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Abstract:

In this paper, we present a comparison of nonparametric esti-
mation methods for computing approximations of the selec-
tivities of queries, in particular range queries. In contrast to
previous studies, the focus of our comparison is on metric
attributes with large domains which occur for example in
spatial and temporal databases. We also assume that only
small sample sets of the required relations are available for
estimating the selectivity. In addition to the popular histo-
gram estimators, our comparison includes so-called kernel
estimation methods. Although these methods have been
proven to be among the most accurate estimators known in
statistics, they have not been considered for selectivity esti-
mation of database queries, so far. We first show how to gen-
erate kernel estimators that deliver accurate approximate
selectivities of queries. Thereafter, we reveal that two param-
eters, the number of samples and the so-called smoothing
parameter, are important for the accuracy of both kernel esti-
mators and histogram estimators. For histogram estimators,
the smoothing parameter determines the number of bins (his-
togram classes). We first present the optimal smoothing
parameter as a function of the number of samples and show
how to compute approximations of the optimal parameter.
Moreover, we propase a new selectivity estimator that can be
viewed as an hybrid of histogram and kernel estimators,
Experimental results show the performance of different esti-
mators in practice. We found in our experiments that kernel
estimators are most efficient for continuously distributed
data sets, whereas for our real data sets the hybrid technique
is most promising.

1. Introduction

The efficient support of computing approximate answers of
aggregate queries has been an important subject in the data-
base community for more than two decades. In case of query
optimization, the sizes of intermediate results of a query are
estimated to evaluate execution plans. First methods for esti-
mating the size of the intermediate results were developed in
System R [12]. More recently, the subject of approximate
computation of aggregate queries has received the attention
of researchers in the area of data warehousing. Since the
underlying databases are very large, a precise computation of
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aggregate queries is generally too expensive. Moreover, a
user would also appreciate approximate answers, when they
are sufficiently precise and when they are delivered in con-
siderably less time than the exact answers [6].

In this paper, we address the problem of selectivity estima-
tion of a query, i. e., we are interested in a precise and inex-
pensive estimation of the query result size. There are many
different methods for estimating the selectivity of a query
({21, {3], [4], [7], [9]). These methods are based on statistical
or numerical methods for approximating either the density of
a distribution or the frequency distribution. In accordance
with {9], we first present a classification of these methods
w.r.t. two dimensions. In the first dimension we distinguish
between parametric estimation methods and non-parametric
ones. In the second dimension, we use properties of the
domain of the corresponding attribute as a criterion for clas-
sification. Let us first discuss the difference between para-
metric and nonparametric methods.

For a parametric method an estimate of the distribution func-
tion is computed by using a so-called model function. A
model function can be a predefined distribution function
with a certain number of free parameters or a polynomial
function of a certain degree. For example, the uniform distri-
bution was used as a model function in System R [12].
Although inexpensive to compute, these methods provide
only accurate estimations if the real distribution is closely
related to the model function. Nonparametric methods do
not assume that the real distribution function belongs to a
certain family. Examples for such methods are histogram
and kernel estimation methods. Both methods require a sam-
ple set of the underlying database. Histogram estimates first
partition the complete attribute domain into disjoint subsets
where each of them represents a histogram class, also called
bin. For each bin, the number of samples is stored that
belong to the corresponding set. In order to reduce the cost
of building a histogram, the sample set should be small. It is
also shown in [8] that a small sample set is sufficient for
computing an accurate histogram.

In the current statistical literatur, see [15] for example, the
main interest is however on kernel estimators, but their great
potential have not been recognized in the database commu-
nity, so far, Kernel estimators can be viewed as a generaliza-
tion of sampling where a sampling point distributes its mass
among its neighborhood. The bandwidth of the kerne] esti-
mator controls the size of the impact ranges of its samples
and a kernel function is responsible for the distribution of the
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mass among the impact range of a sample. The density func-
tion of the distribution is then approximated by superimpos-
ing the different occurrences of the kernel function. An
example is shown in figure 1, where the lower curves corre-
sponds to the kernel functions of 5 samples and the upper
curve depicts the estimation of the underlying density func-
tion. Kernel estimation methods offer the advantage of sam-
pling methods that there is no need to keep further statistics
about the data. In comparison to pure sampling, however,
the approximation of kernel estimation methods converges
on a much faster rate to the underlying distribution function
under mild assumptions [11]. A user therefore can either
compute an estimation of a certain precision with less sam-
ples or a higher precision of the estimation is achieved with
the same number of samples.

—4

Fig. 1: An example of kernel density estimation

In the second dimension of our classification the estimation
methods are distinguished according to the properties of the
domain of the attribute. For a categorical domain, estima-
tion methods are only able to estimate the probability that a
record will be in one of the categories. In general, there is no
natural ordering on the data of a categorical domain and
thercfore, range queries are only supported when an artifi-
cial ordering is introduced. A metric domain, also termed
numerical or cardinal, provides an ordering on the data and
therefore, range queries can be performed on the corre-
sponding data sets. Examples of such domains are found in
spatial and temporal databases. This class can be refined
into discrete and continuous domains [9]. For a continuous
domain a value appears at most once, whereas duplicates are
allowed for a discrete domain. In the broad class of histo-
gram estimation methods there are methods which are most
suitable either for categorical domain or for metric domain.
For example, a serial histogram [2] is a method for a cate-
gorical domain, whereas equi-width histograms and equi-
depth histograms [3] generally require a metric domain.

The main contributions of the paper are as follows. In this
paper, we introduce kernel selectivity estimation which is a
nonparametric method suitable for estimating the selectivity
of selection queries on metric attributes, in particular selec-
tion queries with a range predicate. Recently, the technique
of kernel density estimation has been received much atten-
tion in statistics ([13],[15]), but so far it has not been applied
to estimating the selectivity of database queries. Kernel esti-
mators can produce high errors for range queries that are
close to the left (or right) boundary of the domain. The rea-

son is that the lack of data items left (or right) beside of the
boundary results in high estimation errors. Two techniques
are introduced to reduce the boundary problem of kernel
estimation methods.

