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Abstract 
In a recent paper [MRL98], we had described a general 

framework for single pass approximate quantile finding algo- 
rithms. This framework included several known algorithms 
as special cases. We had identified a new algorithm, within 
the framework, which had a significantly smaller require- 
ment for main memory than other known algorithms. In 
this paper, we address two issues left open in our earlier 
paper. 

First, all known and space efficient algorithms for ap- 
proximate quantile finding require advance knowledge of the 
length of the input sequence. Many important database ap- 
plications employing quantiles cannot provide this informa- 
tion. In this paper, we present a novel non-uniform random 
sampling scheme and an extension of our framework. To- 
gether, they form the basis of a new algorithm which com- 
putes approximate quantiles without knowing the input se- 
quence length. 

Second, if the desired quantile is an extreme value (e.g., 
within the top 1% of the elements), the space requirements 
of currently known algorithms are overly pessimistic. We 
provide a simple algorithm which estimates extreme values 
using less space than required by the earlier more general 
technique for computing all quantiles. Our principal 
observation here is that random sampling is quantifiably 
better when estimating extreme values than is the case with 
the median. 

1 Introduction 
This article continues our study [MFU981 of the 

problem of computing quantiles of large sequences of 
online or disk-resident datasets in a single pass while 
using as little main memory as possible. We will denote 
the length of the input sequence by N. For 4 E (0, 13, 
the element in position [4N] in the sorted sequence of 
the input is said to be the #+quantile. The quantile 
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corresponding to C$ = 0.5 has a special name, the 
median. For E E [0, 11, an element belonging to the input 
sequence is said to be an c-approximate &quantile if its 
rank is between [(c$ - c)N] and [(4 + e)N]. Obviously, 
we assume that E 5 4 and E < (1 - 4). 

1.1 Database Applications 

Quantiles characterize distributions of real world data 
sets and are less sensitive to outliers than the moments 
(mean and variance). They can be used by business 
intelligence applications to distill summary information 
from huge data sets. 

Quantiles are used by query optimizers to provide 
selectivity estimates for simple predicates on table 
values [SALP79]. Equi-depth histograms [PIHS96] are 
simply i-quantiles, for i E {1,2,. . . , p - l}, computed 
over column values of database tables for a suitable p. 

Splitters are used in parallel database systems, such 
as DB2 and Informix [Inf, DB2] for value range data 
partitioning. They are also used in distributed sorting 
to assign data elements to processors [DNSSl]. 

Approximate quantiles can be substituted for exact 
quantiles in all the applications just described. In 
practice, it is acceptable if the difference in rank 
between the true and the approximate quantile is 
guaranteed to be less than 1% of the total number of 
data elements. 

Probabilistic guarantees on the correctness of the 
output are also acceptable in practice as long as such 
guarantees are very close to 100%. For example, a set 
of splitters dividing a very large data set of size N into 
100 approximately equal parts is acceptable if, with 
probability at least 99.99%, the rank of each splitter is 
guaranteed to be no more than O.OOlN elements away 
from that of the corresponding exact splitter. 

Extreme quantiles are often of much interest in real 
world datasets. Extreme values characterize outliers 
and represent skew in the data. For instance, the 
95thquantile in a quarterly sales table for all franchises 
of a company is useful to compute. 
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1.2 Motivation for Unknown iV 

If one views quantile computation as an aggregation 
operator in relational databases, the input might be 
an intermediate table for whose size, at best, a 
crude estimate from the query optimizer is available. 
Approximate quantiles can also be used for maintaining 
equi-depth histograms of a dynamically growing table. 
Such a histogram should be accurate at all times 
irrespective of the current size of the table. 

1.3 Challenges to Meet 

The efficiency and the correctness of the algorithm 
should be data independent. It should not be influenced 
by the arrival distribution or the value distribution of 
the input. It should not require a priori knowledge of 
the size of the data set. The algorithm should pro- 
vide explicit and tunable performance guarantees. Its 
performance should degrade gracefully as the approxi- 
mation guarantee desired is made tighter. 

The algorithm should require only a single pass over 
the data. Multiple passes over large data sets not 
only degrade performance but also are incompatible 
with most, DBMS GROUP BY implementations. The 
main memory requirements of the algorithm should 
be as small as possible. Main memory is of concern 
when histograms over multiple columns of a table 
are to be computed simultaneously. GROUP BY 
algorithms also compute multiple aggregation results 
concurrently, further increasing the desirability of a 
small and predictable memory footprint. The algorithm 
should be simple to understand, parallelizable, and 
should scale well on SMP and MPP configurations. 

1.4 Our Contributions 

In our previous article [MRL98], we developed a 
general framework for identifying approximate quantiles 
of large data sets in a single pass using little main 
memory. All algorithms which fit in this framework, 
including the one proposed in [MRL98] and other 
previously known ones [ARS97, MP80, AS95], required 
that N, t.he size of the input sequence, be known 
in advance. In this article, we build upon our 
previous work by augmenting our framework and 
devising a novel non-uniform sampling technique. The 
resulting algorithm solves the approximate quantile 
finding problem without requiring advance knowledge 
of N. The new algorithm does not entail a significant 
main memory 0verhea.d when compared with algorithms 
that know N. 

We also propose a simple strategy which requires 
significantly less memory when 4 is tiny (or large) 
and close to 0 (or 1). The algorithm makes use of 
a simple computatio:nal fact: the extreme values of 
random samples can be computed using less space than 
medians, and an interesting statistical fact: the rank 

distribution of an extreme value of a random sample is 
more tightly clustered around its expected rank than is 
the case with quantiles close to the median. This allows 
us to improve upon space requirements for extreme 
value computation significantly. 

1.5 Related Work and Connections 

Absence of a priori knowledge of N enforces an online 
view of the problem. Essentially, the algorithm is 
required to have available an est,imate of the quantiles 
for any prefix of the input sequence. Clearly it could 
be employed as an online aggregation operator [He197], 
thereby providing more controllable and user friendly 
user interfaces. 

Synopsis data structures, a term coined by Gibbons 
and Matias [GM99, GM98], summarize the information 
content of massive data sets. The synopsis has a 
memory footprint substantially smaller than the base 
data set. It is designed to support fast comput,ation 
of approximate answers to a limited set of queries. 
One example of a synopsis data structure is a set of 
approximate histograms over several combinations of 
column values of a table. 

