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Abstract

In a recent paper [MRL98], we had described a general
framework for single pass approximate quantile finding algo-
rithms. This framework included several known algorithms
as special cases. We had identified a new algorithm, within
the framework, which had a significantly smaller require-
ment for main memory than other known algorithms. In
this paper, we address two issues left open in our earlier
paper.

First, all known and space efficient algorithms for ap-
proximate quantile finding require advance knowledge of the
length of the input sequence. Many important database ap-
plications employing quantiles cannot provide this informa-
tion. In this paper, we present a novel non-uniform random
sampling scherme and an extension of our framework. To-
gether, they form the basis of a new algorithm which com-
putes approximate quantiles without knowing the input se-
quence length.

Second, if the desired quantile is an extreme value (e.g.,
within the top 1% of the elements), the space requirements
of currently known algorithms are overly pessimistic. We
provide a simple algorithmn which estimates extreme values
using less space than required by the earlier more general
technique for computing all quantiles. Qur principal
observation here is that random sampling is quantifiably
better when estimating extreme values than is the case with
the median.

1 Introduction

This article continues our study [MRL98] of the
problem of computing quantiles of large sequences of
online or disk-resident datasets in a single pass while
using as little main memory as possible. We will denote
the length of the input sequence by N. For ¢ € (0,1],
the element in position [¢N] in the sorted sequence of
the input is said to be the ¢-quantile. The quantile
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corresponding to ¢ = 0.5 has a special name, the
median. For e € [0, 1], an element belonging to the input
sequence is said to be an e-approximate ¢-quantile if its
rank is between [{¢ ~ €)N| and [(¢ + €)N]. Obviously,
we assume that € < ¢ and € < (1 — ¢).

1.1 Database Applications

Quantiles characterize distributions of real world data
sets and are less sensitive to outliers than the moments
(mean and variance). They can be used by business
intelligence applications to distill summary information
from huge data sets.

Quantiles are used by query optimizers to provide
selectivity estimates for simple predicates on table
values [SALP79]. Equi-depth histograms [PIHS96] are
simply %-quantiles, fori e {1,2,...,p— 1}, computed
over column values of database tables for a suitable p.

Splitters are used in parallel database systems, such
as DB2 and Informix [Inf, DB2] for value range data
partitioning. They are also used in distributed sorting
to assign data elements to processors [DNS91].

Approzimate quantiles can be substituted for exact
quantiles in all the applications just described. In
practice, it is acceptable if the difference in rank
between the true and the approximate quantile is
guaranteed to be less than 1% of the total number of
data elements.

Probabilistic guarantees on the correctness of the
output are also acceptable in practice as long as such
guarantees are very close to 100%. For example, a set
of splitters dividing a very large data set of size N into
100 approximately equal parts is acceptable if, with
probability at least 99.99%, the rank of each splitter is
guaranteed to be no more than 0.001N elements away
from that of the corresponding exact splitter.

Extreme quantiles are often of much interest in real
world datasets. Extreme values characterize outliers
and represent skew in the data. For instance, the
95thquantile in a quarterly sales table for all franchises
of a company is useful to compute.



1.2 Motivation for Unknown N

If one views quantile computation as an aggregation
operator in relational databases, the input might be
an intermediate table for whose size, at best, a
crude estimate from the query optimizer is available.
Approximate quantiles can also be used for maintaining
equi-depth histograms of a dynamically growing table.
Such a histogram should be accurate at all times
irrespective of the current size of the table.

1.3 Challenges to Meet

The efficiency and the correctness of the algorithm
should be data independent. It should not be influenced
by the arrival distribution or the value distribution of
the input. It should not require a priori knowledge of
the size of the data set. The algorithm should pro-
vide explicit and tunable performance guarantees. Its
performance should degrade gracefully as the approxi-
mation guarantee desired is made tighter.

The algorithm should require only a single pass over
the data. Multiple passes over large data sets not
only degrade performance but also are incompatible
with most DBMS GROUP BY implementations. The
main memory requirements of the algorithm should
be as small as possible. Main memory is of concern
when histograms over multiple columns of a table
are to be computed simultaneocusly. GRroOuUpP By
algorithms also compute multiple aggregation results
concurrently, further increasing the desirability of a
small and predictable memory footprint. The algorithm
should be simple to understand, parallelizable, and
should scale well on SMP and MPP configurations.

1.4 Our Contributions

In our previous article [MRL98], we developed a
general framework for identifying approximate quantiles
of large data sets in a single pass using little main
memory. All algorithms which fit in this framework,
including the one proposed in [MRL98] and other
previously known ones [ARS97, MP8&0, AS95), required
that N, the size of the input sequence, be known
in advance. In this article, we build upon our
previous work by augmenting our framework and
devising a novel non-uniform sampling technique. The
resulting algorithm solves the approximate quantile
finding problem without requiring advance knowledge
of N. The new algorithm does not entail a significant
main memory overhead when compared with algorithms
that know N.

We also propose a simple strategy which requires
significantly less memory when ¢ is tiny (or large)
and close to 0 (or 1). The algorithm makes use of
a simple computational fact: the extreme values of
random samples can be computed using less space than
medians, and an interesting statistical fact: the rank

distribution of an extreme value of a randon sample is
more tightly clustered around its expected rank than is
the case with quantiles close 10 the median. This allows
us to improve upon space requirements for extreme
value computation significantly.

1.5 Related Work and Connections

Absence of a priori knowledge of N enforces an online
view of the problem. Essentially, the algorithm is
required to have available an estimate of the quantiles
for any prefix of the input sequence. Clearly, it could
be employed as an online aggregation operator [Hel97),
thereby providing more controllable and user friendly
user interfaces.

Synopsis data structures, a term coined by Gibbons
and Matias [GM99, GM98|, summarize the information
content of massive data sets. The synopsis has a
memory footprint substantially smaller than the base
data set. It is designed to support fast computation
of approximate answers to a limited set of queries.
One example of a synopsis data structure is a set of
approximate histograms over several combinations of
column values of a table.

