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ABSTRACT

The database query optimizer requires the estimation of the query
selectivity to find the most efficient access plan. For queries
referencing multiple attributes from the same relation, we need a
multi-dimensional selectivity estimation technique when the
attributes are dependent each other because the selectivity is
determined by the joint data distribution of the attributes.
Additionally, for multimedia databases, there are intrinsic
requirements for the multi-dimensional selectivity estimation
because feature vectors are stored in multi-dimensional indexing
trees. In the 1-dimensional case, a histogram is practically the
most preferable. In the multi-dimensional case, however, a
histogram is not adequate because of high storage overhead and
high error rates.

In this paper, we propose a novel approach for the multi-
dimensional selectivity estimation. Compressed information from
a large number of small-sized histogram buckets is maintained
using the discrete cosine transform. This enables low error rates
and low storage overheads even in high dimensions. In addition,
this approach has the advantage of supporting dynamic data
updates by eliminating the overhead for periodical reconstructions
of the compressed information. Extensive experimental results
show advantages of the proposed approach.

1. INTRODUCTION

The database query optimizer chooses an efficient execution plan
among all possible plans by estimating the cost of each plan. One
of the most important factors for computing the cost of a plan is
the selectivity, which is defined as the ratio of the number of data
in a query result to the total number of data in a database. The
accuracy of the selectivity estimation significantly affects the
selection of an efficient plan. The selectivity can be estimated
using a variety of statistics that are kept in a database catalog. The
statistics for the selectivity estimation usually approximates the
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data distribution of a database.

There are two classes in selectivity estimation problems
according to the dimensionality. One is the Il-dimensional
selectivity estimation and the other is the multi-dimensional
selectivity estimation. The estimation of the result size of a query
with a single attribute predicate depends on the data distribution
of the attribute. This case is the 1-dimensional selectivity
estimation problem. Regarding the multi-dimensional selectivity
estimation, there are several applications that require it. The
optimization of a query referencing multiple attributes from the
same relation needs it, because the result size of the query depends
on the joint data distribution of the attributes that is represented as
a multi-dimensional space [PI97]. So do the optimization of fuzzy
queries for multimedia repositories [CG96, Fa96, Fa98] and
database ranking for selecting resources in a distributed
environment such as the World Wide Web [CSZS97], because the
feature vectors of multimedia data are stored in multi-dimensional
index trees.

A variety of techniques were proposed based on how to
approximate the data distribution. An excellent survey and the
taxonomy of various selectivity estimation techniques appeared in
[MCS98, CR94, PIHS96]. 1-dimensional selectivity estimation
techniques are classified into four categories: the parametric, the
curve fitting, the sampling, and the non-parametric. Among these
classes, the histogram method in the non-parametric class is the
most preferable because it approximates any data distribution and
requires reasonably small storage with low error rates. And it does
not incur run-time overheads. Several histogram techniques were
proposed in order to reduce estimation errors{[PIHS96]. For the
multi-dimensional selectivity estimation, several estimation
techniques were proposed: the method using the multilevel grid
file(MLGF)[WKW94], the singular value decomposition(SVD),
Hilbert numbering, PHASED, and MHIST [PI97]. These are all
based on histogram techniques. And these were proposed under
the assumption that a histogram method is also efficient in the
multi-dimensional selectivity estimation as it is so in the 1-
dimensional case. However, the situation of the multi-dimensional
case is very different from that of the 1-dimensional case. In order
to achieve low error rates, the size of histogram buckets must be
small. As the dimension increases, the number of histogram
buckets that can achieve low error rates increases explosively. This
is because the number of histogram buckets is in inverse
proportion to the dimension’th power to the normalized one-
dimensional length of a partitioned multi-dimensional bucket as
expressed by an equation below. It causes a severe storage
overheads problem.

#of buckets o< ‘T;l,}? , O<a<l,
a

where a is the 1-dimensional length of a bucket.



Therefore, it is impossible to maintain a reasonably smail
storage with low error rates in high dimensions. Also it is difficult
to partition a multi-dimensional space into disjoint histogram
buckets efficiently so that the error rates are kept small. From a
practical point of view, these methods cannot be used in
dimensions higher than three. Another problem is that all methods
except the MLGF method cannot reflect dynamic data updates
immediately to the statistics for the estimation. This leads to an
additional overhead such as the periodical reconstruction of
statistics for the estimation.

In this paper, motivated from the above problems, we propose
a novel approach for the multi-dimensional selectivity estimation.
The contents and contributions are as follows: Compressed
information from a large number of small-sized buckets is
maintained using the discrete cosine transform (DCT). This
enables low storage overheads and low error rates even in high
dimensions. This can be achieved from the fact that DCT can
compress the information remarkably. That is, low error rates can
be achieved by small-sized buckets and low storage overheads can
be achieved by compressing a large amount of histogram bucket
information. As another contribution, as far as we know, this is the
first application in which DCT is used in high dimensions. DCT
has been widely used in the image and signal processing area
usually in 2-dimensional domain. Therefore, we also extend DCT
from two dimension to high dimensions. In addition, this method
has the advantage that it is not necessary to reconstruct statistics
for selectivity estimation periodically, because it reflects dynamic
data updates into the statistics for the estimation immediately. An
extensive set of experiments show that the method proposed in
this paper requires low storage overheads, achieves low error rates,
and provides fast computations of the estimation even in high
dimensions.