Gibbons, Matias and Poosala [GMP97] propose 
an algorithm for computing approximate quantiles 
that. satisfy a different error metric. The algorithm 
dynamically adjusts a set of bucket boundaries on the 
fly, possibly requiring more than one pass over the data 
set. Chaudhuri, Motwani and Narsayya [CMNSS] also 
present an approximate quantile finding algorithm that 
employs block sampling. 
ours and the algorithm 
passes. 

2 Antecedents 

Their error metrics differ from 
can possibly require multiple 

The theory literature has focused on discovering 
bounds on the number of comparisons needed to find 
exact quantiles of datasets. The celebrated paper by 
Blum, Floyd, Pratt, Rivest and Tarjan [BFP+73] shows 
that any quantile of a data set of size N can be 
computed with at most 5.43N comparisons. The paper 
also establishes a lower bound of 1.5N comparisons for 
the problem. For an account of progress since then, see 
the survey by Mike Paterson [Pat97]. 

Frances Yao [Yao74] showed that any deterministic 
algorithm that computes an approximate quantile re- 
quires R(N) comparisons. Curiously, this lower bound 
is easily beaten by employing randomization. The folk- 
lore algorithm that outputs the median of a random 
sample of size O(ew2 log 6-l) requires a number of com- 
parisons that is independent of N. For a comprehensive 
survey of this aspect of the literature, see the survey by 
Paterson [Pat97]. 
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2.1 Single Pass Algorithms 

Quantile finding algorithms that require only a single 
pass over the data were first studied by Ira Pohl [PohG9] 
who established that any deterministic algorithm that 
computes the exact median of N elements in one pass 
needs to store at least N/2 data elements. Munro and 
Paterson [MPBO] proved a general result that memory 
to store O(N$) elements is necessary and sufficient to 
compute the exact median of N elements in p passes. 

When N is large, computation of exact quantiles in 
a single pass is impractical due to the incredibly large 
main memory requirement. This motivates a search for 
algorithms that compute approximate quantiles. The 
ideas in the paper by Munro and Paterson [MPBO] 
can be used to construct a single pass algorithm that 
computes e-approximate quantiles of N elements in 
O(Cl log2(eN)) space. 

In our previous paper [MRL98], we presented a gen- 
eral framework for computing approximate quantiles in 
a single pass, that includes two previously known al- 
gorithms, one by Mum-o and Paterson [MPBO] and an- 
other by Alsabti, Ranka and Singh [ARS97], as special 
cases. We also described a third algorithm, also within 
the framework, which significantly improved upon the 
main memory requirements with respect to the earlier 
algorithms. Theoretically though, the space complexity 
of that algorithm is O(e-l log2(eN)), the same as that of 
Munro and Paterson’s algorithm. We also presented a 
very simple randomized algorithm that achieves further 
reduction in space at the cost of probabilistic guarantees 
on the correctness of the output. The randomized algo- 
rithm requires only 0(6-r log2(em1 log2 log 6-l)) space, 
where 6 is the probability that the algorithm fails to 
produce a quantile within the promised approximation 
guarantee. Note that the space complexity is indepen- 
dent of N. 

The principal drawback is that all the above algo- 
rithms require that N be known in advance. 

2.2 Unknown N Algorithms 

A very simple sampling scheme called reservoir 
sampling [Vit85] generates a sample of size s without 
advance knowledge of N. Folklore analysis shows that 
if the sample has size O(cm2 log S-i), the +quantile of 
the sample is an e-approximate quantile of the input 
dataset with probability at least 1 - b. The quadratic 
dependence of s on e-l makes the scheme impractical 
for small values of 6 because the entire sample has to be 
stored in main memory. In comparison, if N is known, 
a random sampling algorithm we proposed in [MRL98] 
requires only O(E-l log2(em1 log2 log 6-l)) space. This 
motivates the search for a more sophisticated sampling 
technique which works without knowing N but requires 
little space for small values of E. This paper presents 
one such scheme. 

The random sampling scheme we present is non- 
uniform, i.e., the probability that an element of the 
input is included in the sample is not the same for all 
elements. Elements that are early in the sequence are 
included with larger probability than those that arrive 
later. This non-uniformity improves the space overhead 
required by the reservoir methods to levels comparable 
to the best known algorithms that know N. The 
principal challenges are the algorithmic and analysis 
issues associated with non-uniform sampling. We feel 
that the methods used in this paper might generate 
interest in employing more sophisticated sampling 
methods for solving other problems. 

Problem 1 Given 4, e and 6, design a single pass 
algorithm that computes, with probability at least 1 - 6, 
an e-approximate &quantile of an input sequence using 
as little main memory as possible, without knowing the 
length of the sequence in advance. 

2.3 Extreme values 

When 4 5 e, the smallest element in the input 
sequence, denoted by MIN, is an e-approximate $ 
quantile. Computing MIN requires only O(1) space. 
This motivates the following questions: Is MIN a special 
case? Do we require significantly larger amounts of 
memory when 4 is slightly larger than E, a situation 
in which MIN does not qualify? The expected rank of 
the MIN has nothing to do with 4. Is there an estimator 
whose expected rank is 4N and which can be computed 
using very little space and reliably? 

We will answer both of these questions (see section 7) 
by providing a sampling method and an estimator which 
has an expected rank of 4N and which works when 
as long as # and E are both small and not necessarily 
exactly the same. 

Problem 2 Given g5 close to 0, E and 6, design a single 
pass algorithm that computes, with probability at least 
1 - 6, an e-approximate &quantile of a data set of 
arbitrary size using as little main memory as possible. 

3 The Unknown N Algorithm 
The algorithm is parameterized by three integers b, 

k and h. It uses b buffers each of which can store k 
elements. We will later compute values of b, k and h as 
functions of E and 6. Buffers are always labeled empty, 
partial or full. Initially, all b buffers are labeled empty. 
With each buffer X, we also associate a positive integer 
w(X), which denotes its weight. Various algorithms 
can be composed from an interleaved sequence of three 
operations on buffers: NEW, COLLAPSE and OUTPUT. 

