BOAT—Optimistic Decision Tree Construction

Johannes Gehrke*  Venkatesh Ganti

Raghu Ramakrishnant  Wei-Yin Loht

Department of Computer Sciences and Department of Statistics
University of Wisconsin-Madison

Abstract

Classification is an important data mining problem. Given a training database
of records, each tagged with a class label, the goal of classification is to
build a concise model that can be used to predict the class label of future,
unlabeled records. A very popular class of classifiers are decision trees. All
current algorithms to construct decision trees, including all main-memory
algorithms, make one scan over the training database per level of the tree.

We introduce a new algorithm (BOAT) for decision tree construction
that improves upon earlier algorithms in both performance and functionality.
BOAT constructs several levels of the tree in only two scans over the training
database, resulting in an average performance gain of 300% over previous
work. The key to this performance improvement is a novel optimistic
approach to tree construction in which we construct an initial tree using a
small subset of the data and refine it to arrive at the final tree. We guarantee
that any difference with respect to the “real” tree (i.e., the tree that would be
constructed by examining all the data in a traditional way) is detected and
corrected. The correction step occasionally requires us to make additional
scans over subsets of the data; typically, this situation rarely arises, and can
be addressed with little added cost.

Beyond offering faster tree construction, BOAT is the first scalable
algorithm with the ability to incrementally update the tree with respect to both
insertions and deletions over the dataset. This property is valuable in dynamic
environments such as data warehouses, in which the training dataset changes
over time. The BOAT update operation is much cheaper than completely re-
building the tree, and the resulting tree is guaranteed to be identical to the
tree that would be produced by a complete re-build.

1  Introduction

Classification is an important data mining problem. The
input is a dataset of training records (also called training
database), each record has several attributes. Attributes
whose domain is numerical are called numerical attributes,
whereas attributes whose domain is not numerical are called
categorical attributes'. There is one distinguished attribute
called the class label. (We will denote the elements of

“Supported by an IBM Graduate Feliowship
Supported by Grant 2053 from the IBM Corporation.
%Supported by ARO grant DAAG55-98-1-0333.
LA categorical attribute takes values from a set of categories. Some authors
distinguish between categorical attributes that take values in an unordered set (rominal
attributes) and categorical attributes having ordered scales (ordinal attributes).

Permission to make digital or hard copies of all or part of this work for
personal or classroom usc is granted without fee provided that copics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, 1o post on servers or to redistribute o lists,
requires prior specific permission and/or a fec.

SIGMOD '99 Philadclphia PA

Copyright ACM 1999 1-58113-084-8/99/05...85.00

169

the domain of the class label attribute as class labels; the
semantics of the term class label will be clear from the
context.) The goal of classification is to build a concise model
of the distribution of the class label in terms of the predictor
attributes. The resulting model is used to assign class labels
to future records where the values of the predictor attributes
are known but the value of the class label is unknown.
Classification has a wide range of applications, including
scientific experiments, medical diagnosis, fraud detection,
credit approval, and target marketing [FPSSU96].

Many classification models have been proposed in the
literature [MST94, Han97]. Classification trees [BFOS84],
also called decision trees, are especially attractive in a data
mining environment for several reasons. First, due to their
intuitive representation, the resulting classification model is
easy to assimilate by humans [BFOS84, MAR96]. Second,
decision trees do not require any parameter setting from the
user and thus are especially suited for exploratory knowledge
discovery. Third, decision trees can be constructed relatively
fast compared to other methods [SAM96, GRG98]. Last,
the accuracy of decision trees is comparable or superior to
other classification models [Mur95, LLS97). In this paper,
we restrict our attention to decision trees.

We introduce a new algorithm called BOAT? that addresses
both performance and functionality issues of decision tree
construction. BOAT outperforms existing algorithms by a
factor of three while constructing exactly the same decision
tree; the increase in speed does not come at the expense of
quality. The key to this performance improvement is a novel
optimistic approach to tree construction, in which statistical
techniques are exploited to construct the tree based on a small
subset of the data, while guaranteeing that any difference
with respect to the “real” tree (i.e., the tree that would
be constructed by examining all the data) is detected and
corrected by a subsequent scan of all the data. If correction is
not possible, the affected part of the tree needs to be processed
again; typically, this case rarely arises, or only affects a small
portion of the tree and can be addressed with little added cost.

