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Abstract: 

In this paper, we present a comparison of nonparametric esti- 
mation methods for computing approximations of the selec- 
tivities of queries, in particular range queries. In contrast to 
previous studies, the focus of our comparison is on metric 
attributes with large domains which occur for example in 
spatial and temporal databases. We also assume that only 
small sample sets of the required relations are available for 
estimating the selectivity. In addition to the popular histo- 
gram estimators, our comparison includes so-called kernel 
estimation methods. Although these methods have been 
proven to be among the most accurate estimators known in 
statistics, they have not been considered for selectivity esti- 
mation of database queries, so far. We first show how to gen- 
erate kernel estimators that deliver accurate approximate 
selectivities of queries. Thereafter, we reveal that two param- 
eters, the number of samples and the so-called smoothing 
parameter, are important for the accuracy of both kernel esti- 
mators and histogram estimators. For histogram estimators, 
the smoothing parameter determines the number of bins (his- 
togram classes). We first present the optimal smoothing 
parameter as a function of the number of samples and show 
how to compute approximations of the optimal parameter. 
Moreover, we propose a new selectivity estimator that can be 
viewed as an hybrid of histogram and kernel estimators. 
Experimental results show the performance of different esti- 
mators in practice. We found in our experiments that kernel 
estimators are most efficient for continuously distributed 
data sets, whereas for our real data sets the hybrid technique 
is most promising. 

1. Introduction 
The efficient support of computing approximate answers of 
aggregate queries has been an important subject in the data- 
base community for more than two decades, In case of query 
optimization, the sizes of intermediate results of a query are 
estimated to evaluate execution plans. First methods for esti- 
mating the size of the intermediate results were developed in 
System R [ 121. More recently, the subject of approximate 
computation of aggregate queries has received the attention 
of researchers in the area of data warehousing. Since the 
underlying databases are very large, a precise computation of 
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aggregate queries is generally too expensive. Moreover, a 
user would also appreciate approximate answers, when they 
are sufficiently precise and when they are delivered in con- 
siderably less time than the exact answers [6]. 

In this paper, we address the problem of selectivity estima- 
tion of a query, i. e., we are interested in a precise and inex- 
pensive estimation of the query result size. There are many 
different methods for estimating the selectivity of a query 
([2], [3], [4], [7], [9]). These methods are based on statistical 
or numerical methods for approximating either the density of 
a distribution or the frequency distribution. In accordance 
with [9], we first present a classification of these methods 
w.r.t. two dimensions. In the first dimension we distinguish 
between parametric estimation methods and non-parametric 
ones. In the second dimension, we use properties of the 
domain of the corresponding attribute as a criterion for clas- 
sification. Let us first discuss the difference between para- 
metric and nonparametric methods. 

For aparametric method an estimate of the distribution func- 
tion is computed by using a so-called model function. A 
model function can be a predefined distribution function 
with a certain number of free parameters or a polynomial 
function of a certain degree. For example, the uniform distri- 
bution was used as a model function in System R [12]. 
Although inexpensive to compute, these methods provide 
only accurate estimations if the real distribution is closely 
related to the model function. Nonparametric methods do 
not assume that the real distribution function belongs to a 
certain family. Examples for such methods are histogram 
and kernel estimation methods. Both methods require a sam- 
ple set of the underlying database. Histogram estimates first 
partition the complete attribute domain into disjoint subsets 
where each of them represents a histogram class, also called 
bin. For each bin, the number of samples is stored that 
belong to the corresponding set. In order to reduce the cost 
of building a histogram, the sample set should be small. It is 
also shown in [8] that a small sample set is sufficient for 
computing an accurate histogram. 

In the current statistical literatur, see [15] for example, the 
main interest is however on kernel estimators, but their great 
potential have not been recognized in the database commu- 
nity, so far. Kernel estimators can be viewed as a generaliza- 
tion of sampling where a sampling point distributes its mass 
among its neighborhood. The bandwidth of the kernel esti- 
mator controls the size of the impact ranges of its samples 
and a kernelfunction is responsible for the distribution of the 
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mass among the impact range of a sample. The density func- 
tion of the distribution is then approximated by superimpos- 
ing the different occurrences of the kernel function. An 
example is shown in figure 1, where the lower curves corre- 
sponds to the kernel functions of 5 samples and the upper 
curve depicts the estimation of the underlying density func- 
tion. Kernel estimation methods offer the advantage of sam- 
pling methods that there is no need to keep further statistics 
about the data. In comparison to pure sampling, however, 
the approximation of kernel estimation methods converges 
on a much faster rate to the underlying distribution function 
under mild assumptions [ 111. A user therefore can either 
compute an estimation of a certain precision with less sam- 
ples or a higher precisicon of the estimation is achieved with 
the same number of samples. 

Fig. 1: An example of kernel density estimation 

In the second dimension of our classification the estimation 
methods are distinguished according to the properties of the 
domain of the attribute. For a categorical domain, estima- 
tion methods are only able to estimate the probability that a 
record will be in one of the categories. In general, there is no 
natural ordering on the data of a categorical domain and 
therefore, range queries are only supported when an artifi- 
cial ordering is introduced. A metric domain, also termed 
numerical or cardinal, p.rovides an ordering on the data and 
therefore, range queries can be performed on the corre- 
sponding data sets. Examples of such domains are found in 
spatial and temporal databases. This class can be refined 
into discrete and continuous domains [9]. For a continuous 
domain a value appears at most once, whereas duplicates are 
allowed for a discrete domain. In the broad class of histo- 
gram estimation methods there are methods which are most 
suitable either for catego’rical domain or for metric domain. 
For example, a serial histogram [2] is a method for a cate- 
gorical domain, whereas equi-width histograms and equi- 
depth histograms [3] gen,erally require a metric domain. 