Gibbons, Matias and Poosala [GMP97] propose
an algorithm for computing approximate quantiles
that satisfy a different error metric. The algorithm
dynamically adjusts a set of bucket boundaries on the
fly, possibly requiring more than one pass over the data
set. Chaudhuri, Motwani and Narsayya [CMN98] also
present an approximate quantile finding algorithm that
employs block sampling. Their error metrics differ from
ours and the algorithm can possibly require multiple
passes.

2 Antecedents

The theory literature has focused on discovering
bounds on the number of comparisons needed to find
exact quantiles of datasets. The celebrated paper by
Blum, Floyd, Pratt, Rivest and Tarjan [BFP*73] shows
that any quantile of a data set of size N can be
computed with at most 5.43N comparisons. The paper
also establishes a lower bound of 1.5N comparisons for
the problem. For an account of progress since then, see
the survey by Mike Paterson [Pat97].

Frances Yao [Yao74] showed that any deterministic
algorithm that computes an approzrimate quantile re-
quires Q(N) comparisons. Curiously, this lower bound
is easily beaten by employing randomization. The folk-
lore algorithm that outputs the median of a random
sample of size O(e~?log 1) requires a number of com-
parisons that is independent of N. For a comprehensive
survey of this aspect of the literature, see the survey by
Paterson [Pat97].
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2.1

Quantile finding algorithms that require only a single
pass over the data were first studied by Ira Pohl [Poh69]
who established that any deterministic algorithm that
computes the exact median of N elements in one pass
needs to store at least N/2 data elements. Munro and
Paterson {MP80] proved a general result that memory

to store O(N %) elements is necessary and sufficient to
compute the exact median of NV elements in p passes.

When N is large, computation of ezact quantiles in
a single pass is impractical due to the incredibly large
main memory requirement. This motivates a search for
algorithms that compute approzimate quantiles. The
ideas in the paper by Munro and Paterson [MP80]
can be used to construct a single pass algorithm that
computes e-approximate quantiles of N elements in
O(e~! log®(eN)) space.

In our previous paper [MRL98], we presented a gen-
eral framework for computing approximate quantiles in
a single pass, that includes two previously known al-
gorithms, one by Munro and Paterson [MP80] and an-
other by Alsabti, Ranka and Singh [ARS97], as special
cases. We also described a third algorithm, also within
the framework, which significantly improved upon the
main memory requirements with respect to the earlier
algorithms. Theoretically though, the space complexity
of that algorithm is O(e~! log?(eN)), the same as that of
Munro and Paterson’s algorithm. We also presented a
very simple randomized algorithm that achieves further
reduction in space at the cost of probabilistic guarantees
on the correctness of the output. The randomized algo-
rithm requires only O(e! log®(e~!log®log 1)) space,
where § is the probability that the algorithm fails to
produce a quantile within the promised approximation
guarantee. Note that the space complexity is indepen-
dent of N.

The principal drawback is that all the above algo-
rithms require that N be known in advance.

Single Pass Algorithms

2.2 Unknown N Algorithms

A very simple sampling scheme called reservoir
sampling [Vit85) generates a sample of size s without
advance knowledge of N. Folklore analysis shows that
if the sample has size O(e~2logd~!), the ¢-quantile of
the sample is an e-approximate quantile of the input
dataset with probability at least 1 — 4. The quadratic
dependence of s on €1 makes the scheme impractical
for small values of € because the entire sample has to be
stored in main memory. In comparison, if N is known,
a random sampling algorithm we proposed in [MRL98§]
requires only O(e~!log®(e~ " log®log 1)) space. This
motivates the search for a more sophisticated sampling
technique which works without knowing NV but requires
little space for small values of €. This paper presents
one such scheme.
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The random sampling scheme we present is non-
uniform, i.e., the probability that an element of the
input is included in the sample is not the same for all
elements. Elements that are early in the sequence are
included with larger probability than those that arrive
later. This non-uniformity improves the space overhead
required by the reservoir methods to levels comparable
to the best known algorithms that know N. The
principal challenges are the algorithmic and analysis
issues associated with non-uniform sampling. We feel
that the methods used in this paper might generate
interest in employing more sophisticated sampling
methods for solving other problems.

Problem 1 Given ¢, € and 4, design a single pass
algorithm that computes, with probability at least 1 — 6§,
an e-approzimate ¢-quantile of an input sequence using
as little main memory as possible, without knowing the
length of the sequence in advance.

2.3

When ¢ < ¢, the smallest element in the input
sequence, denoted by MIN, is an e-approximate ¢
quantile. Computing MIN requires only O(1) space.
This motivates the following questions: Is MIN a special
case? Do we require significantly larger amounts of
memory when ¢ is slightly larger than €, a situation
in which MiN does not qualify? The expected rank of
the MIN has nothing to do with ¢. Is there an estimator
whose expected rank is ¢ N and which can be computed
using very little space and reliably?

We will answer both of these questions (see section 7)
by providing a sampling method and an estimator which
has an expected rank of ¢ N and which works when
as long as ¢ and e are both small and not necessarily
exactly the same.

Extreme values

Problem 2 Given ¢ close to 0, € and d, design a single
pass algorithm that computes, with probability at least
1 — 4, an e-approzimate ¢-quantile of a data set of
arbitrary size using as little main memory as possible.

3 The Unknown N Algorithm

The algorithm is parameterized by three integers b,
k and h. It uses b buffers each of which can store k
elements. We will later compute values of b, k and h as
functions of € and 4. Buffers are always labeled empty,
partial or full. Initially, all b buffers are labeled empty.
With each buffer X, we also associate a positive integer
w{X), which denotes its weight. Various algorithms
can be composed from an interleaved sequence of three
operations on buffers: NEw, COLLAPSE and OUTPUT.

3.1 New Operation

NEW takes as input an empty buffer and an integer
r that represents the sampling rate. It is invoked only



if there is an empty buffer and at least one outstanding
element in the input sequence. The operation simply
populates the buffer by choosing a a single random
element from a block of r input elements each. It
repeats this operation over & successive blocks of r
elements each. Thus it consumes exactly rk input
elements, choosing k of them for populating the buffer.
The NEW operation returns the buffer after assigning
it weight r. Further, if the buffer was not completely
filled because there were less than rk elements left in
the input stream, the buffer is marked partial. In the
normal course, the buffer is marked full.