Most nonparametric estimation methods require an appro-
priate setting of a smoothing parameter. For kernel estima-
tion method, the smoothing parameter controls the
bandwidth of the kernel function. The choice of the band-
width is crucial to the accuracy of the kernel estimation
methods. For histograms, the smoothing parameter deter-
mines the number of bins. Similar important as the choice of
the bandwidth of a kernel estimation method is an appropri-
ate setting of the number of bins for a histogram. We present
for kernel estimation methods and equi-width histograms
the optimal bandwidth and optimal number of bins such that
the mean integrated square error is asymptotically mini-
mized, respectively. Moreover, we give simple rules for
computing approximations of both the optimal bandwidth
and the number of bins.

Extensive experiments were conducted with both synthetic
and real data sets. The results of our experiments are inter-
esting as they do not always confirm the results of other
experiments ([3], [8]). For example, we found in our experi-
ments that equi-width histograms provide slightly better
results than equi-depth histograms and considerably better
results than max-diff histograms. One reason is that our
experiments were performed on metric attributes where the
cardinality of the domains was large and a value appeared
only a few times in the database, in general.

The remaining paper is structured as follows. The next sec-
tion introduces our terminology, the most important require-
ments on estimators and the error metrics. In section we
review histograms for selectivity estimation and propose the
kernel estimator for selectivity estimation. In section 4, we
present different rules for choosing the smoothing parame-
ter which is applicable to both histogram methods and ker-
nel methods. Section 5 presents some of our experimental
results. Section 6 concludes the paper.

2. Preliminaries

In this section, we first present our most important nota-
tions. Then, we introduce the error measures used through-
out the paper.

Let R be a relation with an attribute 4. The domain of 4 is
assumed to be the real line R . Let F be the underlying dis-
tribution of attribute 4. F is a continuous distribution, if
there is a real function f, the so-called probability density
function (PDF), with the property that F(x) = J.x f(Hdr
holds for all xe K. -

For a,be R and a<b, arange query Q = O (a,b) retrieves
all records » from R with a<r.A<b. In order to quantify
the query result size we introduce the terms instance selec-
tivity and distribution selectivity. The instance selectivity of
a query is given by the number of results in the actual
instance of R divided by the total number of records in the
actual instance, whereas the distribution selectivity o(a, b)
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is the probability that a record is in the range [a, b]. The dis-
tribution selectivity is independent from an arbitrary
instance of a relation, but the instance selectivity can be esti-
mated by N times the distribution selectivity where N
denotes the number of records in the actual instance. In the
following, selectivity always refers to distribution selectiv-
ity. For a continuous distribution F, the selectivity is simply
given by

0(a, b) = F(b)—Fla) = j’;f(z)dt. (1

Let X = {X,,....X,} be a set of n samples of the actual
instance of R. Our goal is to compute an approximation of
the selectivity only by using X. A simple approach is first to
compute an estimator f = f(x;X) of the PDF fand then, to
substitute fby £ in (1). We obtain then the following selec-
tivity estimation of o:

R b
o(a,b) = [ firyar V)
An estimator c; of o is consistent, if for all €>0 the fol-
lowing holds:

lim P(lo—o <€) = 1
n— oo

where P denotes the probability of an event. Consistency is
obviously an important requirement for an estimator. It
gives a guarantee (with high probability) that the estimator
approaches to the desired value when the number of sam-
ples is sufficiently large. Pure sampling can directly be used
as a method for selectivity estimation. The method is an
example for a consistent estimator, but the convergence rate
is only O(n'm) . The construction of estimators with higher
convergence rate therefore has been an important research
subject in statistics. For example, an equi-width histogram
provides an estimator with a higher convergence rate than
pure sampling (up to O(n'2/3)) when the number of bins
varies with the number of samples in a certain way [11].
However, when the number of bins is kept constant, an equi-
width histograms is not consistent.

There are many different error metrics used to evaluate the
quality of an estimator. In order to achieve the theoretical
fundament of our approach, we first introduce the mean
integrated squared error (MISE). The MISE is commonly
used to express the global accuracy of an estimator. Let f be
an estimator of the PDF f. The MISE is then defined by

MISE( = E( j:(}'u)-f(x))zdx). 3)

Note that the MISE is not directly related to selectivity estj-
mation, but it is defined on the PDF fand its estimator f.
The convergence of the MISE of f is however a sufficient
criterion for 6 being consistent. This may explain that the
MISE is commonly used in statistics. Moreover, the MISE
can also be simplified to

where

MISEG) = [ Var(fx)dx + [~ Bias(Rx))’dx,
Var(h) = EF)-EP° and Bias’() = (EGFx)) - fx)°
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N number of tuples in the database
n sample size
Q(a,b) range query fromato b
o=06(Q)= (distribution) selectivity of range query
G(a,b) QOfa,b)
F distribution function
f probability density function (PDF)
&,} estimation of ¢ and f
(A)MISE (approximated) mean integrated squared
error
K kernel function
bandwidth of the kernel function

Table 1: Notation

In most cases, however, the MISE cannot be computed
explicitly and therefore, an asymptotic approximation
(AMISE) is used instead. The AMISE corresponds to the
tailor expansion of the MISE up to a certain degree where
the error term is left out.

The MISE and AMISE provide powerful methods to
achieve theoretical results of the overall accuracy of an esti-
mator. However, the AMISE is still too difficult to compute
in practice because it requires knowledge of the function
that should be estimated. Thus, an other error metric is
required that can be used in a more easy way for practical
purposes. For a query Qfa,b), we therefore consider the
absolute error and the relative error.

3. Selectivity Estimation with Density Estima-

tors

In this section, we present estimators suitable for range que-
ries on continuously distributed data sets. We first discuss
histograms and then kernel estimators.