The main contributions of the paper are as follows, In this 
paper, we introduce kernel selectivity estimation which is a 
nonparametric method suitable for estimating the selectivity 
of selection queries on metric attributes, in particular selec- 
tion queries with a range predicate. Recently, the technique 
of kernel density estimation has been received much atten- 
tion in statistics ([13],[15:]), but so far it has not been applied 
to estimating the selectivity of database queries. Kernel esti- 
mators can produce high errors for range queries that are 
close to the left (or right) boundary of the domain. The rea- 

son is that the lack of data items left (or right) beside of the 
boundary results in high estimation errors. Two techniques 
are introduced to reduce the boundary problem of kernel 
estimation methods. 

Most nonparametric estimation methods require an appro- 
priate setting of a smoothing parameter. For kernel estima- 
tion method, the smoothing parameter controls the 
bandwidth of the kernel function. The choice of the band- 
width is crucial to the accuracy of the kernel estimation 
methods. For histograms, the smoothing parameter deter- 
mines the number of bins. Similar important as the choice of 
the bandwidth of a kernel estimation method is an appropri- 
ate setting of the number of bins for a histogram. We present 
for kernel estimation methods and equi-width histograms 
the optimal bandwidth and optimal number of bins such that 
the mean integrated square error is asymptotically mini- 
mized, respectively. Moreover, we give simple rules for 
computing approximations of both the optimal bandwidth 
and the number of bins. 

Extensive experiments were conducted with both synthetic 
and real data sets. The results of our experiments are inter- 
esting as they do not always confirm the results 6f other 
experiments ([3], (81). For example, we found in our expe.ri- 
ments that equi-width histograms provide slightly better 
results than equi-depth histograms and considerably better 
results than max-diff histograms. One reason is that our 
experiments were performed on metric attributes where the 
cardinality of the domains was large and a value appeared 
only a few times in the database, in general. 

The remaining paper is structured as follows. The next sec- 
tion introduces our terminology, the most important require- 
ments on estimators and the error metrics. In section we 
review histograms for selectivity estimation and propose the 
kernel estimator for selectivity estimation. In section 4, we 
present different rules for choosing the smoothing parame- 
ter which is applicable to both histogram methods and ker- 
nel methods. Section 5 presents some of our experimental 
results. Section 6 concludes the paper. 

2. Preliminaries 
In this section, we first present our most important nota.- 
tions. Then, we introduce the error measures used through- 
out the paper. 

Let R be a relation with an attribute A. The domain of A is 
assumed to be the real line % . Let F be the underlying dis- 
tribution of attribute A. F is a continuous distribution, if 
there is a real functionA the so-called probability density 
function (PDF), with the property that F(x) = r_f(~)dl 
holds for all x E % . 

For a, b E % and a < b , a range query Q = Q (a,b) retrieves 
all records r from R with a I r.A I b . In order to quantify 
the query result size we introduce the terms instance selec 
tivity and distribution selectivity. The instance selectivily of 
a query is given by the number of results in the actual 
instance of R divided by the total number of records in the: 
actual instance, whereas the distribution selectivity ~(a, b) 
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is the probability that a record is in the range [a, 61. The dis- 
tribution selectivity is independent from an arbitrary 
instance of a relation, but the instance selectivity can be esti- 
mated by N times the distribution selectivity where N 
denotes the number of records in the actual instance. In the 
following, selectivity always refers to distribution selectiv- 
ity. For a continuous distribution F, the selectivity is simply 
given by 

o(a,b) = F(b)-F(a) = Jlf(t)dr. (1) 

Let X = {X1, . . ..X.J be a set of n samples of the actual 
instance of R. Our goal is to compute an approximation of 
the selectivity only by using X. A simple approach is first to 
compute an es$mator f = f(x;X) of the PDFfand then, to 
substitutefby f in (1). We obtain then the following selec- 
tivity estimation of o : 

&a, b) = Q(t)& 

An estimator G of o is consistent, if for all E > 0 the fol- 
lowing holds: 

lim P(((3 - 01 < &) = 1 
n-b- 
where P denotes the probability of an event. Consistency is 
obviously an important requirement for an estimator. It 
gives a guarantee (with high probability) that the estimator 
approaches to the desired value when the number of sam- 
ples is sufficiently large. Pure sampling can directly be used 
as a method for selectivity estimation. The method is an 
example for a consistent estimator, but the convergence rate 
is only 0( n-l’* ) . The construction of estimators with higher 
convergence rate therefore has been an important research 
subject in statistics. For example, an equi-width histogram 
provides an estimator with a higher convergence rate than 
pure sampling (up to O(n-2’3)) when the number of bins 
varies with the number of samples in a certain way [ll]. 
However, when the number of bins is kept constant, an equi- 
width histograms is not consistent. 

There are many different error metrics used to evaluate the 
quality of an estimator. In order to achieve the theoretical 
fundament of our approach, we first introduce the mean 
integrated squared error (MISE). The MISE is commonly 
used to express the global accuracy of an estimator. Let f be 
an estimator of the PDF f. The MISE is then defined by 

MISECf) = E(j;w(f(x)-f(x))2dr). 

Note that the MISE is not directly related to selectivity es+ 
mation, but it is defined on the PDFfand its estimator f. 
The convergence of the MISE off is however a sufficient 
criterion for cr being consistent. This may explain that the 
MISE is commonly used in statistics. Moreover, the MISE 
can also be simplified to 

MISE(?) = rm Var(f(x))d.x + rmBias(f(x))2&, where 

Var(i, = E$)- EG* and Bias*6 = (E&x))-f(~))~ 

Iv number of tuples in the database 

n sample size 

Q(O) 

CT = CT(Q) = 
06-2, b) 

range query from a to b 

(distribution) selectivity of range query 

Qh b) 

F distribution function 

f probability density function (PDF) 

+. A 
0 estimation of (T and f 

(A)MISE (approximated) mean integrated squared 
error 

K 

h 

kernel function 

bandwidth of the kernel function 

Table 1: Notation 

In most cases, however, the MISE cannot be computed 
explicitly and therefore, an asymptotic approximation 
(AMISE) is used instead. The AMISE corresponds to the 
tailor expansion of the MISE up to a certain degree where 
the error term is left out. 

