Self-tuning Histog

Ashraf Aboulnaga®
Computer Sciences Department
University of Wisconsin - Madison

ashraf@cs.wisc.edu

Abstract

In this paper, we introduce self-tuning histograms. Although
similar in structure to traditional histograms, these histograms
infer data distributions not by examining the data or a sample
thereof, but by using feedback from the query execution engine
about the actual selectivity of range selection operators to
progressively refine the histogram. Since the cost of building and
maintaining self-tuning histograms is independent of the data size,
self-tuning histograms provide a remarkably inexpensive way to
construct histograms for large data sets with little up-front costs.
Self-tuning histograms are particularly attractive as an alternative
to multi-dimensional traditional histograms that capture
dependencies between attributes but are prohibitively expensive to
build and maintain. In this paper, we describe the techniques for
initializing and refining self-tuning histograms. Our experimental
results show that self-tuning histograms provide a low-cost
alternative to traditional multi-dimensional histograms with little
loss of accuracy for data distributions with low to moderate skew.

1. Introduction

Database systems require knowledge of the distribution of the
data they store. This information is primarily used by query
optimizers to estimate the selectivities of the operations involved
in a query and choose the query execution plan. It could also be
used for other purposes such as approximate query processing,
load balancing in parallel database systems, and guiding the
process of sampling from a relation. Histograms are widely used
for capturing data distributions. They are used in most
commercial database systems such as Microsoft SQL Server,
Oracle, Informix, and DB2.

While histograms impose very little cost at query optimization
time, the cost of building them and maintaining or rebuilding
them when the data is modified has to be considered when we
choose the attributes or attribute combinations for which we build
histograms. Building a histogram involves scanning or sampling
the data, and sorting the data and partitioning it into buckets, or
finding quantiles. For large databases, the cost is significant
enough to prevent us from building all the histograms that we

* Work done while the author was at Microsoft Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the {ull citation on the first page. T(T copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

181

rams: Building Histograms Without
Looking at Data

Surajit Chaudhuri
Microsoft Research
surajitc@microsoft.com

believe are useful. This problem is particularly striking for multi-
dimensional histograms that capture joint distributions of
correlated attributes [MD88, PI97]. These histograms can be
extremely useful for optimizing decision-support queries since
they provide valuable information that helps in estimating the
selectivities of multi-attribute predicates on correlated attributes.
Despite their potential, to the best of our knowledge, no
commercial database system supports multi-dimensional
histograms. The usual alternative to multi-dimensional histograms
is to assume that the attributes are independent, which enables
using a combination of one-dimensional histograms. This
approach is efficient but also very inaccurate. The inaccuracy
results in a poor choice of execution plans by the query optimizer.
Self-tuning Histograms
In this paper, we explore a novel approach that helps reduce the
cost of building and maintaining histograms for large tables. Our
approach is to build histograms not by examining the data but by
using feedback information about the execution of the queries on
the database (query workload). We start with an initial histogram
built with whatever information we have about the distribution of
the histogram attribute(s). For example, we will construct an
initial two-dimensional histogram from two existing one-
dimensional histograms assuming independence of the attributes.
As queries are issued on the database, the query optimizer uses
the histogram to estimate selectivities in the process of choosing
query execution plans. Whenever a plan is executed, the query
execution engine can count the number of tuples produced by
each operator. Qur approach is to use this “free” feedback
information to refine the histogram. Whenever a query uses the
histogram, we compare the estimated selectivity to the actual
selectivity and refine the histogram based on the selectivity
estimation error. This incremental refinement progressively
reduces estimation errors and leads to a histogram that is accurate
for similar workloads. We call histograms built using this process
self-tuning histograms or ST-histograms for short. This work was
done in the broader context of the AutoAdmin project at
Microsoft Research (http://research.microsoft.com/db/Autoadmin)
that investigates techniques to make databases self-tuning.
ST-histograms make it possible to build higher dimensional
histograms incrementally with little overhead, thus providing
commercial systems with a low-cost approach to creating and
maintaining such histograms. The ST-histograms have a low up-
front cost because they are initialized without looking at the data.
The refinement of ST-histograms is a simple low-cost procedure
that leverages “free” information from the execution engine.
Furthermore, we demonstrate that histogram refinement converges
quickly. Thus, the overall cost of ST-histograms is much lower
than that of traditional multi-dimensional histograms, yet the loss
of accuracy is very acceptable for data with low to moderate skew
in the joint distribution of the attributes.

ST-histogram

Optimize

On-line Refinement

Result)

Result Size
of Selection

Execute

: _| Refine

Later 3
- —- - ..;.._8 Workload Log

Off-line Refinement 5

Figure 1: On-line and off-line refinement of ST-histograms

A ST-histogram can be refined on-line or off-line (Figure 1).
In the on-line mode, the module executing a range selection
immediately updates the histogram. In the off-line mode, the
execution module writes every selection range and its result size
to a workload log. Tools available with commercial database
systems, e.g., Profiler in Microsoft SQL Server, can accomplish
such logging. The workload log is used to refine the histogram in
a batch at a later time. On-line refinement ensures that the
histogram reflects the most up-to-date feedback information but it
imposes more overhead during query execution than off-line
refinement and can also cause the histogram to become a high-
contention hot spot. The overhead imposed by histogram
refinement, whether on-line or off-line, can easily be tailored. In
particular, the histogram need not be refined in response to every
single selection that uses it. We can choose to refine the
histogram only for selections with a high selectivity estimation
error. We can also skip refining the histogram during periods of
high load or when there is contention for accessing it.

On-line refinement of ST-histograms brings a ST-histogram
closer to the actual data distribution, whether the estimation error
driving this refinen.ent is due to the initial inaccuracy of the
histogram or to modifications in the underlying relation. Thus,
ST-histograms automatically adapt to database updates. Another
advantage of ST-histograms is that their accuracy depends on how
often they are used. The more a ST-histogram is used, the more it
is refined, the more accurate it becomes.

Applications of Self-tuning Histograms

One can expect traditional histograms built by looking at the data
to be more accurate than ST-histograms that “learn” the
distribution without ever looking at the data. Nevertheless, ST-
histograms, and especially multi-dimensional ST-histograms, are
suitable for a wide range of applications.

As mentioned abcve, multi-dimensional ST-histograms are
particularly attractive. Traditional multi-dimensional histograms,
most notably MHIST-p histograms [PI97], are significantly more
expensive than traditional one-dimensional histograms, increasing
the value of the savings in cost offered by ST-histograms.
Furthermore, ST-histograms are very competitive in terms of
accuracy with MHIST-p histograms for data distributions with
low to moderate skew (Section 5). Multi-dimensional ST-
histograms can be initialized using traditional one-dimensional
histograms and subsequently refined to provide a cheap and
efficient way of capturing the joint distribution of multiple
attributes. The other inexpensive alternative of assuming
independence has been repeatedly demonstrated to be inaccurate

182

(see, for example, {PI97] and our experiments in Section 5).
Furthermore, note that building traditional histograms is an off-
line process, meaning that histograms cannot be used until the
system incurs the whole cost of completely building them. This is
not true of ST-histograms. Finally, note that ST-histograms make
it possible to inexpensively build not only two-dimensional, but
also n-dimensional histograms.

ST-histograms are also a suitable alternative when there is not
enough time for updating database statistics to allow building all
the desired histograms in the traditional way. This may happen in
data warchouses that are updated periodically with huge amounts
of data. The sheer data size may prohibit rebuilding all the
desired histograms during the batch window. This very same data
size makes ST-histograms an attractive option, because examining
the workload to build histograms will be cheaper than examining
the data and can be tailored to a given time budget.