3.1 NEW Operation 

NEW takes as input an empty buffer and an integer 
r that represents the sampling rate. It is invoked only 
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if there is an empty buffer and at least one outstanding 
element in the input sequence. The operation simply 
populates the buffer by choosing a a single random 
element from a block of T input elements each. It 
repeats this operation over k successive blocks of T 
elements each. Thus it consumes exactly rlc input 
elements, choosing k of them for populating the buffer. 
The NEW operation returns the buffer after assigning 
it weight r. Further, if the buffer was not completely 
filled because there were less than rlc elements left in 
the input stream, the buffer is marked partial. In the 
normal course, the buffer is marked full. 

Notice that choosing T = 1 amounts to no sampling. 
If T is larger then sampling is introduced. The larger T is 
the sparser the sample. The algorithm will dynamically 
change the value of r during execution leading to a 
variable rate of sampling. 

3.2 COLLAPSE Operation 

COLLAPSE takes c 2 2 full input buffers, denoted by 
&,&?,.-- , X,, and outputs a buffer, Y, each of size k. 
In the end, all but one input buffer is marked empty. 
The output Y is stored in the buffer that is marked full. 
Thus, Y is logically different from X1, X2,. . . , X, but 
physically occupies space corresponding to one of them. 

The weight of the output buffer w(Y) is the sum 
of weights of input buffers, CL=, zu(Xi). We now 
describe the.elements stored in Y. Consider making 
w(Xi) copies of each element in Xi and sorting all the 
input buffers together, taking into account the multiple 
copies. The e1ement.s in Y are simply k equally spaced 
elements in this (sorted) sequence. If w(Y) is odd, 
these k elements are in positions jzu(Y) + q, for 
j = 0,l 1-*- 1 k - 1. If w(Y) is even, we have two 
choices: We could either choose elements in positions 
jw(Y) + 4p or those in positions jw(Y) + q, for 
j=O,l,... , k - 1. 'rhe COLLAPSE operator alternates 
between these two choices on successive invocations 
with even w(Y). 

It is easy to see that multiple copies of elements 
need not actually be materialized. COLLAPSE can be 
performed in sitzl; n.o additional space is required. In 
the end, only the buffer that stores the output is labeled 
full, the rest are labeled empty. 

3.3 OUTPUT Olperation 

OUTPUT is performed exactly once, just before ter- 
mination. It takes c 2 2 input buffers, X1, X2,. _ _ ,X,. 
All buffers are full with the exception of the last one 
which might be partial. Similar to COLLAPSE, this 
operator makes w(Xi) copies of each element in X; 
and sorts all the input buffers together, taking the 
multiple copies into account. The element at position 
[4(kw(X1) + kw(Xz) + -. _ + kw(X,-1) + kcw(Xc))l is 
output, where k, denotes the size of the last buffer. 

3.4 Definition of Weighted &quantile 

As shown in Figure 1, the algorithm can be looked 
upon as being composed of two stages. The first stage 
accepts the input sequence and invokes successive N:EW 
operations. The output of the first stage feeds ,the 
second stage which runs the deterministic algorith,m. 
The assignment of weights to NEW buffers effectively 
feeds a weighted sequence of elements to the second 
stage where the weight of an element is the weight of 
the NEW buffer it lies in. The weighted &quantile of 
such a weighted sequence is defined in a natural way as 
follows. Imagine taking all NEW buffers together atnd 
making as many copies of each element as the weight of 
the NEW buffer it lies in. The $-quantile of this set. of 
copies is the weighted hquantile of the sequence. 

Random Sample 

I Deterministic 
Quantile Finding Algorithm 

Figure 1: The Big Picture. 

3.5 A Tree Representation 

An algorithm for computing approximate quantiles 
consists of a series of invocations of NEW and COL- 
LAPSE, terminating with OUTPUT. NEW populates 
empty buffers with input. COLLAPSE reclaims buffer 
space by collapsing a chosen subset of full buffers. OUT- 
PUT is invoked on the final set of buffers. The sequence 
of operations carried out by such an algorithm can be 
represented by a tree. The vertex set of the tree (except 
the root) is the set of all the (logical) buffers (initial, in- 
termediate or final) produced during the computation. 
Clearly, there could be many more of these than 6, the 
number of physical buffers used by the algorithm. The 
leaves of the tree correspond to initial buffers that get 
populated from the incoming data stream. An edge is 
drawn from each input buffer to the output buffer of a 
COLLAPSE operation. The root corresponds to the final 
OUTPUT operation. The children of the root are the 
final buffers produced. We draw broken edges from the 
children to the root. 

See Figure 2 depicting one such tree possible with 
b = 5 buffers, where each NEW has been invoked w:ith 
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Figure 2: A tree with b = 5 buffers when each 
NEW is invoked with sampling rate T = 1. Each 
node is labeled with its weight. 

sampling rate 1. The labels of nodes represent their 
weights. Leaves get populated left to right. 

3.6 COLLAPSE Policy 

The algorithm manages b 2 2 buffers each of size 
k. With each full buffer, we also associate an integer 
value to denote its level in the tree. NEW buffers 
are assigned level zero when the sampling rate T is 
one. During the course of the algorithm, if there is 
an outstanding element in the input sequence, we check 
whether there are any empty buffers. If so, we invoke 
NEW (the determination of sampling rate r will be 
more fully explained in Section 3.7). If there are no 
empty buffers, we have no choice but to reclaim space 
by invoking COLLAPSE on some buffers. The question 
then is: Which subset of full buffers do we COLLAPSE? 
We now describe our choice. 

NEW buffers are assigned level zero (until the onset of 
sampling). Let /! be the smallest level of any full buffer. 
If there is exactly one buffer at level e, we increment 
its level until there are at least two at the lowest level. 
COLLAPSE is invoked on the set of buffers at level !. 
The output of COLLAPSE is assigned level e + 1. See 
Figure 2 for the tree formed with b = 5 buffers using 
the buffer management scheme just described. 