The paper is organized as follows: In Section 2, we describe 1-
dimensional and multi-dimensional selectivity estimation
techniques as well as their advantages and disadvantages. In
Section 3, we introduce the discrete cosine transform. In section 4,
we explain how discrete cosine transform can be used in the multi-
dimensional selectivity estimation. In Section 5, we show
experimental results and discuss them in detail. Finally,
conclusions are made in Section 6.

2. RELATED WORK

First, we briefly describe 1-dimensional selectivity estimation
techniques and explain muiti-dimensional estimation techniques,
and then discuss their problems.

2.1 One-dimensional Selectivity Estimation

Selectivity estimation techniques can be classified into four
categories: the parametric method by model functions [Chri83],
the curve fitting method by general polynomial functions [CR94,
SLRD93], the sampling method [HNSS95]), and the non-
parametric method by histograms [[093, IP95, PIHS96,
JKMPSS98]. The parametric method approximates the data
distribution of an attribute to a model function such as normal,
exponential, Pearson, Zipf function, and computes free parameters
for the model function under the assumption that the data
distribution well fits the selected model function. The advantage
of this method is that it requires a little storage, incurs low
computation overheads, and provides accurate results when the
data distribution fits the selected model function. However, if the
data distribution does not fit the model function, the error rates of
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estimation results will be very high. And we must know a priori
which model function fits the actual data distribution. If the actual
data distribution does not fit any known model function, we
cannot use this method. The curve fitting method was proposed to
get more flexibility than the parametric method. This method uses
a general polynomial function in fitting the actual data distribution.
The advantage of this method is that it can approximate any data
distribution. However, it has the negative value problem and the
rounding error propagation problem. So, we must be careful to use
this method. The sampling method is mainly used for statistical
queries that have aggregate functions. It retrieves sample data
from a database and applies the sample data to a query in order to
get statistics of the query. The sampling method must take enough
sample data to achieve the desired accuracy. The query
optimization that requires frequent selectivity estimations cannot
use this method due to its high performance overheads. The
histogram method is the most common non-parametric method.
The histogram method divides the data distribution into a set of
small disjoint intervals, in other words, buckets, to approximate
the data distribution, and stores some statistics in each bucket such
as value range and the number of data in a bucket. The histogram
method is based on the uniform distribution assumption which
means that data in a bucket are uniformly distributed. The
selectivity estimation using a histogram is as follows: First, all
buckets overlapping with the query are selected. The statistics in
each bucket is used to compute the number of data that satisfy the
query. The numbers of the satisfied data from each bucket are
summed up to get the final estimation result.

The histogram method is practically the most preferable
among the ones in four classes because it is possible to make a
histogram that approximates any data distribution with reasonably
small storage and low error rates. Therefore it is widely used in
many commercial databases. The histogram method is again
classified into various methods according to how to partition the
data distribution into buckets in order to minimize the estimation
error: the Equi-width, the Equi-depth, the MaxDiff, the V-optimal
method, etc. In the Equi-width, the widths of the buckets are equal,
and the number of data in each bucket approximates the data
distribution. In the Equi-depth, each bucket has the same number
of data, so the widths of the buckets are different. In the MaxDiff,
there is a bucket boundary bewteen two adjacent values when the
difference of these values are among the largest. In the V-optimal,
the sum of weighted variances of buckets is minimized. The V-
optimal method has been shown to be the most accurate histogram
method [IP95, JKMPSS98].

2.2 Multi-dimensional Selectivity Estimation

The optimization of fuzzy queries for multimedia repositories
needs a multi-dimensional selectivity estimation technique.
Chaudhuri[CG96] used the result using the correlation fractal
dimension [BF95] as the selectivity estimation. However, the
selectivity using the correlation fractal dimension is the average of
the estimation results for the same shape and size queries and can
be practically used in two and three dimensions. For queries with
multiple attributes, there is an estimation method that uses a multi-
dimensional file organization called the multilevel grid file
(MLGF) [WKW94]. MLGF partitions the multi-dimensional data
space into several disjoint nodes, called grids, that act as
histogram buckets. A new field, count, is added to each grid node
for saving the number of data in the grid. The selectivity is
estimated by accessing grid nodes overlapping with a query. This



method supports dynamic data updates because MLGF itself is a
dynamic access method. And it accurately estimates the result size
of a query. However, MLGF suffers from the dimensionality curse
[BBK98] that means severe performance degradation in high
dimensions. Also the method has the maintenance overhead of
MLGEF. So, the method can not be applied in dimensions higher
than three.