In addition, BOAT enhances functionality over previous
methods in two major ways. First, BOAT is the first scal-
able algorithm that can maintain a decision tree incrementally

2Bootstrapped Optimistic Algorithm for Tree Construction



when the training dataset changes dynamically. For exam-
ple, in a credit card company new transactions arrive con-
tinuously; it is crucial that a decision tree based fraud de-
tection system can reflect the most recent fraudulent transac-
tions. One possibility is to rebuild the tree from time to time,
e.g., every night, which is an expensive operation. Instead of
rebuilding, BOAT allows us to “update” the current tree to in-
corporate new training data while maintaining the best tree.
That is, the tree resulting from the update operation is exactly
the same tree as if a traditional algorithm were run on the
modified training database. The update operation in BOAT is
much cheaper than a complete rebuild of the tree.

Second, BOAT greatly reduces the number of database
scans, and is thus well-suited for training databases defined
through complex queries over a data warehouse, as long
as random samples from parts of the training database can
be obtained. (It is possible to obtain a random sample
for a broad class of queries [O1k93].) For example, in
a data-warehousing environment, BOAT enables mining of
decision trees from any star-join query without materializing
the training set. All previous algorithms need the training
database to be materialized to run efficiently. In addition,
in most cases, BOAT does not write any temporary data
structures on secondary storage, and thus has low run-time
resource requirements.

The remainder of the paper is structured as follows. In
Section 2, we formally introduce the problem of decision tree
construction. We present our new algorithm in Section 3 and
show it can be extended to work in a dynamic environment in
Section 4. We present results from a performance evaluation
in Section 5. We survey existing work on decision tree
classifiers in Section 6 and conclude in Section 7.

2  Preliminaries
2.1 Problem Definition

In this section, we first introduce some terminology and
notation that we will use throughout the paper. We then state
the problem formally and give some background knowledge
about decision tree construction. Let X;,...,X,,,C be
random variables where X; has domain dom(X;); we assume
without loss of generality that dom(C) = {1,2,...,k}. A
classifier is a function d : dom(X;) X --- x dom(X,,) >
dom(C). Let P(X',C") be a probability distribution on
dom(X;) x --- x dom{(X,,) X dom(C) and denote by t =
(t.X1,...,8.Xm,t.C) arecord randomly drawn from P, i.e.,
t has probability P(X',C") that {(¢.X;,...,t.X,) € X' and
t.C € C'. We define the misclassification rate Rq of classifier
d to be P(d((t.X1,...,t.X,n)) # t.C). In terms of the
informal introduction, the training database D is a random
sample from P, the X; correspond to the predictor attributes
and C is the class label attribute.

A decision tree is a special type of classifier. It is a directed,
acyclic graph 7" in the form of a tree. The root of the tree does
not have any incoming edges. Every other node has exactly
one incoming edge and may have outgoing edges. In this
research, we concentrate on binary decision trees, since they

are the most popular class of decision trees; our techniques
can be generalized to non-binary decision trees, although we
will not address that case in this paper. Thus we assume in the
remainder of this paper that each node has either zero or two
outgoing edges. If a node has no outgoing edges it is called
a leaf node, otherwise it is called an internal node. Each leaf
node is labeled with one class label; each internal node n is
labeled with one predictor attribute X,, called the splitting
attribute. Each internal node n has a predicate ¢,, called the
splitting predicate associated with it. If X, is a numerical
attribute, gy, is of the form X,, < x,,, where z,, € dom(X,,);
Zn is called the split point at node n. If X, is a categorical
attribute, gy, is of the form X, € ¥;, where Y,, C dom(X,,);
Y, is called the splitting subset at node n. The combined
information of splitting attribute and splitting predicates at
node n is called the splitting criterion of n. 1If we talk about
the splitting criterion of a node n in the final tree that is gutput
by the algorithm, we sometimes refer to it as the final splitting
criterion. We will use the terms final splitting attribute, final
splitting subset, and final split point, analogously.