3.1 Histogram Selectivity Estimation

For metric attributes, histograms are in general only applica-
ble to estimate the selectivity of queries if the value set of a
bin is an interval of the data space. The i-th bin is then
described by an interval (¢, ¢;, ;1 with width #; = ¢;,.; - ¢;
and an integer value n; which is the number of records in the
interval (c, c;,].. For a set of n samples, the histogram
density estimator fy is then computed by

k-11

5 _ 1 ny 1if xe §
) = 3 %o

- (x) and Ig(x) =
(e €ipy] s 0 else
where Ig(x) is also called the indicator function. The histo-
gram density estimator is based on the assumption that the
records are uniformly distributed in a bin. Let N be the num-



ber of records in the database and let us consider a query
Qf(a, b). The histogram selectivity estimator oy for the
query Q(a,b) is given by inserting fy into (2). We then
obtain the following estimator

- b ”, 1 k-10; o
oute b= [ =1 B 7 [, a0

= 1'2:::);’71:'%(0,1’) , where @)

n

if[a,b]N[cpc; 1= @

Wi(a, b) =
) —max(a, c;) else

min(b, c; , |
is the fraction of the intersection between the i-th bin and
the query range. There are many histograms which differ in
their policy on computing the boundaries of their bins. The
most popular histograms are the equi-width histogram
(where all intervals of the bins have the same size & = k;),

and the equi-depth histogram [3] (where all intervals con-
tain the same amount of data). For the equi-width histogram
and equi-depth histogram, formula (4) can be simplified to

1 k-1 k-1 .
H'2i=on"'wi(a’ b) and Zi=0wi(a, b)/h;, respectively.

A more recently proposed policy is max-diff (§]. For the
max-diff histogram with £ bins, the 4-1 adjacent pairs with
maximum distance are computed and a boundary is set
between each of the &-1 pairs. Experiments performed on
data sets with small cardinalities [8] have shown the follow-
ing results: First, the max-diff histogram provides more
accurate selectivity estimations for range queries than equi-
width histograms and equi-depth histograms. Second, equi-
depth histograms are more efficient than equi-width histo-
grams. Since the experiments are only related to very small
domains it is still an open question how these methods per-
form on data sets that are from a continuous domain or from
a large domain where the values occur with low frequencies.

Histograms provide a simple and easy computable estima-
tor. For a given set of samples, the quality of a histogram
estimator depends on the number of bins and on the starting
point, see [10], [15] and [11]. The method itself suffers for
continuous data distributions under the assumption that data
is uniformly distributed in a bin. Moreover, discontinuous
jump points can be observed in the boundary of two adja-
cent bins for fy. A first method to reduce these deficiencies
is the so-called average shifted histogram. The average
shifted histogram is not a histogram w.r.t. our definition, but
a sequence of equi-width histograms with the same number
of bins and different starting points. The estimation of the
selectivity is simply computed by taking the average among
the estimations of all ecui-width histograms. The problem
of jump points however still exists (however in a more
diminished form).

3.2 Kernel Selectivity Estimation
The method of kernel selectivity estimation avoids the prob-
lem of discontinuous jump points completely. Moreover, the
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method does not require a starting point. We will first intro-
duce a very general approach in this section and refine it to
the kernel selectivity estimation. A very generalized
approach to approximating the true PDF is to use the aver-
age of a weight function w that occurs once for each sample.
In order to ensure that the estimate

}A(x) = % . 2:'_ Iw(x, X;) fulfills the properties of a density

function it is sufficient to require _‘.w w(x, y)dy = 1 and

w(x,¥) =0 for all x and y. This approach is called a general
weight function estimate [11]. The basic idea of this
approach is that a continuous estimation requires that the
mass of a sample is distributed among its neighborhood.
Note that histograms also follow the paradigm of this
approach, but, as we have shown, they did not result in an
estimator without discontinuous jump points. The question
therefore arise what kind of functions are suitable for being
a weight function of a continuous estimator?

A class of general weight functions very easy to compute is
that of the kernel function estimators. This class has been
well studied in statistics recently. The basic idea of this
approach is to choose a weight function such that the sample
is the center. Moreover, a new parameter he R, A > 0, is
introduced which controls the distribution of the mass
among the neighborhood of the sample. In its most general
form, such a weight function can then be defined as
w(x,y) = (1/h)K((x-y)/h) , where K is a real function
which integrates to one. The kernel density estimator of the
true PDF fwith kernel function K and bandwidth h is then
defined by

S n x-X; )
Jew = 30 k(=) (5)
The kernel density estimator can be viewed as a set of
superimposed “bumps** which are positioned at the samples
X;. The bandwidth % determines the impact range of these
bumps, and the kernel X determines their shape. The kernel
density estimator is now constructed by adding up this
bumps, see figure 1.

The bandwidth 4 is also called smoothing parameter. On the
one hand, if 4 becomes too large all details of the true PDF
will be obscured. This effect is caused by oversmoothing the
estimator with its parameter 4. On the other hand, if /4 is
chosen too small spurious structures become visible from
the sample set. The right tuning of 4 is important to obtain
an accurate estimator. This problem is addressed in all
details in section 4.2.

