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Abstract seven-band Thematic Mapper image 

Arrays are an appropriate data model for images, gridded 
output from computational models, and other types of 

data. This paper describes an approach to array query 
processing. Queries are expressed in AML, a logical 

algebra that is easily extended with user-defined functions 
to support a wide variety of array operations. For example, 

compression, filtering, and algebraic operations on images 
can be described. We show how AML expressions involving 

such operations can be treated declaratively and subjected 

to useful rewrite optimizations. We also describe a plan 
generator that produces efficient iterator-based plans from 
rewritten AML expressions. 

dim. 1 

1 Introduction 

Arrays are an appropriate data model for images, 
gridded output from computational models, and many 
other types of data. If arrays are to be supported in a 
database system, there must be some language in which 
queries against the stored arrays can be expressed. If 
such queries are to be answered efficiently, the optimizer 
must understand enough about arrays and the array 
query language to generate efficient execution plans. 
Efficiency is important because arrays may be very large 
and array operations may be complex and costly. 

Figure 1 shows an array query example to which 
we will refer throughout this paper. In the example, 
the base data form a three dimensional array (array 
A) representing a multi-spectral image generated from 
the Landsat Thematic Mapper sensor. Two of the 
array dimensions are spatial and the third is spectral. 
The seven slices through the cube along the spectral 
dimension are images of the same scene, each taken 
using a sensor sensitive to electro-magnetic radiation 
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Figure 1: Data Derived From a Multi-spectral Satellite 
Image 

in a different spectral band. 
Figure 1 also shows several other arrays that might 

be derived from the Thematic Mapper image. Array E 
in Figure 1 holds the “transformed vegetation index” 
(TVI) for the scene. A TV1 value at a spatial position 
in the scene represents the amount of green biomass 
present there [9]. The TV1 value at any position can 
can be computed from the values of third and fourth 
spectral bands at the corresponding position in the 
Thematic Mapper image using the function: 

0.5 

ftvi(b3, b4) = 
[ 
$+ + 0.51 (1) 

3 

Another useful image that might be derived from 
array A is a “band ratio” image, computed as the ratio 
of two of the spectral bands of the Thematic Mapper 
image. Ratioing can be a useful data analysis tool 
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if (Iv0 - 21 > 22) \/ (I w0 - yl > 22) return y 
else return 210 

Figure 2: A Noise Reduction Filter. ~0 is the original 
cell value, ~11 through v8 are the values of its eight 
neighbors, numbered clockwise from the upper left. 

because it can compensate for variations in absolute 
brightness (cell values) in the original image that might 
be caused by topographic features [9]. Array F in Figure 
1 is a ratio of Themat,ic Mapper bands three and seven, 
defined at each position by 

The Thematic Mapper image may include noise from 
a variety of sources, and it is desirable to try to reduce 
this noise before deriving arrays such as the TVI. In 
Figure 1, both the TV1 array and the band ratio array 
are defined in terms of noise-reduced versions (arrays 
B, C, and D) of the Ioriginal Thematic Mapper bands. 
Many types of noise reduction are possible; different 
types are suitable for different applications. For the 
purposes of the example, noise reduction is achieved 
using a kind of convolution filter in which the noise- 
reduced value of a particular cell is computed using the 
original value in that cell and the values of its eight 
immediate neighbors., The exact calculation, which is 
adapted from [9] is shown in Figure 2. 

This example illustrates several points. First, there is 
a wide variety of complex, domain-specific transforma- 
tions that might be applied to arrays. An array query 
language that hopes to be able to express them must 
either be very expressive or extensible. Second, there is 
considerable room for query optimization. One oppor- 
tunity for optimization is the regularity and structure 
that may exist in co:mplex-looking queries. In Figure 
1, for example, given a particular cell in a derived ar- 
ray such as array E, iit is possible to determine exactly 
which cells of the original Thematic Mapper image con- 
tribute to its value. It is also possible to calculate those 
cell values in any order. Techniques such as caching and 
view materialization can be used to eliminate redundant 
calculations, e.g., both the TV1 array and the band ra- 
tio array are derived from array B. Finally, the data 
transformation functions themselves may have proper- 
ties that can be exploited by an optimizer that under- 
stands them. For example, the noise reduction tech- 

nique used to produce arrays B, C, and D in Figure 1 is 
a discrete two-dimensional convolution. An optimizer 
with some knowledge of linear systems might be able to 
infer that adding two noise-reduced images is equivalent 
to applying noise reduction to their sum. 

Array queries like those shown in Figure 1 can be de- 
scribed using AML, the Array Manipulation Language, 
which was introduced in [lo]. The main contribution 
of this paper is a collection of optimization techniques 
for AML queries. We describe how these techniques 
can be used to turn AML queries into efficient evalua- 
tion plans. These techniques do not exploit all of the 
opportunities for optimization described above, primaD- 
ily because AML itself does not (yet) capture every- 
thing needed to exploit them. For example, the op- 
timizer does not “understand” convolution. However, 
AML is quite good at capturing structural regularity in 
queries. The optimizer exploits this to reorder query 
operators, eliminate unnecessary work, and minimize 
space requirements. We demonstrate the impact of the 
optimizer by comparing evaluation costs with and with- 
out optimization for several of the queries from Figure 
1. 

2 The Array Manipulation Language 

The Array Manipulation Language (AML) was intro- 
duced in [lo]. AML is based on a simple array model. 
An array A is defined by a shape A’, a value doma.in 
DA, and a mapping MA. 

A shape is an infinite vector of non-negative integers 
that is used to define the length of A in each of 
an infinite number of dimensions. The usual vector 
subscripting notation, X[i], is used to denote the length 
of A in dimension i. Subscripts begin at 0. Whren 
shapes are written out explicitly, unspecified lengths a,re 
assumed to be one. That is, {4,3,1,2} is shorthand for 
the shape {4,3,1,2,1,1,1, . . m}. The dimensionality of 
a shape, dim(A), is the smallest i such that A’[j] = 1 
for all j 2 i. The dimensionality of an array is the 
dimensionality of its shape. 