We associate with each node n € T a predicate f, :
dom(X7) X --- X dom(X,) — {true, false}, called its

node predicate as follows: for the root node n, f, Ef true.
Let n be a non-root node with parent p whose splitting

predicate is g,. If n is the left child of p, define f,, def FoNgp;

if n is the right child of p, define f, < £, A ~g,. Informally,
fn is the conjunction of all splitting predicates on the internal
nodes on the path from the root node to n. Since each
leaf node n € T is labeled with a class label, it encodes a
classification rule f,, —+ ¢, where c is the label of n. Thus the
tree T encodes a function T" : dom(X;) X -+ x dom(X,,) —
dom(C) and is therefore a classifier, called a decision tree
classifier. (We will denote both the tree as well as the induced
classifier by T'; the semantics will be clear from the context.)
Let us define the notion of the family of tuples of a node
in a decision tree T with respect to a database D. (We
will drop the dependency on D from the notation since it
is clear from the context.) For a node n € T with parent
p, F, is the set of records in D that follows the path from
the root to n when being processed by the tree, formally

F, {t € D : fa(t) = true}. We can now formally
state the problem of decision tree construction.

Decision tree classification problem: Given a dataset
D = {ti,...,t,} where the ¢; are independent random
samples from a probability distribution P, find a decision
tree classifier T’ such that the misclassification rate Rz (P)
is minimal.

A classification tree is usually constructed in two phases. In
phase one, the growth phase, an overly large decision tree is
constructed from the training data. In phase two, the pruning
Pphase, the final size of the tree T is determined with the goal
to minimize Rr. In this research, we concentrate on the tree
growth phase, since due to its data-intensive nature it is a very
time-consuming part of decision tree construction [MAR96,
SAM96, GRG98]. (Cross-validation [BFOS84], a popular

170



Input: node n, partition D, split selection method CL
Output: decision tree for D rooted at n

TDTree(Node n, partition D, split selection method C L)
(1)  Apply CL to D to find the splitting criterion for n
(2)  if (n splits)

3) Use best split to partition D into Dy, D2

) Create children n and ng of n

&) TDTree(n1, D1, CL)

6) TDTree(rn2, D2, CL)

(7)  endif

Figure 1: Top-Down Tree Induction Schema

pruning technique for very small training datasets, requires
construction of several trees from large subsets the data. Even
though MDL-based pruning methods are more popular for
large datasets [MAR96, RS98], our techniques can be used to
speed up cross-validation for large training datasets as well.)
How the tree is pruned is an orthogonal issue.

All decision tree construction algorithms grow the tree top-
down in the following greedy way: At the root node, the
database is examined and a splitting criterion is selected.
Recursively, at a non-root node n1, the family of n is examined
and from it a splitting criterion is selected. (This is the well-
known schema for greedy top-down decision tree induction;
for example, a specific instance of this schema for binary
splits is shown in [MAR96]). This schema is depicted in
Figure 1. All decision tree construction algorithms that we
are aware of proceed according to this schema. Note that
this schema requires one pass over the training database per
level of the tree; the splitting criterion at a node n can not be
computed unless the splitting criteria of all its ancestors in the
tree are known.