The technique of ST-histograms can be an integral part of
database servers as we move towards self-tuning database
systems. If a self-tuning database system decides that a histogram
on some attribute or attribute combination may improve
performance, it can start by building a ST-histogram. The low cost
of ST-histograms allows the system to experiment more
extensively and try out more histograms than if traditional
histograms were the only choice. Subsequently, one can construct
a traditional histogram only if the ST-histogram does not provide
the required accuracy.

Finally, an intriguing possible application of ST-histograms
will be for applications that involve queries on remote data
sources. With recent trends in database usage, query optimizers
will have to optimize queries involving remote data sources not
under their direct control, e.g., queries involving data sources
accessed over the Internet. Accessing the data and building
traditional histograms for such data sources may not be easy or
even possible. Query results, on the other hand, are available from
the remote source, making the technique of ST-histograms an
attractive option.

The rest of this paper is organized as follows. In Section 2 we
present an overview of the related work. Section 3 describes one-
dimensional ST-histograms and introduces the basic concepts that
lead towards Section 4 where we describe multi-dimensional ST-
histograms. Section 5 presents an experimental evaluation of our
proposed techniques. Section 6 contains concluding remarks.

2. Related Work

Histograms were introduced in [Koo80], and most commercial
database systems now use histograms for selectivity estimation.

Although one-dimensional equi-depth histograms are used in
most commercial systems, more accurate histograms have been
proposed recently [PIHS96]. [PI97] extends the techniques in
[PIHS96] to multiple dimensions. However, we are unaware of
any commercial systems that use the MHIST-p technique
proposed in [PI97]. A novel approach for building histograms
based on wavelets is presented in [MVW98].

A major disadvantage of histograms is the cost of building
and maintaining them. Some recent work has addressed this
shortcoming. [MRL98] proposes a one-pass algorithm for
computing approximate quantiles that could be used to build
approximate equi-depth histograms in one pass over the data.
Reducing the cost of maintaining equi-depth and compressed
histograms is the focus of [GMP97]. Recall that our approach is
not to examine the data at all, but to build histograms using
feedback from the query execution engine. However, our
technique for refining ST-histograms shares commonalities with
the split and merge algorithm proposed in [GMP97). This
relationship is further discussed in Section 3.

In addition to histograms, another technique for selectivity
estimation is sampling the data at query optimization time
[LNS90]. The main disadvantage of this approach is the overhead
it adds to query optimization.

The concept of using feedback from the query execution
engine to estimate data distributions is introduced in [CR94]. In
this paper, the data distribution is represented as a linear
combination of “model functions”. Feedback information is used
to adjust the weighting coefficients of this linear combination by a
method called recursive-least-square-error. This paper only
considers one-dimensional distributions. It remains an open
problem whether one can find suitable multi-dimensional model
functions, or whether the recursive least-square-error technique
would work well for multi-dimensional distributions. In contrast,
we show how our technique can be used to construct multi-
dimensional histograms as well as one-dimensional histograms.
Furthermore, our work is easily integrated into existing systems
because we use the same histogram data structures that are
currently supported in commercial systems.

A different type of feedback from the execution engine to the
optimizer is proposed in [KD98]. In this paper, the execution
engine invokes the query optimizer to re-optimize a query if it
believes, based on statistics collected during execution, that this
will result in a better query execution plan.

3. One-dimensional ST-histograms

Although the main focus of our paper is to demonstrate that ST-
histograms are low cost alternatives to traditional multi-
dimensional histograms, the fundamentals of ST-histograms are
best introduced using ST-histograms for single attributes. Single-
attribute ST-histograms are similar in structure to traditional
histograms. Such a ST-histogram consists of a set of buckets.
Each bucket, b, stores the range that it represents, [low(d),
high(b)], and the number of tuples in this range, or the frequency,
Sfreq(d). Adjacent buckets share the bucket endpoints, and the
ranges of all the buckets together cover the entire range of values
of the histogram attribute. We assume that the refinement of ST-
histograms is driven by feedback from range selection queries.

A ST-histogram assumes that the data is uniformly distributed
until the feedback observation contradicts the uniformity
assumption. Thus, the refinement/restructuring of ST-histograms
corresponds to weakening the uniformity assumption as needed in
response to feedback information. Therefore, the lifecycle of a
ST-histogram consists of two stages. First, it is initialized and

183

then, it is refined. The process of refinement can be broken down
further into two parts: (a) refining individual bucket frequencies,
and (b) restructuring the histogram, i.e., moving the bucket
boundaries. The refinement process is driven by a query
workload (see Section 1). The bucket frequencies are updated
with every range selection on the histogram attribute, while the
bucket boundaries are updated by periodically restructuring the
histogram. We describe each of these steps in the rest of the
section,

3.1 Inmitial Histogram

To build a ST-histogram, %, on an attribute, a, we need to know
the required number of histogram buckets, B, the number of tuples
in the relation, 7, and the minimum and maximum values of
attribute a, min and max. The B buckets of the initial histogram
are cvenly spaced between min and max. At the time of
initializing the histogram structure, we have no feedback
information. Therefore, we make the uniformity assumption and
assign each of the buckets a frequency of 7/B tuples (with some
provision for rounding)

The parameter T can be looked up from system catalogs
maintained for the database. However, the system may not store
minimum and maximum values of attributes in its catalogs. The
precise value of the minimum and maximum is not critical.
Therefore, the initialization phase of ST-histograms can exploit
additional sources to project an estimate that may subsequently be
refined. For example, domain constraints on the column, as well
as the minimum and maximum values referenced in the query
workload can be used for such estimation.

3.2 Refining Bucket Frequencies

The bucket frequencies of a ST-histogram are refined (updated)
with feedback information from the queries of the workload. For
every sclection on the histogram attribute, we compute the
absolute estimation error, which is the difference between the
estimated and actual result sizes. Based on this error, we refine
the frequencies of the buckets that were used in estimation.

The key problem is to decide how to distribute the “blame”
for the error among the histogram buckets that overlap the range
of a given query. In a ST-histogram, error in estimation may be
due to incorrect frequencies in any of the buckets that overlap the
selection range. This is different from traditional histograms in
which, if the histogram has been built using a full scan of data and
has not been degraded in accuracy by database updates, the
estimation error can result only from the first or last bucket, and
only if they partially overlap the selection range. Buckets that are
totally contained in the selection range do not contribute to the
error.

The change in frequency of any bucket should depend on how
much it contributes to the error. We use the heuristic that buckets
with higher frequencies contribute more to the estimation error
than buckets with lower frequencies. Specifically, we assign the
“blame” for the error to the buckets used for estimation in
proportion to their current frequencies. An alternative heuristic,
not studied in this paper, is to assign the blame in proportion to
the current ranges of the buckets.

Finally, we multiply the estimation error by a damping factor
between 0 and 1 to make sure that bucket frequencies are not
modified too much in response to errors, as this may lead to over-
sensitive or unstable histograms.