The MISE and AMISE provide powerful methods to 
achieve theoretical results of the overall accuracy of an esti- 
mator. However, the AMISE is still too difficult to compute 
in practice because it requires knowledge of the function 
that should be estimated. Thus, an other error metric is 
required that can be used in a more easy way for practical 
purposes. For a query Q(a,b), we therefore consider the 
absolute error and the relative error. 

3. Selectivity Estimation with Density Estima- 
tors 
In this section, we present estimators suitable for range que- 
ries on continuously distributed data sets. We first discuss 
histograms and then kernel estimators. 

3.1 Histogram Selectivity Estimation 
For metric attributes, histograms are in general only applica- 
ble to estimate the selectivity of queries if the value set of a 
bin is an interval of the data space. The i-th bin is then 
described by an interval (c, ci + t ] with width hi = ci+I - ci 
and an integer value ni which is the number of records in the 
interval (ci, ci+ t I-. For a set of n samples, the histogram 
density estimator fH is then computed by 

where Is(x) is also called the indicatorfunction. The histo- 
gram density estimator is based on the assumption that the 
records are uniformly distributed in a bin. Let N be the num- 
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ber of records in the database and let us consider a query 
Q(a, b). The histogram selectivity estimator OH for the 
query Q(a,b) is given by inserting fH into (2). We then 
obtain the following estimator 

= i . z’i b;. ~~(a, b) , where 
I 

(4) 

wi(a*b) = O 1 
if [a, bl n [ci,ci+ t]= 0 

min(b, ci+ ]) - max(a, ci) else 

is the fraction of the intersection between the i-th bin and 
the query range. There are many histograms which differ in 
their policy on computing the boundaries of their bins. The 
most popular histograms are the equi-width histogram 
(where all intervals of the bins have the same size h = h,), 

and the equi-depth histogram [3] (where all intervals con- 
tain the same amount of data). For the equi-width histogram 
and equi-depth histogram, formula (4) can be simplified to 

& . z:i ini. ~~(a, b) and z:l :~,(a, b)/hi , respectively. 

A more recently proposed policy is max-diff [8]. For the 
max-diff histogram with k bins, the k-l adjacent pairs with 
maximum distance are computed and a boundary is set 
between each of the k-l pairs. Experiments performed on 
data sets with small cardinalities [8] have shown the follow- 
ing results: First, the max-diff histogram provides more 
accurate selectivity estimations for range queries than equi- 
width histograms and equi-depth histograms. Second, equi- 
depth histograms are more efficient than equi-width histo- 
grams. Since the experiments are only related to very small 
domains it is still an open question how these methods per- 
form on data sets that are from a continuous domain or from 
a large domain where the values occur with low frequencies. 

Histograms provide a simple and easy computable estima- 
tor. For a given set of samples, the quality of a histogram 
estimator depends on the number of bins and on the starting 
point, see [lo], [ 151 and [l 11. The method itself suffers for 
continuous data distributions under the assumption that data 
is uniformly distributed in a bin. Moreover, discontinuous 
jump points can be observed in the boundary of two adja- 
cent bins for fH. A first method to reduce these deficiencies 
is the so-called average shifted histogram, The average 
shifted histogram is not a histogram w.r.t. our definition, but 
a sequence of equi-width histograms with the same number 
of bins and different starting points. The estimation of the 
selectivity is simply computed by taking the average among 
the estimations of all equi-width histograms. The problem 
of jump points however still exists (however in a more 
diminished form). 

3.2 Kernel Selectivity Estimation 
The method of kernel selectivity estimation avoids the prob- 
lem of discontinuous jump points completely. Moreover, the 

method does not require a starting point. We will first intro- 
duce a very general approach in this section and refine it to 
the kernel selectivity estimation. A very generalized. 
approach to approximating the true PDF is lo use the aver- 
age of a weight function w that occurs once for each sample. 
In order to ensure that the estimate 

w(x, Xi) fulfills the properties of a density 

function it is sufficient to require Jy-,(,, y)dy = 1 and 

w(x, y) 2 0 for all x and y. This approach is called a general 
weightfunction estimate [ll]. The basic idea of this 
approach is that a continuous estimation requires that the 
mass of a sample is distributed among its neighborhood. 
Note that histograms also follow the paradigm of Ithis 
approach, but, as we have shown, they did not result in an 
estimator without discontinuous jump points. The question 
therefore arise what kind of functions are suitable for being 
a weight function of a continuous estimator? 

A class of general weight functions very easy to compute is 
that of the kernel function estimators. This class has been 
well studied in statistics recently. The basic idea of this 
approach is to choose a weight function such that the sample 
is the center. Moreover, a new parameter h E 3, h > 0, is 
introduced which controls the distribution of the m,ass 
among the neighborhood of the sample. In its most general 
form, such a weight function can then be defined as 
w(x,y) = (l/h)K((x-y)/h) , where K is a real function 
which integrates to one. The kernel density estimator of ,the 
true PDF f with kernel function K and bandwidth h is then 
defined by 

The kernel density estimator can be viewed as a set of 
superimposed “bumps“ which are positioned at the samples 
Xi. The bandwidth h determines the impact range of these 
bumps, and the kernel K determines their shape. The kernel 
density estimator is now constructed by adding up this 
bumps, see figure 1. 

The bandwidth h is also called smoothing parameter. On the 
one hand, if h becomes too large all details of the true PDF 
will be obscured. This effect is caused by oversmoothing the 
estimator with its parameter h. On the other hand, if k is 
chosen too small spurious structures become visible from 
the sample set. The right tuning of h is important to obtain 
an accurate estimator. This problem is addressed in all 
details in section 4.2. 