A point, or cell, is also an infinite vector of non- 
negative integers. A cell Z is said to be in A if Z[i] < A’[i] 
for all i 2 0. The mapping MA maps each cellin A 
to a value in the array’s domain 2)~. The size of A, 
written [AI, is the number of cells in A, or nEoi[i]. 
We restrict ourselves to arrays of finite size. 

AML consists of only three operators, each of which 
transforms an array (or two arrays) into another array. 
The operators are SUBSAMPLE, MERGE, and APPLY. 

Precise operator definitions can be found in [lo]. 

2.1 The SUBSAMPLE Operator 

The SUBSAMPLE, or SUB, operator is used to eliminate 
cells. It has as parameters a dimension number 
and a binary pattern, or mask. Conceptually, the 
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binary patterns used by SUB and the other AML 
operators are of infinite length. When patterns are 
written out explicitly, we represent them using a 
finite pattern which is assumed to repeat itself. For 
example, the notation 101 represents the binary pattern 
101101101101* .a, and the two notations 01 and 0101 
represent the same binary pattern. 

Conceptually, SUB slices its input array into slabs 
along the specified dimension. The result consists of 
the concatenation of those slices that correspond to 
ones in the mask. Slabs that correspond to zeros are 
eliminated. For example, suppose that A is the three- 
dimensional Thematic Mapper array from Figure 1, 
with dimensions zero and one as the spatial dimensions 
and dimension two as the spectral dimension. The 
AML expression su~~(0011000,A) slices the array in 
the spectral dimension (dimension 2, denoted by the 
subscript) and keeps the third and fourth slices, since 
only the third and fourth bits of the mask are ones. 
This has the effect of extracting the third and fourth 
spectral bands from the original image. Combinations 
of SUBS in different dimensions can be used to slice and 
dice arrays. 

2.2 The MERGE Operator 

The MERGE operator is used to combine two arrays. 
Like SUB, it is parameterized by a dimension num- 
ber and a binary pattern. Conceptually, MERGE 
slices both input arrays into slabs along the speci- 
fied dimension. The result is then produced by in- 
terleaving slabs from the two arrays according to the 
specified pattern until all of the slabs from both in- 
put arrays have been included. Ones in the pat- 
tern correspond to slabs from the first (left) input 
array and zeros correspond to slabs from the sec- 
ond (right) input. For example, the AML expression 
MERGEz(10, ~~~~(0010000, A), ~~~~(0001000, A)) isequiv- 
alent to the expression su~z(0011000,A) given previ- 
ously. The two nested SUB operators extract the third 
and fourth spectral bands from array A. The outer 
MERGE then re-stacks these two arrays in the spec- 
tral dimension (dimension 2, again denoted by the sub- 
script) to produce a single array with a spectral depth 
of two. 

There are two potential problems with the MERGE 
operator as just defined. First, depending on the merge 
pattern and the lengths of the two arrays in the merge 
dimension, the MERGE may run out of slabs of one array 
before running out of slabs of the other. Second, slabs of 
the two arrays may differ in length in dimensions other 
than the merge dimension. In this case, the result of the 
MERGE would not be rectangular, and thus would not be 
an array by our definitions. A third MERGE parameter, 
called the fill value, is used to handle both of these cases. 
Details can be found in [lo]. Two arrays that can be 

combined by a particular MERGE operation without the 
use of the fill value are said to be compatible under that 
MERGE operation. We will adopt the convention of not 
including the fill value in a MERGE operation’s list of 
parameters if the arrays being merged are compatible. 

2.3 The APPLY Operator 

The final AML operator is APPLY. It is used to apply 
a user-defined function to an array in a structured way. 
An APPLY operator is parameterized by the function 
it applies, and, optionally, by a set of binary patterns, 
one per dimension. Any patterns that are not explicitly 
supplied are assumed to consist entirely of ones. 

The user-defined function maps sub-arrays of the 
APPLY's input to produce sub-arrays of the APPLY'S 
output. The shape of the arrays mapped by a user- 
dzfined function f is called the domain box off, written 
Dr. The range box of f, written Rj , is the shape of the 
sub-arrays to which f maps. 

The expression APPLY (f, A) applies function f to all 
possible sub-arrays of A of shape fij. The results 
of these function applications, each of shape .l?j, are 
concatenated to form the output array. In the output 
array, the arrangement of the range boxes corresponds 
to the arrangement of the domain boxes. That is, if 
the lower left corner of a domain box is left of (below) 
the lower left corner of another domain box, then the 
former’s range box will be left of (below) the latter’s in 
the output. Note that the domain boxes may overlap 
in the input array, but the resulting range boxes do not 
overlap in the result. 

If an APPLY operator includes pattern parameters 
and the patterns contain O’s, then the function is not 
applied to certain domain boxes. Specifically, if Pi, the 
pattern for dimension i, is zero at position j, then the 
function is not applied to any domain box whose lower 
left cell is located in the jth slab in dimension i. Figure 
3 illustrates the behavior of APPLY with patterns that 
contain zeros. 

2.4 An Example 

To define the arrays illustrated in Figure 1, three user- 
defined functions are needed. These correspond to 
functions ftvi, fnr, and fratio descfibed in Section 1. 
The function ftvi has domain box Dtvi = (1, 1,2} and 
range box &vi = (1, 1) since it operates on a pair 
of spatially co-located cell values and produces from 
them a single vegeta?on index value. Function f,,, has 
Gw = {3,3} and R,, = { 1, 1) since it computes a 
new cell value from the original cell value and its eight 
spatial neighbors. Finally, f,.at;o has the same domain 
box and range box sizes as ftvi since it too computes a 
single value from a pair of spectral intensities. 