Notice that choosing r = 1 amounts to no sampling.
If r is larger then sarapling is introduced. The larger r is
the sparser the sample. The algorithm will dynamically
change the value of r during execution leading to a
variable rate of sampling.

3.2 COLLAPSE Operation

COLLAPSE takes ¢ > 2 full input buffers, denoted by
X1, Xo,...,X., and outputs a buffer, Y, each of size k.
In the end, all but one input buffer is marked empty.
The output Y is stored in the buffer that is marked full.
Thus, Y is logically different from X, X5,..., X, but
physically occupies space corresponding to one of them.

The weight of the output buffer w(Y) is the sum
of weights of input buffers, Y ;_, w(X;). We now
describe the elements stored in Y. Consider making
w(X;) copies of each element in X; and sorting all the
input buffers together, taking into account the multiple
copies. The elements in Y are simply k equally spaced
elements in this (sorted) sequence. If w(Y) is odd,
these k elements are in positions jw(Y) + ﬂ%&, for
j=01,...,k—-1. I w(lY) is even, we have two
choices: We could either choose elements in positions
Jw(Y)+ 3&2!2 or those in positions jw(Y) + _@LYZ)L?, for
j=0,1,... ,k — 1. The COLLAPSE operator alternates
between these two choices on successive invocations
with even w(Y).

It is easy to see that multiple copies of elements
need not actually be materialized. COLLAPSE can be
performed in sity; no additional space is required. In
the end, only the buffer that stores the output is labeled
full, the rest are labeled empty.

3.3 OuTPUT Operation

OuTPUT is performed exactly once, just before ter-
mination. It takes ¢ > 2 input buffers, X1, Xo,... , X,.
All buffers are full with the exception of the last one
which might be partial. Similar to COLLAPSE, this
operator makes w(X;) copies of each element in X;
and sorts all the input buffers together, taking the
multiple copies into account. The element at position
[plkw(Xy) + kw(X2) + - - + kw(Xoo1) + kew(X))] is
output, where k. denotes the size of the last buffer.

3.4 Definition of Weighted ¢-quantile

As shown in Figure 1, the algorithm can be looked
upon as being composed of two stages. The first stage
accepts the input sequence and invokes successive NEW
operations. The output of the first stage feeds the
second stage which runs the deterministic algorithm.
The assignment of weights to NEw buffers effectively
feeds a weighted sequence of elements to the second
stage where the weight of an element is the weight of
the NEw buffer it lies in. The weighted @-quantile of
such a weighted sequence is defined in a natural way as
follows. Imagine taking all NEw buffers together and
making as many copies of each element as the weight of
the NEw buffer it lies in. The ¢-quantile of this set of
copies is the weighted ¢-quantile of the sequence.

Input Sequence

Non-Uniform
Random Sampling

! Weight w

I

Random Sample V

uantile Finding Algorit

Y

Output

Deterministic
Q hm

Figure 1: The Big Picture.

3.5 A Tree Representation

An algorithm for computing approximate quantiles
consists of a series of invocations of NEw and CoL-
LAPSE, terminating with QuTpuT. NEW populates
empty buffers with input. COLLAPSE reclaims buffer
space by collapsing a chosen subset of full buffers. QuT-
PUT is invoked on the final set of buffers. The sequence
of operations carried out by such an algorithm can be
represented by a tree. The vertex set of the tree (except
the root) is the set of all the (logical) buffers (initial, in-
termediate or final) produced during the computation.
Clearly, there could be many more of these than b, the
number of physical buffers used by the algorithm. The
leaves of the tree correspond to initial buffers that get
populated from the incoming data stream. An edge is
drawn from each input buffer to the output buffer of a
COLLAPSE operation. The root corresponds to the final
OuTPUT operation. The children of the root are the
final buffers produced. We draw broken edges from the
children to the root.

See Figure 2 depicting one such tree possible with
b = 5 buffers, where each NEw has been invoked with
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Figure 2: A tree with b = 5 buffers when each
NEW is invoked with sampling rate r = 1. Each
node is labeled with its weight.

sampling rate 1. The labels of nodes represent their
weights. Leaves get populated left to right.

3.6 CoLLAPSE Policy

The algorithm manages b > 2 buffers each of size
k. With each full buffer, we also associate an integer
value to denote its level in the tree. NEW buffers
are assigned level zero when the sampling rate r is
one. During the course of the algorithm, if there is
an outstanding element in the input sequence, we check
whether there are any empty buffers. If so, we invoke
NEW (the determination of sampling rate r will be
more fully explained in Section 3.7). If there are no
empty buffers, we have no choice but to reclaim space
by invoking COLLAPSE on some buffers. The question
then is: Which subset of full buffers do we COLLAPSE?
‘We now describe our choice.

NEw buffers are assigned level zero (until the onset of
sampling). Let £ be the smallest level of any full buffer.
If there is exactly one buffer at level ¢, we increment
its level until there are at least two at the lowest level.
COLLAPSE is invoked on the set of buffers at level £.
The output of COLLAPSE is assigned level £+ 1. See
Figure 2 for the tree formed with b = 5 buffers using
the buffer management scheme just described.

3.7 Non-uniform Sampling

The height of the tree increases by one whenever
COLLAPSE is invoked on the entire set of b buffers.
Creation of the first buffer at level A marks the onset
of sampling. Thereafter, NEW is invoked with sampling
rate r = 2 and each NEW buffer is assigned level 1. This
continues until the height of the tree increases further
to h + 1. At this point, the sampling rate is halved,
i.e., NEW is invoked with r = 4 and NEw buffers are
assigned level 2. In general, whenever the first buffer
at height h + ¢ is produced for 7 > 0, the sampling rate
is halved and subsequent NEW operations are invoked
with rate r = 21| the NEw buffer being assigned level
i+ 1. See Figure 3 for the tree formed by the buffer
management policy just described.

Ly (Level H)
L, {Level 3)
L, (Level 2}

L. (Level 1)

Lo (level 0}

Figure 3: The tree for computing a weighted ¢-
quantile of samples.