2.2 Split Selection Methods

In this work, we consider split selection methods that pro-
duce binary splits. We will concentrate on impurity-based
split selection methods for two reasons. First, "this class
of split selection methods is widely used and very popu-
lar [BFOS84, Qui86]; studies have shown that this class
of split selection methods produces trees with high predic-
tive accuracy [LLS97]. Second, most previous work in the
database literature uses this class of split selection meth-
ods [MAR96, SAM96, FMM96, MFM 198, RS98], thus we
can study the performance impact of our techniques while
generating exactly the same output decision tree as previous
methods. We would like to emphasize though, that our tech-
niques described in Section 3 can be instantiated with other,
not impurity-based split selection methods from the literature,
e.g., QUEST [LS97], resulting in scalable decision tree con-
struction algorithms. In Section 5, we also show experimental
results with a non-impurity-based split selection method.
Impurity-based split selection methods calculate the split-
ting criterion by minimizing a concave impurity function
imp, such as the entropy [Qui86], the gini-index [BFOS84]
or the index of correlation [MFM*98]. (Arguments for the
concavity of the impurity function can be found in Breiman
et al. [BFOS84].) The most popular split selection meth-
ods such as CART [BFOS84] and C4.5 [Qui86] fall into

this group; previous work in the database literature gen-
erated scalable instantiations of these split selection meth-
ods [MAR96, SAM96, RS98, GRG98]. At each node, all
predictor attributes X are examined and the impurity of the
best split on X is calculated. The final split is chosen such
that the value of imp, is minimized. In the next section we
briefly detail how imp, is actually calculated for numerical
predictor attributes. Calculation of imp, for categorical pre-
dictor attributes is shown in the full paper.

2.2.1 Numerical Predictor Variables

In this section, we briefly explain how the class of impurity-
based split selection methods computes the split point for
numerical predictor variables.

Let X be a numerical predictor variable, i.e., splits on X
will be of the form X < z where ¢ € dom(X). At a node n,
each potential split point z € dom(X) induces a set of argu-
ments 6, = <6£,X,z,l""7671;,X,:,k’6f,x,z,1""76113,X,:c,k)
for the impurity function imp,, where for i € dom(C):

0L v oi 2 P(X < 2,C = ilfn), and 68, , . & P(X >
z,C = i|f,). Informally, 6% » _ ; is the probability that for a
randomly drawn tuple ¢ that belongs to the family of node
n, t’s value for predictor attribute X is less than or equal
to = and that ¢’s class label has value i. Since z induces
this set of arguments for imp,, we define impy (n, X, z) =

imPo(orl{,x,z,1 0% X220 erI;,X,z,k’ OF X200+ ’of,x,z,k)-
Since the underlying probability distribution P is not known,

6L X, (respectlvely, 6k ' X,z,i) 1S estimated from the training

database D by gL
estimated from D by imp, x (n, X, x) as follows: BL

(respectively, 0,l X,z,i)» and impy is
def
n,X,x,s T

ann

{teF,:t. X <zA t.C=i}| 7 0 def |{teF,:t.X>zAtL. ij and
TFa] nX,x,i T Fn] ’
def
1mpx(n X,z) =

1mPo(0an1,9an2’ aﬁx:vk’gf)(a:l’ eszk)'
Informally, for node n and predictor attribute X, 0,l X,z,i 18
the proportlon of tuples in F,, with £.X < z and class label
i; On X,z,i 18 the proportion of tuples in F, with £.X > z and
class label i.

3 BOAT—Bootstrapped Optimistic Decision Tree
Construction

In this section, we present BOAT, a scalable algorithm for
decision tree construction. Like the RainForest framework
or the PUBLIC pruning strategy [GRG98, RS98], BOAT is
applicable to a wide range of split selection methods. To
our knowledge, BOAT is the first decision tree construction
algorithm that constructs several levels of the tree in a single
scan over the database. All previous algorithms that we are
aware of make one scan over the database for each level of the
tree. We will explain the algorithm in several steps. We first
give an informal overview without technical details to give the
intuition behind our approach (Section 3.1). We then describe
our algorithm in detail in Sections 3.2 to 3.5. We assume in
the remainder of this section that C £ is an impurity-based split
selection method that produces trees with binary splits.