The selection of the kernel function X is not as important as
the selection of the smoothing parameter 4. It has been
shown [13] that varying the kernel function K causes only
small effects on the accuracy of the estimator in comparison
to varying 4. Therefore, we are only interested in a suitable
kernel function K that is inexpensive to compute. Among
the rich source of kernel functions, the Epanechnikov kernel
is used in our approach. The Epanechnikov kemel is defined



as

3 2, .
(1) = Z(l—-t)lflt]ﬁl'

0 else
We obtain the kernel estimator by first inserting the kernel

function into (5). Then, the density estimator in equation (2)
has to be substituted by (5). Overall, we obtain

b n X n b X
y - (L AN I L F A
okla b) = nh'zK( 3 ) =2k IK( A )d"
a

i=1 i=1 a

With the substitution ¢ = (x-X;)/h in the integral we
obtain
(b-X;)/h

6(a, b) = '1!2:; lj K()dr . (6)

(a-X)’h
In (6) the integral will very often return one or zero. The dif-
ferent cases are illustrated in figure 2 where the grey area
shows the portion of the kernel functions that contribute to
the selectivity estimation of query Q(a,b). The result of the
integral expression will be zero, if [(a-X;)/h, (b-X,)/h)
does not have a common intersection with [~1, 1], see the
kernel function at sample X, in figure 2. If
[(a-X,)/h,(b-X)/h] completely overlaps [-1, 1], the
result of the integral is one (see the kernel function at sam-
ple X3). Only for those cases where (a-X,)/he [-1,1] or
(b-X,)/he [-1,1] (see the kernel function at X,) we need
an explicit computation of the integral.

AKrX)]

area =0, area s 1

X Xh X % X
a b
Fig. 2: The contribution of three kernel functions at samples

X1, X, and X5 on the selectivity estimation of O(a,8).

Therefore, we split the sum in (6) into two parts. The first
part only counts those integrals, which completely overlap
the interval [-1, 1], i.e. each of this integrals return one.
The second part contains those integrals, which need to be
evaluated explicitly. Then,

- 1 n
okla, b) = E'(Em ViasnponXi)+

(b-X)/h

n
2,~= lj.(a‘xi)/hK(t)dt'I[a—h,a+h]u[b—h,b+h](Xi)J

The formula can further be simplified by replacing the inte-
gral of the Epanechnikov kernel function by its primitive

1 3, .
- - <
Fo(t) = 4(3t Yif <1
0 else

The total computation of the kernel selectivity estimator is
given in algorithm 1. The cost of this algorithm is ©(n)
where n denotes the number of samples. In general, this can
be improved by using an appropriate data structure for the
sample set. For example, when a balanced binary search tree
is used, the cost of the algorithm is given by O(log » + k)
where £ denotes the number of samples that are in the range
fa—h,b+h].
Given:

n: number of samples

X[i], i=1l..n:sample set

{a,bl: range of the query

h: bandwidth

F(t): integrated kernel function

Algorithm
s = 0.0;
FOR i=1 TO n DO
{ IF (X[i] € [a+h,b-hl)
s += 1.0;
ELSE IF (X({i} € [a-h,a+h] && € [b-h,b+h})
s += 0.5 - F((a-X[i])/h);
ELSE IF (X[i] € [b-h,b+h] &% € [a-h,a+h])
s += F((b-X[i])/h} - 0.5;
ELSE IF (X[i]l € I[b-h,b+h] U [a-h,a+h])
s += F((b-X[1i])/h) - F((a-X[i])/h);
}
RETURN s/n;

Alg. 1: Kernel seletivity estimator with boundary treatment

3.2.1 The Boundary Problem

For kernel estimation methods, the results of experiments
with different sample sets and different distributions have
revealed high estimation errors for range queries which are
positioned close to a boundary of the domain. The error at
the boundaries was considerably higher than the one of a
range query positioned in the center of the domain. This
effect is illustrated in figure 3 where the absolute estimation
error (with sign) is shown for range queries whose range is
1% of the domain. The data set consists of 100,000 uni-
formly distributed elements and therefore, the response set
of a 1% query consists of 1,000 elements. The curve depicts
the estimation error as a function of the position of the
query. For example, the error of the center is very low,
whereas close to the boundary an absolute error of up to 500
occurs. Moreover, it has also been shown in other experi-
ments that the error at the boundary increases with an
increasing smoothing parameter.

The behavior we observed occurs for almost all nonpara-
metric estimation methods based on kernel functions. There
are mainly two reasons: First there is no information about
the true PDF beyond the boundaries of the domain. Since
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centerof query

abs. error with sign

5920 136487 263645 388680 510919 654410 797547 929421

Fig. 3: The absolute estimation error of 1% queries as a
function of the query position (uniform data distribution)

the kernel estimator is based on a continuous estimation of
the true PDF the estimator will deliver values greater than
zero outside of the domain close to the boundaries. This
leads to a “loss of weight” in the domain and therefore, the
estimation of the density function does not integrate over
the domain to one. Second, due to the lack of data the esti-
mator is not consistent for x nearby the boundaries if
xe€ [L,I+h)u(r-h,r] where!land r denotes the left and
the right boundary, respectively. The main difficulty in solv-
ing these problems is that there are two conflicting goals. In
order to fulfill the property of a density function the lost
weight of the estimation has to be shifted back into the
domain. However, this violates the requirement that the esti-
mator should be consistent. In order to fulfill consistency for

points close to the boundaries, the inequality J‘—w}(x)dx >1

is fulfilled with high probability. In the following we present
two different methods to avoid the high estimation errors at
the boundaries.

The first method provides an estimator that is a density
function, but it does not fulfill consistency. The method sim-
ply mirrors the samples X; € [l,/+h) and X;e (r—h,r] at
the left and right boundary, respectively. Hence, these sam-
ples are considered twice. This method is termed reflection
technique.

The second method provides a consistent estimator, but it
does not fulfill the property of a density function. The basic
idea is to use special kernel functions on samples which are
close to the boundary. There are only a few proposals for a
boundary kernel function, see for example [15]. In our
experiments we used the family of boundary kernel func-
tions of [14] because the computation of the primitives was
rather simple. For the left boundary, the family of kernels is
then defined by

2 .2
K(l)(x, q) = 3_4'_?’.9_“36_)‘_ . I[—l,q](x)
(1+q)
with ¢ = (x-1)/h. A similar family of kernel functions
K()(x, q) is also available for the right boundary. These
kernel functions are used forall xe [LI+h)U (r—h,r] ie.