OuTPUT is invoked whenever a current estimate
of the quantiles is desired or if the input stream
runs dry. OUTPUT does not destroy or modify the
state. Therefore, it can be invoked as many times as
required. It is this feature of our algorithm that makes it
amenable for online aggregation environments [Hel97].

4 Analysis of the Algorithm

There are two possible sources of error which our
algorithm is subject to. The first is the sampling error,
and the second is the error introduced by the algorithm.
Correspondingly, in our analysis, the permissible error
€ is split into two parts: (1 — a)e and ae, for some
o € (0,1). The first part is used to account for the
sampling error, and the second part is used to account
for the error introduced by the deterministic tree that
consumes the samples (See Figure 1). More precisely,
we will establish two bounds. First, in Section 4.1,
the sampling scheme will be shown to guarantee that
with probability at least 1 — 4, both the weighted
(¢ — ae)-quantile and the weighted (¢ + ae)-quantile
of the sample set are e-approximate ¢-quantiles of
the input sequence seen so far. Second, in Section
4.2, the deterministic tree will be shown to guarantee
that with probability 1, it computes a weighted we-
approximate ¢-quantile of the weighted sequence of
(sample) elements fed to it. The two guarantees taken
together ensure that the output is an e-approximate ¢-
quantile of the input sequence at all times but for an
event of probability at most 1 — § which accounts for
the failure of the sampling step.

Analysis of the sampling scheme and the determinis-
tic tree will yield inequalities linking together b, k, k, €,
and a. Computing b, k and h as functions of € and ¢
will then be a matter of solving an optimization prob-
lem subject to a set of constraints we derive.
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4.1 The Sampling Constraint

The non-uniformity of our sampling scheme is im-
plicit in the definition of NEW. Our analysis employs
an interesting variant of Hoeflding’s inequality [Hoe63].
We state the lemma here without proof and refer the
interested reader to Hoeffdings original article:

Lemma 1 (Hoeffding’s Inequality) Let X1, X2,...,X;
denote independent random wvariables satisfying 0 <
X;<nifori=1,2,...,t. Let X = 3 i, Xi. Let EX
denote the expected value of X. Then, for any A > 0,
Pr{|X —EX| > )\ < exp f—#%?

Consider partitioning N, the size of the input

sequence, into t disjoint non-empty subsets of sizes
ny,M2,... ,N; in an arbitrary way. Thus N = E;l n;.
From within each subset, we choose one element (the
representative for this subset) uniformly randomly.
These t representatives constitute our sample. Each
element in the sample is assigned a weight that equals
the size of the subset it was drawn from. Therefore,
the cumulative weight of all elements in the sample is
N. Consider the weighted (¢ + ae)-quantile and the
weighted (¢ — ae)-quantile of the sample. Let § denote
the probability that the ranks of both of these elements
in the sorted sequence of the input sequence (of size N)
lies in the range [(¢ + €)N].
Lemma 2 6 < 2exp [—2(1 )2622‘1—’1—%'5—]
Proof: Let SMALL denote the set of input elements
whose rank is smaller than [(¢ — €)N] in the sorted
input. Let LLARGE denote the set of elements whose
rank is larger than [(¢ + ¢)N]. Our sample is bad iff
either the weighted sum of sample elements drawn from
SMALL is more than [(¢ ~ ae)N| or the weighted sum
of sample elements drawn from LARGE is more than
N — [(¢ + ae)N]. We will bound the probability that
the first event occurs.

Define ¢ Bernoulli variables, X;,Xs,...,X;. The
random variable X; takes the value n; if the repre-
sentative of the i** subset lies in SMALL; otherwise
it takes the value zero. Let X = Y i_, X;. It fol-
lows that EX = [(¢ — €)N] — 1. The probability
that X assumes a value at least [(¢ — ae})N| can be
bounded by invoking Hoeflding’s inequality as follows:

PriX —EX > (1 - a)eN] < exp == agtz(z“‘ m)”
By a symmetric argument, one can show that the
same bound holds for the probability that weighted
sum of elements drawn from LARGE is more than
N — [(¢ + a€)N]. Taken together, we get the desired

result. (]

Let H denote the highest level of the tree. Let L4
denote the number of leaves in the tree before sampling

starts, i.e., the number of NEw buffers with weight 1.
Let Ly denote the number of leaves at level H. Let
L, denote the number of leaves at any other level other
than 0 and H. See Figure 3.

Application of Lemma 2 to our sampling scheme
yields 6 < 2exp[-2(1 - a)?¢’X] where X equals

(Lgk42L,k+22L, k44271 L k42" Ly k)?
20Ldk+22L,k+24L,k+---+2ﬂT~2L,k+22H Luk

H_
fies to MLat(@ —DL.+2Lul’ 1 can be shown! that
Lo+ B2, 4 Ly

X takes its minimum value for some Ly > 0. The
minimum value is X > £57* 2 = [4Ld + 30" -2)L,].

It follows that when H = 1, X = Lgk. As
H = o X — SL k. We can also show that
X > mln[Ldk 8L, k] 1t follows that § < 2exp[—2(1 —

a)%€? min[ Lk, 3 L,k]) which is equivalent to

min [Lqk, §L.k] > 820 ) Q)

Thus, we have proved the following lemma:

which simpli-

Lemma 3 For any dataset, ¢, 6, ¢, and any choice of
0 < a < 1: if equation 1 is satisfied, then both the
weighted ¢ — ae-quantile and the ¢ + ae-quantile of the
sample are ¢ approzimate ¢ quantiles of the dataset with
probability 1 — 4.

Notice that equation 1, places a restriction on k, the
size of each bufer, and Ly and L, parameters which are
determined by the shape of the collapse tree. We now
derive two other such conditions, each of which comes
from considering the errors that are introduced by the
computational process. Unlike the first condition, these
will depend on € and « only and not on 4.