The selection of the kernel function K is not as important as 
the selection of the smoothing parameter h. It has been 
shown [ 131 that varying the kernel function K causes only 
small effects on the accuracy of the estimator in comparison 
to varying h. Therefore, we are only interested in a suitable 
kernel function K that is inexpensive to compute. Among 
the rich source of kernel functions, the Epanechnikov kernel 
is used in our approach. The Epanechnikov kernel is define’d 
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as 

i 
+1-t2) if It121 

K(t) = 4 

F (t) = 
K I 

:(3r-t3) if (t( I1 

I 0 else 

We obtain the kernel estimator by first inserting the kernel 
function into (5). Then, the density estimator in equation (2) 
has to be substituted by (5). Overall, we obtain 

a i= 1 i=l (I 

With the substitution I = (x-Xi)/h in the integral we 
obtain 

(6) 

In (6) the integral will very often return one or zero. The dif- 
ferent cases are illustrated in figure 2 where the grey area 
shows the portion of the kernel functions that contribute to 
the selectivity estimation of query Q(a,b). The result of the 
integral expression will be zero, if [(a -X,)/h, (b - Xi)/h] 
does not have a common intersection with [-1, 13, see the 
kernel function at sample Xt in figure 2. If 
[(a-Xi)/h, (b-Xi)/h] completely overlaps [-1, 11, the 
result of the integral is one (see the kernel function at sam- 
ple X,). Only for those cases where (a-X,)/h E [-I, I] or 
(b -Xi)/h E [--I, l] (see the kernel function at X2) we need 
an explicit computation of the integral. 

I 
la ‘ 

Fig. 2: The contribution of three kernel functions at samples 
X1, XZ and X, on the selectivity estimation of @a&). 

Therefore, we split the sum in (6) into two parts. The first 
part only counts those integrals, which completely overlap 
the interval [-1, 11, i.e. each of this integrals return one. 
The second part contains those integrals, which need to be 
evaluated explicitly. Then, 

The formula can further be simplified by replacing the inte- 
gral of the Epanechnikov kernel function by its primitive 

I O else 

The total computation of the kernel selectivity estimator is 
given in algorithm 1. The cost of this algorithm is O(n) 
where n denotes the number of samples. In general, this can 
be improved by using an appropriate data structure for the 
sample set. For example, when a balanced binary search tree 
is used, the cost of the algorithm is given by O(log n + k) 
where k denotes the number of samples that are in the range 
[a-h,b+h]. 

Given : 
n: number of samples 
X[i], i=l ..n:sample set 
[a,bl: range of the query 
h: bandwidth 
F(t): integrated kernel function 

Algorithm 
s = 0.0; 
FOR i=l TO n DO 
{ IF (X[il E [a+h,b-hl) 

s += 1.0; 
ELSE IF (X[i] E [a-h,a+h] && E [b-h,b+h]) 

s += 0.5 - F((a-X[il)/h); 
ELSE IF (X[il E [b-h,b+hl && E [a-h,a+hl) 

s += F((b-X[iJ)/h) - 0.5; 
ELSE IF (X[il E [b-h,b+hl u [a-h,a+hl) 

s += F((b-X[il)/h) - F((a-X[il)/h); 

RETURN s/n; 

Alg. 1: Kernel seletivity estimator with boundary treatment 

3.2. I The Bounda y Problem 
For kernel estimation methods, the results of experiments 
with different sample sets and different distributions have 
revealed high estimation errors for range queries which are 
positioned close to a boundary of the domain. The error at 
the boundaries was considerably higher than the one of a 
range query positioned in the center of the domain. This 
effect is illustrated in figure 3 where the absolute estimation 
error (with sign) is shown for range queries whose range is 
1% of the domain. The data set consists of 100,000 uni- 
formly distributed elements and therefore, the response set 
of a 1% query consists of 1,000 elements. The curve depicts 
the estimation error as a function of the position of the 
query. For example, the error of the center is very low, 
whereas close to the boundary an absolute error of up to 500 
occurs. Moreover, it has also been shown in other experi- 
ments that the error at the boundary increases with an 
increasing smoothing parameter. 

The behavior we observed occurs for almost all nonpara- 
metric estimation methods based on kernel functions. There 
are mainly two reasons: First there is no information about 
the true PDF beyond the boundaries of the domain. Since 
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Fig. 3: The absolute estimation error of 1% queries as a 
function of the query :position (uniform data distribution) 

the kernel estimator is based on a continuous estimation of 
the true PDF the estimator will deliver values greater than 
zero outside of the domain close to the boundaries. This 
leads to a “loss of weight” in the domain and therefore, the 
estimation of the density function does not integrate over 
the domain to one. Second, due to the lack of data the esti- 
mator is not consistent for x nearby the boundaries if 
x E [I, I + h;) u (r - h, r:] where I and Y denotes the left and 
the right boundary, resjpectively. The main difficulty in solv- 
ing these problems is that there are two conflicting goals. In 
order to fulfill the property of a density function the lost 
weight of the estimation has to be shifted back into the 
domain. However, this violates the requirement that the esti- 
mator should be consistent. In order to fulfill consistency for 

points close to the boundaries, the inequality JLmkx)dx > 1 

is fulfilled with high probability. In the following we present 
two different methods to avoid the high estimation errors at 
the boundaries. 

The first method provides an estimator that is a density 
function, but it does nolt fulfill consistency. The method sim- 
ply mirrors the samples Xi E [I, I + h) and Xi E (I - h, r J at 
the left and right boundary, respectively. Hence, these sam- 
ples are considered twice. This method is termed reJection 
technique. 

The second method provides a consistent estimator, but it 
does not fulfill the property of a density function. The basic 
idea is to use special ke:mel functions on samples which are 
close to the boundary. There are only a few proposals for a 
boundary kernel function, see for example [15]. In our 
experiments we used the family of boundary kernel func- 
tions of [14] because the computation of the primitives was 
rather simple. For the left boundary, the family of kernels is 
then defined by 

Kqx, q) = 3+3q2-6x2 

(1 +d3 
- . I[-,, q](X) 

with q = (x- Z)/h. A similar family of kernel functions 
K(‘)(x, q) is also available for the right boundary. These 
kernel functions are used for all x E [I, Z + h) u (r - h, r] i.e. 

they must be considered for all samples Xi with 
Xi E [Z, Z + 2h) u (r - 2h, r] . To obtain the primitives for the 
boundary kernel functions the dependence of their limits on 
q must be eliminated. 