244

they must be considered for all samples X; with
X;e [l,1+2h) U (r-2h, r] . To obtain the primitives for the
boundary kernel functions the dependence of their limits on
g must be eliminated.

Suppose in the following that the left boundary is zero (/ =
0). Then, the family of boundary kernel functions are
required for computing an estimation of the selectivity
between O and 4. This means g is a monotone function of x
where ¢(0) = 0 and g(#) = 1. For each x € [0, ] the shape
of the used boundary kernel function varies with g. In
regions without boundary effects the ordinary Epanechni-
kov kernel function is used. Let Q(a, b) be a range query
with 0 <a<h and b<h. Then, the kernel selectivity estima-
tion is computed by the following sum:

ot0t) = o B0 ([ e [

3.3 A Hybrid of Histogram and Kernel Esti-

mator

Kernel estimators are among the most accurate estimators in
statistics under the assumption that the underlying PDF is
sufficiently smooth. In general, this assumption does not
hold in practice. Experiments have revealed high errors for
kernel estimators on those points where the true PDF
changes considerably. These points are also called change
points in statistics [16].

The hybrid estimator uses the change points to partition the
data space into histogram bins. Adjacent bins are merged
into one if the corresponding number of records is not suffi-
ciently large. Inside each of the bins the original kernel esti-
mation method is used. In particular, the bandwidth of the
kernel estimator is individually chosen for every bin. The
only remaining problem is now to detect change points.

In the following we use the second derivative to detect
change points. In our approach, the first change point corr-
sponds to the point where the maximum of the second deriv-
ative occurs. Further change points can be computed
similarly in a recursive fashion. There are two reasons for
this spproach: First, there are considerable changes of the
first derviative of the PDF around a change point. Second,
the asymtotic error of kernel estimators depends on the sec-
ond derivative (see [11] and our discussion in section 4.2).
Therefore, eliminating the maxima of the second derivatice
can reduce the estimation error.

The performance of the hybrid estimator method depends
on the accurancy of the computed set of change points. It is
left to future work whether other methods for change point
detection are more effective for the hybrid estmator.

4. Selection of the Smoothing Parameter

In this section, we discuss the impact of the number of sam-
ples and the smoothing parameter # on the quality of the
estimator. In particular, we derive a rule for computing the
optimal /4 as a function of the number of samples (w.r.t. a
certain error metric). The discussion is not limited to kernel



estimation, but we also show for equi-width histograms that
the number of bins is an important parameter for the error
size. For a given number of samples, too less bins as well to
many result in high errors of the histogram estimator. Simi-
lar to kernel estimation, we derive a rule for the optimal
number of bins as a function of the number of samples such
that a certain error is minimized.

‘_20%
o
N s Y
GE’ 5% - . 5
5 e
€ pa | -
L S
¢ no.ofbins
5% T T T r T T . T T
1 5 10 20 30 50 100 200 400 1000 2000

Fig. 4: Dependence of the mean relative error on the number
of bins

In order to motivate the discussion, let us first take a closer
look on figure 4 where the results of a set of experiments are
presented. The curve shows the average relative error of
range queries as a function of the number of bins. The data-
base consists of 100,000 Normal-distributed records where
2,000 of them were used as samples for building the histo-
gram. The query size was set to 1% of the domain. The posi-
tion of the queries followed the underlying data distribution.
The dotted curve shows the error for the equi-width histo-
gram, whereas the straight line (17.5%) gives the relative
error of pure sampling. The relative error of the equi-width
histogram is for a few bins higher than the error of pure
sampling. The minimum (relative error of 7%) is achieved
for 20 bins. For an increasing number of bins the error
increases up to the sampling error.

The problem of computing the optimal number of bins does
not only occur for equi-width histograms, but it also arises
for other histograms as well (e. g. equi-depth and max-diff).
The impact of the number of bins on the estimation error has
been mentioned in [9]. Except of [5], however, we are not
aware that this serious problem has really been addressed in
the context of selectivity estimation.

The problem of computing the optimal number of bins of an
equi-width histogram is equivalent to computing the opti-
mal width of a bin. The width of a bin is closely related to
the smoothing parameter of a kernel estimation and there-
fore, similar techniques can be used for computing an opti-
mal estimator. For a given sample set, the optimal estimator
is defined as the one which minimizes the MISE, see equa-
tion (3) in section 2. Since the computation of the MISE
requires detailed knowledge about the real distribution, the
MISE is not a practical optimization criterion. Instead, an
asymptotic approximation of the MISE (AMISEF) is used. In
order to obtain an approximation we assume that the PDF is
sufficiently differentiable. The AMISE then corresponds to
the tailor expansion of the MISE up to a certain degree
where the error term is left out. The AMISE still requires a
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few parameters which are determined by the real distribu-
tion. These parameters however can be estimated reason-
ably well. The AMISE only depends on the parameters of
the underlying estimator which are the smoothing parameter
and the number of samples. For a given sample, the mini-
mum of the AMISE with respect to the smoothing parame-
ter can then be computed by using a standard technique. As
a result, we obtain the optimal smoothing parameter as a
function of » (the number of samples).

In the following subsections we present the formulas for the
smoothing parameter of histograms (bin width) and kernel
estimators (band width), respectively. The proofs for the
formulas presented in the following are given for example
in [11].

4.1 Bin-width Selection for Histogram Estima-
tion

In this section, we consider an equi-width histogram where

h denotes the width of a bin. Let n be the number of sam-

ples. The asymptotic approximation of the MISE (AMISE)

of the histogram estimator is then

AMISE(h) = nih + i’—;fm(gf;(x))zdx

By solving %AMISE(hEW) = 0 we obtain the asymptoti-
cally optimal bin width:

6 173

how = | = (df ;)
EW nJ._m(zi—;(x)j dx

Under the assumption made above it follows that
AMISE(hgy) = O(n—2/3) and hence, that the convergence

rate of the equi-width histogram is higher than the one of
pure sampling.

