP_P operators, where n is the number
of leaves of the tree. This translation is shown in
Figure 7. The COMBINE.P’s combination map is
derived from the patterns of the sUBSAMPLE and
MERGE operations.

If the root node of the expression tree is a leaf
APPLY, a LEAF.P operator is generated. The
function application mask its determined by the
APPLY’s patterns.

Figure 8 shows the plan that would be generated from
the optimized AML expression (E’) for the sub-sampled

APPLY_P

Figure 8: Generated Plan for the Subsampled TVI
Image

TVI image given in Figure 5. Note that some of the
physical operators that appear in this initial plan may
not be necessary. For example, a REGROUP_P operator
with matching input and output chunk sizes is a no-op.
Such operations are eliminated during plan refinement.

6 Plan Refinement

Plan refinement eliminates unnecessary physical opera-
tors from the plan and determines the chunk ordering to
be used by each operator. Chunk reordering operators
are added to the plan if necessary to ensure that each
operator can consume chunks in the expected order.

The bulk of the work in plan refinement is in choosing
the chunk iteration order. Chunk iteration order is
an issue because it affects the amount of data that
must be buffered by physical operators, especially
REGROUP.P. The amount of buffering required depends
on several factors, including the input and output chunk
shapes, the shape of the whole array, and the order in
which chunks occur. Figure 9 illustrates this in two
dimensions. The first part of the figure shows an eight
by eight array being regrouped in l-order (row-at-a-
time) from chunks of shape {4,1} to chunks of shape
{2,2}. Clearly, the REGROUP_P operator must buffer
two rows of cells, or a total of four input chunks. The
second part of the figure shows the same regrouping
operation, but this time in 0-order (column-at-a~time).
The REGROUP _P operator must now buffer four columns
of the array, or a total of eight input chunks, twice
as much as was required in l-order. Clearly, changing
the shape of the array would change this comparison.
For example, if the array was twice as wide, the
memory requirement for 1-order would double, but the
requirement for 0-order would remain unchanged.

The optimizer attempts to minimize the total mem-
ory requirements of a plan by considering a large space
of possible evaluation orders for the operators in the
plan tree. Minimizing the memory requirement is im-

330

dimension 0
4x1 chunks consumed, 2x2 chunks produced

1-order chunk production/consumption

~

4x1 chunks consumed, 2x2 chunks produced

-
dimension 0

[' O-order chunk production/consumption

Figure 9: Regrouping in 1-order and in 0-order

portant because it can make the difference between a
plan that can execute entirely in memory and one that
cannot. In the latter case, it is necessary to split the
plan by materializing partial results on secondary stor-
age, with a corresponding increase in execution cost.

If an operator operates on a total of k chunks,
there are k! ways those chunks could be ordered. The
optimizer does not consider all such orderings. Instead,
it considers d possible iteration orders for each operator,
where d is the maximum dimensionality of any array
appearing in the plan. For d = 2, the iteration orders
considered are the 0-order and l-order illustrated in
Figure 9. For d > 2, i-order (0 < 7 < d) means that
the chunks are sorted using their position in dimension
i as the primary sort key. The remaining dimensions
are secondary sort keys, taken in order of increasing
dimension order. Thus, when d = 3, 2-order means the
chunks are sorted in dimension 2, then dimension 0,
then dimension 1, 1-order sorts by dimension 1, then 0,
then 2, and 0-order sorts by dimension 0, then 1, then
2. Other orders, such as Z-order or the Hilbert curve,
are also possible and possibly even useful, especially if
chunks in the base arrays have been laid out in such an
order on secondary storage. For simplicity’s sake, the
optimizer does not consider them.

Because an array consumer’s chunk ordering must

match that of the array producer, the ordering decisions
for the various operators are not independent. However,
a producer and consumer can use different chunk orders
if a REORDER_P operator is inserted between them in
the plan. A REORDER.P operator itself has a memory
cost, since the entire array must be buffered to change
the chunk ordering. In considering a change in chunk
order, the optimizer must balance the additional cost
of reordering with the potential downstream benefits it
may bring.