171



31

Let T be the final tree constructed using split selection method
CL on training database D. D does not fit in-memory, so we
obtain a large sample D' C D such that D' fits in-memory.
We can now use a traditional main-memory decision tree
construction algorithm to compute a sample tree T’ from D’.
Each node n € T' has a sample splitting criterion consisting
of a sample splitting attribute and a sample split point (or a
sample splitting subset, for categorical attributes). Intuitively,
T’ will be quite “similar” to the final tree T' constructed from
the complete training database D. But how similar is T to 7°?
Can we use the knowledge about T” to help or guide us in the
construction of T, our final goal? Ideally, we would like to
say that the final splitting criteria of T" are very “close” to the
sample splitting criteria of 7. But without any qualification
and quantification of “similarity” or “closeness”, information
about 7" is useless in the construction of 7.

Consider a node n in the sample tree 7 with numerical
sample splitting attribute X, and sample splitting predicate
X, < z. By T being close to T we mean that the final
splitting attribute at node n is X and that the final split point is
inside a confidence interval around z. If the splitting attribute
at node 1 in the tree is categorical, we say that T is close to T'
if the sample splitting criterion and the final splitting criterion
are identical. Thus the notion of closeness for categorical
attributes is more stringent because splitting attribute as well
as splitting subset have to agree.

In Section 3.2, we show how a technique from the statistics
literature called bootstrapping [ET93, AD97] can be applied
to the in-memory sample D’ to obtain a tree T” that is close
(in the sense just mentioned) to 7" with high probability. Thus,
using bootstrapping, we leverage the in-memory sample D'
by extracting “more” information from it. In addition to
a sample tree 7", we also obtain confidence intervals that
contain the final split points for nodes with numerical splitting
attributes, and the complete final splitting criterion for nodes
with categorical splitting attributes. We call the information at
a node n obtained through bootstrapping the coarse splitting
criterion at node n. This part of the algorithm, which we call
the sampling phase, is described in Section 3.2.

Let us assume for the moment that the information obtained
through bootstrapping is always correct. Using the sample
D’ C D and the bootstrapping method, the coarse splitting
criteria for all nodes n of the tree have been calculated and are
correct. Now the search space of possible splitting criteria at
each node of the tree is greatly reduced. We know the splitting
attribute at each node n of the tree, for numerical splitting
attributes we know a confidence interval of attribute values
that contains the final split point, for categorical splitting
attributes we know the final splitting subset exactly. Consider
a node n of the tree with numerical splitting attribute. To
decide on the final split point, we need to examine the value
of the impurity function only at the attribute values inside
the confidence interval. If we had all the tuples that fall
inside the confidence interval of n in-memory, then we could

Overview

172

Coarse Splitting Criterion

The splitting attribute X,

Y C dom(X,,) such that
impy (n, X, Y’) is minimized
The splitting attribute X,

An interval [iL, 7] that
contains the final split point

[ Attrib. Type

Categorical

Numerical

Figure 2: Coarse splitting critera

calculate the final split point exactly by calculating the value
of the impurity function at all possible split points inside the
confidence interval. To bring these tuples in-memory, we
make one scan over D and keep all tuples that fall inside
a confidence interval at any node in-memory. Then we
postprocess each node with a numerical splitting attribute to
find the exact value of the split point using the tuples collected
during the database scan. This postprocessing phase of the
algorithm, the cleanup phase, is described in Section 3.3.
The coarse splitting criterion at a node n obtained from the
sample D’ through bootstrapping is only correct with high
probability. This means that occasionally the final splitting
attribute is different from the sample splitting attribute, or,
if the sample splitting attribute is equal to the final splitting
attribute, it could happen that the final split point is outside
the confidence interval, or that the final splitting subset is
different from the sample splitting subset. Since we want
to guarantee that our method generates exactly the same
tree as if the complete training dataset were used, we have
to be able to check whether the coarse splitting criteria
actually are correct. In Section 3.4, we present a necessary
condition that signals whenever the coarse splitting criterion
is incorrect. Thus, whenever the coarse splitting criterion
at a node n is not correct, we will detect it during the
cleanup phase and can take necessary measures as explained
in Section 3.5. Therefore we can guarantee that our method
always finds exactly the same tree as if a traditional main-
memory algorithm were run on the complete training dataset.