Given these functions, arrays illustrated in Figure 1 
can be defined by the following AML expressions: 
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0 1 2 3 

B = APPLY( f, A, PO=01 10, P, =lOlO) 

Gf = { 2,2 ] i( = { 2, 1 ) 

Figure 3: An Example of APPLY, from [lo] 

B = APPLY (fnr, SUB~(0010000, A)) (3) 
c = APPLY (fnr, SUB~(0001000, A)) (4) 

D = APPLY (fnr, SUB~(oooooo1, A)) (5) 
E = APPLY (ftvi, MERGEZ( IO, By C)) (6) 
F = APPLY (fratio, MERGEz( 10, By D)) (7) 

Of course, it is not necessary to break the expressions 
for intermediate arra!ys out in this way. A single AML 
expression for array E’, for example, can be obtained by 
substituting for arrays B and D the AML expressions 
that generate them. 
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3 Query Optimization Overview 

AML offers several opportunities for optimization. 
First, the structural regularity of the AML operators 
makes it relatively easy to trace data lineage through 
an AML expression. This allows AML expressions 
to be rewritten to avoid the need to calculate or 
retrieve values that are not required. Second, the AML 
operators do not specify the order in which the cells of 
their output arrays are generated. Order can have a 
significant impact on the memory cost of a plan. This 
can make the differenc:e between an evaluation plan that 
can execute entirely in memory and one that cannot. 

The optimizer operates in three phases. The first is 
a logical rewriting phase in which AML expressions are 
transformed into equivalent expressions. The result of 
this phase is an AML expression for which we hope to be 
able to generate an efficient plan. A variety of rewrites 
are performed, but the primary goal of this phase is 
to push SUB operations down to eliminate unnecessary 
data retrieval and processing. Plan generation occurs 
in the second phase. The input to this phase is 
the rewritten AML expression. The output is a plan 

composed of physical operators. Physical operators are 
“chunk” iterators. That is, they produce arrays a piec:e, 
or chunk, at a time. The final phase is plan refinement. 
The primary goal of the refinement phase is to minimize 
the amount of memory required for plan evaluation by 
determining the order in which each plan operator will 
generate its output chunks. 

There are numerous other possible optimizations 
that our optimizer currently does not perform. It 
does not select from among multiple access paths for 
stored arrays, and it does not detect and exploit 
common AML subexpressions. These problems are 
also known in relational optimizers and we do nlot 
expect that it would be too difficult to adapt relational 
approaches to the array query optimizer. It performs 
no optimizations that involve reordering or combining 
APPLY operations. Doing so would require that the 
optimizer understand something about the user-defined 
functions being applied. This is an issue that we hope to 
address in future work. Finally, the optimizer also does 
not attempt parallelize query evaluation. Because our 
plan operators are iterators, asynchronous pipelining 
could be introduced through the use of an “exchange?’ 
operator as was done in Volcano [5]. All of the 
AML operators themselves are also well-suited to data- 
parallel implementation. Fragmentation of arrays can 
be accomplished easily using the SUB operator. 

While we do not expect the optimizer to be the last 
word in array query optimization, it does demonstrate 
that some understanding of array operations can sub- 
stantially improve the efficiency of useful array queries. 
It also shows that AML, despite its simplicity, captures 
enough about array queries to permit this. 

4 Query Rewriting 

A rewrite transforms an AML expression into another, 
equivalent AML expression. Like many relational 
optimizers, our AML optimizer performs a variety of 
rewrites. The primary goal of the rewrites is to push 
SUB operations as close to the leaf arrays as possible. 

Figure 4 summarizes the rewrite rules that are used 
to push SUBS. In each case, the patterns used in 
the rewritten expressions can be calculated from the 
patterns in the original expression. The details of a few 
of these rules, including calculation of the new patterns, 
can be found in [lo]. 

As noted in Figure 4, it may or may not be possible 
to push a SUB operation into an APPLY from above, 
or to pull a SUB out of an APPLY from below. The 
former can occur when a SUB completely eliminates 
the results of one or more of the applications of the 
user-defined function. In that case, the pattern of the 
APPLY operator can be rewritten to indicate that those 
function applications can be skipped. The latter can 
occur if the APPLY pattern contains enough zeros that 



original rewritten 
expression expression notes 

SUBi(P, SU%(Q, A)) smi(P’, A) 

SUBi (P, SUBj (Q, A)) SUBj (Qy SUBi (Py A)) i#j 
SUBi(P,MERGEi(Q, A, B)) MERGEi (&‘, SUBi (P’, A), SUBi (P”,B)) compatible MERGE only 
SUB;(P,MERGEj(Q, A,@) MERGEi(Q,SUBi(P, A), SUBi(PyB)) i # j, compatible MERGE only 

SUBi(P,APPLY(f, Pi, A)) SUBi(P',APPLY(fy P,‘,A)) applicability depends on P and Rf [i]; Pi 
will have fewer ones than Pi; all Pj, j # i, 
remain unchanged 

APPLY(f, PiTA) APPLY(f, P/, SUBi(P', A)) applicability depends on Pi and Df [i]; Pi 
will have fewer zeros than Pi; all Pj, j # i, 
remain unchanged 

Figure 4: Summary of Rewrite Rules for SUB Pushdown 

certain parts of the APPLY's input array are not needed 
for any of the function applications that are actually 
being performed. 

A nice feature of AML is that SUB operations in 
different dimensions are independent and can be pushed 
down separately. For this reason, the optimizer’s 
rewrite phase makes d passes over the AML expression, 
where d is the largest SUB dimension that occurs in the 
expression. The ith pass moves from the root of the 
expression towards the leaves pushing SUB operations 
in dimension i as far down as possible. When an APPLY 
operation is encountered, the procedure tries to push 
the SUB into the APPLY from above, and then tries 
to pull a SUB out of the APPLY from below. The 
combination of these two steps will push a SUB through 
an APPLY if the parameters of the two operations allow 
it. 