3.7 Non-uniform Sampling 

The height of the tree increases by one whenever 
COLLAPSE is invoked on the entire set of b buffers. 
Creation of the first buffer at level h marks the onset 
of sampling. Thereafter, NEW is invoked with sampling 
rate r = 2 and each NEW buffer is assigned level 1. This 
continues until the height of the tree increases further 
to h + 1. At this point, the sampling rate is halved, 
i.e., NEW is invoked with r = 4 and NEW buffers are 
assigned level 2. In general, whenever the first buffer 
at height h + i is produced for i 2 0, the sampling rate 
is halved and subsequent NEW operations are invoked 
with rate r = 2i+1, the NEW buffer being assigned level 
i + 1. See Figure 3 for the tree formed by the buffer 
management policy just described. 

H) 

Figure 3: The tree for computing a weighted Cp 
quantile of samples. 

OUTPUT is invoked whenever a current estimate 
of the quantiles is desired or if the input stream 
runs dry. OUTPUT does not destroy or modify the 
state. Therefore, it can be invoked as many times as 
required. It is this feature ofour algorithm that makes it 
amenable for online aggregation environments [He197]. 

4 Analysis of the Algorithm 

There are two possible sources of error which our 
algorithm is subject to. The first is the sampling error, 
and the second is the error introduced by the algorithm. 
Correspondingly, in our analysis, the permissible error 
E is split into two parts: (1 - Q)E and oc, for some 
Q E (0,l). The first part is used to account for the 
sampling error, and the second part is used to account 
for the error introduced by the deterministic tree that 
consumes the samples (See Figure 1). More precisely, 
we will establish two bounds. First, in Section 4.1, 
the sampling scheme will be shown to guarantee that 
with probability at least 1 - 6, both the weighted 
(4 - cre)-quantile and the weighted (4 + ae)-quantile 
of the sample set are c-approximate &quantiles of 
the input sequence seen so far. Second, in Section 
4.2, the deterministic tree will be shown to guarantee 
that with probability 1, it computes a weighted DYE- 
approximate &quantile of the weighted sequence of 
(sample) elements fed to it. The two guarantees taken 
together ensure that the output is an e-approximate & 
quantile of the input sequence at all times but for an 
event of probability at most 1 - 6 which accounts for 
the failure of the sampling step. 

Analysis of the sampling scheme and the determinis- 
tic tree will yield inequalities linking together b, k, h, e, 6 
and a. Computing b, k and h as functions of e and d 
will then be a matter of solving an optimization prob- 
lem subject to a set of constraints we derive. 
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4.1 The SampIling Constraint 

The non-uniformity of our sampling scheme is im- 
plicit in the definition of NEW. Our analysis employs 
an interesting variant of Hoeffding’s inequality [Hoe63]. 
We state the lemma here without proof and refer the 
interested reader to Hoeffdings original article: 

Lemma 1. (Hoeffding’s Inequality) Let X1, X2, . . . , Xt 
denote independent random variables satisfying 0 < 
xi < ni for- i = 1,2,. . . , t. Let X = cf=, Xi. Let EX 
denote the expected value of X. Then, for any X > 0, 

WIX - E-Y 2 4 5 exp .$f~~. I 

Consider partitioning N, the size of the input 
sequence, into t disjoint non-empty subsets of sizes 
nl,n2,... ,nt in an arbitrary way. Thus N = xi==, ni. 
From within each subset, we choose one element (the 
representative for tlnis subset) uniformly randomly. 
These t representatives constitute our sample. Each 
element in the sample is assigned a weight that equals 
the size of the subset it was drawn from. Therefore, 
the cumulative weight of all elements in the sample is 
N. Consider the weighted (q5 + of)-quantile and the 
weighted (4 - eye)-q uantile of the sample. Let 6 denote 
the probability that the ranks of both of these elements 
in the sorted sequence of the input sequence (of size N) 
lies in the range I(4 :t c)N]. 

Lemma 2 6 < 2exp [-2(1- a)2c2w] 

Proof: Let SMALL denote the set of input elements 
whose rank is smaller than [(q5 - e)N] in the sorted 
input. Let LARGE denote the set of elements whose 
rank is larger than [1:4 + e)N]. Our sample is bad iff 
either the weighted su.m of sample elements drawn from 
SMALL is more than I($ - oe)N] or the weighted sum 
of sample elements d.rawn from LARGE is more than 
N - r(4 + ae)Nl. W e will bound the probability that 
the first event occurs. 

Define t Bernoulli variables, X1, X2,. . . , Xt. The 
random variable Xi takes the value ni if the repre- 
sentative of the ith jsubset lies in SMALL; otherwise 
it takes the value zero. Let X = xi=, Xi. It fol- 
lows that EX = r((f~ - c)N] - 1. The probability 
that X assumes a value at least [(d - oe)N] can be 
bounded by invoking Hoeffding’s inequality as follows: 

Pr[X - EX > (1 - a)eN] 5 exp -2(l-a)2c’(C:=, TX;)* 

c:,, n: - 

By a symmetric argument, one can show that the 
same bound holds for the probability that weighted 
sum of elements drawn from LARGE is more than 
N - r(q5 + trc)N]. Ta.ken together, we get the desired 
result. 0 

Let H denot,e the highest level of the tree. Let Ld 
denote the number of l.eaves in the tree before sa,mpling 

starts, i.e., the number of NED buffers with weight 1. 
Let LH denote the number of leaves at level H. Let 
L, denote the number of leaves at any other level other 
than 0 and H. See Figure 3. 

Application of Lemma 2 to our sampling scheme 
yields b 5 2exp r-20 - ~r)~e~X] where X equals 

[Ldk+2L.k+22L,k+..:+2n’-1 d 2 L,k+2H L,, k] 
2’JL,k+22L,k+2*L,k+-..+22f’-‘L.k+2’HL~k which simpli- 

fies to k[Ld+(2H-2)L,+2HLH]2 
H 

L~++=~L.+~HLH . 
It can be shown’ that 

X takes its minimum value for some LH 2 0. The 
minimum value is X 2 $$ [4Ld f 32H - 2)L,]. 

It follows that when H = 1, X = Ldk. AS 

H + co, X + $L,k. We can also show that 
X 1 min[&k, \L,k]. It follows that 6 < 2exp[-2(1 - 
o)2c2 min[&k, sLSk]] which is equivalent to 

(min [Ldk $L&] 2 $f!?$& 1 

Thus, we have proved the following lemma: 

Lemma 3 For any dataset, E, 6, $, and any choice of 
0 < CY < 1: if equation 1 is satisfied, then both the 
weighted 4 - cue-quantile and the q5 + or-quantile of the 
sample are e approdmate 4 quantiles of the dataset with 
probability 1 - 6. 