In an n-operator plan, there are a total of d” possible
assignments of iteration orders to operators. We use
a dynamic programming algorithm to find a minimum
memory cost assignment of iteration orders to plan
operators in time O(nd?). For each operator z and
order i, the algorithm determines C;(z), the minimum
cost of the plan subtree rooted at z assuming that z’s
output is in i-order. Let X be the set of children of z in
the plan. The minimum subtree cost can be expressed
recursively as:

Ci(z) = ¢lz)+
Z min(C;(y), min(Cj;(y) + c;i(reord(y))))
gex J#

where c¢;(z) is the memory cost of operator z itself in
i-order, and cji(reord(y)) is the cost of a j-order to i-
order REORDER_P operator inserted between y and z
in the plan. In other words, to produce z’s result in
i-order, each child of z either produces its result in i-
order or it produces its result in some other order and
a REORDER_P is inserted after that child to convert its
output to z-order before it reaches z. If = is a LEAF_P
operator, then Ci(z) = ¢;i(z).

6.1

Optimization depends on memory cost estimates ¢;(z)
for each operator z in a plan. The cost of a particular
operator depends on details of its implementation, for
example, in what size units it allocates space. In
general, we assume that each operator has an associated
costing method which can be invoked by the optimizer
to obtain a cost estimate for evaluation of that operator
in a particular order. The cost estimates that are
currently being used are based on the simplifying
assumption that the unit of buffer space allocation
when i-order is being used is a slab of input chunks
in dimension 7. The size of such a slab depends on the
length of the chunk in dimension ¢ and on the lengths
of the entire input array in the remaining dimensions.
Under this assumption, the cost estimate for each type
of physical operator is as follows:

Operator Memory Cost Estimation

REORDER._P: A REORDER_P operation must materialize
its entire input array. Its memory requirement is

331

equal to the size of this array, regardless of the input
and output orders.

REGROUP_P: As was illustrated in Figure 9, the buffer
requirement for a REGROUP_P operator depends on
many factors. In general, if the input chunk shape
is D and the output chunk shape is R the buffer
requirement in i-order is [R[]/ D[z]] i-slabs of input
chunks if the smaller of D[i] and R[4] divides evenly
into the larger. Otherwise, it is [R[:]/D[i]] + 1 4
slabs of input chunks. The size of an -slab depends
on the shape of the array on which the REGROUP_P
operates. If the array is A, the size of an i-slab of
input chunks is (|A]/A[i]) - D[4] cells.

COMBINE_P: Because of the structure of the combina-
tion mapping and because the COMBINE_P operator
always uses input and output chunks of unit size, it
can be implemented without buffering. We take its
memory cost to be zero.

APPLY_P: Depending on its application mask, an AP-
PLY_P operator may need to buffer. This is be-
cause incoming array chunks are non-overlapping,
but the user-defined function may need to be ap-
plied to overlapping chunks. At most two i-slabs of
input chunks must be buffered to implement this. As
described above, the size of an i-slab of input chunks
can be calculated from the input chunk shape, the
input array shape, and the input array size.

LEAF.P: The cost vector for each leaf is maintained
as part of the system catalog, and depends on the
access method implemented by the leaf. Our LEAF_P
operators operate on flat files and do not buffer data;
we assign a cost of zero for all iteration orders.

Each operator’s cost is also made to include the cost
of one output chunk, in addition to the costs described
above. The extra cost represents the space required
to pass the operator’s output to its parent in the plan
tree.

7

The AML optimizer has been implemented as part of
an array database system that serves as a backend for
MATLAB.! This system allows MATLAB users to issue
AML queries which bring their results into MATLAB
for further processing. Optimizer is written in C+-+
and interacts with MATLAB through its extensibility
facility (.mex files). In the remainder of this section we
use the example introduced in Figure 1 to illustrate a
few features of the optimizer’s performance.

All of the experiments described below were run
on a Sparc Ultra-5 with sufficient memory to allow

Performance

I'MATLAB is a registered trademark of The MathWorks, Inc.

Memory Cost (Kbytes) CPU Optim.
Query | O-order | l-order | 2-order | Time (sec)
Q1 4217 4217 4739 0.03
Q2 973 51 573 0.03

Figure 10: Memory Cost and Optimization Time for
Several Queries

the optimizer and the resulting query to run without
paging. Stored arrays were retrieved from flat files
provided by the Solaris operating system.