3.2 Coarse Splitting Criteria

‘We begin by formally defining the statistics that we assume
to exist at each node n at the beginning of the cleanup phase.
We call these statistics the coarse splitting criterion at node
n. Then, we show how to calculate a coarse splitting criterion
that is correct with high probability at each node n.
Informally, the coarse splitting criterion at n restricts the set
of possible splitting criteria at n to a small set; it is a “coarse
view” of the final splitting criterion. The coarse splitting
criterion for the two attribute types is shown in Figure 2; its
first part is called the coarse splitting attribute. At a node n
with numerical splitting attribute X,,, the second part of the
coarse splitting criterion consists of an interval of attribute
values such that the final split point on X, is inside the
interval with high probability. Formally, assume that the
final splitting predicate at node n is X, < z;,. Then the
second part of the coarse splitting criterion at . consist of an

interval [iL,if], i i® € dom(X,,) such thatiL < %, and



z;, € [iL,iR]. Thus, to find the final split point, the value of
the impurity function needs to be examined only at attribute
values z € [iZ, iR

We now address the computation of the coarse splitting
criterion. The main idea is to take a large sample D' from
the training database D and use an in-memory algorithm to
construct a sample tree 7’. Then we use a technique from
the statistics literature called bootstrapping [ET93, AD97]
that allows us to quantify, at each node n, how accurate the
splitting criterion obtained from the sample is with respect to
the final splitting criterion. Recall that for a node n € 17,
its splitting criterion is called sample splitting criterion to
emphasize that it has been computed from the in-memory
sample D’ C D; the final splitting criterion using the
complete training database D might be different. We will also
use the terms sample splitting attribute, sample split point and
sample splitting subset.

‘We use bootstrapping to obtain the coarse splitting criterion
as follows. First, we construct b bootstrap trees T4, ..., T},
constructed from training samples Ds, ..., Dy obtained by
sampling with replacement from D’. Then we process the
trees top-down. For each node n, we check whether the b
bootstrap splitting attributes at n are identical; if not, then we
delete n and its subtree in all bootstrap trees. If at a node
n the b bootstrap splitting attributes are the same categorical
splitting attribute X ,, we check whether all bootstrap splitting
subsets are identical. If not, then we also delete n and its
subtree in all bootstrap trees. The intuition for such stringent
treatment of categorical splitting attributes is that as soon
as two subtrees split on different subsets, the subtrees are
incomparable. Then for each node n in the remaining tree, we
set the coarse splitting attribute to be the bootstrap splitting
attribute. If the bootstrap splitting attribute at node n is
categorical, we set the coarse splitting subset equal to the
bootstrap splitting subset. If the bootstrap splitting attribute
at node n is numerical, we have b bootstrap split points from
which we can obtain a confidence interval [i£, i %] for the final
Spllt pomt such that with high probability the final split point
z}, € [iL,iF). The level of confidence can be controlled by
increasing the number of bootstrap repetitions.

33

In this section, we describe part of the cleanup phase of the
algorithm. We show an algorithm that takes as input the
sample tree T and the coarse splitting criteria. The algorithm
makes one scan over the training database while collecting
a small subset of the training database in-memory. (We will
assume without loss of generality that this subset of tuples
fits in-memory; the implementation used in the experimental
evaluation in Section 5 writes temporary files to disk to be
truly scalable. We further discuss this issue in Section 3.5.)
Assuming that the coarse splitting criteria are correct, the in-
memory information is used to compute the final splitting
criterion at n. Thus, assuming we are given the coarse
splitting criterion at each node n and the coarse splitting
criteria are actually correct, we can compute the final tree in

From Coarse to Exact Splitting Criteria

173

only one scan over the training database. In the remainder of
this section, we assume that the coarse splitting criteria are
correct; we show how this assumption can be checked in the
next section.