Notice that equation 1, places a restriction on k, the 
size of each buffer, and Ld and L, parameters which are 
determined by the shape of the collapse tree. We now 
derive two other such conditions, each of which comes 
from considering the errors that are introduced by the 
computational process. Unlike the first condition, these 
will depend on E and o only and not on 6. 

4.2 The Tree Constraints 

Let C denote the total number of COLLAPSE opera- 
tions in the tree, i.e., the number of non-leaf non-root 
nodes. Let W denote the sum of weights of all COI,- 
LAPSE operations. Let w,,, denote the weight of the 
heaviest child of the root. The main lemma in our ear- 
lier paper, which applies mutatis mutandis to the new 
sampling based algorithm is: 

Lemma 4 The weighted difference in rank between 
the true weighted &quantile of the sequence fed to 
the algorithm and that of the output produced by the 
algorithm is at most v + w,,,. 0 

For a proof of this lemma, we refer the interested 
reader to our earlier paper [MRL98]. The following 
lemma provides an upper bound for W, the sum of 
weights of all COLLAPSE operations. 

‘We minimize y = (a + z)z(b + z)-‘, where a = 2-H[Ld -I- 

(2H-2)Ls] and 6 = 4-H[Ld+qLs]. Setting y’ = (a+s)(2b-- 

a + z)(b + z)* to zero yields CC = a - 26. The second derivative 
y” = 2(b - CZ)*(~ + z)~ is positive at z = a - 2b. The minimum 
value for y is 4(a - b). 



Lemma 5 Let e,, &, _ _ . , eL denote the sequence of full 
leaves in the tree from left to right. Let hi denote the 
distance of Ci from the final root. Let Wi denote the 
weight that was assigned to ei when it was created with 
NEW. Then W < Cf=, wi(hi - 1) 0 

Note that the partial buffer that might result when 
the input sequence terminates, does not participate in 
Lemma 5. 

We first handle the case H > 1. In Figure 3, Ld and 
LH denote the number of full leaves at level 0 and level 
H respectively. L, denotes the number of full leaves at 
all other levels. The size of the partial buffer is k’ where 
0 < k’ < k. 

Application of Lemma 5 yields W 5 Ld(h + H - 1) + 
2L,(h+ H -2) +22L,(h+ H - 3) +...+2H-1L,h+ 
2H(h - 1) LH which simplifies to 

TV 5 Ld(h + H - 1) + L,[(h + 1)2H - 2(h + H)] 

+ LH(h - 1)2H 

The weighted sum of elements in leaf buffers is 

The analysis of the tree shown in Figure 3 is simplified 
if we weaken the upper bound in Lemma 4 to T+wmnz. 
Then the tree computes a weighted cY+approximate 
quantile of the sample S if the constraint F + wmnz 5 
QES is satisfied. 

setting Wmaz eqd to Ld + (zH - 2)Ls pessimisti- 

cally, we obtain i[(Ln(h + H - 1) + L,[(h + 1)2H - 
2(h + H)] + LH(h - 1)2H] + Ld + (2H - 2)L, 5 
cwek[Ln + (2H - 2)Ls + LH~~] + Cye2Hk’ which can 
be tightened by dropping the trailing term contain- 
ing k’. The resulting inequality is equivalent to 
L~(h+H-1)+~.[(h+1)2H--2(h+H)]+L~(h-l)2” < s&,,,k _ 2. 

Ld+L,(2H-2)+LH2H - 

Note that addition of LH2H in the denominator on 
the left hand side of the inequality is accompanied 
by addition of (h - l)L~2~ in the numerator. It is 

true that w 5 f iff % > h - 1 for any pos- 
itive integers a, b, A and h. It can be verified that 
L@+H-1)+L.[(h+l)2H-2(h+H)1 

Ld+L.(2H -2) > (h - 1) for any value 
of H. Thus, we can weaken the previous inequality to 
Ld(h+H--1)+L.l(h+1)2H--2(h+H)1 < 2CYEk _ 2 

&+L.(2H-2) - 

Let ,8 denote the ratio 2. It can be shown that 
the left hand side is less thin h + 1 + c, where c = 

max [ -1 H,l. This yields 
- 

h+S+c< 2cyek (2) 

The analysis is much simpler for the Munro-Paterson 
COLLAPSE policy [MP80] as ,0 = 2. 

We now handle the case H = 0, i.e., sampling has 
not kicked in; all elements in the input sequence are fed 
to the tree. Let L be the current number of full leaves, 
where 0 < L < Ld. So far, Lk + k’ input elements have 
been processed by the tree, where k’ is the size of the 
partial buffer in the end. The height of the tree is at 
most h. From Lemma 4, the difference in rank between 
the output of the algorithm and the exact &quantile of 
the input sequence is at most y + wmnZ. Using Lemma 

5, we obtain %$ + w m(12 5 e(Lk + k’). Using a 

pessimistic value of wmnZ = L, we get +Q.LS 
e(Lk + k’) which can be made tighter by dropping the 
term containing k’. The resulting inequality simplifies 
to 

[hi (3) 

4.3 Putting it All Together 

Equations 2 and 3 ensure that the deterministic tree 
always computes a weighted cue-approximate $-quantile 
of the sample fed to it. Equation 1 ensures that with 
probability at least 1 - 6, the output of this tree is 
no more than another (1 - (Y)EN elements away from 
the exact &quantile of N elements for any value of 
N. Taken together, the two constraints ensure that the 
overall algorithm always computes an e-approximate 6 
quantile with probability at least 1 - 6 without knowing 
the size of the input sequence in advance. Thus, 
provided all the constraints specified in equations 1, 
2; and 3 are satisfied, the output value will be an e 
approximate 4 quantile with probability at least 1 - 6. 

4.4 Space Complexity 

The space complexity for the algorithm can be 
computed by fixing CY = 0.5 and using Munro-Paterson 
COLLAPSE policy, which is explained in detail in 
[MRL98]. The number of leaves Ld = 2’ and L, = 2b-‘. 
Eqn 1 simplifies to 2bk > 2~-~1og(2b-~). The height 
h=b-l,~=:!andc=OinEqn2,whichsimplifiesto 
b + 2 < ek, which is tighter than Eqn 3. Solving these 
two inequalities for b and k yields the space complexity. 