)

The computation of sgy requires the derivative of f(the true
PDF) which is generally not known. There are different
techniques to approximate the true PDF in (7). A simple
technique called normal scale rule uses the Normal distribu-
tion for approximating the real distribution. The intuition
behind the rule is that due to the theorem of large numbers
the density of an arbitrary distribution converges to the Nor-
mal distribution. Then,

hpy=24dm) " s o1 ®
follows where s denotes the standard deviation of /. There
are two common techniques for estimating the parameter s.
First, the standard deviation of the sample set can be used.
In practice, it has been observed that this estimator leads to
an oversmoothing of the true PDF. Second, the interquartile
range (which is the distance between the 0.75 quantile and
the 0.25 quantile) of the sample set can also be used to
approximate the standard deviation. In our implementation,
we decided to estimate s by taking the minimum of both.



4.2 Bandwidth Selection for Kernel Estima-
tion

Let us now consider the problem of computing the optimal
bandwidth of a kernel estimation. Similar to computing the
optimal size of a bin, an asymptotic approximation is
derived from the tailor expansion of the MISE. The analysis
is not limited to the Epanechnikov kernel function, but it
can be applied to a symmetric kernel function K that fulfills
the following conditions:

@) [K@ar = 1
b) .[tK(t)dt =0
(c) ky = ft2K(t)dt¢0

The Epanechnikov kernel function fulfills these conditions
with &, = 1/5. Under the assumptions that the true PDF fhas
continuous derivatives of all orders required and that the
sample set is given, the following formulas can be derived
from the tailor expansion for the asymptotic integrated bias
(AIBias) and the asymptotic integrated variance (AlVar).

2 2
(a) AlBias(h) = \/;‘kgj(g}ff(x)] dx

(b) AlVar(h) = ﬁ [Kk@)ar )

According to equation (3) the AMISE is then given by
AMISE(h) = AlBias(h)* + AlVar(h) . A fundamental prob-
lem of density estimation is the complementary impact of A
on bias and variance (9). For a small h, the bias is small and
the variance is high, whereas for a large h the bias is high
and the variance is small.

By solving iAMISE(h ) = 0 we obtain the asymptoti-
y dh K ymp

[k@yla |7
2

cally optimal bandwidth h, = d2
nk2 - f(d—xf(x)] dx

It follows that AMISE(hy) = O(n_4/5) . Hence, the conver-

gence rate of kernel estimation is higher than the one of
equi-width histograms.

The formula for the optimal bandwidth still depends on the
second derivative of the unknown PDF Again we can use
the normal scale rule to approximate the true distribution by
the Normal distribution. For the Epanechnikov kernel func-
tion (k; = 1/5), we obtain hy=2.345.s- n '3 for the opti-
mal bandwidth, where s is estimated by using the minimum
of the empirical standard deviation of the sample set and the
interquartile range divided by 1.348.

4.3 Direct Plug-in Methods
We briefly mention here a technique for improving the esti-
mation techniques presented above. The technique can be
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used as an alternative to the normal-scale rule. The so-called
direct plug-in rule [15] estimates the true density function in
an iterative fashion. In an iteration step, the approximation
of the density function of the previous iteration is used to
compute Ag (hgp). This results again in a new approxima-
tion of the density function. In the first iteration, the normal-
scale rule can be used to obtain a first estimation of the PDF.
The number of iteration steps is a new parameter of the
plug-in rule. The influence of the normal scale rule dimin-
ishes for an increasing number of iterations. In general, two
or three iteration steps are sufficient.

5. Experiments and results

In this section, we report the results of a performance com-
parison of different methods for estimating the selectivity of
range queries. The objective of our experiments was to find
out how much of the theoretical results can also be con-
firmed in practice. We first show the impact of the domain
cardinality and of the sample size on the estimation error. In
the next set of experiments, we compare the performance of
different histogram estimators. In particular, we discuss the
problem of computing the number of bins for a given sam-
ple set. The next set of experiments deals with kernel esti-
mation. In particular, we investigate the methods for
reducing the boundary errors and the rules for computing
the smoothing parameter.

5.1 Test Environment

In the following, we first present our test environment in all
details (distribution of the data files, distribution of the
query files). All the files are freely available [17].

5.1.1 Data Files

In our experiments we used sets of artificial data as well as
sets of real data. The artificial data sets follow the Uniform
distribution, the standard Normal distribution and the Expo-
nential distribution. The Exponential distribution can be
considered as a substitute of the Zipf distribution which is
commonly used in experiments. Both are highly skewed dis-
tributions with high density at the left boundary of the
domain and low density at the right boundary. Each of the
files that follow an artificial distribution consists of 100,000
records. The real data sets consist of data derived from the
TIGER/Line files from the U.S. Census Bureau [18]. We
used the first and second dimension of the endpoints of lines
from county Arapahoe and the endpoints of lines from an
area around L. A. where the lines represent rail road tracks
and rivers. Another set of real data corresponds to the
instance weight of a census-income file [19]. The domain of
the data files corresponds to integer values in the range from
0 to 2P-1, where p is considered as a parameter. For the data
sets that follow a Normal distribution, we mapped the
records to the integer domain such that the mean value is in
the center of the domain. We did not consider data records
that were outside of the domain. Correspondingly, we also
mapped the data from the Exponential distribution to the
integer domain. The most important properties of our files
are summarized in table 2.



From each of these data sets we have drawn sample sets of
2,000 records by selecting the records from the file in a ran-
dom fashion without replacement.

5.1.2 Query Files and Error Metrics

The query files in our experiments differ from the ones gen-
erally used in other experiments (see for example [8]) since
the query size is fixed for all queries of a file. The reason for
such size-separated query files is that we are interested in
the impact of the size of a query on the estimation error.