In order to describe the algorithm precisely, let us introduce
the following notation. Let S be a set of tuples. At node n

with numerical splitting attribute X,, and confidence interval

iL, i) from the coarse splitting criterion, define I,(S) %

{t teS i tXy <il},in(S) E{t:tesS:tX, >

L At.X, <iB}andr,(S) & {t:te S:t.X, >if}.
Given the coarse splitting criterion at a node n, how can
the final splitting criterion be computed? If the splitting
attribute at n is categorical, the coarse splitting criterion is
equal to the final splitting criterion; no extra computation is
necessary. Thus, let us concentrate on the case where the
splitting attribute at n is numerical. Since the final split point
z}, is inside the confidence interval z7, € [iZ, %], we have to
examine all possible split points 1n51de the interval. Assume
that n is the root node of the tree. To estimate the quality
of an attribute value z € [i£, %] as potential split point, the
values On Xz, and gR are needed as arguments to the

impurity function impy (1, Xp, ) in order to calculate the
impurity at z (see Section 2.2). Assume that we make one
scan over the t{\aining database, during which we compute
gL X, it and 0F .. in; foralli € dom(C). In addition,
we keep all tuples ¢ € in(F,) in-memory. _Then after the
scan, the arguments to the impurity function imp, x (7, Xn, )
for each = € [iL,i%] can be calculated as follows:

nX x

0nX = H{te Fr:t.X <z A t.C =i}
" ||
_ §£,X"‘i£’i AFa] + {t € in(Fp) : t.X <z A t.C =i}
|l ’
the value On X.,z,i 1§ calculated similarly. Thus, in one scan

over the trammg database, we can find the final splitting
criterion at the root node n given the coarse splitting criterion
at n: we retain the set i, (Fy,) m-memory and then calculate
the value of the impurity function impy (7, Xn,z) at each
potential split point = € %, iF] using the tuples in-memory.
Consider now the computation of the final split point z};, €
[iL,, iR for the left child n’ of the root node n. After having
computed the splitting criterion at n, we can use the same
algorithm for n’: Make one pass over D, while collecting

in(Fn) in-memory and calculating |Fy|,

6’n, X,k fori € dom(C). This method will result in
an algonthm that makes one scan over D per node in T'
during the cleanup phase. Is it possible to collect ip (Fur)
and 0", X, ik,; and 0n, X,,ir,; for i € dom(C) during the
first scan? Unfonunately, the answer is no. If for a tuple
t € D,t € 1,(D), then ¢t belongs to Fy, . Consider a tuple
t € in(F,) Nip(Fy). During the scan of D, the final
splitting criterion of node n is not known yet. Thus, for all
tuples t € 7,(Fy), we cannot decide yet whether to send ¢

n’X:z"iand



to the left child or the right child of n. Therefore after the
first scan, F),r is not complete yet, because some tuples got
“stuck” at node n. Thus, if at a node n, t € i,(F,), we
retain ¢ in a set of tupl(*s S, and stop. Ift & i,(F,), then
we update 0 v X il i OF On X iR . and recursively process ¢
by sending it to its subtree. The result of the scan is a set of
tuples S, at each node; for the root node n, S, = in(Fyp),
for a non-root node n, S,, C i,(Fy). Note that after the scan
at anode n, if a tuple ¢ € ip(Fy,) \ Sn, thent € iy (Fr)
for some ancestor ' of n. Thus, for each node n, all the
tuples ¢ € i,(F,) are actually in-memory, either in S, or in
S, for some ancestor n’ of n. This observation allows for
the following top-down processing of the tree after the scan:
We start at the root node n and find its splitting criterion.
Then we process all tuples ¢ € S,, recursively by the tree
as during the scan of D. Since the splitting criterion at n has
been computed we know the correct subtree for each tuple.
Finally, we recurse on n’s children. Whenever a node n is
processed, S, = i,(F,), because all the tuples t € i,/ (Fyp)
for all ancestors n' of n have been processed and distributed
to their respective children.

Summarizing the results from this section, we have shown
how to obtain the final splitting criterion for all nodes of
the tree simultaneously in only one scan over the training
database D, given that we know the coarse splitting criterion
at each node n of the tree.