4.2 The Tree Constraints

Let C denote the total number of COLLAPSE opera-
tions in the tree, i.e., the number of non-leaf non-root
nodes. Let W denote the sum of weights of all CoL-
LAPSE operations. Let wmne, denote the weight of the
heaviest child of the root. The main lemma in our ear-
lier paper, which applies mutatis mutandis to the new
sampling based algorithm is:

Lemma 4 The weighted difference in rank between
the true weighted ¢-quantile of the sequence fed to
the algorithm and that of the output produced by the
algorithm is at most ¥=C=L 4 wp,,. o

For a proof of this lemma, we refer the interested
reader to our earlier paper [MRL98]. The following
lemma, provides an upper bound for W, the sum of
weights of all COLLAPSE operations.

1We minimize y = {a + z)2(b + z)~?, where a = 279 [Ly +
H
(2% —2)L,)and b= 47 H L4+ 252 L,). Setting y’ = (a+x)(2b--
a + z)(b + )2 to zero yields = a — 2b. The second derivative
¥’ = 2(b— a)2(b + )2 is positive at £ = a — 2b. The minimum
value for y is 4(a — b).
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Lemma 5 Let £1,0o,...,21 denote the sequence of full
leaves in the tree from left to right. Let h; denote the
distance of €; from the final root. Let w; denote the
weight that was assigned to £; when it was created with
New. Then W < Zf___l w;(h; — 1) O

Note that the partial buffer that might result when
the input sequence terminates, does not participate in
Lemma 5.

We first handle the case H > 1. In Figure 3, L and
Ly denote the number of full leaves at level 0 and level
H respectively. L denotes the number of full leaves at
all other levels. The size of the partial buffer is k' where
0< k' <k.

Application of Lemma 5 yields W < Lg(h+ H ~ 1)+
2Lg(h+ H —2) +22Ly(h+ H—-3)+---+ 20 1L h+
2 (h — 1)Ly which simplifies to

W < Ly(h+ H = 1) + Lg[(h + 1)27 — 2(h + H))
+ Ly(h—1)2%

The weighted sum of elements in leaf buffers is

S = Lok +2Lek +2°Lok+ -+ 27 'Lk + 2" Lk + 27K
= k[La + Ls(27 = 2) + Ly2") + 2K

The analysis of the tree shown in Figure 3 is simplified
if we weaken the upper bound in Lemma 4 to —‘;V——}-wmaz.
Then the tree computes a weighted ae-approximate
quantile of the sample S if the constraint % + Wnar <
aeS is satisfied.

Setting Wmas equal to Lq + (2F — 2)L, pessimisti-
cally, we obtain L[(Lg(h + H — 1) + Ly[(h + 1)2¥ -
2(h + H)] + Lyg(h — 1)27] + Ly + (27 - 2)L, <
aek[Lq + (2F - 2)Ls + Lp2f] + ae2¥k' which can
be tightened by dropping the trailing term contain-
ing k'. The resulting inequality is equivalent to

Lg(h+H—=1)+L,[(h+1)2¥ —2(h+H))+ Ly (h—1)2"
‘ L. +L.2F =)Lt = < 2aek — 2.

Note that addition of Ly2¥ in the denominator on
the left hand side of the inequality is accompanied
by addition of (h — 1)Lg2* in the numerator. It is
true that ﬂ"b%)—é < ¢iff § > h~1 for any pos-
itive integers a,b, A and h. It can be verified that

-— H—..
La(htH 12:sz(('12:1222) 2Aht+H)) > (h — 1) for any value

of H. Thus, we can weaken the previous inequality to
Ly(ht+ H-D)+L{(h+1)2" —2(h+H)] 9k _ 9.

Lyt L.(2F=2)
Let B denote the ratio %‘ It can be shown that

the left hand side is less than h + 1 + ¢, where ¢ =

max [%] o1 This yields

|h+3+c§2aek| (2)

The analysis is much simpler for the Munro-Paterson
CoOLLAPSE policy [MP80] as 8 = 2.
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We now handle the case H = 0, i.e., sampling has
not kicked in; all elements in the input sequence are fed
to the tree. Let L be the current number of full leaves,
where 0 < L < Lq. So far, Lk + k' input elements have
been processed by the tree, where k' is the size of the
partial buffer in the end. The height of the tree is at
most h. From Lemma 4, the difference in rank between
the output of the algorithm and the exact ¢-quantile of
the input sequence is at most % + Wmae- Using Lemma,
5, we obtain —Li%_—ll + Wmaer < €(Lk + k'). Using a
pessimistic value of wmee = L, we get ﬂhz;lz + L <
e(Lk + k') which can be made tighter by dropping the

term containing k’. The resulting inequality simplifies
to

4.3 Putting it All Together

Equations 2 and 3 ensure that the deterministic tree
always computes a weighted ae-approximate ¢-quantile
of the sample fed to it. Equation 1 ensures that with
probability at least 1 — 4, the output of this tree is
no more than another (1 — a)eN elements away from
the exact ¢-quantile of N elements for any value of
N. Taken together, the two constraints ensure that the
overall algorithm always computes an e-approximate ¢-
quantile with probability at least 1 — 4 without knowing
the size of the input sequence in advance. Thus,
provided all the constraints specified in equations 1,
2, and 3 are satisfied, the output value will be an ¢
approximate ¢ quantile with probability at least 1 — 6.

)

4.4

The space complexity for the algorithm can be
computed by fixing o = 0.5 and using Munro-Paterson
COLLAPSE policy, which is explained in detail in
[MRL98]. The number of leaves Ly = 2® and L, = 2"~
Eqn 1 simplifies to 2°k > 2e~%log(2671). The height
h=b-1,8=2and ¢c=0in Eqn 2, which simplifies to
b+ 2 < ek, which is tighter than Eqn 3. Solving these
two inequalities for b and k yields the space complexity.

Space Complexity

Theorem 1 It is possible to compute, with probability
at least 1 — &, an e-approzimate ¢-quantile of an arbi-
trarily large dataset in a single pass without requiring
a priori knowledge of its size, using O(e™ log”e™! +
e 1log?log6~1) space. O

Our random sampling scheme is easy to implement in
practice as it requires us to pick a single element from
a block of r elements where r is a power of two. Our
sampling is without replacement. Typically, algorithms
that employ random sampling require sampling without
replacement, which is not as easy to implement.