Figure 2 presents the algorithm for updating the bucket
frequencies of a ST-histogram, 4, in response to a range selection,
[rangelow,rangehigh], with actual result size act. This algorithm

algorithm UpdateFreq

Inputs: h, rangelow, rangehigh, act

Outputs: h with updated bucket frequencies

begin

1 Get the set of k buckets overlapping the selection range, {bl,bz,, . ,,bk};

2 est= Estimated result size of selection using histogram A;

3 esterr=act—est; /* Compute the absolute estimation error. */
4 /* Distribute the error among the buckets in proportion to frequency. */
5 fori=1tokdo

6 frac = min(rangehigh, high(b,)) — max(rangelow,low(b,)) +1 .

high(b,) — low(b,) +1

7 Jreq(b,) = max (freq(b,) + o * esterr * frac * freq(b,) / est, 0);
8 endfor
end UpdateFreq

Figure 2: Algorithm for updating bucket frequencies in one-dimensional ST-histograms

is used for both on-line and off-line refinement. The algorithm
first determines the histogram buckets that overlap the selection
range, whether they partially overlap the range or are totally
contained in it, and the estimated result size. The query optimizer
usually obtains this information during query optimization, so we
can save some effort by retaining this information for
subsequently refining bucket frequencies.

Next, the algorithm computes the absolute estimation error,
denoted by esterr (line 3 in Figure 2). The error formula
distinguishes between overestimation, indicated by a negative
error and requiring the bucket frequencies to be lowered, and
underestimation, indicated by a positive error and requiring the
bucket frequencies to be raised. As mentioned earlier, the blame
for this error is assigned to histogram buckets in proportion to the
frequencies that they contribute to the result size. We assume that
each bucket contains all possible values in the range that it
represents, and we approximate all frequencies in a bucket by
their average (i.e., we make the continuous values and uniform
frequencies assumptions [PIHS96]). Under these assumptions,
the contribution of a histogram bucket to the result size is equal to
its frequency times the fraction of the bucket overlapping the
selection range. This fraction is the length of the interval where
the bucket overlaps the selection range divided by the length of
the interval represented by the bucket (line 6). To distribute the
error among buckets in proportion to frequency, each bucket is
assigned a portion of the absolute estimation error, esterr, equal to
its contribution to the result size, frac* freq(b,) divided by the

total result size, est, damped by a damping factor, o« (line 7). We
experimentally demonstrate in Section 5 that the refinement
process is robust across a wide range of values for «, and we
recommend using values of « in the range 0.5 to 1.

3.3 Restructuring

Refining bucket frequencies is not enough to get an accurate
histogram. The frequencics in a bucket are approximated by their
average. If there is a large variation in frequency within a bucket,
the average frequency is a poor approximation of the individual
frequencies, no matter how accurate it is. Specifically, high
frequency values will be contained in high frequency buckets, but
they may be grouped with low frequency values in these buckets.
Thus, in addition to refining the bucket frequencies, we must also
restructure the buckets, i.e., move the bucket boundaries to get a
better partitioning that avoids grouping high frequency and low

184

frequency values in the same buckets. Ideally, we would like to
make high frequency buckets as narrow as possible. In the limit,
this approach separates out high frequency values in singleton
buckets of their own, a common objective for histograms (e.g., see
[PIHS96]). Therefore, we choose buckets that currently have
high frequency and split them into several buckets. Splitting
induces the separation of high frequency and low frequency
values into different buckets, and the frequency refinement
process later adjusts the frequencies of these new buckets. In
order to ensure that the number of buckets assigned to the ST-
histogram does not increase due to splitting, we need a
mechanism to reclaim buckets as well. To that end, we use a step
of merging that groups a run of consecutive buckets with similar
frequencies into one bucket. Thus, our approach is to restruciure
the histogram periodically by merging buckets and using the
buckets thus freed to split high frequency buckets. Restructuring
may be triggered using a variety of heuristics. In this paper, we
study the simplest scheme where the restructuring process is
invoked after every R selections that use the histogram. The
parameter R is called the restructuring interval.

To merge buckets with similar frequencies, we first have to
decide how to quantify “similar frequencies”. We assume that
two bucket frequencies are similar if the difference between them
is less than m percent of the number of tuples in the relation, T.
m is a parameter that we call the merge threshold. In most of our
experiments, m<1% was a suitable choice. We use a grezdy
strategy to form a run of adjacent buckets with similar frequencies
and collapse them into a single bucket. We repeat this step until
no further merging is possible that satisfies the merge threshold
condition (Steps 2—9 in Figure 3).

We also need to decide which “high frequency” buckets to
split. We choose to split the s percent of the buckets with the
highest frequencies. s is a parameter that we call the split
threshold. In our experiments, we used s=10%. Qur heuristic
distributes the reclaimed buckets among the high frequency
buckets in proportion to frequency. The higher the frequency of a
bucket, the more extra buckets it gets.

Figure 3 presents the algorithm for restructuring a ST-
histogram, 4, of B buckets on a relation with 7 tuples. The first
step in histogram restructuring is greedily finding runs of
consecutive buckets with similar frequencies to merge. The
algorithm repeatedly finds the pair of adjacent runs of buckets
such that the maximum difference in frequency between a bucket
in the first run and a bucket in the second run is the minimum

algorithm RestructureHist
Inputs: A

Outputs: restructured A
begin

first run and a bucket in the second run;
if mindiff < m * T then

Look for other runs to merge. Goto line 3;
endif

O 00NN W DB WN—-

10
11
12
13

14
15
16
17
18
19
20
21
22 bucket is equally distributed among them,;
end RestructureHist

k=s=*B;

merged with other buckets in the merging step;

/* Find buckets with similar frequencies to merge. */
Initialize B runs of buckets such that each run contains one histogram bucket;
For every two consecutive runs of buckets, find the maximum difference in frequency between a bucket in the

Find the minimum of all these maximum differences, mindiff;

Merge the two runs of buckets corresponding to mindiff into one run;

/* Assign the extra buckets freed by merging to the high frequency buckets. */

Find the set, {p,5,,...,b, } of buckets with the & highest frequencies that were not chosen to be

Assign the buckets freed by merging to the buckets of this set in proportion to their frequencies;

/* Construct the restructured histogram by merging and splitting. */

Merge each previously formed run of buckets into one bucket spanning the range represented by all the buckets
in the run and having a frequency equal to the sum of their frequencies;

Split the k buckets chosen for splitting, giving each one the number of extra buckets assigned to it earlier.
The new buckets are evenly spaced in the range spanned by the old bucket and the frequency of the old

Figure 3: Algorithm for restructuring one-dimensional ST-histograms

over all pairs of adjacent runs. The two runs are merged into one
if this difference is less than the threshold m#T, and we stop
looking for runs to merge if it is not. This process results in a
number of runs of several consecutive buckets. Each run is
replaced with one bucket spanning its entire range, and with a
frequency equal to the total frequency of all the buckets in the run.
This frees a number of buckets to allocate to high frequency
buckets during splitting.

Splitting starts by identifying the s percent of the buckets that
have the highest frequencies and are not singleton buckets. We
avoid splitting buckets that have been chosen for merging since
their selection indicates that they have similar frequencies to their
neighbors. The extra buckets freed by merging are distributed
among the buckets being split in proportion to their frequencies.
A bucket being split, b,, gets freq(b,) / totalfreq of the extra

buckets, where totalfreq is the total frequency of the buckets
being split. To split a bucket, it is replaced with itself plus the
extra buckets assigned to it. These new buckets evenly divide the
range of the old bucket, and the frequency of the old bucket is
evenly distributed among them.