Suppose in the following that the left boundary is zero (I = 
0). Then, the family of boundary kernel functions are 
required for computing an estimation of the selectivity 
between 0 and h. This means q is a monotone function of x 
where q(0) = 0 and q(h) = 1. For each x E [ 0, h] the shape 
of the used boundary kernel function varies with q. In 
regions without boundary effects the ordinary Epanechni- 
kov kernel function is used. Let Q(u, b) be a range query 
with 0 I a < h and b<h. Then, the kernel selectivity estima- 
tion is computed by the following sum: 

3.3 A Hybrid of Histogram and Kernel Esti- 
mator 

Kernel estimators are among the most accurate estimators in 
statistics under the assumption that the underlying PDF is 
sufficiently smooth. In general, this assumption does not 
hold in practice. Experiments have revealed high errors for 
kernel estimators on those points where the true PDF 
changes considerably. These points are also called change 
points in statistics [ 161. 

The hybrid estimator uses the change points to partition the 
data space into histogram bins. Adjacent bins are merged 
into one if the corresponding number of records is not suffi- 
ciently large. Inside each of the bins the original kernel esti- 
mation method is used. In particular, the bandwidth of the 
kernel estimator is individually chosen for every bin. The 
only remaining problem is now to detect change points. 

In the following we use the second derivative to detect 
change points. In our approach, the first change point corr- 
sponds to the point where the maximum of the second deriv- 
ative occurs. Further change points can be computed 
similarly in a recursive fashion. There are two reasons for 
this spproach: First, there are considerable changes of the 
first derviative of the PDF around a change point. Second, 
the asymtotic error of kernel estimators depends on the sec- 
ond derivative (see [l I] and our discussion in section 4.2). 
Therefore, eliminating the maxima of the second derivatice 
can reduce the estimation error. 

The performance of the hybrid estimator method depends 
on the accurancy of the computed set of change points. It is 
left to future work whether other methods for change point 
detection are more effective for the hybrid estmator. 

4. Selection of the Smoothing Parameter 
In this section, we discuss the impact of the number of sam- 
ples and the smoothing parameter h on the quality of the 
estimator. In particular, we derive a rule for computing the 
optimal h as a function of the number of samples (w.r.t. a 
certain error metric). The discussion is not limited to kernel 
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estimation, but we also show for equi-width histograms that 
the number of bins is an important parameter for the error 
size. For a given number of samples, too less bins as well to 
many result in high errors of the histogram estimator. Simi- 
lar to kernel estimation, we derive a rule for the optimal 
number of bins as a function of the number of samples such 
that a certain error is minimized. 
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Fig. 4: Dependence of the mean relative error on the number 
of bins 

In order to motivate the discussion, let us first take a closer 
look on figure 4 where the results of a set of experiments are 
presented. The curve shows the average relative error of 
range queries as a function of the number of bins. The data- 
base consists of 100,000 Normal-distributed records where 
2,000 of them were used as samples for building the histo- 
gram. The query size was set to 1% of the domain. The posi- 
tion of the queries followed the underlying data distribution. 
The dotted curve shows the error for the equi-width histo- 
gram, whereas the straight line (17.5%) gives the relative 
error of pure sampling. The relative error of the equi-width 
histogram is for a few bins higher than the error of pure 
sampling. The minimum (relative error of 7%) is achieved 
for 20 bins. For an increasing number of bins the error 
increases up to the sampling error. 

The problem of computing the optimal number of bins does 
not only occur for equi-width histograms, but it also arises 
for other histograms as well (e. g. equi-depth and max-diff). 
The impact of the number of bins on the estimation error has 
been mentioned in [9]. Except of [5], however, we are not 
aware that this serious problem has really been addressed in 
the context of selectivity estimation. 

The problem of computing the optimal number of bins of an 
equi-width histogram is equivalent to computing the opti- 
mal width of a bin. The width of a bin is closely related to 
the smoothing parameter of a kernel estimation and there- 
fore, similar techniques can be used for computing an opti- 
mal estimator. For a given sample set, the optimal estimator 
is defined as the one which minimizes the MISE, see equa- 
tion (3) in section 2. Since the computation of the MISE 
requires detailed knowledge about the real distribution, the 
MISE is not a practical optimization criterion. Instead, an 
asymptotic approximation of the MISE (AMISE) is used. In 
order to obtain an approximation we assume that the PDF is 
sufficiently differentiable. The AMISE then corresponds to 
the tailor expansion of the MISE up to a certain degree 
where the error term is left out. The AMISE still requires a 

few parameters which are determined by the real distribu- 
tion. These parameters however can be estimated reason- 
ably well. The AMISE only depends on the parameters of 
the underlying estimator which are the smoothing parameter 
and the number of samples. For a given sample, the mini- 
mum of the AMISE with respect to the smoothing parame- 
ter can then be computed by using a standard technique. As 
a result, we obtain the optimal smoothing parameter as a 
function of n (the number of samples). 

In the following subsections we present the formulas for the 
smoothing parameter of histograms (bin width) and kernel 
estimators (band width), respectively. The proofs for the 
formulas presented in the following are given for example 
in [ll]. 

4.1 Bin-width Selection for Histogram Estima- 
tion 

In this section, we consider an equi-width histogram where 
h denotes the width of a bin. Let n be the number of sam- 
ples. The asymptotic approximation of the MISE (AMISE) 
of the histogram estimator is then 

AMZSE(h) = i + $rm($))2h 

By solving -&AMISE(I?,,) = 0 we obtain the asymptoti- 

cally optimal bin width: 

( 6 1”’ 

hEW = 1 nJ-&(x))‘h j (7) 

Under‘the assumption made above it follows that 
AMZSE(h,,) = O(PI-~‘~) and hence, that the convergence 
rate of the equi-width histogram is higher than the one of 
pure sampling. 