4.5 Computing b and &

Computation of & and k& now reduces to an optimiza-
tion problem where we minimize bk, the amount of main
memory required, subject to three constraints, namely
Equations 1, 2 and 3. We also have the constraints
0<a<1,b>0,k>0and h>0.

If the tree is allowed to grow to height A > 3 before
sampling begins, the number of leaves Ly = ("1"7?)
and L, = (*+"73). These can be plugged in Eq 1.

Optimal values for b and k for values of € and § of
practical interest can be computed by searching for b
and h in the interval [2, 50]. For fixed values of b and h,
the three constraints imply a lower bound on k, which
can be computed as follows. Substituting values of b,
h, € and § in Eqn 1 yields an inequality of the form
k > c1(1 —a)~? where c; is some constant. Eqn 2 yields
an inequality of the form & > cyo~! where c; is another
constant. Solve the equation ¢;(1 — a)~2 = cea! for
a. Then min[|'czcv"1 ,%‘;—l] is a lower bound for k.
The latter term comes from Equation 3. Identify that

combination of b and h that minimizes the product bk.

4.6

Table 1 lists b, k£ and total memory required by the
new algorithm for practical values of ¢ and §. The
memory requirements for our old algorithm that knows
N a priori [MRL98] are also listed along with. The
new algorithm requires no more than twice the memory
required by the old one. Figure 4 compares the memory
requirements as NV varies. The new algorithm requires a
constant amount of space, no matter what the value of
N is. The old algorithm can take advantage of the fact
that sampling need not be carried out for small values
of N and save on memory requirements.

Performance Comparison

Comperison of the Known N and Unknown N Algorithms
T T T

8000 T T
Known N ——
7000 | Unknown N -~-- 4
6000
5000 - 4
I~
k=3
E 4000 E
]
=
3000 | e
2000 - -
1000 -//_/_/ J
0 L
3 4 8 8

5 € 7
log (N} to base 10

Figure 4: Comparison of memory requirements
for e = 0.01 and § = 107,

4.7 Multiple Quantiles

If a multitude of quantiles is desired simultaneously,
the algorithm remains the same as before. Its analysis,
however, requires a small change: § in Eqn 1 gets
replaced by pé where p is the number of quantiles being
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computed simultaneously. The proof of correctness is
simple: Let 8’ = &/p. The deterministic algorithm to
which samples are fed computes any number of weighted
quantiles of the samples simultaneously, each of which
is ae-approximate. Eqn 1 confirms that the probability
that a particular quantile fails to be e-approximate is at
most ¢'. It follows that the probability that any quantile
fails to be e-approximate is at most pd’ which is simply
é.

From Theorem 1, we deduce that the dependence of
the total amount of memory required on the number
of quantiles p, is O(log? logp). Therefore, the cost of
computing additional quantiles is small.

We can actually establish an upper bound on main
memory requirements, independent of p. The trick
lies in pre-computing a total of [¢~!] quantiles for
¢ = £,%,%, and so on, each one of which is £-
approximate. To output a ¢-quantile, simply select that
quantile from the pre-computed set that corresponds
to a position closest to ¢. It is easy to see that the
output is e-approximate. This pre-computation requires
O(e " log®(e ! log(ed) 1)) space. It is very useful when
¢ is not known in advance, as is the case when quantiles
are used for constructing equi-depth histograms.

In Table 2, we plot the memory requirements as the
number of quantiles increases, for different values of
€, keeping ¢ fixed at 107%. The last column lists the
upper bound on memory requirements for an arbitrary
number of quantiles.

€.p 1 4 16 64 o
0.100 | 0.28K 029K | 030K 031 K 0.71 K
0.050 | 0.68 K 070 K 0.71 K 0.73 K 164 K
0010 | 468K 478 K 487K 497K | 1123 K
0005 [ 1051 K [ 10.76 K | 1097 K | 11.17K | 25.16 K
0001 [6761K [ 6901 K | 70.18 K | 71.24 K | 9766 K

Table 2: Memory requirements for multiple
quantiles.

As expected, the amount of main memory required
grows slowly as a function of p, the number of distinct
quantiles requested. = However, pre-computation of
[€7'] equally spaced quantiles requires significantly
more memory. This stems from the fact that memory
requirements grow at least as fast as €', and pre-
computation sets the approximation guarantee to £.
Therefore we are better off using the pre-computation
trick only if p is extremely large, or if p is not known at
the outset.

5

One drawback of our algorithm is that we need
to allocate all the memory required up front (Figure

Dynamic Buffer Allocation



Unknown N Algorithm

Known N Algorithm

€0 Number of Buffers b Size of Buffer k Total memory bk Total memory
10°[10°F]10° | 10°] 107*] 107® 107° 10~ 107° 103 104 107°
0.1000 3 3 3 90 97 102 026 K| 028K ] 030K 013K | 014K | 015K
0.0500 3 3 4 216 231 181 063K | 068K | 071K 032K | 035K | 038K
0.0100 4 5 5 1140 958 991 445K | 468K | 484K 245K | 268K 2.83 K
0.0050 5 5 5 2060 | 2153 | 2232 |} 1006 K | 10.51 K | 1090 K 57TK | 625K | 6.56 K
0.0010 6 6 6 1| 11109 | 11539 | 11914 || 65.09 K { 67.61 K | 69.81 K || 39.71 K [ 4261 K | 4449 K

Table 1: Values for number of buffers b, size of each buffer ¢ and total memory required by the new
algorithm for different values of ¢ and §. Also listed are memory requirements by our old algorithm
that knows N a priori (N is assumed to be large enough to warrant sampling).

4). If the input consists of a singleton element, our
main memory usage is clearly outrageous. This can be
ameliorated by allocating the set of b buffers one by
one, as required. Still, for small values of N > bk, the
algorithm uses significantly more memory than would
have been required had N been known in advance. Is it
possible to re-design the algorithm so that buffers are
allocated even more slowly so that our main memory
usage at all times is as close as possible to that required
by an algorithm that knows N7

In practice, memory allocation would consist of a
sequence of buffer allocation operations across time.
For performance and simplicity, it is desirable that each
buffer be contiguous and that its size remain unchanged.