Splitting and merging are used in [GMP97] to redistribute
histogram buckets in the context of maintaining approximate equi-
depth and compressed histograms. The algorithm in [GMP97]
merges pairs of buckets whose total frequency is less than a
threshold, whereas our algorithm merges runs of buckets based on
the differences in their frequency. Our algorithm assigns the freed
buckets to the buckets being split in proportion to the frequencies
of the latter, whereas the algorithm in [GMP97] merges only one
pair of buckets at a time and can, thus, split only one bucket into
two. A key difference between the two approaches is that in
[GMP97], a sample of the tuples of the relation is continuously

185

maintained (the “backing sample™), and buckets are split at their
approximate medians computed from this sample. On the other
hand, our approach does not examine the data at any point, so we
do not have information similar to that represented in the backing
sample of [GMP97]. Hence, our restructuring algorithm splits
buckets at evenly spaced intervals, without using any information
about the data distribution within a bucket.

Figure 4 gives an example of histogram restructuring. In this
example, the merge threshold is such that algorithm
RestructureHist merges buckets if the difference between their
frequencies is within 3. The algorithm identifies two runs of
buckets to be merged, buckets 1 and 2, and buckets 4 to 6.
Merging these runs frees three buckets to assign to high frequency
buckets. The split threshold is such that we split the two buckets
with the highest frequencies, buckets 8 and 10. Assigning the
extra buckets to these two buckets in proportion to frequency
means that bucket 8 gets two extra buckets and bucket 10 gets one
extra bucket.

Splitting may unnecessarily separate values with similar, low
frequencies into different buckets. Such runs of buckets with
similar low frequencies would be merged during subsequent
restructuring. Notice that splitting distorts the frequency of a
bucket by distributing it among the new buckets. This means that
the histogram may lose some of its accuracy by restructuring.
This accuracy is restored when the bucket frequencies are refined
through subsequent feedback.

In summary, our model is as follows: The frequency
refinement process is applied to the histogram, and the refined
frequency information is periodically used to restructure the
histogram. Restructuring may reduce accuracy by distributing
frequencies among buckets during splitting but frequency
refinement restores, and hopefully increases, histogram accuracy.

R 3 extra buckets
Merge: m*T=3 g 70 30
Split: s*B = 2 0430 70430
Merge —> 1 exira bucket Merge — 2 exira buckets Split Split
Frequencies I 10 I 13 | 17 n 14 I 13 | 11 [25 | 70 A 10 I 30 l
Buckets 1 2 3 4 5 6 7 8 9 10
Frequencies 23 7y 38 | 25 4232324 10 15,15,
Buckets 1 2 3 4 56 17 8 9 10
Figure 4: Example of histogram restructuring

4. Multi-dimensional ST-histograms Scales autribute 1 _
In this section, we present multi-dimensional (i.e., multi-attribute) 1 2 3 4 5 Frequency matrix
ST-histograms. Our goal is to build histograms representing the [1,5] j[6,10]]{11,15])(16,20][f21,25]
joint distribution of multiple attributes of a single relation. These attribute 2
histograms will be used to estimate the result size of conjunctive IRRG M 3 23 12 T 26
range selections on these attributes, and are refined based on 2 “’ 20 11 %0 12 2 9
feedback from these selections. Using accurate one-dimensional 3 21:30] 65 | 370 28 1 44 26
histograms for all the attributes is not enough, because they do not 4[31,40 10 T ~Range selection
reflect the correlation between attributes. In this section, we 5[[41,50] 14 9 7 19 | 11 using histogram
discuss the special considerations for multi-dimensional
histograms. Figure 5: A 2d ST-histogram and a range selection using it

Working in multiple dimensions raises the issue of how to
partition the multi-dimensional space into histogram buckets. The
effectiveness of ST-histograms stems from their ability to pinpoint
the buckets contributing to the estimation error and “learn” the
data distribution. The partitioning we choose must efficiently
support this learning process. It must also be a partitioning that is
easy to construct and maintain, because we want the cost of ST-
histograms to remain as low as possible. To achieve these
objectives, we use a grid partitioning of the multi-dimensional
space. Each dimension of the space is partitioned into a number
of partitions. The partitions of a dimension may vary in size, but
the partitioning of the space is always fully described by the
partitioning of the dimensions.

We choose a grid partitioning due to its simplicity and low
cost, even though it does not offer as much flexibility in grouping
values into buckets as other partitionings such as, for example, the
MHIST-p histogram partitioning [PI97]. The simplicity of a grid
partitioning allows our histograms to have more buckets for a
given amount of memory. It is easier for ST-histograms to infer
the data distribution from feedback information when working
with a simple high-resolution representation of the distribution
than it is when working with a complex low-resolution
representation. Furthermore, we doubt that the simple feedback
information used for refinement can be used to glean enough
information about the data distribution to justify a more complex
partitioning.

Each dimension, i, of an n-dimensional ST-histogram is
partitioned into B; partitions. B; does not necessarily equal B; for
i= j. The partitioning of the space is described by » arrays, one
per dimension, which we call the scales [NHS84]. Each array
element of the scales represents the range of one partition,
[low,high]. In addition to the scales, a multi-dimensional ST-
histogram has an n-dimensional matrix representing the grid cell

186

frequencies, which we call the frequency matrix. Figure 5
presents an example of a 5x5 two-dimensional ST-histogram and
a range selection that uses it.

4.1 Initial Histogram

To build a ST-histogram on attributes, a;, ay,..., g, We can
assume complete uniformity and independence, or we can use
existing one-dimensional histograms but assume independence of
the attributes as the starting point.

If we start with the uniformity and independence assumption,
we need to know the minimum and maximum values of each
attribute a;, min; and max;. We also need to specify the number of
pattitions for each dimension, B; B,..., B, Then, each
dimension, i, is partitioned into B; equally spaced partitions, and
the T tuples of the relation are evenly distributed among all the
buckets of the frequency matrix. This technique is an extension of
one-dimensional ST-histograms.

Another way of building multi-dimensional ST-histograms is
to start with traditional one-dimensional histograms on all the
multi-dimensional histogram attributes. Such one-dimensional
histograms, if they are available, provide a better starting point
than assuming uniformity and independence. In this case, we
initialize the scales by partitioning the space along the bucket
boundaries of the one-dimensional histograms, and we initialize
the frequency matrix using the bucket frequencies of the one-
dimensional histograms and assuming that the attributes are
independent. Under the independence assumption, the initial
frequency of a cell of the frequency matrix is given by

T:-’ Hﬁ'eqi[j.-]’ where freq [] is the
i=1

frequency of bucket j, of the histogram for dimension 7.

Jreqljys jyseendal=

4.2 Refining Bucket Frequencies

The algorithm for refining bucket frequencies in the multi-
dimensional case is identical to the one-dimensional algorithm
presented in Figure 2, except for two differences. First, finding
the histogram buckets that overlap a selection range (line 1 in
Figure 2) now requires examining a multi-dimensional structure.
Second, a bucket is now a multi-dimensional cell in the frequency
matrix, so the fraction of a bucket overlapping the selection range
(line 6) is equal to the volume of the region where the bucket
overlaps the selection range divided by volume of the region
represented by the whole bucket (Figure 5).

4.3 Restructuring

Periodic restructuring is needed only for multi-dimensional ST-
histograms initialized assuming uniformity and independence.
ST-histograms initialized using traditional one-dimensional
histograms do not need to be periodically restructured, assuming
that the one-dimensional histograms are accurate. This is based
on the assumption that the partitioning of an accurate traditional
one-dimensional histogram built by looking at the data is more
accurate when used for multi-dimensional ST-histograms than a
partitioning built by splitting and merging.