Theorem 1 It is possible to compute, with probability 
at least 1 - 6, an e-approximate q5-quantile of an arbi- 
trarily large dataset in a single pass without requiring 
a priori knowledge of its size, using O(c-i log2 c-l + 
e-l log2 log 6-l) space. a 

Our random sampling scheme is easy to implement in 
practice as it requires us to pick a single element from 
a block of r elements where T is a power of two. Our 
sampling is without replacement. Typically, algorithms 
that employ random sampling require sampling without 
replacement, which is not as easy to implement. 
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4.5 Computing b and Ic 
Computation of b and k now reduces to an optimiza- 

tion problem where we minimize bk, the amount of main 
memory required, subject to three constraints, namely 
Equations 1, 2 and 3. We also have the constraints 
O<a<l,b>O,k>Oandh>O. 

If the tree is allowed to grow 1,o height h 2 3 before 
sampling begins, t:he number of leaves Ld = (“~~~;“) 

and L, =I (bih_r3). These can be plugged in Eq 1. 
Optimal values for b and k for values of E and b of 

practical interest can be computed by searching for b 
and h in the interval [2,50]. For fixed values of b and h, 
the three constraints imply a lower bound on k, which 
can be computed aa follows. Substituting values of b, 
h, E and 6 in Eqn 1 yields an inequality of the form 
k 2 cl (1 - CY)-~ where cl is some constant. Eqn 2 yields 
an inequality of the form k 2 c2a-l where c2 is another 
constant. Solve the equation cl (1 - CX)-~ = CZLY-1 for 
(Y. Then min[ [c2cy-11, %] is a lower bound for k. 
The latter term comes from Equation 3. Identify that 
combination of b and h that minimizes the product bk. 

4.6 Performance Comparison 
Table 1 lists b, k and total memory required by the 

new algorithm for practical values of E and 6. The 
memory requirements for our old algorithm that knows 
N a priori [MFU,981 are also listed along with. The 
new algorithm requires no more than twice the memory 
required ‘by the old one. Figure 4 compares the memory 
requirements as N varies. The new algorithm requires a 
constant amount of space, no matter what the value of 
N is. The old algorithm can take advantage of the fact 
that sampling need not be carried out for small values 
of N and save on memory requirements. 
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Figure 4: Comparison of memory requirements 
for E = 0.01 and 6 = 10e4. 

4.7 Multiple Quantiles 

If a multitude of quantiles is desired simultaneously, 
the algorithm remains the same as before. Its analysis, 
however, requires .a small change: 6 in Eqn 1 gets 
replaced by p6 where p is the number of quantiles being 

computed simultaneously. The proof of correctness is 
simple: Let 6’ = 6/p. The deterministic algorithm to 
which samples are fed computes any number of weighted 
quantiles of the samples simultaneously, each of which 
is ac-approximate. Eqn 1 confirms that the probability 
that a particular quantile fails to be c-approximate is at 
most 6’. It follows that the probability that any quantile 
fails to be c-approximate is at most ~6’ which is simply 
6. 

From Theorem 1, we deduce that the dependence of 
the total amount of memory required on the number 
of quantiles p, is 0(log2 logp). Therefore, the cost of 
computing additional quantiles is small. 

We can actually establish an upper bound on main 
memory requirements, independent of p. The trick 
lies in pre-computing a total of [e-l1 quantiles for 
4’ = 5, Q, F, and so on, each one of which is $- 
approximate. To output a &quantile, simply select that 
quartile from the pre-computed set that corresponds 
to a position closest to 4. It is easy to see that the 
output is c-approximate. This pre-computation requ.ires 
O(E-~ log2(c-’ log(e6)-‘)) space. It is very useful when 
C$ is not known in advance, as is the case when quantiles 
are used for constructing equi-depth histograms. 

In Table 2, we plot the memory requirements as the 
number of quantiles increases, for different values of 
E, keeping 6 fixed at 10m4. The last column lists the 
upper bound on memory requirements for an arbitrary 
number of quantiles. 

cp 

~~ 

0.005 10.51 K 10.76 K 10.97 K 11.17 K 25.16 K 
0.001 67.61 K 69.01 K 70.18 K 71.24 K 97.66 K 

Table 2: Memory requirements for multiple 
quantiles. 

As expected, the amount of main memory required 
grows slowly as a function of p, the number of dist,inct 
quantiles requested. However, pre-computation. of 
[c-l1 equally spaced quantiles requires significantly 
more memory. This sterns from the fact that memory 
requirements grow at least as fast as c-l, and ;pre- 
computation sets the approximation guarantee to $- 
Therefore we are better off using the pre-computation 
trick only if p is extremely large, or if p is not known at 
the outset. 

5 Dynamic Buffer Allocation 
One drawback of our algorithm is that we need 

to allocate all the memory required up front (Figure 



Unknown N Algorithm Known N Algorithm 

Table 1: Values for number of buffers b, size of each buffer k and total memory required by the new 
algorithm for different values of 6 and 6. Also listed are memory requirements by our old algorithm 
that knows N a priori (N is assumed to be large enough to warrant sampling). 

4). If the input consists of a singleton element, our 
main memory usage is clearly outrageous. This can be 
ameliorated by allocating the set of b buffers one by 
one, as required. Still, for small values of N 1 bk, the 
algorithm uses significantly more memory than would 
have been required had N been known in advance. Is it 
possible to re-design the algorithm so that buffers are 
allocated even more slowly so that our main memory 
usage at all times is as close as possible to that required 
by an algorithm that knows N? 

In practice, memory allocation would consist of a 
sequence of buffer allocation operations across time. 
For performance and simplicity, it is desirable that each 
buffer be contiguous and that its size remain unchanged. 