7.1

Figure 10 shows the query optimization time and the
memory cost of the resulting plans for two queries
involving the TVI image from Figure 1. The reported
memory costs are given in kilobytes, and do not include
the memory required to store the final result. Execution
times are CPU times expressed in seconds. We report
CPU times because they are independent of the load on
the test machine, and because query optimization itself
involves almost no 1/0.

Since the example is in three dimensions, the opti-
mizer effectively produces three plans for each query.
One is the minimum memory cost plan that produces
the chunks of the query result in 0-order. The other
two are the minimum memory cost plans that produce
the query result in 1-order and in 2-order.? Unless the
order of the final result matters, the optimizer would
normally choose the least costly of these three plans.
However, we have shown all three in Figure 10 to illus-
trate the effect of iteration order.

In Figure 10, the query @ is the same as the
expression E from Figure 5. It returns a sub-sampled
version of the TVI array. The shape of the stored array
A is {1024,1024,7} and it is logically clustered by the
spectral band. In particular D4 = {1024,1024,1}. The
optimizer rewrites this query to produce the expression
E’ (see Figure 5) and then generates plans. In this case,
the 0-order and l-order plans have identical memory
costs. Furthermore, none of the winning plans contain
any REORDER._P operations. All physical operators in
the 0-order plan iterate in 0-order, for example. This is
because the arrays and domain and range boxes used in
the query are close to square, so that no dimension is
heavily favored. Note that the relatively large memory
cost for this query reflects the large logical cluster size
of array A. The leaf nodes generate a full band of data
at a time.

Query), in Figure 10 is identical to @1 except that
Thematic Mapper array A is logically clustered by row,

Memory Costs

2Since the resulting array has only one slab in dimension 2,
2-order is the same as 0-order in this case.

332

fraction | optimize + eval CPU time (sec)
retrieved | with rewrite | no rewrite
1/1 27.3 27.7
1/4 7.3 28.3
1/16 2.1 27.8
1/64 0.8 27.6
1/256 0.3 27.5

Figure 11: Effect of Rewrites on Query Processing Time

ie., Dy = {1024,1,7}. This has two effects. First, the
memory costs for all orders are smaller than the costs
for @, primarily because A consists of smaller clusters.
Second, order matters. The memory requirement for
the winning l-order plan is an order of magnitude
smaller than the requirement for the best 0-order plan.
This reflects the oblong shape of D,. In general,
the more oblong the shapes of the domain and range
boxes of the user-defined functions in a query, the more
important iteration order will be. Queries involving a
mix of shapes oblong in different dimensions lead to
plans that may involve chunk reordering as a means of
minimizing the memory requirement.

7.2

Of course, optimization directly affects the execution
time of a plan as well as its memory cost. Currently,
we have implemented only a very simple bottom-up
sequential plan evaluator. That is, before an operator
is evaluated, each of its children are evaluated and their
results are fully materialized in memory. An iterator-
based evaluator is under construction. Provided there is
sufficient memory to hold the materialized intermediate
results, we expect the sequential evaluator to have an
execution time similar to what we would see from an
iterator-based synchronous pipeline.

Figure 11 shows the CPU time required to evaluate
several queries that return the lower left corner of the
TVI image. We varied the boundary of the retrieved
region from query to query to control the size of
the retrieved image. The column labeled “fraction
retrieved” in Figure 11 indicates the fraction of the full
TVI images that was retrieved. Two sets of numbers are
shown. The “with rewrite” column shows the total CPU
time required for query optimization and evaluation
when the rewrite phase of the optimizer was enabled.
The “no rewrite” shows this time when the rewrite
phase of the optimizer was disabled.

The absolute query evaluation times for retrieval of
the full array are quite slow for arrays of this size;
there is a great deal of room for improved efficiency in
the evaluator. Nonetheless, comparisons between the
numbers do demonstrate the advantages of the rewrite

Query Evaluation Time

phase of the optimizer. Without optimization, the full
TVI array is computed and then clipped to obtain the
desired region. Since most of the cost is in computing
the result, the execution time without optimization
remains essentially unchanged as the retrieval region
shrinks. With optimization, the optimizer is able to
push the clipping sUB operations all the way to the
leaves, and then into them. Thus, execution time
shrinks with the size of the retrieval region.