Recently, Poosala et al. proposed several useful methods for
the multi-dimensional selectivity estimation [PI97]: The Singular
Value Decomposition (SVD), the Hilbert numbering, the
PHASED, and the MHIST methods. These methods are based on
the 1-dimensional histogram method under the assumption that the
histogram can also be used in the multi-dimensional selectivity
estimation. So, these methods partition the joint data distribution
into disjoint buckets. The SVD method decompose the joint data
distribution matrix J into three matrices U, D, and V that satisfy
J=UDV", Large magnitude diagonal entries of the diagonal matrix
D are selected together with their pairs, left singular vectors from
U and right singular vectors from V. These singular vectors are
partitioned using any one-dimensional histogram method so as to
be used as histogram buckets of the attributes. There are many
efficient SVD algorithms, but the SVD method can be used only
in two dimension. The Hilbert numbering method converts the
multi-dimensional joint data distribution into the 1-dimensional
one and partitions it into several disjoint histogram buckets using
any one-dimensional histogram method. The buckets made by this
method may not be rectangles. Therefore, it is difficult to find the
buckets that overlap with a query. The estimates may be inaccurate
because it does not preserve the multi-dimensional proximity in 1-
dimension. The PHASED method partitions an n-dimensional
space along one dimension chosen arbitrarily by any one-
dimensional histogram method, and repeats this until all
dimensions are partitioned. The MHIST is an improvement to the
PHASED method. It selects the most important dimension in each
state and partitions it. From the V-optimal point of view as an
applied partitioning method in MHIST, the dimension that has the
largest variance is the most important dimension. The experiments
in [PI97] showed that MHIST technique is the best among a
variety of multi-dimensional histogram techniques. However, even
though it produces low error rates in 2-dimensional cases, it has
relatively high error rates in the 3-dimensional space (20-30 %)
and the 4-dimensional space (30-40%). This demonstrates that it is
not easy to segment multi-dimensional spaces into disjoint
histogram buckets efficiently. These methods cannot be used in
dimensions higher than three. In addition, the database system
must reconstruct the statistics periodically in an environment
where data is updated frequently because the method do not
support dynamic data updates.

3. DISCRETE COSINE TRANSFORM

The discrete cosine transform has been widely used in the image
and signal processing areas usually in the 2-dimensional domain
because it has the power to compress information. However, we
should use the multi-dimensional DCT for compressing the
histogram information. Therefore, we briefly describe the
definition of the 1-dimensional DCT, the 2-dimensional DCT and
extend them to the multi-dimensional DCT.

3.1 Definition of Discrete Cosine Transform
For a series of data F = RO 1),... fAN-1)), DCT coefficients, G
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= (8(0),g(1).....g(N-1)), are defined as follows:
N-1
gu) = Nkuéf (n)COS(Q"——;%E)
1 = -
K, = ﬁ foru=0 u=0,....N-1
1 foruz0
= (0) AD),... AN-1)) is recovered by the inverse DCT defined
as follows:
fm= Zk,,g(u)c (————(zn + Dun ) n=0,....N-1
u=0 2N

1-dimensional DCT was extended to 2-dimensional DCT as
follows: Let [F], be an MXN matrix representing the 2-
dimensional data and [G}, be the 2-dimensional DCT coefficients
of [F1;. Then the element (u,v) of [G], is given by

M-IN-1
2wy = Zaks 2k, k, sz(m n)cos[(2m+l)un]cos[(2n+l)vn’]
m=0 n=0 2N
where u=0,..,M-1andv=0,.. . N-1

By the separability property [RY90, Lim90] of the 2-dimensional
DCT, g(u,v) can be rewritten as follows:

Ml 2 XA QRn+vre QCm+Durn
glu,v)= ku%{ -ﬁkvgoff(m,n)cos[ o ]}cos[ o }
Its inverse is as follows:

_ _2_""'I @n+vr QCm+Dur |
flmn)= i Z&k“{(vz:&k gu,v) os[ N ]}cos[ i ]

Now we generalize the above to the k-dimensional DCT
recursively as follows:

Let [F]; be N\xN,x...xN; k-dimensional data. Let u(t)=(u,,...,u,)
< (uy,....uy) and n(=(n,...,n) < (ny,...,n) for 1<t < k and u; =
0,....N-1,n;=0,....N-1 for 1<i < k. Let [G); be DCT coefficients
of [F}x . We define G(u(9)) , F(u(?)) as follows:

G(u(t))—-\/;k ZG(u(t—l))cos[(Z”'H)”:”

2N,

2n,+1
Gu() = \/: 2 flm,.. ,nk)cos(-(-—ﬂ;lv—l)uﬁ

F(n(t)) = \/—Nt

'

2n, +Yu,r
Yk, F(n(t—1)) cos(————

=0 t

Fu() = Xk gy ,u,‘)cos(-(-%—n'—%
1 n=0 2N 1
Then, k-dimensional DCT coefficients is given by g(ui,...,l) =
G(u(k)). And the inverse DCT transform is given by flu,,...,uy) =

F(u(k)).