We now,design an algorithm whose memory require- 
ments grow slowly with the size of the input. We start 
off by allocating one buffer initially. When it is full, 
we allocate another. When the second buffer is also 
full, we have a choice between invoking COLLAPSE and 
allocating a new buffer. In general, this choice has to 
be made when all buffers currently allocated are full. 
For i E (1, b}, let Li denote the number of leaves in 
the tree when the ith buffer is allocated. For the first 
two buffers, Ll = 0 and Lp = 1. We call the sequence 
(Ll, L2,. . . , Lb) the buffer allocation schedule for the al- 
gorithm. When Ld NEW operations have been carried 
out, we start sampling and we follow the original algo- 
rithm. For simplicity, we assume that for all i, Li < Ld, 
i.e., there is no buffer allocation once sampling kicks in. 

If the input sequence has more than Ldk elements, 
the constraints in Eq 1 and Eq 2 would ensure that 
the output is an c-approximate &quantile. If the 
input sequence terminates at some point before Ld 
NEW operations have been invoked, we invoke OUTPUT 
operation as usual. However, we require a guarantee 
that the output is indeed an e-approximate @-quantile 
no matter what the current value of N is. Clearly, 
not all buffer allocation schedules can provide such a 
guarantee. We call a buffer allocation schedule valid if 
it provides such a guarantee. 

It turns out that several buffer schedules are valid. 
To choose the best among the myriad of valid schedules, 
we need an objective function. If the objective is 
to minimize the maximum amount of memory ever 
required, our original algorithm which allocates all 
buffers at the outset is the best. If the objective is that 
the main memory requirements be as close as possible 
to that if N were known, we need to quantify the 
goodness of a valid buffer allocation schedule. Once 
such a quantitative measure is available, we can select 
the optimal schedule. 

Another approach to select a reasonably good buffer 
allocation schedule is to let the user specify an upper 
limit on the main memory requirements for different 
values of N. There may or may not be a valid buffer 
schedule that meets these upper limits. By trial and 
error, the user can discover a schedule that is both valid 
and reasonably good. 

We adopt the latter approach, letting the user specify 
upper limits on main memory usage for different values 
of N. How do we compute a valid schedule that meets 
these limits? We search for k and b by assigning 
increasingly large values to k. Fixing k fixes b and 
the buffer allocation schedule. We can then use Eq 
3 to limit h, the height to which the tree is allowed 
to grow before we start sampling. This enables us to 
compute both Ld and L,. From Eq 1, we obtain an 
upper bound for o. From Eq 2, we get a lower bound for 
CY. If the range between these bounds does not intersect 
with the interval (0, l), the current schedule is rejected 
and we start all over again with a larger value of k. 
Otherwise, all constraints have been satisfied and the 
current schedule is accepted. 

Figure 5 shows a valid schedule whose main memory 
requirements are always within the upper limits speci- 
fied by the user. 

6 Parallel Implementation 

In a parallel setting, we assume P processing nodes. 
The input also consists of P separate input sequences, 
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exactly one out of successive blocks of four elements in 
BO is selected. After shrinking, Bo is assigned weight 8. 
At this point both BO and B;, have same weight and 
we process them as described before. 

Figure 5: A valid buffer allocation schedule within 
user specified me:mory constraints, for E = 0.01 
and 6 = 10M4. 

one per processor. A,ny input sequence may terminate 
at any time. We wish to compute approximate quantiles 
of the aggregate of all sequences taken together. Inter- 
processor tfimmunication should be minimal. 

At each processor, we run the single processor 
algorithm outlined in the previous section. A processor, 
upon termination of its input sequence, is left with some 
full buffers and possibly a partial buffer. If there are 
at least two full butlers, a final COLLAPSE on the set 
of full buffers is invoked. Each processor finally has 
at most one full buffer and at most one partial buffer. 
Both buffers, tagged with their respective weights and 
sizes, are then shipped for further processing to a 
distinguished processor which we call Processor PO. 

Processor PO assigns level 0 to all incoming buffers. It 
retains the weights of incoming full buffers. To handle 
incoming partial buf?ers, it maintains an additional 
buffer &. The first partial buffer received is copied 
to B,,. When another partial buffer Bi, arrives, the 
weights of Bi, and li?~ are compared. We denote the 
weights by Wi, and FVO respectively. If they are equal, 
we copy as many elemlents from Bi, as possible without 
overflowing Bo- If BO becomes full, it is added to the list 
of full buffers maintained by Processor 0. If all buffers 
are currently full and there still remain some uncopied 
elements in Bin, COLLAPSE is invoked. The remaining 
elements of Bin are then copied to Bo. If Win and WO 
differ, then the buffer with smaller weight is shrunk in 
size by sampling at a rate equal to the ratio of the larger 
weight to the smaller. Moreover, the buffer just shrunk 
is assigned the larger weight. For example, if Bi, has 
weight W;, = 8 and BO has weight WO = 2, then BO 
is shrunk in size by satmpling at rate Win/W0 = 4, i.e., 

When all input buffers have been received by PO., it 
invokes an OUTPUT operation on all its buffers taken 
together. 

How much memory does PO require’? PO is required 
to maintain at least two buffers. It can build any tree 
of buffers (See Figure 2). In the analysis that follows, 
we assume that the height of such a tree is h’. 

When the degree or parallelism is very large, collect- 
ing output buffers at one node may deteriorate perfor- 
mance significantly. In such a case, we aggregate pro- 
cessors into multiple groups. One designated processor 
in each group collects the output buffers from all oth- 
ers in its group. In the end, the outputs from these 
processors can be collected at one processor. As far as 
theoretical analysis of such a scheme is concerned: luck- 
ily, all that matters is the increase in the height of the 
tree, which we denote by h’. 

6.1 Parallel Sampling Constraint 

Assuming that sampling is carried out in at least one 
processor, application of Lemma 1 to the set of samples 
from all processors yields 

d < 2exp [-2(1- (r)‘c2X] 

where X = E& for i = 1,2,. . . , P. There is a small 
catch here2. !%ce all A; and Bi values are non-negatiT,e, 

w 2 $$$ 2 min [g] i=l 2 ,.. p. We showed that 
3. 3 

$ 2 min[ldlc, $L,lc], for i = 1,2, _ . . , P. This leads to 
t6e following inequality: 

(4) 

Interestingly, the constraint is the same as before (E1q 
I>- 

6.2 Parallel Tree Constraints 

The analysis of the tree is slightly different because 
of the additional COLLAPSE in the end at a designated 
processor. Proceeding as before, we get an inequality 
of the form E- 2 5 2cxck - 2. Since all Ci and 
Di values are pdsitive, from componendo-dividendo, 

3% “1 5 max $+ 
[ I ’ iA2 3 ,... I P 

. We already established 

that for any i, g < h + h’ + 3 + c where c := * 

2Processors where sampling has not started will have their Ai 
values less than L,j. We can club these values together with the 
Ld of that Ai which corresponds to the processor where sampling 
has begun. The rest of the analysis is then ok. 
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maz [-WI H,l and 0 = 2. It follows that 

h+h’+3+c<2aek (5) 

Interestingly, the constraint is the same as before, only 
the height h has now been augmented with h’, the 
additional height gained at the merging processor. 