Leaves in the AML expression tree, which represent 
stored arrays, are treated by the optimizer like APPLY 
operations with no input. To convey this, we will 
sometimes write APPLY (FU) to represent a stored array 
A in an AML plan. The leaf array A is thought of as 
consisting of sub-arrays produced by the application of 
a “generator” function fA by the leaf APPLY operator. 
An array catalog associates with each stored array a 
range box for that array’s generating function, as well 
as other information such as the shape and domain of 
the array. 

The generator function’s range box can be used 
to represent a logical grouping or clustering of the 
array’s cells. Since leaf APPLYs have patterns like other 
APPLYs, SUB operations can be pushed into the leaves 
in the same way they can be pushed into other APPLY 
operations. Such pushes indicate that certain logical 
groups (range boxes) of data need not be generated. If 
the physical clustering of the stored data is made to 
correspond to the logical clustering described by the 
generating function’s range box, this can be translated 

directly by the physical operator implementing the 
leaf APPLY into the elimination of unnecessary I/O 
operations. For example, range boxes corresponding 
to row-slabs match nicely with a row-major physical 
layout. Squarer range boxes can be used to suggest a 
chunked physical layout as described in [13]. 

We define a cell in an array produced by an operator 
in an AML expression to be dead if, under all possible 
interpretations of the user-defined functions appearing 
in the expression, a change in the cell’s value would not 
affect the value of any cell in the final array produced 
by that expression. A particular application of a user- 
defined function by an APPLY operator is defined to be 
useless if all of the cells in its range box are dead. The 
top-down rewriting technique sketched above results in 
an AML expression that involves no useless applications 
of user-defined functions. In an AML expression with 
n operators and a maximum SUB dimension of d, 
pushing down SUB operations takes O(dn) time since 
the algorithm makes d top-down passes through the 
expression tree. 

4.1 Other Rewrites 

The optimizer makes two additional passes over the 
AML query expression in addition to the pass that per- 
forms SUB pushdown. The first of these, which occurs 
before the pushdown pass, puts the expression into a 
canonical form in which all merged arrays are merge 
compatible. This is important because the rewrites that 
interchange SUBSAMPLE and MERGE operations, shown 
in Figure 4, are valid only if the arrays being merged are 
compatible. These rewrites introduce additional MERGE 
operations and array constants into the AML expres- 
sion. The remaining pass, which occurs after SUB push- 
down, replaces null subexpressions with equivalent null 
array constants. The worst case time for the first pass 
is O(nd) for an expression with n operations and max- 
imum dimensionality d. This is because each MERGE 
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operation may require the addition of up to d additional 
MERGES in case the arrays being merged are incompat- 
ible in all dimensions. The final pass takes time O(n). 

4.2 An Examlple 

Figure 5 shows an AML expression that retrieves a sub- 
sampled version of the TV1 array (array E) from Figure 
1, as well as an optimized version of the same query. 
The sub-sampled version of the array is obtained by 
discarding every other row and column of the original 
array, to obtain an array one quarter the size of the 
original. This is implemented by the two SUB operations 
at the front of the original AML expression. The 
optimized expression is obtained under the assumption 
that the range box shape for the stored array_ A has 
unit length in the spectral dimension, i.e., &[2] = 
1. In other words, the array A is logically clustered 
by spectral band, and can be “generated” a band at 
a time. This allows the SUB operations that select 
particular spectral ‘bands to be pushed into the leaf 
APPLY operators. If this were not the case, there 
would be additional SUB2 operations in front of each 
leaf APPLY in E’. 

In this example, rewriting pushes the two initial 
SUB operations through the application of ftvi and 
into the applications of fnr. This is the reason for 
the patterns (PO and PI) in the APPLY operators that 
apply fnr- The patterns cause those APPLYs to skip 
the calculation of noise-reduced cell values that will 
not be used to compute TV1 values in the final array. 
However, the SUB operations cannot be pushed through 
the applications of j!,,, because f,,,. uses a domain box 
of shape {3,3} to calculate each output value. Thus, 
every cell in the input array is needed to calculate at 
least one live output cell. Had the SUB operations been 
used to select, for example, the lower left corner of the 
TV1 array rather than every other row and column, 
then it would have been possible to push the SUBS all 
the way through the applications of fnr and into the 
leaves. 

5 Plan Generation 

The plan generator maps a logical AML expression 
to a plan. In general, a plan is a directed graph 
of physical operators, where arcs represent data flow. 
Since the optimizer currently does not detect common 
subexpressions, the plans it produces are always trees. 

Each plan operator (except leaf operators) consumes 
one or more input arrays and produces a single output 
array. Plan operators are iterators, which means that 
they produce and consume arrays a piece at a time 
[6]. Every operator expects its inputs to consist of 
non-overlapping array chunks of a particular shape and 
produces non-overlapping array chunks of a particular 
shape at its output. Each operator produces its 

Operator ] Input ] Special 1 
Name Streams Parameters -I 

APPLY-P 1 function ap- 
plication mask, function 
reference 1 

Figure 6: Physical Operators 

output chunks in a particular order (e.g., row major 
or column major) and expects input chunks to appear 
in a particular order. If two operators are connected 
by an arc in a plan, the producer’s output chunk shape 
and chunk order must match the input chunk shape and 
chunk order expected by the consumer. 

Each type of physical operator has a set of parame- 
ters, the values of which help to define its exact behav- 
ior. All operators have parameters that specify input 
and output chunk shapes and chunk order. In addition, 
there are parameters that are specific to particular tylpes 
of operators. 