3.2 Properties of Discrete Cosine Transform
DCT has many desirable properties as follows:
(1) DCT is a linear transform. Let F¢c be DCT and o8 be the
scalar values, and let x,y be the general k-dimensional data. Then
the following linearity holds:

Felax + By) = aF o (x)+ BF.(y)
(2) DCT is separable. This means that the 2-dimensional DCT can
be reduced to the 1-dimensional DCT which enables the row-
column decomposition which is the basis of fast algorithms.
(3) DCT preserves the energy in the transformed domain as
Parseval’s theorem says that

= Z(ulm..uk) g(ul e uk )12

Zm. n.)lf(n,,...,n,)lz
0,....N-1,i=1,... .k

n;, u;=



(4) DCT has the property of energy compaction. DCT reduces the
correlation among transformed coefficients. This property is
related to the energy compaction. That is, if data adjacent to each
other in the data distribution are highly correlated, DCT can
reduce the correlation between adjacent transformed coefficients.
And if the frequency spectrum of a data distribution is skewed in
which the magnitudes of low frequency coefficients are large
while those of high frequency coefficients are small, we can
discard the high frequency coefficients without seriously affecting
the original dada distribution [AFS93). Since discarding the high
frequency coefficients causes an error, we measure this error as the
mean square error (MSE).

MSE =2(»;.....!11)(f(n\""’nk)—f.(n"""n" »?

n;=0,... ,N-1,i=1,...k
where f'(ny,....n) is computed by applying the inverse DCT with
truncated DCT coefficients.

There are many other transforms such as the discrete Fourier
transform (DFT), the Harr transform, the Hadamard Transform,
and the Karhunen Loeve Transform (KLT). They differ in energy
compaction and in computational requirements. From the energy
compaction point of view, KLT is the best transform. That is, KLT
is the transform that minimizes the MSE for truncated coefficients.
However KLT has a serious practical problem. There is no
computationally efficient algorithm for KLT. However, DCT has a
good energy compaction property as well as computationally
efficient algorithms. Also the energy compation power of DCT is
superior to all other transforms except KLT [RY90,Lim90].
Therefore DCT is most widely used in various applications.
Typical applications of DCT are the visual telephony and the joint
photographic expert group (JPEG).

4. SELECTIVITY ESTIMATION USING
DISCRETE COSINE TRANSFORM

As explained in Section | and 2, a histogram method cannot be
directly used in the multi-dimensional selectivity estimation. As
alternatives, we can consider parametric and curve-fitting methods.
The former has the same constraint in a multi-dimensional space
as in the 1-dimensional space, that is, the model function should
fit the data distribution in some degree. When the constraint does
not hold, the accuracy degrades. The latter uses a polynomial
function for fitting a curve. But it uses an independent variable for
every dimension and the number of coefficients in a multi-variable
polynomial function increases rapidly as the dimensionality
increases. It also suffers from the problems of the oscillation
(negative values) and rounding errors.

We propose a curve-fitting method using DCT. In this method
we use a uniform grid as histogram buckets in a multi-dimensional
space. From now, this grid is called a uniform histogram bucket.
In case a data distributicn is highly correlated, DCT makes it
possible for a few data items to represent the whole data by
compressing information of the data distribution. We also can get
the original distribution by the inverse transformation with low
error rates. This method solves the problem of the high storage
overheads and higher error rates in high dimensional spaces, since
it uses a large number of small-sized multi-dimensional histogram
buckets while compressing information from histogram buckets.
There are various considerations to estimate the multi-dimensional
selectivity by using DCT: coefficients sampling, data distribution,
DCT computation and maintenance, and selectivity computation.
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First, we consider the efficient sampling method to select low-
frequency coefficients that have large values. Second, we describe
what is the constraint of the data distribution to compress the
histogram information efficiently. Third, we explain how to
support dynamic data updates to reflect it to the statistics
immediately. Fourth, we describe how to simply calculate the
selectivity estimation.