If sampling does not start at any processor, then 
following the same argument as in the non-parallel case, 
we obtain the constraint 

W-J (6) 

6.3 Putting It All Together 

Remarkably, the three constraints, namely Eqn 4, 5 
and 6, are very similar to the tree constraints derived for 
the single processor case. Computing b and k amounts 
to optimizing bk subject to the three constraints. 

7 Extreme Values 
This section deals with an interesting special case of 

the order statistic problem. The case arises when the 
required quantile 4 is small and close to E, the required 
accuracy. For instance, if the required quantile 4 is l%, 
or equivalently, .Ol and the desired accuracy is 1 in 1000 
or .OOl. 

We provide a simple algorithm which seems to out- 
perform most other algorithms handily in the amount 
of memory required. As a motivating example, when 4 
and E: are set to exactly the same value, the minimum 
value in the dataset is an e-approximate +-quantile. 
Clearly, this value can be calculated using very little 
space. In this section we look at a simple generaliza- 
tion of this observation. 

The method is to use a random sample and keep 
only the k largest elements of the sample in memory. 
The parameters k and the sample size s are chosen in 
conjunction so that the expected rank of the kth largest 
element of the sample is 4N and so that the probability 
that it is an s-approximate $-quantile is at least 6. As 
k is increased, the sample size s has to be increased 
in correspondence. In particular, the relationship is 
k = 4s. Thus, the sampling rate, which is 5 = & 
is dependent on N, the size of the data set. 

The question is the following: Given E, 6 and 4, what 
is the smallest value of k (and consequently of s) such 
that the kthlargest value in s is an E approximate 
4 quantile with probability 1 - 6? Computing a 
tight bound for k and s requires a tighter bound on 
the probability of tail events than that provided by 
Hoeffding’s lemma. We elaborate on this next. 

There are a number of bounds on the probability 
of tail events, alternately known as “large deviation 
theorems.” We will state a form that is convenient in 
our context, usually known as Stein’s lemma. 

Let {Xi : 1 5 i 5 N} be i.i.d. (0, 1) Bernoulli 
with parameter q which is unknown. The simple 
likelihood test between two competing hypothesis pl 
and p2 aims on figuring out which of pr and p2 is 
closer to q. The test is simply to choose the pj 
maximizing P( {Xi} were generated by pj), which is, 
letting xi Xi = .$ (?)~:(l-pj)~-~. Let pi be the truly 
better hypothesis3 with respect to q. We say that the 
test fails if it chooses the wrong hypothesis, in this case, 
~2. Stein’s lemma places a bound on the probability 
that this test fails. 

Lemma 6 (Stein’s Lemma) Let {Xi : 1 5 i < s> be 
i.i.d. Bernoulli with parameter q. Consider any pl,p2, 
pi E [O, 11. Then, the probability that the likelihood test 
fails is bounded by 

P(likelihood test fails) 5 2-sD(P1;P2) 

where D(pl;pz) denotes the K&back Leibler distance, 
pilogE”+ (1 -p#og~. PI 

0 

Let us assume that we choose a random sample with 
replacement, (this is not much different from a sample 
without replacement if the sample size is small with 
respect to N). Let Xi be the Bernoulli variable that is 
1 iff the ith sample point has rank at most +N. Clearly, 
the probability that Xi is 1 is exactly 4. 

By choosing pi = q = 4, p2 = 4 - c, applying Stein’s 
lemma and summing the two probabilities, we get a 
bound on the probability that the kth largest element is 
either too small or too large in terms of the sample size 
s (since, clearly, if the computed approximate quantile 
is not an E-approximate &quantile, the likelihood test 
fails and the sum is the union bound on the two bad 
events). 

Thus, modulo our approximation, we obtain the 
condition: 

Also, note that since the expected rank of the kth 
largest element of the sample is $N, we get 

k/s = g5 

The two conditions above give us enough information 
to compute a bound for k in terms of #, E and b. 
When subject to the conditions that 4 is small, and 
c is smaller: the above expression reduces to 

3We do not specify exactly what we mean by this, though for 
our purposes, we note that in the csse that p = ~1, then p1 is 
the truly better hypothesis. The principle notion here is that the 
better hypothesis is the closer one with respect to the Kullback 
Leibler distance (sometimes known as the relative entropy). For 
details check [CT911 

261 



COnsequently, choosing s = ‘;(log 5 + 1) suffices. And 
thus, k, the amount of memdry required is k = t(1 + 
log f). 

The advantage of this method is that the amount of 
space required is linear in $ and not quadratic, as is 
the case with the random sampling algorithm when 4 
is larger. 

8 Conclusions 

Important database applications that employ quan- 
tiles suffer from lack of reliable a priori knowledge of 
the length of input sequence whose quantiles need be 
computed. This motivates a search for quantile finding 
algorithms that do not require such knowledge. 

We presented the first practical algorithm enjoying 
this property. The Algorithm is part of the framework 
first proposed in [MRL98]. Moreover, it employs a 
novel non-uniform r.andom sampling technique. Its 
performance in terms of main memory requirements 
is comparable to th.at of the best known algorithm 
that knows N. Furthermore, we improved upon the 
algorithm by delaying the allocation of buffers so that 
the main memory requirements during the course of 
execution are as close aa possible to that of the best 
algorithm that knows N. We also proposed and 
analyzed a parallel version of the algorithm. 

We also presented algorithms that require signifi- 
cantly less memory if the desired quantiles is an extreme 
value, i.e., close to the largest or smallest element in the 
sequence. 
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