The computation of hEW re q uires the derivative off(the true 
PDF) which is generally not known. There are different 
techniques to approximate the true PDF in (7). A simple 
technique called normal scale rule uses the Normal distribu- 
tion for approximating the real distribution. The intuition 
behind the rule is that due to the theorem of large numbers 
the density of an arbitrary distribution converges to the Nor- 
mal distribution. Then, 

h,, z (2&&) 1’3 . S . .-1’3 (8) 

follows where s denotes the standard deviation off: There 
are two common techniques for estimating the parameter s. 
First, the standard deviation of the sample set can be used. 
In practice, it has been observed that this estimator leads to 
an oversmoothing of the true PDF. Second, the interquartile 
range (which is the distance between the 0.75 quantile and 
the 0.25 quantile) of the sample set can also be used to 
approximate the standard deviation. In our implementation, 
we decided to estimate s by taking the minimum of both. 
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4.2 Bandwidth Selection for Kernel Estima- 
tion 

Let us now consider the problem of computing the optimal 
bandwidth of a kernel estimation. Similar to computing the 
optimal size of a bin, an asymptotic approximation is 
derived from the tailor expansion of the MISE. The analysis 
is not limited to the Epanechnikov kernel function, but it 
can be applied to a symmetric kernel function K that fulfills 
the following conditions: 

(a) J&t)& = 1 

(b) IX(~)& = 0 

(c) k, = jt2K(t)dt f 0 

The Epanechnikov kernel function fulfills these conditions 
with k2 = l/5. Under the assumptions that the true PDFfhas 
continuous derivatives of all orders required and that the 
sample set is given, the following formulas can be derived 
from the tailor expansion for the asymptotic integrated bias 
(AIBias) and the asymptotic integrated variance (AIVar). 

(b) AWar = -$j-K(t)*dt (9) 

According to equation (3) the AMISE is then given by 
AMISE(h) = AZBias(lr)* + AIVur(h) . A fundamental prob- 
lem of density estimat:ion is the complementary impact of h 
on bias and variance (9). For a small h, the bias is small and 
the variance is high, whereas for a large h the bias is high 
and the variance is small. 

By solving -&AMZSE(h,) = 0 we obtain the asymptoti- 

f I K(t)‘dt j l/5 

tally optimal bandwidfh h, = 
~nk;.,(gq?j . 

It follows that AMISE(h,) = O(n-4’5) . Hence, the conver- 

gence rate of kernel estimation is higher than the one of 
equi-width histograms. 

The formula for the optimal bandwidth still depends on the 
second derivative of the unknown PDF Again we can use 
the normal scale rule to approximate the true distribution by 
the Normal distribution. For the Epanechnikov kernel func- 
tion (k, = l/5), we obtain h, = 2.345 . s. .-1’5 for the opti- 
mal bandwidth, where .s is estimated by using the minimum 
of the empirical standard deviation of the sample set and the 
interquartile range divided by 1.348. 

4.3 Direct Plug-in Methods 
We briefly mention here a technique for improving the esti- 
mation techniques presented above. The technique can be 

used as an alternative to the normal-scale rule. The so-called 
direct plug-in rule [ 151 estimates the true density function in 
an iterative fashion. In an iteration step, the approximation 
of the density function of the previous iteration is used to 
compute hi (how). This results again in a new approxima- 
tion of the density function. In the first iteration, the normal- 
scale rule can be used to obtain a first estimation of the PDF 
The number of iteration steps is a new parameter of the 
plug-in rule. The influence of the normal scale rule dimin- 
ishes for an increasing number of iterations. In general, two 
or three iteration steps are sufficient. 

5. Experiments and results 
In this section, we report the results of a performance com- 
parison of different methods for estimating the se1ectivit.y of 
range queries. The objective of our experiments was to find 
out how much of the theoretical results can also be c:on- 
firmed in practice. We first show the impact of the domain 
cardinality and of the sample size on the estimation error. In 
the next set of experiments, we compare the performanc~e of 
different histogram estimators. In particular, we discuss the 
problem of computing the number of bins for a given sam- 
ple set. The next set of experiments deals with kernel esti- 
mation. In particular, we investigate the methods for 
reducing the boundary errors and the rules for computing 
the smoothing parameter. 

5.1 Test Environment 
In the following, we first present our test environment in all 
details (distribution of the data files, distribution of the 
query files). All the files are freely available [ 171. 

5.1. I Data Files 
In our experiments we used sets of artificial data as well as 
sets of real data. The artificial data sets follow the Uniform 
distribution, the standard Normal distribution and the Expo- 
nential distribution. The Exponential distribution can be 
considered as a substitute of the Zipf distribution which is 
commonly used in experiments. Both are highly skewed dis- 
tributions with high density at the left boundary of the 
domain and low density at the right boundary. Each of the 
files that follow an artificial distribution consists of 100,000 
records. The real data sets consist of data derived from the 
TIGER/Line files from the U.S. Census Bureau [18]. ‘We 
used the first and second dimension of the endpoints of lines 
from county Arapahoe and the endpoints of lines from an 
area around L. A. where the lines represent rail road tracks 
and rivers. Another set of real data corresponds to the 
instance weight of a census-income file [19]. The domain of 
the data files corresponds to integer values in the range from 
0 to 2p- 1, where p is considered as a parameter. For the data 
sets that follow a Normal distribution, we mapped the 
records to the integer domain such that the mean value is in 
the center of the domain. We did not consider data records 
that were outside of the domain. Correspondingly, we also 
mapped the data from the Exponential distribution to the 
integer domain. The most important properties of our files 
are summarized in table 2. 
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From each of these data sets we have drawn sample sets of 
2,000 records by selecting the records from the file in a ran- 
dom fashion without replacement. 

5. I. 2 Queyv Files and Error Metrics 
The query files in our experiments differ from the ones gen- 
erally used in other experiments (see for example [S]) since 
the query size is fixed for all queries of a file. The reason for 
such size-separated query files is that we are interested in 
the impact of the size of a query on the estimation error. 