4.1 Geometrical Zonal Sampling

The size of the histogram bucket should be maintained small
enough to get a low error rate in high dimensionality. The number
of DCT coefficients transformed, however, increases exponentially
as the dimensionality increases. If we choose appropriate
coefficients after all coefficients are computed, it causes a severe
computation overhead. Therefore, we must choose and compute
only the coefficients that are estimated to have large values. To
select the appropriate DCT coefficients, we use the 2-dimensional
geometric zonal sampling technique that is used frequently in the
area of digital signal processing [RY90, Lim90] and extend it to a
multi-dimensional technique. Only those transformed coefficients
within a specified zone are processed, with the remaining ones set
to zero. This selection corresponds to low frequency filtering.
There are several zonal sampling techniques: The triangular, the
reciprocal, the spherical, and the rectangular zonal sampling. Fig.1

0,1,2,3, N-1 0,1,2,3, ... ,N-1

‘€TT0
e 710

N

"N

(b) Reciprocal
0,1,2,3,.ccvenen ,N-1

(a) Triangular

‘€T10
e 710

I-N°
TN

(c) Spherical (d) Rectangular
Fig 1. Geometrical Zonal Sampling
in 2-dimensional case

(a)~(d) shows only 2-dimensional cases of 4 geometrical zonal
sampling methods for easy visualization. The triangular method is
to select the coefficients within the triangle in a 2-dimensional
case as shown in Fig.1(a). It selects DCT coefficients, g(u,,iu),
such that the sum of u, and u, is less than or equal to a given value
b, that is, uy+u,<b for u;=0,...,N\-1 and u,=0,..., N»-1. In a multi-
dimensional case, it selects DCT coefficients, g(u,...,u,), such
that z""ui <b for u; = 0,..., N-1. We know the number of DCT
i=1

coefficients by this sampling with lemma 1.

Lemma 1) The number of DCT coefficients selected by the
triangular zonal sampling is given by ,,+;,C,,,,-,,(,,,b) , if the condition



b<N; is satisfied.
Table 1 shows various values of n and b.

b=1 | b=2 | b=3 b=4 b=5 b=6
n=1| ,C=2 | sCi=3 | 4C1=4 | sCi=5 | Ci=6 | C\=7
1=2] 3C1=3 | 4C2=6 | sC=10| (C=15 | 1C=21 | 4C;=28
n=3| 4C1=4 | sC=10 | C3=20| ,C=35 | 5Cs=56 | +Cs=84
n=a4| sC1=5 | C=15 | 1C5=35 | sC,=70 | ¢C4=126 | 1sC+=210
71=5] 4C1=6 | 7C=21 | §C5=56 | 9C4=126 | 1oCs=252 | ;,Cs=462
n=6| 7C1=7 | sC=28 | 9Cs=84 | 10C,=210 | |;Cs=462 | ,C¢=924

Table 1. The number of DCT coefficients selected
by the triangular zonal sampling

The reciprocal method is to select the coefficients such that the
multiplication of indices is less than or equal to a given value b.

That is, the selection is made by the constraint ﬂ(u. +1)<b for
i=1

u;=0,..,N;-1. This method chooses more high-frequency values in

each dimension than the previous method. The spherical zonal

sampling method is to select the coefficients such that the sum of

the square of indices is less than or equal to a given value b, that

. n . . .
15,2 u,-2 <b for u; = 0,...,Ni-1. It chooses the coefficients within
=1

the area of a circle in the 2-dimensional case and a sphere in the 3-
dimensional case. The rectangular zonal sampling method chooses
the coefficients such that the maximum value of indices is less
than or equal to a given value b, that is, max(u,,u,,...,u,) < b for u;

= 0,...,N-1. It chooses the coefficients within the area of a
rectangle.

Table 2 shows the sampling ratio of each zonal sampling
methods. As the dimensionality increases, the number of
coefficients chosen by the triangular zonal sampling and the
reciprocal zonal sampling increases slowly, while the total number
of histogram buckets increases explosively. However, the number
of selected coefficients by the spherical and rectangular zonal
sampling method increases somewhat rapidly.

4.2 Data Distributions

In order to be able to compress a great number of histogram
buckets into a small amount of information with low estimation
error rates by using DCT, the data distribution should have certain
characteristics. The distribution should have high correlation
among data items. That is, the frequency spectrum of the
distribution should show large values in its low frequency
coefficients and small values in its high frequency coefficients
[AFS93]. If the data distribution does not follow the above
characteristics, that is, data are totally independent of adjacent
data, we cannot have the benefits of energy compaction and
cannot reduce the number of coefficients without distorting the
original data distribution. We believe that data in a real data
distribution are highly correlated. There are many cases that data
are correlated. It is natural for the joint data distribution of
multiple attributes from a relation to have clusters in most cases,
since the attributes are in general closely dependent each other
[PI97]. Actually in the areas like data mining, the techniques to
find such clusters are practically used for extracting useful
knowledge from a large volume of databases [GRS98, EKSWX98,
ZRI1.96, NH94]. The clustering effect can also be seen in
multimedia databases like images and in spatial databases
[EKSX96, SCZ98]. The large-sized shapes of a cluster correspond
to large-valued low frequency coefficients while small-sized
variations in it correspond to small-valued high frequency
coefficients. Therefore, the mean square error between the actual
data distribution and the distribution recovered by selected low
coefficients is usually small. Based on these observations, we can
reduce the number of multi-dimensional histogram buckets
remarkably. In general, as the skewness of data distributions grow
or the number of clusters increases, the number of large-valued
high frequency coefficients tends to increase. It means more
coefficients are needed to keep low error rates.