For each data set D we generated four query files where
each of them contains 1,000 range queries of a fixed size.
The size of a range query varies between 1%, 2%, 5% and
10% of the size of the underlying domain. We use the nota-
tion Fp(s) to refer to a query file with queries of size s. The
position of the queries follows the same distribution as the
corresponding data records. Query positions which are too
close to the boundary of the domain are not accepted in
order to avoid queries being partially outside of the domain.

data file] data distribution p #records

u(p) Uniform {15,20} 100,000

n(p) Normal {10,15,20} 100,000

e(p) Exponential {15,20} 100,000

arapl | Arapahoe, 1st dim. 21 52,120

arap2 Arapahoe, 2nd dim. 18 52,120

rrl(p) |Rail road & Rivers, {12,22} 257,942
Lst dim.

rr2(p) [Rail road & Rivers, {12,22} 257,942
2nd dim.

iw Instance Weight 21 199,523

Table 2: Properties of the data files

In the following, we consider for query files Fp(s) the mean
relative error MRE(D, s) defined by

)

Q(a,b) e Fp(s)

ll0(a, b)] - 5(a, b) - 1D
0(a, b)

MRE(D, s) = o)

For example, MRE(rr1(12), 1%) denotes the mean relative
error of 1% queries performed on the data file rr1(12). We
also considered the mean absolute error in our experiments.
The behavior of the absolute error was not much different to
the relative error and therefore, we only present the relative
error in the following.

5.2 Results

In the following, we discuss the most interesting results we
obtained from the experiments. First, we show the impact of
different parameters (cardinality, query size, sample size) on
the accuracy of the selectivity estimator. Second, we report
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the results from a comparison of histogram estimators and
kernel estimators. We conclude the section with a compari-
son of the most promising selectivity estimators.

5.2.1 The impact of the domain cardinality

In our first set of experiments, we deal with the impact of
the domain cardinality on the estimation error. In figure 5
we depict the mean relative error for an equi-width histo-
gram as a function of the number of bins. The three curves
refer to the data sets n(10), n(15) and n(20) (Normal distri-
butions). Data sets from a small domain contains more
duplicates than sets from a larger domain. As shown in fig-
ure 5, the error is considerably higher for large domain car-
dinalities. Similar results were obtained for the other data
files. Because our emphasis is on metric attributes with
large domains, we omit in the following the results we
obtained from files with high frequencies.
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Fig. 5: The MRE as a function of the number of bins for
different domain cardinalities

5.2.2 The impact of the sample size

One of our most important requirements has been that a
selectivity estimator should be consistent,’i. e., the estima-
tion error decreases when the sample size increases. From
the theory we know that pure sampling and the equi-width
histogram (with an adaptive number of bins) are both con-
sistent estimators.-This is also confirmed by the results of
our experiments. Figure 6 shows the mean relative error
MRE(n(20), 1%) for pure sampling, equi-width histogram
and kernel estimator as a function of the sample size. For
the equi-width histogram, for example, the mean relative
error is close to 12% for a sample size of 200, whereas for a
sample size of 10000 the MRE is only about 4%. The curves
also show that kernel estimators are more accurate than his-
tograms and histograms are more accurate than pure sam-
pling. Hence, these results are in agreement with the theory.

5.2.3 The impact of the query size

In the next set of experiments we discuss the influence of
the query size on the accuracy of selectivity estimation. We
only report the results obtained from experiments of equi-
width histograms with normal scale rule. Similar results are
achieved for other selectivity estimators. In figure 7, the
MRE is depicted for different data files and query files. As
expected the error decreases when the query size increases.
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Fig. 6: The MRE(n(20), 1%) as a function of the sample size
for sampling, equi-width histograms and kernel estimators
For the data file arap2, for example, the MRE of a 10%
query is only 4.5%, whereas the MRE of a 1% query is
17.5%. In the following, we only report the results for small
queries.
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Fig. 7: The MRE of equi-width histograms for different
query files

5.2.4 A comparison of histogram estimation methods
Next, we compare the performance of different histogram
estimators. In particular, we are interested in the impact of
the selection of the bin width on the accuracy of the estima-
tors.

In a first set of experiments we compare the MRE obtained
for equi-width histograms (EWH), equi-depth histograms
(EDH), max-diff histograms (MDH), pure sampling (sam-
ple) and the uniform estimator (uniform) that corresponds to
a histogram with one bin. In figure 8 the MRE is depicted
for different data files. For all histogram methods, we used
for each query file the optimum number of bins we ober-
eved in our experiments. The results therefore represent the
best case of the kernel estimator. The overall loser of our
comparison is the uniform estimator (except for uniform
data distribution). For the data file ci, for example, the MRE
of the uniform estimator is 600%, whereas all other methods
produce an error of about 5%. In general, the equi-width
histogram is the winner. This result is not in common with
the results reported in most previous experiments. For
example, in [8] it was found that max-diff is considerable
superior in comparison to equi-width and equi-depth histo-
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Fig. 8: Average relative error for different histogram
estimators compared with sampling and uniform assumption

grams. Pure sampling generally provides estimations with
higher errors than histogram estimators for our artificial
data sets. For our real data sets, the errors of pure sampling,
are slightly higher in comparison to histogram estimators.

A second set of experiments was performed to investigate
the impact of the number of bins on the estimation error of
equi-width histograms. We did not consider other types of
histograms because we are not aware of a theory that sug-
gests how to determine the number of bins for equi-depth
histograms and max-diff histograms. In general, we
observed that the number of bins determined for an equi-
width histogram (using for example the normal scale rule) is
also reasonable for other histograms. In figure 4, we already
have shown that there is a strong relationship between the
number of bins and the estimation error. In this section, we
are interested in whether the derived rule for computing the
number of bins (see equation (8)) is close to the optimal
number actually observed in the experiments. In figure 9,
the estimation error (MRE) of the equi-width histogram is
depicted for different data files. For each data file, there are
two columns. The first column shows the MRE of the histo-
gram with an optimal number of bins observed (#-opt) and
the second column refers to an histogram where the number
of columns is computed by using the normal scale rule (%-
NS). For this rule the estimation error is on the average
about 3% higher in comparison to an histogram with the
optimal number of bins.
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Fig. 9: The MRE of equi-width histograms with different
policies for computing the number of bins.