As in the one-dimensional case, restructuring in the multi-
dimensional case is based on merging buckets with similar
frequencies and splitting high frequency buckets. The required
parameters are also the same, namely the restructuring interval, R,
the merge threshold, m, and the split threshold, s. Restructuring
changes the partitioning of the multi-dimensional space one
dimension at a time. The dimensions are processed in any order,
and the partition boundaries of each dimension are modified
independent of other dimensions. The algorithm for restructuring
one dimension of the multi-dimensional ST-histogram is similar
to the algorithm in Figure 3. However, merging and splitting in
multiple dimensions present some additional problems.

For an n-dimensional ST-histogram, every partition of the
scales in any dimension identifies an (n-1)-dimensional “slice” of
the grid (e.g., a row or a column in a two-dimensional histogram).
Thus, merging two partitions of the scales requires merging two
slices of the frequency matrix, each containing several buckets.
Every bucket from the first slice is merged with the corresponding
bucket from the second slice. To decide whether or not to merge
two slices, we find the maximum difference in frequency between
any two corresponding buckets that would be merged if these two
slices are merged. We merge the two slices only if this difference
is within m*T tuples. We use this method to identify runs of
partitions to merge.

The high frequency partitions of any dimension are split by
assigning them the extra partitions freed by merging in the same
dimension. Thus, restructuring does not change the number of
partitions in a dimension. To decide which partitions to split in
any dimension and how many extra partitions each one gets we
use the marginal frequency distribution along this dimension.
The marginal frequency of a partition is the total frequency of all
buckets in the slice of the frequency matrix that it identifies. Thus,
the marginal frequency of partition j; in dimension i is given by

fz(f;)=i-~-§: i"‘iﬁ‘eq[jnfz,---,j,.]' As in the one-

Si=t Jia=l =1 Ja=t
dimensional case, we split the s percent of the partitions in any
dimension with the highest marginal frequencies, and we assign
them the extra partitions in proportion to their current marginal
frequencies.

Maximum Marginal
1 2 3 4 5 frequency frequency
111,57 [[6,101][11,15][16,20][[21,25] difference distribution

HiLi0)f | 11 6 | 43 | 14 | 26 ===~ -—==> 100
2[1,20] 11 [60 [12 [8 | o H-S%8235 100
3[21,30) [65 | 37 | 28 | 44 | 26 '6'5'?0'2'53’
43140] [10 [5 8 [[20 [7 _TZ-TGZ'@" 50
5|[41,50 4 1 9 7 19 | 11 H-====52 > 60
l <5 max
Merge Split
o] [11 [6 [43 [14 [26
211,20 [11 [60 | 12 | 8 9
3021,25] [33 [18 | 14 | 22 | 13 Merge: m*T=5
426301 | 32 | 19 [14 | 22 | 13 Split: s*B, = 1
5031,50] [24 [14 [15 [39 | 18

187

Figure 6: Restructuring the vertical dimension

Figure 6 demonstrates restructuring the histogram in Figure 5
along the vertical dimension (attribute 2). In this example, the
merge threshold is such that we merge two partitions if the
maximum difference in frequency between buckets in their slices
that would be merged is within 5. This condition leads us to
merge partitions 4 and 5. The split threshold is such that we split
one partition along the vertical dimension. We compute the
marginal frequency distribution along the vertical dimension and
identify the partition with the maximum marginal frequency,
partition 3. Merging and splitting (with some provisions for
rounding) result in the shown histogram.

5. Experimental Evaluation

In this section, we present an experimental evaluation of our
techniques using synthetic data sets and workloads. We
investigate the accuracy and efficiency of one and multi-
dimensional ST-histograms. In particular, we are interested in the
accuracy of ST-histograms for data distributions with varying
degrees of skew, and for workloads with different access patterns.
We examine whether histogram refinement converges to an
accurate state, or whether it oscillates in response to refinement.
Another important consideration is how well ST-histograms adapt
to database updates, and how efficiently they use the available
memory. Due to space limitations, we present only a subset of the
experiments conducted.

5.1 Setup for Experiments
5.1.1 Data Sets

We present the results of experiments using one to three-
dimensional integer data sets. The results for higher dimensional
data sets are similar. The one-dimensional data sets have 100K
tuples and the multi-dimensional data sets have S00K tuples.
Each dimension in a data set has ¥V distinct values drawn
randomly from a domain ranging from 1 to 1600. ¥ = 200, 100,
and 10, for 1, 2, and 3 dimensions, respectively. For multi-
dimensional data sets, the number of distinct values and the
domains of all dimensions are identical, and the value sets of all
dimensions are generated independently. Frequencies are
generated according to the Zipfian distribution [Zip49] with
parameter z = 0, 0.5, 1, 2, and 3. z controls the skew of the
distribution, with z=0 representing a uniform distribution (no
skew). For one-dimensional data sets, the frequencies are
assigned at random to the values. For multi-dimensional data

sets, the frequencies are assigned at random to combinations of
values using the technique proposed in [PI97], namely assigning
the generated frequencies to randomly chosen cells in the joint
frequency distribution matrix.

5.1.2 Query Workloads

We use workloads consisting of random range selection queries in
one or more dimensions. Each workload consists of 2000
independent selection queries. Most experiments use random
workloads, in which the corner points of each selection range are
independently generated from a uniform distribution over the
entire domain. Some experiments use workloads with locality of
reference. The attribute values used for selection range corner
points in these workloads are generated from piecewise uniform
distributions in which there is an 80% probability of choosing a
value from a locality range that is 20% of the domain. The
locality ranges for the different dimensions are independently
chosen at random according to a uniform distribution.

5.1.3 Histograms

Unless otherwise stated, we use 100, 50, and 15 buckets per
dimension for 1, 2, and 3 dimensional ST-histograms,
respectively. For multi-dimensional ST-histograms, we use the
same number of buckets in all dimensions, resulting in two and
three-dimensional histograms with a total of 2500 and 3375
buckets. The one, two, and three-dimensional ST-histograms
occupy 1.2, 10.5, and 13.5 kilobytes of memory, respectively.
Our traditional histograms of choice are MaxDiff{V,A)
histograms for one dimension, and MHIST-2 MaxDiff(V,A)
histograms for multiple dimensions. These histograms were
recommended in [PIHS961 and {PI97] for their accuracy and ease
of construction. We compare the accuracy of ST-histograms to
traditional histograms of these types occupying the same amount
of memory.

We consider a wider range of memory allocation than most
previous works (e.g., [PIHS96], [PI97], and [MVW98]) because
of current trends in memory technology. We also demonstrate
that our techniques are effective across a wide range of available
memory (Section 5.7).

Note that the cost of building and maintaining traditional
histograms is a function of the size of the relation (or the size of
the sample used to build the histogram). In contrast, the cost of
ST-histograms is independent of the data size and depends on the
size of the query workload used for refinement.

5.1.4 Refinement Parameters

Unless otherwise stated, the parameters we use for restructuring
the histogram (Section 3.3) are a restructuring interval, R=200
queries, a merge threshold, m=0.025%, and a split threshold,
s=10%. For frequency refinement (Section 3.2), we use a
damping factor, «=0.5 for one dimension, and «c=1 for multiple
dimensions.

5.1.5 Measuring Histogram Accuracy

We use the relative estimation error (abs(actual result size -
estimated result size) / actual result size) to measure the accuracy
of query result size estimation. To measure accuracy over an
entire workload, we use the average relative estimation error for
all queries in the workload, ignoring queries whose actual result
size is zero.

One important question is with respect to which workload
should we measure the accuracy of a ST-histogram. Recall that
the premise of ST-histograms is that they are able to adapt to
feedback from query execution. Therefore, for our evaluation we

188

generate workloads that are statistically similar, but not the same
as the training workload.