For each data set D we generated four query files where 
each of them contains 1,000 range queries of a fixed size. 
The size of a range query varies between l%, 2%, 5% and 
10% of the size of the underlying domain. We use the nota- 
tion F&s) to refer to a query file with queries of size s. The 
position of the queries follows the same distribution as the 
corresponding data records. Query positions which are too 
close to the boundary of the domain are not accepted in 
order to avoid queries being partially outside of the domain. 

Table 2: Properties of the data files 

In the following, we consider for query files F&s) the mean 
relative error MRE(D, s) defined by 

For example, MRE(rrl(l2), 1%) denotes the mean relative 
error of 1% queries performed on the data file rrl( 12). We 
also considered the mean absolute error in our experiments. 
The behavior of the absolute error was not much different to 
the relative error and therefore, we only present the relative 
error in the following. 

5.2 Results 
In the following, we discuss the most interesting results we 
obtained from the experiments. First, we show the impact of 
different parameters (cardinality, query size, sample size) on 
the accuracy of the selectivity estimator. Second, we report 

the results from a comparison of histogram estimators and 
kernel estimators. We conclude the section with a compari- 
son of the most promising selectivity estimators. 

52.1 The impact of the domain cardinal@ 
In our first set of experiments, we deal with the impact of 
the domain cardinality on the estimation error. In figure 5 
we depict the mean relative error for an equi-width histo- 
gram as a function of the number of bins. The three curves 
refer to the data sets n(lO), n(15) and n(20) (Normal distri- 
butions). Data sets from a small domain contains more 
duplicates than sets from a larger domain. As shown in fig- 
ure 5, the error is considerably higher for large domain car- 
dinalities. Similar results were obtained for the other data 
files. Because our emphasis is on metric attributes with 
large domains, we omit in the following the results we 
obtained from files with high frequencies. 

, 

Fig. 5: The MRE as a function of the number of bins for 
different domain cardinalities 

5.2.2 The impact of the sample size 
One of our most important requirements has been that a 
selectivity estimator should be consistent,‘i. e., the estima- 
tion error decreases when the sample size increases, From 
the theory we know that pure sampling and the equi-width 
histogram (with an adaptive number of bins) are both con- 
sistent estimators..This is also confirmed by the results of 
our experiments. Figure 6 shows the mean relative error 
MRE(n(20), 1%) for pure sampling, equi-width histogram 
and kernel estimator as a function of the sample size. For 
the equi-width histogram, for example, the mean relative 
error is close to 12% for a sample size of 200, whereas for a 
sample size of 10000 the MRE is only about 4%. The curves 
also show that kernel estimators are more accurate than his- 
tograms and histograms are more accurate than pure sam- 
pling. Hence, these results are in agreement with the theory. 

52.3 The impact of the queg, size 
In the next set of experiments we discuss the influence of 
the query size on the accuracy of selectivity estimation. We 
only report the results obtained from experiments of equi- 
width histograms with normal scale rule. Similar results are 
achieved for other selectivity estimators. In figure 7, the 
MRE is depicted for different data files and query files. As 
expected the error decreases when the query size increases. 
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Fig. 6: The MRE(n(20), 1%) as a function of the sample size 
for sampling, equi-width histograms and kernel estimators 

For the data file arap2, for example, the MRE of a 10% 
query is only 4.5%, whereas the MRE of a 1% query is 
17.5%. In the following, we only report the results for small 
queries. 

/ uw WI) WV arapl arap rri(22) rr2(22) 
-___ 

-I 

i 
Fig. 7: The MRE of equi-width histograms for different 
query files 

5.2.4 A comparison of histogram estimation methods 
Next, we compare the performance of different histogram 
estimators. In particular, we are interested in the impact of 
the selection of the bin width on the accuracy of the estima- 
tors . 

In a first set of experiments we compare the MRE obtained 
for equi-width histograms (EWH), equi-depth histograms 
(EDIT), max-diff histograms (MDH), pure sampling (sam- 
ple) and the uniform estimator (uniform) that corresponds to 
a histogram with one bin. In figure 8 the MRE is depicted 
for different data files. For all histogram methods, we used 
for each query file the optimum number of bins we ober- 
eved in our experiments. The results therefore represent the 
best case of the kernel estimator. The overall loser of our 
comparison is the uniform estimator (except for uniform 
data distribution). For the data file ci, for example, the MRE 
of the uniform estimator is 600%, whereas all other methods 
produce an error of about 5%. In general, the equi-width 
histogram is the winner. This result is not in common with 
the results reported in most previous experiments. For 
example, in [8] it was found that max-diff is considerable 
superior in comparison to equi-width and equi-depth histo- 

50% 

40% 

30% 

20% 

10% 

0% 

UPW VW arapl arap e(20) rrl(22) rr2(22) 
“‘/ 

Fig. 8: Average relative error for different histogram 
estimators compared with sampling and uniform assumption 
grams. Pure sampling generally provides estimations with 
higher errors than histogram estimators for our artificial 
data sets. For our real data sets, the errors of pure sampling 
are slightly higher in comparison to histogram estimators. 

A second set of experiments was performed to investigate: 
the impact of the number of bins on the estimation error of 
equi-width histograms. We did not consider other types of 
histograms because we are not aware of a theory that sug- 
gests how to determine the number of bins for equi-depth 
histograms and max-diff histograms. In general, we 
observed that the number of bins determined for an equi- 
width histogram (using for example the normal scale rule) is 
also reasonable for other histograms. In figure 4, we already 
have shown that there is a strong relationship between the 
number of bins and the estimation error. In this section, we 
are interested in whether the derived rule for computing the 
number of bins (see equation (8)) is close to the optimal 
number actually observed in the experiments. In figure 9, 
the estimation error (MRE) of the equi-width histogram is 
depicted for different data files. For each data file, there are 
two columns. The first column shows the MRE of the histo- 
gram with an optimal number of bins observed (h-opt) and 
the second column refers to an histogram where the number 
of columns is computed by using the normal scale rule (h- 
NS). For this rule the estimation error is on the average 
about 3% higher in comparison to an histogram with the 
optimal number of bins. 
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Fig. 9: The MRE of equi-width histograms with different 
policies for computing the number of bins. 