The plan generator produces plans in which the chunk 
orders of the operators are left unspecified. In .the 
plan refinement phase, described in Section 6, operator 
chunk orders are determined and modifications may be 
made to the originally-generated plan. 

5.1 Physical Operators 

The physical operators used in our system are sumnna- 
rized in Figure 6. Specifics of particular operators are 
discussed in the following subsections. 

5.1.1 The APPLY-P and LEAF-P Operators 

The APPLY-P operator implements the logical APPLY 
operation, while LEAF-P provides access to stored 
arrays. Because leaf arrays are treated like APPLY 
operations in AML, LEAF-P operations look much like 
APPLY-P operations, but without children. 

Both physical operators take a function application 
mask as a parameter. The mask plays the same role 
as the pattern arguments to the AML APPLY operator, 
i.e., it specifies which of the possible result chunks are 
to be generated. An APPLY-P operator uses the mask 
to avoid generating output chunks that are not needed. 
The LEAF-P operator may be able to use its mask to 
avoid unnecessary I/O. 
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fi = suB~(~~,suB0(~~,AppLY(ft~i,MERGE;!(~~,AppLy(f,,,suB~(~010000,A)),APPLY(f,,,SUB~(00010~~,A)))))) 

E’ = APPLY(ft,j,MERGE2(10, 

APPLY(&,,Po = O&PI = ol,ApPLY(f~,p2 = 0010000)), 

APPLY&.,& = &PI = O~,APPLY(~A,& = ooolooo)))) 

Figure 5: Original (E) and Rewritten (E’) Expressions for the Subsampled TV1 Image 

5.1.2 The COMBINEJ Operator 

A COMBINE-P operator implements a tree of AML SUB 
and MERGE operations. It has as many input streams 
as the leaves of that tree. Such a tree can be thought of 
as implementing a function that maps the cells of the 
leaf arrays to the cells of the root array. The function 
is one-to-one and onto, and is, in general, partial. 

Each COMBINEJ operation takes a combination map 
as a parameter. The combination map encodes the 
mapping function from input cells to output cells. The 
AML SUB and MERGE operations are such that the 
mapping function can be expressed as a mapping of 
input slabs (in each dimension) to output slabs. That is, 
in every dimension, if two cells are located in the same 
slab in the input, then both cells will be mapped to a 
common slab in the output if they are mapped at all. 
The number of slabs of an array A is CfL$“) A[i] while 

the number of cells is @l’$A) i[[i]. Since the former is 
usually much smaller than the latter, the combination 
map has a compact encoding. The encoding can be 
computed easily from the patterns used by the SUB and 
MERGE operations that the COMBINE-P implements. 

Our COMBINE-P operator expects input chunks of 
unit shape and produces output chunks of unit shape. 
This restriction results in a very simple implementation 
of COMBINEJ. For this reason, COMBINES does not 
take chunk sizes as parameters. 

5.1.3 The REGROUP-~ and REORDER_P 
Operators 

The REGROUP-~ and REORDERJ operators are used to 
ensure that a stream of chunks has particular properties 
that are expected by downstream operators. The 
REGROUP-P operator is used to change the chunk shape. 
It takes a stream of chunks of one shape as input, and 
produces a stream of chunks of another shape as output. 
This requires that the REGROUP-~ operator buffer a 
certain amount of data, a topic to which we will return 
in Section 6. 

As its name suggests, the REORDER_P operator 
changes the order in which chunks appear in a stream. 
All other operators produce output chunks in the same 
order in which they consume input chunks. If a chunk 
producer wishes to use one chunk order and the chunk 
consumer wishes to use another, a REORDER-P operator 

Figure 7: Plan for a SUBSAMPLE/MERGE Tree 

must be inserted between them to re-order the chunks. 

5.2 Generating the Initial Plan 

The initial plan is generated by a recursive, top-down 
translation of the optimized AML expression tree. The 
action taken by the translator depends on the type of 
node it encounters in the expression tree: 

If the root node of the expression tree+is a non-leaf 
APPLY operation with domain box Dj and range 
box z,, an APPLY-P operator and a REGROUP-P 
operator are added to the plan. The REGROUPJ 
operator precedes the APPLY-P and ensures that its 
input chunks are of the appropriate shape. The 
input chunk shape of the APPLY-P matches the 
APPLY'S Df , the output chunk shape matches its Rt , 
and the application mask is taken from the APPLY's 
patterns. 

If the root node of the expression tree is a SUB or 
a MERGE, the translator finds the maximal tree of 
SUB and MERGE operations rooted at that node. The 
tree is translated into an n-ary COMBINEJ operator 
and n REGROUP-P operators, where n is the number 
of leaves of the tree. This translation is shown in 
Figure 7. The COMBINE-P'S combination map is 
derived from the patterns of the SUBSAMPLE and 
MERGE operations. 

If the root node of the expression tree is a leaf 
APPLY, a LEAF-P operator is generated. The 
function application mask its determined by the 
APPLY'S patterns. 

Figure 8 shows the plan that would be generated from 
the optimized AML expression (E’) for the sub-sampled 
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Figure 8: Generated Plan for the Subsampled TV1 
Image 

TV1 image given in Figure 5. Note that some of the 
physical operators that appear in this initial plan may 
not be necessary. For example, a REGROUP-P operator 
with matching input and output chunk sizes is a no-op. 
Such operations are eliminated during plan refinement. 

6 Plan Refinement 

Plan refinement eliminates unnecessary physical opera- 
tors from the plan and determines the chunk ordering to 
be used by each operator. Chunk reordering operators 
are added to the plan if necessary to ensure that each 
operator can consume chunks in the expected order. 