5.2.5 A comparison of kernel estimation methods
Next, we report the results of our experiments for kernel
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Fig. 10: The relative estimation error of 1% queries as a
function of the query position (uniform data distribution).

estimation methods. In particular, we consider the boundary
problem as well as the rules for computing the bandwidth.

In our first set of experiments, our focus is on the boundary
problem. In figure 10, we depict the relative error of 1%
queries as a function of the query position for uniformly dis-
tributed data and different kernel estimation methods. The
one curve shows the relative error when the boundary prob-
lem is not treated. The other curves depict the relative error
when the reflection technique and the boundary kernel func-
tion is used, respectively. Both approaches lead to a consid-
erable reduction of the estimation errors. In almost all cases
the kernel selectivity estimator with boundary kernel func-
tions performs slightly better than the one with the reflec-
tion technique.

In our next set of experiments, we compared different tech-
niques for computing the bandwidth of the kernel estimation
method. The first technique computes the bandwidth with
the lowest MRE. This is not a practical method because it
requires that the queries and the sizes of their response sets
are known in advance. This method only serves to judge the
quality of the other techniques. The other techniques deter-
mine the bandwidth by using the normal scale rule and the
direct plug-in rule (with 2 iteration steps), respectively. In
figure 11, the MRE is shown for different data files and 1%
queries. For each data file, the three columns refer to the
optimal bandwidth (h-opt), the bandwidth of the normal
scale rule (4-NS) and the bandwidth of the direct plug-in
rule (#-DPI2). The left column depicts 4-opt, the column in
the middle shows the results of A-NS and the right column
refers to h-DPI2. Each of the kernel estimation methods
uses special boundary kernel functions. As shown in figure
11 the normal scale rule results in a low MRE for all syn-
thetic data distributions. In these cases it is slightly superior
to the direct plug-in technique. However, the normal scale
rule produces high errors for all our real data sets, whereas
the direct plug-in rule clearly outperforms the normal scale
rule. For real data sets, the MRE of the plug-in technique is
however still higher (up to 5%) than the MRE in case of an
optimal bandwidth selection.

5.2.6 Comparison of the most promising estimation
methods

Let us now present a direct comparison of the most promis-
ing estimation methods. In addition to the methods previ-
ously discussed, this comparison also includes avergage
shifted histograms. In figure 12, we present the MRE of 1%
queries for the different data files. For each data file, we
report the results of the following methods:

* equi-width histogram using the normal scale rule for
computing the number of bins (EWH),

» kernel estimators using boundary kernel functions and
the direct plug-in rule for computing the bandwidth
(Kernel),

* hybrid estimators using boundary kernel functions
(Hybrid),
¢ average shifted histograms using ten shifts (4SH).

The results of our synthetic data sets (u(20), n(20), (20))
show that the kernel estimator produce the most accurate
results. The error of the average shifted histogram is only
slightly higher than the one of the kernel estimators. For our
real data sets from the TIGER/Line database, the methods
perform differently. Now, the hybrid estimator gives the
most accurate results, whereas kernel estimators and equi-
width histograms produce high errors. For the real data file
ci, there is almost no difference in the performance of the
different methods.
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Fig. 12: A compraison of the most promising estimators for
1%queries

6. Conclusions

In this paper, we outlined several nonparametric methods
for estimating the selectivity of range queries based on two
different statistical approaches (histogram and kernel esti-
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Fig. 11: Average relative error for kernel estimation methods
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mators). We considered the accuracy of the selectivity esti-
mators in theory and practice. In particular, we proposed to
use kernel estimators which are among the most accurate
estimators in statistics. Kernel estimators can be viewed as a
generalization of sampling where a sampling point distrib-
ute its mass among its neighborhood. The bandwidth of the
kernel estimator control the size of the impact ranges of its
samples and a kernel function is responsible how the mass
of the samples is distributed. We showed that kernel estima-
tors are inexpensive methods that produce fairly accurate
results. Kernel estimators produce the most accurate estima-
tions among all estimation methods we considered in the
paper under the following conditions: the underlying distri-
bution function is smooth and the cardinality of the data
space is large. Data sets in spatial databases are examples
where these conditions are (almost) fulfilled. However, even
in case that these properties are not completely fulfilled,
kernel estimation methods are comparable to other estima-
tion methods currently used in database systems. For highly
skewed data distributions, however, kernel estimator suffer
under the discontinuity jump points of the density function.
We therefore proposed a hybrid estimator that is a combina-
tion of histogram and kernel estimator. Experiments con-
firmed that the hybrid estimator gives more accurate results
than the pure kernel estimator and different types of histo-
grams.

In general, only a small sample set is used to create a histo-
gram or a kernel estimator. An important problem is then to
determine the so-called smoothing parameter. For histo-
grams, the smoothing parameter corresponds to the number
of histogram classes. For example, results of experiments
showed high errors when the number of bins is too small or
too high. Today commercial database system (e. g. ORA-
CLE) does not provide any help to the user for finding the
optimal number of bins. We proposed several rules for com-
puting approximations of the optimal number of bins. The
results of experiments generally confirmed that the smooth-
ing parameters obtained from the rules are close to the opti-
mal ones.

In our future work, we are interested in the following prob-
lems. First, we will consider multidimensional kernel esti-
mators to estimate the selectivity of multidimensional range
queries. Second, we currently investigate how to apply ker-
nel estimators to online processing of aggregate queries [6].
Third, we will include the knowledge of previous queries to
improve the quality of kernel estimators [1].
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