We now-design an algorithm whose memory require-
ments grow slowly with the size of the input. We start
off by allocating one buffer initially. When it is full,
we allocate another. When the second buffer is also
full, we have a choice between invoking COLLAPSE and
allocating a new buffer. In general, this choice has to
be made when all buffers currently allocated are full.
For 1 € {1,b}, let L; denote the number of leaves in
the tree when the ** buffer is allocated. For the first
two buffers, L; = 0 and L, = 1. We call the sequence
(Ly, Lo, . .. , Ly) the buffer allocation schedule for the al-
gorithm. When Ly NEw operations have been carried
out, we start sampling and we follow the original algo-
rithm. For simplicity, we assume that for all ¢, L; < Lq,
i.e., there is no buffer allocation once sampling kicks in.

If the input sequence has more than L4k elements,
the constraints in Eq 1 and Eq 2 would ensure that
the output is an e-approximate ¢-quantile. If the
input sequence terminates at some point before Lq4
NEW operations have been invoked, we invoke OQOUTPUT
operation as usual. However, we require a guarantee
that the output is indeed an e-approximate ¢-quantile
no matter what the current value of N is. Clearly,
not all buffer allocation schedules can provide such a
guarantee. We call a buffer allocation schedule valid if
it provides such a guarantee.

It turns out that several buffer schedules are valid.
To choose the best among the myriad of valid schedules,
we need an objective function. If the objective is
to minimize the maximum amount of memory ever
required, our original algorithm which allocates all
buffers at the outset is the best. If the objective is that
the main memory requirements be as close as possible
to that if N were known, we need to quantify the
goodness of a valid buffer allocation schedule. Once
such a quantitative measure is available, we can select
the optimal schedule.

Another approach to select a reasonably good buffer
allocation schedule is to let the user specify an upper
limit on the main memory requirements for different
values of N. There may or may not be a valid buffer
schedule that meets these upper limits. By trial and
error, the user can discover a schedule that is both valid
and reasonably good.

We adopt the latter approach, letting the user specify
upper limits on main memory usage for different values
of N. How do we compute a valid schedule that meets
these limits? We search for k£ and b by assigning
increasingly large values to k. Fixing &k fixes b and
the buffer allocation schedule. We can then use Eq
3 to limit A, the height to which the tree is allowed
to grow before we start sampling. This enables us to
compute both Ly and L,. From Eq 1, we obtain an
upper bound for a. From Eq 2, we get a lower bound for
a. If the range between these bounds does not intersect
with the interval (0, 1), the current schedule is rejected
and we start all over again with a larger value of k.
Otherwise, all constraints have been satisfied and the
current schedule is accepted.

Figure 5 shows a valid schedule whose main memory
requirements are always within the upper limits speci-
fied by the user.

6 Parallel Implementation

In a parallel setting, we assume P processing nodes.
The input also consists of P separate input sequences,
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Figure 5: A valid buffer allocation schedule within
user specified memory constraints, for ¢ = 0.01
and § = 1074,

one per processor. Any input sequence may terminate
at any time. We wish to compute approximate quantiles
of the aggregate of all sequences taken together. Inter-
processor communication should be minimal.

At each processor, we run the single processor
algorithm outlined in the previous section. A processor,
upon termination of its input sequence, is left with some
full buffers and possibly a partial buffer. If there are
at least two full buffers, a final COLLAPSE on the set
of full buffers is invoked. Each processor finally has
at most one full buffer and at most one partial buffer.
Both buffers, tagged with their respective weights and
sizes, are then shipped for further processing to a
distinguished processor which we call Processor F;.

Processor P, assigns level 0 to all incoming buffers. It
retains the weights of incoming full buffers. To handle
incoming partial buffers, it maintains an additional
buffer By. The first partial buffer received is copied
to Byg. When another partial buffer B;, arrives, the
weights of B;, and By are compared. We denote the
weights by W, and Wy respectively. If they are equal,
we copy as many elements from B, as possible without
overflowing By. If By becomes full, it is added to the list
of full buffers maintained by Processor 0. If all buffers

-are currently full and there still remain some uncopied
elements in B;,, COLLAPSE is invoked. The remaining
elements of B;, are then copied to By. If W, and Wy
differ, then the buffer with smaller weight is shrunk in
size by sampling at a rate equal to the ratio of the larger
weight to the smaller. Moreover, the buffer just shrunk
is assigned the larger weight. For example, if B;, has
weight W, = 8 and By has weight Wy = 2, then By
is shrunk in size by sampling at rate W;,,/Wp = 4, i.e.,

exactly one out of successive blocks of four elements in
Bg is selected. After shrinking, By is assigned weight, 8.
At this point both By and B;, have same weight and
we process them as described before.

When all input buffers have been received by Fp, it
invokes an QUTPUT operation on all its buffers taken
together.

How much memory does Py require? Fy is required
to maintain at least two buffers. It can build any tree
of buffers (See Figure 2). In the analysis that follows,
we assume that the height of such a tree is A'.

When the degree or parallelism is very large, collect-
ing output buffers at one node may deteriorate perfor-
mance significantly. In such a case, we aggregate pro-
cessors into multiple groups. One designated processor
in each group collects the output buffers from all oth-
ers in its group. In the end, the outputs from these
processors can be collected at one processor. As far as
theoretical analysis of such a scheme is concerned, luck-
ily, all that matters is the increase in the height of the
tree, which we denote by h'.

6.1 Parallel Sampling Constraint

Assuming that sampling is carried out in at least one
processor, application of Lemma 1 to the set of samples
from all processors yields

§ < 2exp [-2(1 ~ a)%X]

N2
where X = ’}9" fori=1,2,..., P. Thereis a small
catch here?. Since all 4; and B; values are non-negative,

(Z A-' 2 > ZA? > 4 [A?] -
$p; 2 min | B . We showed that
B = i = Bilim1,2,..,P

4% > min[Lqk, 8L.K), for i = 1,2,..., P. This leads to
the following inequality:

min [Lak, $L.k) > 7982 (4)

Interestingly, the constraint is the same as before (Eq

1).