The bulk of the work in plan refinement is in choosing 
the chunk iteration order. Chunk iteration order is 
an issue because it affects the amount of data that 
must be buffered by physical operators, especially 
REGROUP -P. The amount of buffering required depends 
on several factors, including the input and output chunk 
shapes, the shape of the whole array, and the order in 
which chunks occur.. Figure 9 illustrates this in two 
dimensions. The first part of the figure shows an eight 
by eight array being regrouped in l-order (row-at-a- 
time) from chunks of shape (4,l) to chunks of shape 
{2,2}. Clearly, the REGROUPJ operator must buffer 
two rows of cells, or a total of four input chunks. The 
second part of the figure shows the same regrouping 
operation, but this time in O-order (column-at-a-time). 
The REGROUP-P operator must now buffer four columns 
of the array, or a total of eight input chunks, twice 
as much as was required in l-order. Clearly, changing 
the shape of the array would change this comparison. 
For example! if the array was twice as wide, the 
memory requirement for l-order would double, but the 
requirement for O-order would remain unchanged. 

The optimizer attempts to minimize the total mem- 
ory requirements of a plan by considering a large space 
of possible evaluation orders for the operators in the 
plan tree. Minimizing the memory requirement is im- 

di 
4x1 chunks consumed, 2x2 chunks produced 

-- .._____ --. l-order chunk production/consumption 

dimension n 

t i i i I 
t e- L-J 

_____... 
4x1 chunks consumed, 2x2 chur lk! adut :c d . . I I *. .I &order chunk production/consumption 

Figure 9: Regrouping in l-order and in O-order 

portant because it can make the difference between a 
plan that can execute entirely in memory and one that 
cannot. In the latter case, it is necessary to split the 
plan by materializing partial results on secondary stor- 
age, with a corresponding increase in execution cost. 

If an operator operates on a total of k chunks, 
there are k! ways those chunks could be ordered. The 
optimizer does not consider all such orderings. Instead, 
it considers d possible iteration orders for each operator, 
where d is the maximum dimensionality of any array 
appearing in the plan. For d = 2, the iteration orders 
considered are the O-order and l-order illustrated in 
Figure 9. For d > 2, i-order (0 2 i < d) means that 
the chunks are sorted using their position in dimension 
i as the primary sort key. The remaining dimensions 
are secondary sort keys, taken in order of increasing 
dimension order. Thus, when d = 3, 2-order means the 
chunks are sorted in dimension 2, then dimension 0, 
then dimension 1, l-order sorts by dimension 1, then. 0, 
then 2, and O-order sorts by dimension 0, then 1, then 
2. Other orders, such as Z-order or the Hilbert curve, 
are also possible and possibly even useful, especially if 
chunks in the base arrays have been laid out in such an 
order on secondary storage. For simplicity’s sake, the 
optimizer does not consider them. 

Because an array consumer’s chunk ordering must 
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match that of the array producer, the ordering decisions 
for the various operators are not independent. However, 
a producer and consumer can use different chunk orders 
if a REORDER-~ operator is inserted between them in 
the plan. A REORDER-~ operator itself has a memory 
cost, since the entire array must be buffered to change 
the chunk ordering. In considering a change in chunk 
order, the optimizer must balance the additional cost 
of reordering with the potential downstream benefits it 
may bring. 

In an n-operator plan, there are a total of d” possible 
assignments of iteration orders to operators. We use 
a dynamic programming algorithm to find a minimum 
memory cost assignment of iteration orders to plan 
operators in time O(nd2). For each operator z and 
order i, the algorithm determines C(Z), the minimum 
cost of the plan subtree rooted at 3: assuming that Z’S 
output is in i-order. Let X be the set of children of x in 
the plan. The minimum subtree cost can be expressed 
recursively as: 

Ci(Z) = G(x) + 

C min(Ci(y), yj?(Ci(Y) +Cji(reo4Y)))) t 
YEX 

where c;(z) is the memory cost of operator 2: itself in 
i-order, and cji(remd(y)) is the cost of a j-order to i- 
order REORDERS operator inserted between y and x 
in the plan. In other words, to produce Z’S result in 
i-order, each child of z either produces its result in i- 
order or it produces its result in some other order and 
a REORDER-~ is inserted after that child to convert its 
output to i-order before it reaches CC. If z is a LEAF-P 
operator, then Ci(Z) = ci(z). 

6.1 Operator Memory Cost Estimation 

Optimization depends on memory cost estimates ci(z) 
for each operator z in a plan. The cost of a particular 
operator depends on details of its implementation, for 
example, in what size units it allocates space. In 
general, we assume that each operator has an associated 
costing method which can be invoked by the optimizer 
to obtain a cost estimate for evaluation of that operator 
in a particular order. The cost estimates that are 
currently being used are based on the simplifying 
assumption that the unit of buffer space allocation 
when i-order is being used is a slab of input chunks 
in dimension i. The size of such a slab depends on the 
length of the chunk in dimension i and on the lengths 
of the entire input array in the remaining dimensions. 
Under this assumption, the cost estimate for each type 
of physical operator is as follows: 

REORDER-P: A REORDER2 operation must materialize 
its entire input array. Its memory requirement is 

equal to the size of this array, regardless of the input 
and output orders. 

REGROUP-~: As was illustrated in Figure 9, the buffer 
requirement for a REGROUP-P operator depends on 
mangy factors. In general, if the input zhunk shape 
is D and the output chunk shape is R, the buffer 
requirement in i-order is [R[i]/D[i]l i-slabs of input 
chunks if the smaller of 6[i] and @i] divides evenly 
into the larger. Otherwise, it is [Z[i]/S[i]] + 1 i- 
slabs of input chunks. The size of an i-slab depends 
on the shape of the array on which the REGROUPJ 
operates. If the array is A, the size of an i-slab of 
input chunks is (IAl/&]) + fi[i] cells. 