Unless otherwise stated, our experiments use off-line
histogram refinement. Our steps for verifying the effectiveness of
ST-histograms for some particular data set are:

1. Initialize a ST-histogram for the data set.

2. Issue the query workload that will be used to refine the
histogram and generate a workload log. We call this the
refinement workload.

Refine the histogram off-line based on the generated
workload log.

After refinement, issue the refinement workload again and
compute the estimation error. Verify that the error after
refinement is less than the error before refinement.

Issue a different workload in which the queries have the
same distribution as the workload used for refinement. We
call this the fest workload. We cannot expect the workload
issued before refinement to be repeated exactly after
refinement, but we can reasonably expect a workload with
similar statistical characteristics. The ultimate test of
accuracy is whether the ST-histogram performs well on the
test workload.

5.2 Accuracy of One-dimensional
ST-histograms

In this section, we experimentally study the effectiveness of one-
dimensional ST-histograms for a wide range of data skew (z)
using random workloads and the procedure outlined in Section
5.1.5. We demonstrate that ST-histograms are always better than
assuming uniformity, and that they are competitive with
MaxDiff(V,A) histograms in terms of accuracy except for highly
skewed data sets.

80.00%
70.00% —e - Assuming
Uniformity
60.00% —na — Before Refinement
8 |
IE 50.00% ——a— Alfter Refinement
€40.00% }
= -.-X--- After Refinement -
‘-5 30.00% Test Workload
—o— MaxDiff(V,A)
20.00%
— % - ~ MXDIff(V,A) - Test
10.00% & Workload
0.00% 4 :
0 0.5 1 1.5 2 2.5 3
2 (skew)

Figure 7: One-dimensional data, random workload

Figure 7 presents the estimation errors for a random
refinement workload on one-dimensional data sets with varying z.
For each data set, the figure presents the estimation error for the
random refinement workload assuming a uniform distribution and
using the initial ST-histogram constructed assuming uniformity.
The estimation errors in these two cases are different due to
rounding errors during histogram initialization. The figure also
presents the average relative estimation error for the random
refinement workload using the refined ST-histogram when this
workload is issued again after it is used for refinement. It also
presents the error for a statistically similar test workload using the
refined ST-histogram. Finally, the figure presents the estimation
errors for the refinement and test workloads using a traditional
MaxDiff(V,A) histogram occupying the same amount of memory
as the ST-histogram.

Histogram refinement results in a significant reduction in
estimation error for all values of z. This reduced error is observed
for both the refinement workload and the test workload indicating
a true improvement in histogram quality. Thus, ST-histograms
are always better than assuming uniformity. The MaxDiff(V,A)
histograms are more accurate than the ST-histograms. This is
expected because MaxDiff{(V,A) histograms are built based on the
true distribution determined by examining the data. However, for
low values of z, the estimation errors using refined ST-histograms
are very close to the errors using MaxDiff(V,A) histograms, and
are small enough for query optimization purposes.

MaxDiff(V,A) histograms are considerably more accurate
than ST-histograms only for highly skewed data sets (z22). This
is expected because as z increases, the data distribution becomes
more difficult to capture using simple feedback information. At
the same time, the benefit of MaxDifRV,A) histograms is
maximum for highly skewed distributions [PTHS96].

5.3 Accuracy of Multi-Dimensional
ST-histograms

In this section, we show that multi-dimensional ST-histograms
initialized using traditional one-dimensional histograms are much
more accurate than assuming independence. We also compare the
performance of such ST-histograms and MHIST-2 histograms. In
particular, we demonstrate that these ST-histograms are more
accurate than MHIST-2 histograms for low to moderate values of
z (i.e., low correlation). This is an important result because it
indicates that ST-histograms are better than MHIST-2 histograms
in both cost and accuracy for data distributions with low to
medium correlation. For this paper, we only present the results of
our experiments with ST-histograms initialized using traditional
histograms. Experiments with the less accurate ST-histograms
initialized assuming uniformity and independence have similar
results.

Figures 8 and 9 present the results of using multi-dimensional
ST-histograms initialized using MaxDiff{V,A) histograms and
assuming independence for random workloads on two and three-
dimensional data set with varying z. The information presented is
the same as in Figure 7, except that we do not show the estimation
error assuming uniformity because one would never assume
uniformity when one-dimensional histograms are available, and
we compare the performance of the ST-histograms against multi-
dimensional MHIST-2 histograms instead of one-dimensional
MaxDiff(V,A) histograms. Since the ST-histograms are
initialized using MaxDiff(V,A) histograms, using them before
refinement is the same as using the one-dimensional histograms
and assuming independence.

The refined ST-histograms are more accurate than assuming
independence, and the benefit of using them (i.e., the reduction in
error) increases as z increases. ST-histograms are not as accurate
as MHIST-2 histograms for high z, especially in three dimensions.
This indicates that inferring joint data distributions based on
simple feedback information becomes increasingly difficult with
increasing dimensionality. As expected, MHIST-2 histograms are
very accurate for high z [PI97], but we must bear in mind that the
cost of building multi-dimensional MHIST-2 histograms is much
more than the cost of building one-dimensional MaxDiff(V,A)
histograms. Furthermore, this cost increases with increasing
dimensionality.

Notice, though, that ST-histograms are more accurate than
MHIST-2 histograms for low z. This is because MHIST-2
histograms use a complex partitioning of the space (as compared
to ST-histograms). Representing this complex partitioning

189

—a — Before Refinemeny
-—a— After Refinement
-.-X- - - After Refinement -

Test Workload
—e— NHIST-2

- - % - ~MHIST-2 - Test
Workload

0.5 1 1.5 2 2.5
z (of joint distribution)

0 3

Figure 8: Two-dimensions, starting with MaxDiff(V,A)

80.00% i
70.00% | l
60.00% | / —m — Before Refinement
E 50.00% | / —a— After Refinement
w
2 40.00% | ---X- - - After Refinement -
- / Test Workload
E 30.00% | / —es—MHIST-2
| - - % -—MHIST-2 - Test
20.00% J Workload
10.00% | e
~ oo n
0.00% T v T T T
0 0.5 1 1.5 2 25 3
Z (of joint distribution)

Figure 9: Three-dimensions, starting with MaxDiff(V,A)

requires MHIST-2 histograms to have complex buckets that
consume more memory than ST-histogram buckets.
Consequently, ST-histograms have more buckets than MHIST-2
histograms occupying the same amount of memory. For low z,
the complex partitioning of MHIST-2 histograms does not
increase accuracy because the joint distribution is close to uniform
$0 any partitioning is fine. On the other hand, the large number of
buckets in ST-histograms allows them to represent the distribution
at a finer granularity leading to higher accuracy. This result
demonstrates the value of multi-dimensional ST-histograms for
database systems. For data with low to moderate skew, ST-
histograms provide an effective way of capturing dependencies
between attributes at a low cost.