4.3 Dynamic Data Update

It is important to reflect dynamic data updates to the statistics for
estimating selectivity immediately in the environment where data
are frequently inserted or deleted. Except the MLGF method, most
of multi-dimensional selectivity estimation techniques, such as
MHIST, SVD, PHASED, and Hilbert numbering, cannot reflect
dynamic data updates into the histogram immediately. In other
words, when the number of data updates reaches a certain
threshold, the histogram should be reconstructed entirely. In

# of selected coefficients (% ratio to # total buckets)
. # of total Triangular Reciprocal Spherical Rectangular
dim N;
buckets b=6 b=14 b=22 b=3

2 50 2500 28(1.1%) 41(1.6%) 22(0.44%) 16(0.64%)
3 25 15625 84(0.54%) 86(0.56%) 87(0.56%) 64(0.41%)
4 15 50625 210(0.41%) 153(0.3%) 305(0.6%) 256(0.51%)
5 10 100000 462(0.46%) 226(0.23%) 973(0.97%) 1024(1%)
6 262114 924(0.35%) 333(0.13%) 2882(1.1%) 4096(1.6%)
7 7 823543 1716(0.21%) | 477(0.058%) | 8080(0.98%) 16384(2%)
8 1679616 | 3003(0.18%) | 601(0.036%) | 21772(1.3%) | 65536(3.9%)

Table 2. The ratio of the number of selected coefficients by the zonal sampling to the total number of uniform histogram buckets
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contrast, our proposed method can reflect dynamic data updates to
the statistics for estimating the selectivity with reasonable
overheads. This is enabled because DCT is a linear transform. Its
process is as follows: When data is newly inserted, the values of
its DCT coefficients are computed and added into existing DCT
coefficients. In case of deletion, the values of DCT coefficients of
the deleted data are computed and subtracted from existing DCT
coefficients. Therefore, we can immediately reflect data insertions
and deletions into the statistics for estimating the selectivity by
processing only the update data.

Example 1) We show an example for a 2-dimensional case. Let
[F], be the current uniform histogram buckets and [G], be the
current DCT coefficients of [F], . Let [F’], be some data updates

which represents that one data in (0,1) and two data in (1,2) are
deleted and two data in (2,0) are newly added. And let (G, be

DCT coefficients of [F"),. Let [F”], be the final uniform
histogram buckets and [G”], be final DCT coefficients of [F"],.
Then [F’]z =[F]2 +[F’.]2 and [G’]z =[G]2 +[G,]2‘

10 15 13 40333 —2858 5421
tF1,=|14 20 16| —2L 161, =| 2041 —0500 —0280
9 13 11 ~6835 0289 1167
0 -1 0 ~0333 1633 0471
FL=0 0 2| —PT 161, =|-1225 ~1.000 0.000
20 0 1179 0577 1333
10 14 13 40000 —1225 —4950
[F’]2= 14 20 14 —Iﬁ)[G’]2= 0.816 -1.500 -0.289
TIRERR 5657 —0.866 2.500

4.4 Selectivity Estimation of Range Queries
There are two kinds of methods to compute the selectivity of a
range query. The first method finds all histogram buckets within
the query range using the inverse DCT, and then computes the
selectivity as the histogram method does. It assumes the uniform
data distribution within a bucket like the existing histogram
methods. The second method computes the selectivity using the
integral of the inverse DCT function since the function is a
continuous cosine function. The former method needs the inverse
DCT computation for each bucket information while the latter
simply computes the selectivity without the computation for each
bucket information count since it computes the integral of the
inverse DCT function only for the interval of the query range.
Since the inverse DCT function naturally supports the continuous
interpolation between contiguous histogram buckets, the second
method provides accurate results. The following is the expression
of the integral to estimate the selectivity of a range query.

First, we show the 2 dimensional case and generalize it to the
k-dimensional case. Let ¢, be a 2-dimensional query. The range of
g is a<x<b, ¢<y<d, which is represented as (a~b, c~d). We

assume the data space is normalized as (0,1)". The x coordinate is
divided into N partitions and y coordinate is divided into M
partitions. Then #’th positions of x,y (x; and y;) are as follows:
2t 2t
TN T 2M
Then we can rewrite the inverse DCT function f{m,n) in section
3.1 as follows:

2 M-1 2vN—1
fy)=|—k, 1/—2k,g(u,v)cos(xv7r) cos(yur)
M u=0 Nv=0

Selectivity of a query ¢, = I ¢ Jb £(x, y)dxdy

_ 2 M-t 2 N-}
_J:"L” /Hz‘ku{ ﬁzkvg(u,v)cos(xvn’)}cos(yun’)dxdy
v=()

u=0

_ed 2 M-l 2 N-}
_J; ’-M_Zk"{fngvg(u,v)cos(xwr)dx}cos(yuir)dy
u=0

v=0

=~ I%\/%Zg(u_v)ezkukvg(u,v)fcos(uny)dyfcos(vm)dx

where Z is the set of selected coefficients from zonal sampling

Now, we generalize the above integral to the k-dimensional
case. Let g, be a k-dimensional range query. The range of the
query g is a; < x; < b; for 1 £ i < k, which is represented as
(a;~by,....ar~by). The x; coordinate is devided into N; partitions.
Then the selectivity is expressed as formula (1), (2).