COMBINE-P: Because of the structure of the combina- 
tion mapping and because the COMBINE-~ operator 
always uses input and output chunks of unit size, it 
can be implemented without buffering. We take its 
memory cost to be zero. 

APPLY-P: Depending on its application mask, an AP- 
PLY-P operator may need to buffer. This is be- 
cause incoming array chunks are non-overlapping, 
but the user-defined function may need to be ap 
plied to overlapping chunks. At most two &slabs of 
input chunks must be buffered to implement this. As 
described above, the size of an i-slab of input chunks 
can be calculated from the input chunk shape, the 
input array shape, and the input array size. 

LEAF-P: The cost vector for each leaf is maintained 
as part of the system catalog, and depends on the 
access method implemented by the leaf. Our LEAF-P 
operators operate on flat files and do not buffer data; 
we assign a cost of zero for all iteration orders. 

Each operator’s cost is also made to include the cost 
of one output chunk, in addition to the costs described 
above. The extra cost represents the space required 
to pass the operator’s output to its parent in the plan 
tree. 

7 Performance 

The AML optimizer has been implemented as part of 
an array database system that serves as a backend for 
MATLAB.l This system allows MATLAB users to issue 
AML queries which bring their results into MATLAB 
for further processing. Optimizer is written in C++ 
and interacts with MATLAB through its extensibility 
facility (.mex files). In the remainder of this section we 
use the example introduced in Figure 1 to illustrate a 
few features of the optimizer’s performance. 

All of the experiments described below were run 
on a Spare Ultra-5 with sufficient memory to allow 

'MATLAB is a registeredtrademarkof The MsthWorks,Inc. 

331 



1 Memory Cost (Kbytes) 1 CPU Optim. 1 
IQ uerv 1 O-order I-1-orde; 1 i-order 1 Time (set) 1 

Figure 10: Memory Cost and Optimization Time for 
Several Queries 

the optimizer and the resulting query to run without 
paging. Stored arrays were retrieved from flat files 
provided by the SoLaris operating system. 

7.1 Memory Costs 

Figure 10 shows the query optimization time and the 
memory cost of the resulting plans for two queries 
involving the TV1 i:mage from Figure 1. The reported 
memory costs are given in kilobytes, and do not include 
the memory required to store the final result. Execution 
times are CPU times expressed in seconds. We report 
CPU times because they are independent of the load on 
the test machine, and because query optimization itself 
involves almost no I/O. 

Since the example is in three dimensions, the-opti- 
mizer effectively produces three plans for each query. 
One is the minimum memory cost plan that produces 
the chunks of the query result in O-order. The other 
two are the minimum memory cost plans that produce 
the query result in l-order and in 2-order.2 Unless the 
order of the final result matters, the optimizer would 
normally choose the least costly of these three plans. 
However, we have shown all three in Figure 10 to illus- 
trate the effect of iteration order. 

In Figure 10, the query &I is the same as the 
expression E from l?igure 5. It returns a sub-sampled 
version of the TV1 array. The shape of the stored array 
A is { 1024,1024,7} and it is logically clustered by the 
spectral band. In pa.rticular 8~ = {1024,1024,1}. The 
optimizer rewrites this query to produce the expression 
E’ (see Figure 5) and then generates plans. In this case, 
the O-order and l-order plans have identical memory 
costs. Furthermore, none of the winning plans contain 
any REORDERJ operations. All physical operators in 
the O-order plan iterate in O-order, for example. This is 
because the arrays and domain and range boxes used in 
the query are close to square, so that no dimension is 
heavily favored. Note that the relatively large memory 
cost for this query reflects the large logical cluster size 
of array A. The leaf nodes generate a full band of data 
at a time. 

Query Qz in Figure 10 is identical to &I except that 
Thematic Mapper array A is logically clustered by row, 

*Since the resulting array has only one slab in dimension 2, 
2-order is the same as O-order in this case. 

fraction optimize + eval CPU time (set) 
retrieved with rewrite no rewrite 

Ii.,/ 

Figure 11: Effect of Rewrites on Query Processing Time 

i.e., so = {1024,1,7}. This has two effects. First, the 
memory costs for all orders are smaller than the costs 
for &I, primarily because A consists of smaller clusters. 
Second, order matters. The memory requirement for 
the winning l-order plan is an order of magnitude 
smaller than the requirement for the best O-order plan. 
This reflects the oblong shape of 6~. In general, 
the more oblong the shapes of the domain and range 
boxes of the user-defined functions in a query, the more 
important iteration order will be. Queries involving a 
mix of shapes oblong in different dimensions lead to 
plans that may involve chunk reordering as a means of 
minimizing the memory requirement. 

7.2 Query Evaluation Time 

Of course, optimization directly affects the execution 
time of a plan as well as its memory cost. Curren.tly, 
we have implemented only a very simple bottom.-up 
sequential plan evaluator. That is, before an operator 
is evaluated, each of its children are evaluated and their 
results are fully materialized in memory. An iterator- 
based evaluator is under construction. Provided there is 
sufficient memory to hold the materialized intermediate 
results, we expect the sequential evaluator to have an 
execution time similar to what we would see from an 
iterator-based synchronous pipeline. 

Figure 11 shows the CPU time required to evaluate 
several queries that return the lower left corner of the 
TV1 image. We varied the boundary of the retrieved 
region from query to query to control the size of 
the retrieved image. The column labeled “fraction 
retrieved” in Figure 11 indicates the fraction of the full 
TV1 images that was retrieved. Two sets of numbers are 
shown. The “with rewrite” column shows the total CPU 
time required for query optimization and evaluaGon 
when the rewrite phase of the optimizer was enabled. 
The “no rewrite” shows this time when the rewrite 
phase of the optimizer was disabled. 