8 Related Work

Several database query languages for array data have
been proposed. However, optimization of array queries
has received less attention. These languages include
AQL [8] and Baumann’s language for multidimensional
discrete data (MDD) [2]. AQL is based on a calculus
which provides four array-related primitives, two for
creating arrays, one for extracting the value of an
array cell, and one for determining the array shapes.
These primitives, plus such things as conditionals
and arithmetic operations, can then be combined to
construct higher-level operations, e.g., operations that
operate on entire arrays. Optimization in AQL is
performed by replacing higher-level constructs with
their definitions, and then applying rewrites expressed
in terms of those primitive operations. This is a
powerful approach that could enable an optimizer,
through some kind of search, to discover higher-level
optimizations similar to the ones used in this paper.
Since all array operations are ultimately described using
the primitive constructs, there are no uninterpreted
functions like those used in AML APPLY operators. How
exactly such an optimizer would work and how efficient
it would be remain open questions.

Baumann’s MDD language is similar in spirit to
our own, and can be viewed as a restricted version
of the Image Algebra [12]. Like AML, it includes
higher-level operators that operate on entire arrays. It
includes some features not present in AML, such as
an interpreted conditional operator and array updates.
Other features are less general than those of AML.
In particular, the equivalent of the APPLY operator in
the MDD language is restricted to have domain and
range boxes of unit size. This makes it possible for
an optimizer to always push MDD’s version of SUB
through apply, and to compose multiple consecutive
function applications. As a result, all query evaluation
plans are simple: array data is filtered and then passed
through a single function application operator that
applies a composed function to each array cell. There
is never a need to materialize intermediate results.
Data-parallel function application would be a relatively
simple matter in this language, as it would be in AML.
The MDD language is the basis of the array support in
the RasDaMan database system, which manages raster

333

image data [3].

There have also been several recent proposals for mul-
tidimensional data models and languages in support of
OLAP applications [1, 7]. Although these languages
have some elements in common with AML, such as slic-
ing and dicing of arrays, they have a different flavor than
AML and the other array languages mentioned above.
Both OLAP models support arbitrary aggregation hier-
archies in support of roll-up and drill-down operations.
Although AML can also support aggregation through
the application of user-defined functions, AML applies
functions in a very regular manner. Irregular aggrega-
tion can be supported, but not elegantly and perhaps
not efficiently. On the other hand, it is not clear how to
use either OLAP model to perform an operation simi-
lar to the application of the noise-reduction function in
Figure 1.

Special purpose image database systems also handle
array data, at least in two dimensions [4]. These
systems focus on selection of images, or parts of images,
from a set. Such selections are usually based on
image meta-data, which may itself have been extracted
from the images. AML does not directly model or
support such meta-data. However, AML can be used
in conjunction with content-based retrieval techniques,
e.g., to operate on a selected image or set of images.

Object-relational and object-oriented database sys-
tems can be extended to support complex data types
like arrays [15, 16]. This can be accomplished through
the definition of an array data type as well as functions
to operate on arrays. For example, the Informix Univer-
sal Server provides various modules (called DataBlades)
to support complex data [11]. An Image DataBlade
module is available that supports a wide variety of im-
age formats and image-specific functions. Such systems
may perform a variety of optimizations of set-oriented
(relational) queries with embedded non-relational func-
tions and predicates. For example, they may opti-
mize the placement of expensive user-defined predicates
within a relational plan. However, optimization of the
embedded non-relational portion of the query is very
limited. User-defined functions are black boxes. With-
out some knowledge of the behavior of such functions,
many optimizations, such as reordering of operations,
are not possible.

Improving the optimization of the non-relational
parts of object-relational queries is an interesting
problem. Research systems like PREDATOR, support
so-called enhanced abstract data types (E-ADTs) which
add type-specific optimization to ADTs [14]. Object-
relational queries are decomposed into relational and
non-relational parts, and the latter are handed to type-
specific optimizers for optimization. Recent work has
also considered the annotation of user-defined types in
an object-relational system with additional information

that allows data lineage to be tracked through a series
of operations [17]. This is similar to what is done with
masks and patterns in AML.