Y

5. EXPERIMENTAL EVALUATION
In order to measure the accuracy of the proposed method in
estimating the result sizes of queries, we conducted
comprehensive experiments over an environment containing
various synthetic data distributions and various queries. All data
are generated in the normalized data space (0,1)". We were not
able to make detailed comparisons with the previous
resultsf WKW94, PI97] because the existing methods showed high
errors in high dimensions beyond 3 dimension. For exarnple,
MHIST shows somewhat high errors in the 3-dimension
(20~30%) and the 4-dimension (30~40%), and the MLGF method
cannot be used in dimensions higher than three.

Synthetic data are generated with S0K records which ranged
from 2 to 10 dimensions. We generated data with various
distributions:

1. Normal distribution : The data points follow N(0,6%) where
o = 0.4 for 2~4 dimensions, ¢ = 1.0 for 5~10 dimensions.

2. Zipf distribution: The data points follow the Zipf
distribution where z = 0.3 for 2~5 dimensions, z = 0.2 for
6~10 dimensions. The Zipf distribution is defined as
follows:




wherei=1,2,......N

3. Clustered distribution: 5~15 normal distributions are

overlapped in a data distribution.

DCT coefficients are calculated as follows: A multi-
dimensional space is partitioned into a large number of uniform
histogram buckets such that the number of partitions in each
dimension is the same as those of others. The total number of
buckets is in proportion to the dimension’th power of the number
of partitions in one dimension. In low dimensions, if the total
number of buckets is not quite large, we read data sequentially and
count the number of data in each bucket and store them in the
array of main memory. Then we calculate only DCT coefficients
that are selected by the zonal sampling using DCT. In high
dimensions, since the number of buckets is very large, we cannot
afford the memory space for counting the number of data in all
buckets. So, we used an X-tree[BKK96] to get groups of data that
are close to each other by accessing nodes of the X-tree. This
enables to get the number of data in a small group of buckets at a
time for calculating DCT coefficients.

The selectivity estimation method proposed in this paper is
evaluated for range queries of the form (a\<X$h)&...&
(a,<X,<b,), where 0<a;b<1. Four sets of 30 queries were made
such that each set represents a different range of selectivity:
large(=0.3), medium(=0.067), small(=0.0067), very small
(=0.0013). There are two query models for the probability
distribution of queries [PSTW93, BF95]: the random model, the
biased model. The random model assumes that queries are
uniformly distributed in the data space. That is, every part of data
space is equally likely to be queried. The biased model assumes
that queries are more highly distributed in high-density regions.
That is, each data is equally likely to be queried. Most applications
follow the latter model. For example, in GIS applications, users
are not likely to query the area of a dessert but are likely to query
populated areas like a city. In image database applications, most of
users may browse the images from a database and pick up the
most similar image that they want from the browsed images and
search images similar to it. This means that queries are located
more frequently in dense area in the data space. So, we adopt the
biased model as a query model in these experiments. For each
query, we generated 30 biased queries. The query results are
compared with the estimations using the proposed method in this
paper. A percentage error is used for the accuracy of an estimation
result:

lquery result size - estimated result sizel

Percentage error = x 100 %

query result size

5.1 Storage Requirements and Selectivity

Estimation Time
The proposed method requires the storage of the statistics for
estimating the selectivity. The amount of the storage for the
method is proportional to the number of DCT coefficients selected
by zonal sampling. We convert the multi-dimensional indices of a
DCT coefficient to an one-dimensional value and vice versa.
Therefore, one DCT coefficient needs 4 bytes for storing its value
and 4 bytes for storing its index. 8 bytes are required for storing
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one DCT coefficient. If one use 100 DCT coefficients for
estimating the selectivity, 800 bytes and some book keeping bytes
are required.

From the selectivity calculation formula (2), we can estimate
the the selectivity computation time as follows: If k is the
dimension and ¢ is the time to compute the sine function, the time
to compute the selectivity is given by 2*k*a*(the number of
selected DCT coefficients). Table 3 shows the typical selectivity
estimation time. In Sun Ultra II, o is measured as about 1 | sec.

dimension|# DCT= 50f# DCT = 100{ # DCT = 200
3 300 pusec | 600psec | 1.2m sec
6 600 1sec | 1.2msec 2.4 m sec
9 900 psec | 1.8 msec 3.6 msec

Table 3. The selectivity computation time in Sun Ultra II

It follows that the proposed method is efficient for time and
space.