5.2.5 A comparison of kernel estimation methods 
Next, we report the results of our experiments for kernel 
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Fig. 10: The relative estimation error of 1% queries as a 
function of the query position (uniform data distribution). 

estimation methods. In particular, we consider the boundary 
problem as well as the rules for computing the bandwidth. 

In our first set of experiments, our focus is on the boundary 
problem. In figure 10, we depict the relative error of 1% 
queries as a function of the query position for uniformly dis- 
tributed data and different kernel estimation methods. The 
one curve shows the relative error when the boundary prob- 
lem is not treated. The other curves depict the relative error 
when the reflection technique and the boundary kernel func- 
tion is used, respectively. Both approaches lead to a consid- 
erable reduction of the estimation errors. In almost all cases 
the kernel selectivity estimator with boundary kernel func- 
tions performs slightly better than the one with the reflec- 
tion technique. 

In our next set of experiments, we compared different tech- 
niques for computing the bandwidth of the kernel estimation 
method. The first technique computes the bandwidth with 
the lowest MRE. This is not a practical method because it 
requires that the queries and the sizes of their response sets 
are known in advance. This method only serves to judge the 
quality of the other techniques. The other techniques deter- 
mine the bandwidth by using the normal scale rule and the 
direct plug-in rule (with 2 iteration steps), respectively. In 
figure 11, the MRE is shown for different data files and 1% 
queries. For each data file, the three columns refer to the 
optimal bandwidth (h-opt), the bandwidth of the normal 
scale rule (h-KS) and the bandwidth of the direct plug-in 
rule (h-DPZ2). The left column depicts h-opt, the column in 
the middle shows the results of h-A8 and the right column 
refers to h-DPZ2. Each of the kernel estimation methods 
uses special boundary kernel functions. As shown in figure 
11 the normal scale rule results in a low MRE for all syn- 
thetic data distributions. In these cases it is slightly superior 
to the direct plug-in technique. However, the normal scale 
rule produces high errors for all our real data sets, whereas 
the direct plug-in rule clearly outperforms the normal scale 
rule. For real data sets, the MRE of the plug-in technique is 
however still higher (up to 5%) than the MRE in case of an 
optimal bandwidth selection. 

5.2.6 Comparison of the most promising estimation 
methods 
Let us now present a direct comparison of the most promis- 
ing estimation methods. In addition to the methods previ- 
ously discussed, this comparison also includes avergage 
shifted histograms. In figure 12, we present the MRE of 1% 
queries for the different data files. For each data file, we 
report the results of the following methods: 

l equi-width histogram using the normal scale rule for 
computing the number of bins (EWH), 

l kernel estimators using boundary kernel functions and 
the direct plug-in rule for computing the bandwidth 
(Kernel), 

l hybrid estimators using boundary kernel functions 
(Hybrid), 

l average shifted histograms using ten shifts (ASH). 

The results of our synthetic data sets (u(20), n(20), e(20)) 
show that the kernel estimator produce the most accurate 
results. The error of the average shifted histogram is only 
slightly higher than the one of the kernel estimators. For our 
real data sets from the TIGER/Line database, the methods 
perform differently. Now, the hybrid estimator gives the 
most accurate results, whereas kernel estimators and equi- 
width histograms produce high errors. For the real data file 
ci, there is almost no difference in the performance of the 
different methods. 
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Fig. 12: A compraison of the most promising estimators for 
1 %queries 

6. Conclusions 
In this paper, we outlined several nonparametric methods 
for estimating the selectivity of range queries based on two 
different statistical approaches (histogram and kernel esti- 
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Fig. 11: Average relative error for kernel estimation methods 
which differ in the bandwidth selection technique. 
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mators). We considered the accuracy of the selectivity esti- 
mators in theory and practice. In particular, we proposed to 
use kernel estimators which are among the most accurate 
estimators in statistics. Kernel estimators can be viewed as a 
generalization of sampling where a sampling point distrib- 
ute its mass among its neighborhood. The bandwidth of the 
kernel estimator control the size of the impact ranges of its 
samples and a kernel function is responsible how the mass 
of the samples is distributed. We showed that kernel estima- 
tors are inexpensive methods that produce fairly accurate 
results. Kernel estimators produce the most accurate estima- 
tions among all estimation methods we considered in the 
paper under the following conditions: the underlying distri- 
bution function is smooth and the cardinality of the data 
space is large. Data sets in spatial databases are examples 
where these conditions are (almost) fulfilled. However, even 
in case that these properties are not completely fulfilled, 
kernel estimation methods are comparable to other estima- 
tion methods currently used in database systems. For highly 
skewed data distributions, however, kernel esiimator suffer 
under the disc0ntinuit.y jump points of the density function. 
We therefore proposed a hybrid estimator that is a combina- 
tion of histogram and kernel estimator. Experiments con- 
firmed that the hybrid estimator gives more accurate results 
than the pure kernel estimator and different types of histo- 
grams. 

In general, only a small sample set is used to create a histo- 
gram or a kernel estim.ator. An important problem is then to 
determine the so-called smoothing parameter. For histo- 
grams, the smoothing parameter corresponds to the number 
of histogram classes. For example, results of experiments 
showed high errors when the number of bins is too small or 
too high. Today commercial database system (e. g. ORA- 
CLE) does not provide any help to the user for finding the 
optimal number of bins. We proposed several rules for com- 
puting approximations of the optimal number of bins. The 
results of experiments generally confirmed that the smooth- 
ing parameters obtained from the rules are close to the opti- 
mal ones. 

In our future work, we are interested in the following prob- 
lems. First, we will consider multidimensional kernel esti- 
mators to estimate the selectivity of multidimensional range 
queries. Second, we currently investigate how to apply ker- 
nel estimators to online processing of aggregate queries [6]. 
Third, we will include the knowledge of previous queries to 
improve the quality of kernel estimators [l]. 
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