9 Conclusions

We have described an optimizer for array queries ex-
pressed in AML. AML provides a mechanism through
which uninterpreted user-defined functions can be ap-
plied to arrays. Because these functions are applied
in a structured way, the optimizer can rewrite AML ex-
pressions to eliminate unnecessary function applications
and I/0. The optimizer also controls the order in which
the cells of the derived array are computed as a means
of minimizing the amount of memory required to eval-
uate a query. Using several examples from the image
processing domain, we have shown how these optimiza-
tions can lead to improved query evaluation times and
reduced memory requirements.

Other than improving our optimizer and evaluator,
there are a number of open problems that we hope to
address. One is the problem of integrating array and
non-array databases and query languages, which was
discussed briefly in Section 8. The other is the problem
of describing properties of user-defined functions to
an optimizer so that those properties can be reasoned
about and exploited.

Acknowledgments

This work was supported by the National Sciences and
Engineering Research Council of Canada.

References

[1] Rakesh Agrawal, Ashish Gupta, and Sunita
Sarawagi. Modeling multidimensional databases.
In Proc. of the Int’l Conf. on Data Eng., pages
232-243, April 1997.

[2] P. Baumann. Management of multidimensional
discrete data. The VLDB Journal, 3(4):401-444,

October 1994.

Peter Baumann, Paula Furtado, Roland Ritsch,
and Norbert Widmann. Geo/environmental and
medical data management in the RasDaMan sys-
tem. In Proc. of the Int’l Conf. on VLDB, pages
548-552, August 1997,

[4] S.--K. Chang and A. Hsu. Image information
systems: Where do we go from here? IEEE
Transactions on Knowledge and Data Engineering,

4(5):431-442, October 1992.

Goetz Graefe. Encapsulation of parallelism in the
Volcano query processing system. In Proc. of the
ACM SIGMOD Int’l Conf. on Mgmt. of Data,
pages 102-111, June 1990.

334

[6]

[7]

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

Goetz Graefe. Query evaluation techniques
for large databases. ACM Computing Surveys,
25(2):73-170, June 1993.

Marc Gyssens and Laks V.S. Lakshmanan. A
foundation for multi-dimensional databases. In
Proc. of the Int’l Conf. on VLDB, pages 106-115,
August 1997,

Leonid Libkin, Rona Machlin, and Limsoon Wong.
A query language for multidimensional arrays:
Design, implementation, and optimization tech-
niques. In Proc. of the ACM SIGMOD Int’l Conf.
on Mgmt. of Data, pages 228-239, June 1996.

Thomas M. Lillesand and Ralph W. Kiefer. Remote
Sensing and Image Interpretation. John Wiley and
Sons, Inc., third edition, 1994.

Arunprasad P. Marathe and Kenneth Salem. A
language for manipulating arrays. In Proc. of the
Int’l Conf. on VLDB, pages 46-55, August 1997.

Michael A. Olson, Wei Michael Hong, Michael
Ubell, and Michael Stonebraker. Query processing
in a parallel object-relational database system.
Bulletin of the IEEE TC on Data Engineering,
19(4):3-10, 1996.

G. X. Ritter, J. N. Wilson, and J. L. Davidson.
Image algebra: An overview. Computer Vision,
Graphics, and Image Processing, 49(3):297-331,
1990.

Sunita Sarawagi and Michael Stonebraker. Effi-
cient organization of large multidimensional arrays.
In Proc. of the Int’l Conf. on Data Eng., pages 328—
336, February 1994.

Praveen Seshadri, Miron Livny, and Raghu Ra-
makrishnan. The case for enhanced abstract data
types. In Proc. of the Int’l Conf. on VLDB, pages
66-75, August 1997.

Michael Stonebraker and Greg Kemnitz. The
Postgres next-generation database management
system. Communications of the ACM, 34(10):7&-
93, October 1991.

Michael Stonebraker and Dorothy Moore. Object-
Relational DBMSs: The Next Great Wave. Morgan
Kaufmann, San Francisco, 1996.

Allison Woodruff and Michael Stonebraker. Sup-
porting fine-grained data lineage in a database vi-
sualization environment. In Proc. of the Int’l Conf.
on Data Eng., pages 91-102, April 1997.