6.2 Parallel Tree Constraints

The analysis of the tree is slightly different because
of the additional COLLAPSE in the end at a designated
processor. Proceeding as before, we get an inequality
of the form E% < 2a¢k — 2. Since all C; and

D; values are positive, from componendo-dividendo,
E%—' < max [%:-] o P We already established

149

that for any i, %;e < h+ h + 3+ ¢ where ¢ =

2Processors where sampling has not started will have their A;
values less than Ly. We can club these values together with the
L4 of that A; which corresponds to the processor where sampling
has begun. The rest of the analysis is then ok.
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and 8= %i It follows that
H>1 s

maz €221

[h+h'+3+c_<_2ai]

(8)

Interestingly, the constraint is the same as before, only
the height h has now been augmented with k', the
additional height gained at the merging processor.

If sampling does not start at any processor, then
following the same argument as in the non-parallel case,
we obtain the constraint

Lh+ R +1 < 2k]

6.3 Putting It All Together

Remarkably, the three constraints, namely Eqn 4, 5
and 6, are very similar to the tree constraints derived for
the single processor case. Computing b and k amounts
to optimizing bk subject to the three constraints.

(6)

7

This section deals with an interesting special case of
the order statistic problem. The case arises when the
required quantile ¢ is small and close to ¢, the required
accuracy. For instance, if the required quantile ¢ is 1%,
or equivalently, .01 and the desired accuracy is 1 in 1000
or .001.

We provide a simple algorithm which seems to out-
perform most other algorithms handily in the amount
of memory required. As a motivating example, when ¢
and € are set to exactly the same value, the minimum
value in the dataset is an e-approximate ¢-quantile.
Clearly, this value can be calculated using very little
space. In this section we look at a simple generaliza-
tion of this observation.

The method is to use a random sample and keep
only the k largest elements of the sample in memory.
The parameters k and the sample size s are chosen in
conjunction so that the expected rank of the kth largest
element of the sample is ¢V and so that the probability
that it is an e-approximate ¢-quantile is at least §. As
k is increased, the sample size s has to be increased
in correspondence. In particular, the relationship is
k = ¢s. Thus, the sampling rate, which is § = 75
is dependent on N, the size of the data set.

The question is the following: Given ¢,d and ¢, what
is the smallest value of k (and consequently of s) such

Extreme Values

that the kthlargest value in s is an € approximate
¢ quantile with probability 1 — §7 Computing a
tight bound for k and s requires a tighter bound on
the probability of tail events than that provided by
Hoeffding’s lemma. We elaborate on this next.

There are a number of bounds on the probability
of tail events, alternately known as “large deviation
theorems.” We will state a form that is convenient in
our context, usually known as Stein’s lemma.
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Let {X; : 1 < i < N} beiid. {0,1} Bernoulli
with parameter ¢ which is unknown. The simple
likelihood test between two competing hypothesis p;
and p; aims on figuring out which of p; and p» is
closer to gq. The test is simply to choose the p;
maximizing P({X;} were generated by p;), which is,
letting Y-, X; = £, (3)pi(1—p;)V % Let p; be the truly
better hypothesis® with respect to g. We say that the
test fails if it chooses the wrong hypothesis, in this case,
p2. Stein’s lemma places a bound on the probability
that this test fails.

Lemma 6 (Stein’s Lemma) Let {X; : 1 <1 < s} be
i.i.d. Bernoulli with parameter q. Consider any p1, ps,
pi € [0,1]. Then, the probability that the likelihood test
fails is bounded by

P(likelihood test fails) < 2~*D(P1ip2)

where D(p1;p2) denotes the Kullback Leibler distance,
pllogff-{-(l——pl)log%{;’—f. O

Let us assume that we choose a random sarmple with
replacement, (this is not much different from a sample
without replacement if the sample size is small with
respect to V). Let X; be the Bernoulli variable that is
1 iff the ith sample point has rank at most ¢ N. Clearly,
the probability that X is 1 is exactly ¢.

By choosing pi1 = g = ¢, pa = ¢ — ¢, applying Stein’s
lemma and summing the two probabilities, we get a
bound on the probability that the kth largest element is
either too small or too large in terms of the sample size
s (since, clearly, if the computed approximate quantile
is not an e-approximate ¢-quantile, the likelihood test
fails and the sum is the union bound on the two bad
events).

Thus, modulo our approximation, we obtain the
condition:

§ < 2~ D(@id—e)s | 9—D(¢i¢+e)s

Also, note that since the expected rank of the kth
largest element of the sample is §N, we get

kljs=¢

The two conditions above give us enough information
to compute a bound for k in terms of ¢, ¢ and 4.
When subject to the conditions that ¢ is small, and
€ is smaller, the above expression reduces to

)
__< —€8
2_2

3We do not specify exactly what we mean by this, though for
our purposes, we note that in the case that ¢ = pi1, then p; is
the truly better hypothesis. The principle notion here is that the
better hypothesis is the closer one with respect to the Kullback
Leibler distance (sometimes known as the relative entropy). For
details check [CT91]



Consequently, choosing s = %(1og% + 1) suffices. And
thus, k, the amount of memory required is k = %(1 +
log §)-

The advantage of this method is that the amount of
space required is linear in % and not quadratic, as is
the case with the random sampling algorithm when ¢
is larger.

8 Conclusions

Important database applications that employ quan-
tiles suffer from lack of reliable a priori knowledge of
the length of input sequence whose quantiles need be
computed. This motivates a search for quantile finding
algorithms that do not require such knowledge.

We presented the first practical algorithm enjoying
this property. The algorithm is part of the framework
first proposed in [MRL98]. Moreover, it employs a
novel non-uniform random sampling technique. Its
performance in terms of main memory requirements
is comparable to that of the best known algorithm
that knows N. Furthermore, we improved upon the
algorithm by delaying the allocation of buffers so that
the main memory requirements during the course of
execution are as close as possible to that of the best
algorithm that knows IN. We also proposed and
analyzed a parallel version of the algorithm.

We also presented algorithms that require signifi-
cantly less memory if the desired quantiles is an extreme
value, i.e., close to the largest or smallest element in the
sequence.
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