5.2 Effect of Zonal Sampling

The zonal sampling selects low frequency coefficients. That is, it
acts as a low frequency filter. Its effectiveness can be measured by
the mean square error. But this requires all values of uniform
histogram buckets by the inverse DCT, which is a very time
consuming job. So, instead we measure the effectiveness of the
zonal sampling by percentage errors of queries. We make 30
queries for each test and averaged their results. The efficiency of
the zonal sampling is affected by distributions. We made
experiments for 3 different distributions in the 6-dimension: (1)
Normal distribution (2) Zipf distribution (3) Clustered 15
distribution (that has 15 clusters). We apply the three zonal
sampling methods to these data. We drop the rectangular zonal
sampling in the 6-dimension because the number of selected DCT
coefficients by rectangular zonal sampling increases very rapidly
with a small b value as indicated in Table 2. The results are shown
in Fig. 2~4. The results show that the reciprocal zonal sampling is
the best for all distributions. The triangular zonal sampling
method is the second. The spherical zonal sampling showed the
worst performance. However, there are some threshold after which
there is no difference between three zonal methods. Therefore,
when we use a few DCT coefficients, the reciprocal zonal
sampling is the best.

5.3 Effect of Dimension and Query Size

In Fig. 5~7, we show the results of various query sizes in various
dimensions. Query sizes are large, medium, small, very small. The
dimensions are varied as 2, 4, 6, 8, 10. The data distribution is the
clustered 15 distribution. We use the reciprocal zonal sampling
method as section 5.2 shows that the reciprocal zonal sampling is
the best. Fig. 5 shows the results for using only 100 DCT
coefficients. Fig. 6 for 500 DCT coefficients and Fig. 7 for 2000
DCT coefficients. As the dimension increases, the error rates
increase slightly, but the average error of queries is below 10 %.
This results show that the method in this paper can be used for
high dimensional data spaces. As the query size is decreased, the
error rates increase. This is a natural result because the percentage
error is magnified by the slight difference between an estimation
size and a query result size when the query result is small.

5.4 Effect of Data Distributions

The data distribution has impacts on the error rates for estimating



the selectivity. Fig. 8~10 shows the results for various
distributions. The Zipf is a skewed distribution. As the dimension
increase, the skewness of the Zipf also increase exponentially.
Therefore, the error rates increase. However, as expected, we
verified the fact that the more we use DCT coefficients, the more
accurate  the results are. The error rates of the normal and the
clustered 5 distributions increase very slightly. This means that the
skewness of the normal and the clustered distribution increases
very slightly as the dimension increases. In addition, since the
clustered distribution is the most common phenomenon in many
applications, the proposed method can be widely used in real
world.

5.5 Effect of Data Space Partition

A multi-dimensional space is partitioned into a large number of
uniform histogram buckets. The number of DCT coefficients is the
same as that of the histogram buckets. But 2000 DCT coefficients
that are selected by the triangular zonal sampling are computed
and sorted. To show the effects of the number of partitioned
buckets, we partition a multi-dimensional space into several
different ways. The p in Fig. 11~14 means the number of
partitions in one dimension. We find the average result size of 30
medium-size queries and estimate the size of the queries with only
the indicated number of DCT coefficients in the X-coordinate
(numDCT) in Fig. 11~14. Then we calculate percentage errors. We
found some interesting facts. As the mumber of partitions (p)
increases, the accuracy also increase. The more DCT coefficients

we use for estimating the selectivity, the more accurate the result is.

There is some threshold after which the accuracy is not changed.
In 3 dimensional case, if p=15, the threshold of the number of
DCT coefficients is 30 with less than 1% error. That is, it is
sufficient to have 30 DCT coefficients for estimating the
selectivity with low error rates.

6. CONCLUSION

In this paper, we proposed a novel approach for estimating the
multi-dimensional selectivity. The histogram is not adequate in
high dimensions because the desired high accuracy requires small-
sized histogram buckets, however we have a tremendous storage
overhead as the dimension increases. To solve this problem, we
used the discrete cosine transform which is an information

compression technique in order to compress the information of a

large number of histogram buckets. We achieved the high accuracy

by using small-sized buckets, and also low storage overhead by a

small amount of compressed information. Extensive experiments

showed the proposed method is superior to the previous ones with
the following advantages:

(1) The previous methods could not support multi-dimensional
selectivity estimation, particularly, more than three dimensions.
But our method supports high dimensional selectivity
estimation with high accuracy.

(2) Our method eliminates the periodical reconstruction of the
statistics for estimating the selectivity because it can reflect
dynamic data updates to the statistics immediately.

(3) Our method simply calculates the selectivity using the integral
of cosine functions. It also calculates the estimation accurately
because it naturally supports the interpolation between the
adjacent buckets.

For the future research, we plan to investigate the selectivity
estimation of the nearest neighbor query.
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