Equi-width Equi-depth MaxDiff{V,A)
z | Before After Before After Before After
0| 427% | 547% | 6.41% | 6.65% | 4.93% | 4.95%
05| 6.77% | 584% | 8.67% | 8.21% | 6.64% | 6.35%
1 [37.61% | 11.64% | 39.94% | 12.61% | 36.37% | 11.08%
2 |562.36%|518.33% | 615.06% | 78.36% |435.54% | 22.57%
3 1530.71%(233.32%{ 383.76% | 48.26% [460.71% | 26.07%

Table 1: Starting with different types of 1d histograms

Table 1 presents the estimation errors for random workloads
on two-dimensional data sets with varying z using ST-histograms
built starting with traditional one-dimensional histograms. The
errors are shown before refinement and after off-line refinement
using the same random workloads. All one-dimensional
histograms have 50 buckets. In addition to MaxDiff{V,A)
histograms, the table presents the errors when we start with equi-
width histograms, which are the simplest type of histograms, and

when we start with equi-depth histograms, which are currently
used by many commercia database systems. The table shows that
ST-histograms are equally effective for al three types of one-
dimensiona histograms.

5.4 Effect of Locality of Reference in the

Query Workload
An interesting issue is studying the performance of ST-histograms
on workloads with locality of reference in accessing the data.
Locality of reference is a fundamental concept underlying all
database accesses, so one would expect real life workloads to have
such locality. Moreover, purely random workloads provide
feedback information about the entire distribution, while
workloads with locality of reference provide most of their
feedback about a small part of the distribution. We would like to
know how effective this type of feedback is for histogram
refinement. In this section, we demonstrate that ST-histograms
perform well for workloads with locdity of reference. We also
demonstrate that histogram refinement adapts to changes in the
locality range of the workload.

80.00%
70.00% —_—
2 W1 Unif and Indep
| o 60.00%: T @ W1 Before Refinement
s 50.00% | i. W1 After Refinement
©40.00% | a8 W1 Traditional
= |0 W2 Unif and Indep
| g S |8 W2 Refined on Wi
20.00% 0 W2 After Refinement
10.00% | ui]_\'_\l‘z_'lfr'iditional
0.00%
Dimensions

Figure 10: Workloads with locality of reference, z=1

Figure 10 presents the estimation errors for workloads with an
80%-20% locality for one and two-dimensional data sets with
z=1. The first four bars for each data set present the errors for a
workload, w1. The first two bars respectively show the errors
assuming uniformity and independence, and using an initial ST-
histogram representing; the uniformity and independence
assumption. The bars are not identical because of rounding
errors. The third bar shows the error using the ST-histogram
when issuing W1 again after it is used for refinement. The fourth
bar shows the error for W1 using a traditiona histogram. It is
clear that refinement considerably improves estimation accuracy,
making the ST-histogram almost as accurate as the traditional
histogram. This improvement is aso observed on test workloads
that are statistically similar to w1. Next, we keep the refined
histogram and change the locality of reference of the workload.
We issue a new workload, w2, with a different locality range.
The next four bars in Figure 10 present the estimation errors for
w2. First, we issue #2 and use the ST-histogram refined on w1
for result size estimation (sixth bar). This histogram is not as
accurate for w2 asit was for wr, but it is better than assuming
uniformity and independence. This means that refinement was
still able to infer some information from the 20% of the queries of
w1 that lie outside the locality range. When we refine the
histogram on 2 and issue it again, we see that the ST-histogram
becomes as accurate for w2 as it was for w1 after refinement.
This improvement is also seen for workloads that are statistically
similar to w2.

190

60.00%

O R1 Unifand Indep |
@ R1 Before Refinement|
m A1 After Refinement ||
B R1 Traditional

B R2 Unif and Indep
B R2 Refined on R1

50.00% r
5 40.00% |

a
30.00% |
2

B R2 After Refinement
B R2 Traditional for R1
m A2 Traditional

| & 20.00%

10.00%

i 0.00%

| Dimensions

Figure 11: Adapting to database updates, z=1

5.5 Adapting to Database Updates

The results of this section demonstrate that although ST-
histograms do not examine data, the feedback mechanism enables
these histograms to adapt to updates in the underlying relation.
Figure 11 presents the estimation errors for one and two-
dimensiona data sets with z=1 using random workloads. The first
four bars present the estimation errors for the original relation
before update, which we denote by RI. We update the relation by
deleting arandom 25% of its tuples and inserting an equal number
of tuples following a Zipfian distribution with z=1. We denote
this updated relation by R2. We retain the traditional and ST-
histograms built for RI and re-issue the same random workload
on R2. The fifth and sixth barsin Figure 11 are the estimation
error for this workload on R2 assuming uniformity and
independence, and using the ST-histogram that was refined for
RI, respectively. The histogram is not as accurate as it was for
RI, which is expected, but it is still more accurate than assuming:
uniformity and independence. The seventh bar shows the error
using the ST-histogram for R2 after refinement using the same:
workload. Refinement restores the accuracy of the ST-histogram
and adapts it to the updates in the relation. We also observe this,
improvement in error for statisticaly similar test workloads. The:
last two barsin Figure 11 present the estimation error for the
random workload issued on R2 using the traditional histograms
for R1 and R2, respectively. As expected, updating the relation
reduces histogram accuracy, and rebuilding the histogram restores
this accuracy.

5.6 Refinement Parameters

In this section, we investigate the effect of the refinement
parameters: R, m, and s for restructuring and a for updating
bucket frequencies.

Table 2 presents the average relative estimation errors for
random test workloads using ST-histograms that have been
refined off-line using other random refinement workloads for one
to three-dimensional data sets with varying z. For each data set,
the error is presented if the histogram is not restructured during
refinement, and if it is restructured with R=200, m=0.025%, and
s=10%. Restructuring has no benefit for low z, but as z increases
the need for restructuring becomes evident. Thus, restructuring
extends the range of data skew for which ST-histograms are
effective.

Figure 12 presents the estimation errors for random workloads
and workloads with locality of reference on one to three-
dimensional data sets with z=1 using ST-histograms that have
been refined off-line using other dtatistically similar refinement
workloads for a=0.0l to 1. The estimation errors are relatively

Dims 1 2 3
z No Restruct. Restruct. No Restruct. Restruct. No Restruct. Restruct.
0 3.34% 3.05% 10.43% 10.78% 38.60% 38.86%
0.5 4.44% 4.54% 10.65% 10.62% 40.55% 38.64%
1 9.39% 8.94% 22.03% 21.41% 62.02% 51.45%
2 130.52% 95.09% 318.08% 77.22% 1098.09% 583.48%
3 306.79% 271.75% 327.39% 109.67% 14982.1% 4500.9%

Table 2: Error with and without restructuring

100.00%
) 60.00%
90.00% |
80.00% ¢ 50.00%
i
5 70.00% 14, random - o b —e— 1d, ST-histogram|
£ 60.00% | E 40.00% 1y 1d, MaxDift(V,A)
W —a—2d, random — - —1d, i
€ 50.00% —a—3d, random 2 30.00% | —a—2d, ST-histogram|
B 2000% | —s¢—1d, locality £ % — 20, MHIST-2
& 3000% 2, ocalty 3 2000% |
L —e— 3d, locali
fgg v 10.00%
A I = S ——
0.00% T T ™ 0.00%
0 0.25 0.5 0.75 1 0 2 4 6 8 10 12 14 16
alpha Kilobytes
Figure 12: Effect of o, z=1 Figure 13: Effect of available memory
7000 14000
* ”
.| 0-0.." \.. *-o, -"\\.’ 3 12000 2 S e % x ."."
5 5000 | R VY L 10000 | &° w®¢ Tee® NI N s
.~ *e 4
X *
'E 4000 | - -&-.. Uniformity lg 8000 | ¢ ...~ Unifand Indep
3 3000 ——@-— ST-histogram g 6000 —a— ST-histogram
g —- &= MaXDIff(V.A) g 1 —-&-—MHIST:2
2000 | 4000 |
1000 000 | aa bartabrrpasntyy]
YT YIY I IYITWY FY YT T YT 0 . . ;
0 500 1000 1500 2000 0 500 1000 1500 2000
Queries Queries

Figure 14: On-line refinement, one dimension, z =1

flat for a wide range of «c. Thus, the benefit of trying to find the
optimal o« is low. We recommend using a fixed o or varying it
according to a simple algorithm. For our experiments we use
«=0.5 for the one-dimensional case and «<=1 for the multi-
dimensional case.