The absolute query evaluation times for retrieval of 
the full array are quite slow for arrays of this size; 
there is a great deal of room for improved efficiency in 
the evaluator. Nonetheless, comparisons between the 
numbers do demonstrate the advantages of the rewrite 
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phase of the optimizer. Without optimization, the full 
TV1 array is computed and then clipped to obtain the 
desired region. Since most of the cost is in computing 
the result, the execution time without optimization 
remains essentially unchanged as the retrieval region 
shrinks. With optimization, the optimizer is able to 
push the clipping SUB operations all the way to the 
leaves, and then into them. Thus, execution time 
shrinks with the size of the retrieval region. 

8 Related Work 

Several database query languages for array data have 
been proposed. However, optimization of array queries 
has received less attention. These languages include 
A&L [S] and Baumann’s language for multidimensional 
discrete data (MDD) [2]. A&L is based on a calculus 
which provides four array-related primitives, two for 
creating arrays, one for extracting the value of an 
array cell, and one for determining the array shapes. 
These primitives, plus such things as conditionals 
and arithmetic operations, can then be combined to 
construct higher-level operations, e.g., operations that 
operate on entire arrays. Optimization in A&L is 
performed by replacing higher-level constructs with 
their definitions, and then applying rewrites expressed 
in terms of those primitive operations. This is a 
powerful approach that could enable an optimizer, 
through some kind of search, to discover higher-level 
optimizations similar to the ones used in this paper. 
Since all array operations are ultimately described using 
the primitive constructs, there are no uninterpreted 
functions like those used in AML APPLY operators. How 
exactly such an optimizer would work and how efficient 
it would be remain open questions. 

Baumann’s MDD language is similar in spirit to 
our own, and can be viewed as a restricted version 
of the Image Algebra [12]. Like AML, it includes 
higher-level operators that operate on entire arrays. It 
includes some features not present in AML, such as 
an interpreted conditional operator and array updates. 
Other features are less general than those of AML. 
In particular, the equivalent of the APPLY operator in 
the MDD language is restricted to have domain and 
range boxes of unit size. This makes it possible for 
an optimizer to always push MDD’s version of SUB 

through apply, and to compose multiple consecutive 
function applications. As a result, all query evaluation 
plans are simple: array data is filtered and then passed 
through a single function application operator that 
applies a composed function to each array cell. There 
is never a need to materialize intermediate results. 
Data-parallel function application would be a relatively 
simple matter in this language, as it would be in AML. 
The MDD language is the basis of the array support in 
the RasDaMan database system, which manages raster 

image data [3]. 

There have also been several recent proposals for mul- 
tidimensional data models and languages in support of 
OLAP applications [l, 71. Although these languages 
have some elements in common with AML, such as slic- 
ing and dicing of arrays, they have a different flavor than 
AML and the other array languages mentioned above. 
Both OLAP models support arbitrary aggregation hier- 
archies in support of roll-up and drill-down operations. 
Although AML can also support aggregation through 
the application of user-defined functions, AML applies 
functions in a very regular manner. Irregular aggrega- 
tion can be supported, but not elegantly and perhaps 
not efficiently. On the other hand, it is not clear how to 
use either OLAP model to perform an operation simi- 
lar to the application of the noise-reduction function in 
Figure 1. 

Special purpose image database systems also handle 
array data, at least in two dimensions [4]. These 
systems focus on selection of images, or parts of images, 
from a set. Such selections are usually based on 
image meta-data, which may itself have been extracted 
from the images. AML does not directly model or 
support such meta-data. However, AML can be used 
in conjunction with content-based retrieval techniques, 
e.g., to operate on a selected image or set of images. 

Object-relational and object-oriented database sys- 
tems can be extended to support complex data types 
like arrays [15, 161. This can be accomplished through 
the definition of an array data type as well as functions 
to operate on arrays. For example, the Informix Univer- 
sal Server provides various modules (called DataBlades) 
to support complex data [ll]. An Image DataBlade 
module is available that supports a wide variety of im- 
age formats and image-specific functions. Such systems 
may perform a variety of optimizations of set-oriented 
(relational) queries with embedded non-relational func- 
tions and predicates. For example, they may opti- 
mize the placement of expensive user-defined predicates 
within a relational plan. However, optimization of the 
embedded non-relational portion of the query is very 
limited. User-defined functions are black boxes. With- 
out some knowledge of the behavior of such functions, 
many optimizations, such as reordering of operations, 
are not possible. 

Improving the optimization of the non-relational 
parts of object-relational queries is an interesting 
problem. Research systems like PREDATOR support 
so-called enhanced abstract data types (EADTs) which 
add type-specific optimization to ADTs [14]. Object- 
relational queries are decomposed into relational and 
non-relational parts, and the latter are handed to type- 
specific optimizers for optimization. Recent work has 
also considered the annotation of user-defined types in 
an object-relational system with additional information 
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that allows data lineage to be tracked through a series 
of operations [17]. Tl tis is similar to what is done with 
masks and patterns in AML. 

9 Conclusions 

We have described an optimizer for array queries ex- 
pressed in AML. AML provides a mechanism through 
which uninterpreted user-defined functions can be ap- 
plied to arrays. Because these functions are applied 
in a structured way, the optimizer can rewrite AML ex- 
pressions to eliminate unnecessary function applications 
and I/O. The optimizer also controls the order in which 
the cells of the derived array are computed as a means 
of minimizing the amount of memory required to eval- 
uate a query. Using several examples from the image 
processing domain, we have shown how these optimiza- 
tions can lead to imp:roved query evaluation times and 
reduced memory requirements. 

Other than improving our optimizer and evaluator, 
there are a number of open problems that we hope to 
address. One is the problem of integrating array and 
non-array databases .and query languages, which was 
discussed briefly in Section 8. The other is the problem 
of describing properties of user-defined functions to 
an optimizer so that those properties can be reasoned 
about and exploited. 
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