5.7 Effect of Available Memory

Figure 13 presents the estimation errors for random test workloads
on data sets with z=1 in one and two-dimensions using ST-
histograms that have been refined on other random refinement
workloads, and using traditional histograms occupying the same
amount of memory as the ST-histograms. The errors are
presented for histograms using 0.25 to 16 kilobytes of memory.
ST-histograms are accurate and comparable to traditional
histograms for the whole range of available memory, and their
accuracy increases with increasing memory. For the two-
dimensional case, ST-histograms are better than MHIST-2
histograms when the amount of available memory is small. An
MHIST-2 histogram has fewer buckets than a ST-histogram using
the same memory. For low memory, the MHIST-2 histogram has
too few buckets to cleverly partition the space. The ST-histogram
makes better use of what little memory is available by partitioning

191

Figure 15: On-line refinement, two dimensions, z =1

the space into more buckets and capturing the distribution at a
finer granularity.

5.8 On-line Refinement and Convergence

The histogram refinement process and the resulting refined ST-
histogram are the same whether we use on-line or off-line
refinement. Thus, even though our experiments use off-line
refinement, our conclusions are valid for on-line refinement as
well. In this section, we switch to on-line refinement to study
convergence. Convergence is important for both off-line and on-
line refinement, but it is more important and easier to observe for
on-line refinement. In addition to studying convergence, we also
compare the performance of on-line and off-line refinement.

We issue a random workload one query at a time, recording
the estimation error and incrementally refining the ST-histogram
after each query. The goal of the refinement process is to reduce
the absolute estimation error using the histogram. To verify that
refinement does indeed reduce this error, we compute the average
error of every 100 queries assuming uniformity and independence,
using the ST-histogram, and using a traditional histogram. These
errors are plotted in Figures 14 and 15 for one and two-
dimensional data sets with z=1. The figures show that ST-

histogram refinement converges fairly rapidly. These results
support our argument that ST-histograms have a low cost. The
simple histogram refinement process has to be performed only a
small number of times before the histogram becomes sufficiently
accurate. The results also demonstrate that our choice of using
2000 queries for the workloads has no effect on our conclusions
because refinement converges well before 2000 queries.

80.00%

70.00% | [OUnifand Indep |
60.00% |)
H] E Before Off-line
550.00% - | Refinement
o W After Off-line
& A0k | Refinement
é 30.00% | B8 On-line Refinement
20.00% | @ Traditional Histogram
10.00%
0.00%
1 2 3

Dimensions |

Figure 16: On-line vs. off-line refinement, z =1

Figure 16 compares on-line and off-line refinement. It
presents the estimation errors for random workloads on one- to
three-dimensiona data set with z=I. For each data set, the errors
are presented assuming uniformity and independence, using an
unrefined ST-histogram, using a ST-histogram that has been
refined off-line on the same workload, using a ST-histogram that
is being refined on-line with every query, and using a traditional
histogram. If we use: on-line refinement, the queries see a
progressively more accurate histogram. Only after the very last
query in the workload is the histogram equivalent to a histogram
that has been refined off-line using this workload. On the other
hand, if we refine a histogram off-line on aworkload and issue the
same workload a second. time, the entire workload will experience
a fully refined histogram the second time it is issued. The
interesting result in Figure 16 is that both these scenarios result in
comparable estimation errors. Thus, one should choose the
refinement method more suitable to the system architecture and
expected usage situations, not based on the desired accuracy.

6. Conclusions

In this paper, we introduced a novel way of building histograms at
alow cost based on feedback from the query execution engine.
ST-histograms use such feedback and do not |00k at the data.
Multi-dimensiona ST-histograms are particularly attractive, since
they provide a low-cost aternative to traditional multi-
dimensional structures proposed in the literature that are often
prohibitively expensive for large databases (true of many data
warehouses). Multi-dimensional ST-histograms are almost as
accurate as traditional MHIST-2 histograms for a wide range of
data distributions, and sometimes even more accurate, while
costing much lessto build and maintain.

ST-histograms are better than assuming uniformity and
independence for al values of data skew and are comparable in
accuracy to traditional histograms for low to medium skew.
However, for high data skew, ST-histograms are less accurate
than MHIST-2 histograms. Thus, ST-histograms are suitable for
low to medium data skew, and the high cost of building traditional

192

multidimensional histograms can be justified only for high data
skew.

To combine the best of both worlds, we can start by
initializing a ST-histogram and refining it for a preset number of
queries representative of the workload on the database. If the
training sequence fails to reduce the error to an acceptably low
level, then we should consider building atraditional histogram to
capture the high skew.

Acknowledgement
We thank Vivek Narasayya for useful discussions and for his help
with the experiments.

7. References

[CR94] C.M. Chen and N. Roussopoulos. Adaptive
selectivity estimation using query feedback. In
Proceedings of the ACM SIGMOD Conference, Pag€eS
161-172, 1994.

P.B. Gibbons, Y. Matias, and V. Poosala Fast
incremental maintenance of approximate histograms.
In Proceedings of the 23rd International Conference
on Very Large Databases, pages 466-475, 1997.

N. Kabra and D.J. Dewitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. In
Proceedings of the ACM SIGMOD Conference, Pages
106-117,1998.

R.P. Kooi. The optimization of queries in relational
databases. PhD thesis, Case Western Reserve
University, September 1980.

R.J. Lipton, JF. Naughton, and D.A. Schneider.
Practical selectivity estimation through adaptive
sampling. In Proceedings of the ACM SIGMOD
Conference, pages 1-11, 1990.

M. Murdlikrishna and D.J. Dewitt. Equi-depth
histograms for estimating selectivity factors for multi-
dimensional queries. In Proceedings of the ACM
SIGMOD Conference, pages 28-36, 1988.

G.S. Manku, S. Rgagopalan, and B.G. Lindsay.
Approximate medians and other quantiles in one pass
and with limited memory. In Proceedings of the ACM
SIGMOD Conference, pages 426-435, 1998.

Y. Matias, J.S. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. In Proceedings
of the ACM SIGMOD Conference, pages 448-459,
1998.

J. Nievergelt, H. Hinterberger, K.C. Sevcik. The grid
file: an adaptable, symmetric multikey file structure..
ACM Transactions on Database Systems 9(1):38-71,
March 1984.

V. Poosdla, Y.E. loannidis, P.J. Haas, and E.J.
Shekita. Improved histograms for selectivity
estimation of range predicates. In Proceedings of the
ACM SIGMOD Conference, pages 294-305, 1996.

V. Poosalaand Y .E. loannidis. Selectivity estimation
without the attribute val ue independence assumption.
In Proceedings of the 23rd International Conference
on Very Large Databases, pages 486-495,1997.
G.K. Zipf. Human behaviour and the principle of
least effort. Addison-Wedey, Reading, MA, 1949.

[GMPY7]

[KD98]

[K0080]

[LNS90]

[MD8S]

[MRL9S]

[MVWOg]

[NHS84]

[PIHS96]

[P197]

[Zip49)]