3.4 How To Detect Failure

In Section 3.2, we showed how to compute a coarse splitting
criterion that is correct with high probability. In order to
make the algorithm deterministic, we need to check during
the cleanup phase whether the first part of the coarse splitting
criterion, the coarse splitting attribute, is actually the final
splitting attribute. In addition, given that this premise holds,
we have to check that the second part of the coarse splitting
criterion is correct. If not, then for a categorical splitting
attribute, the split might involve a different subset. For a
numerical splitting attribute, the split might be outside the
confidence interval.

Let us first address the case of how to detect whether
the second part of the coarse splitting criterion is correct,
assuming that the first part is correct. That is, for now we
assume that the coarse splitting attribute X is equal to the final
splitting attribute and concentrate on checking the second
part of the coarse splitting criterion. The second part of the
coarse splitting criterion for a categorical splitting attribute
X consists of the coarse splitting subset Y’; we have to
check whether Y is equal to the final splitting subset Y. We
perform this check by constructing the values 8, x (.}, for
each z € dom(X) and ¢ € dom(C) during the cleanup scan
in-memory.

The second part of the coarse splitting criterion for a
numerical splitting attribute consists of a confidence interval

[iL,iB). Let o), € [iL,i%] be the attribute value with

%
Tl’
the mlmmum value of the impurity function, Let ¢’ ef

.unp x(n, X, z},). In order to be sure that the final split point is

174

not outside the confidence interval, we have to check that i’ is
the global minimum of the impurity function, and not just the
local minimum inside the confidence interval. Conceptually,
we have to calculate the value of the impurity function at
every ¢ € dom(X), = ¢ [iL,4?] and compare it with 7’. For
this calculation, we need to construct all values 6% » _ . and

05, X,z,; during the cleanup scan in-memory. But since we
construct several levels of the tree together, it is prohibitive
to keep all these values simultaneously in-memory during
the cleanup-scan. (Constructing these values in-memory is
analogous to constructing the AVC-sets [GRG98] of predictor
attribute X for all nodes concurrently in main memory.) So
we need a method that allows us to conclude that 7’ is the
global minimum of the impurity function over all attribute
values of X without constructing all values 6% x _ . and
0n X,z,i in-memory. The remainder of this section addresses
this issue.

Consider node n with numerical predictor attribute X. (We
will drop the dependencies on n and X from the notation in
the following discussion.) Let N be the count of tuples in F,,
with class label i. Let z € dom(X) be an attribute value and

let nt ef Ht € Fp : t.X <z At.C =i} fori € dom(C).
Thus each attribute value x € dom(.XX') uniquely determines
a tuple of values (nl,...nk), called the stamp point of
z [FMMT96a, FMMT96b, FMM96, MFM*98]. Thus, F,
induces a set of stamp points in the k—dimensional plane. At

a node n, let N be the number of tuples in the family of n

with class label 4; formally, N i def teD:te Fy At.C =

i}. Since at node n, N* is fixed for all i € dom(C), the tuple
(n,...,n}) uniquely determines the value of the impurity
function imp y at attribute value z because we can rewrite the
arguments to the impurity function as follows:

—~ i Ni—ni
6L = dgr =—2%
n,X,x,i IF l an n,X,x,1 IFﬂl
We can define a new function impg on the stamp points as
Ry def
follows: impg(ni,...,nk) =
im (n1 ny N'—mny N’“—-nk)
PR TR TR T TR

Let € dom(X) and let (nl,...nk) be the stamp point of
attribute value = at node n. By constructlon of impg, it holds

that for z € dom(X) : impg(nl,...n%) = impy(n, X, x).

Consider two attribute values z1 < 2 and let P, ,, def

{(nix,--snkx) 1t € Fu ALX > ;i ALX < 22},
i.e., Py, o, is the set of stamp points of all attribute values
between z, and zo that occur in F,,. Note that if z; >
Z3, ni, > ni, forall i € dom(C). Since impy and
thus impg are concave, the minimum value of the impurity
function iEp\X will be on the convex hull of the stamp
points P, ., [Man94, FMMT96a, FMMT96b, FMM96,
MFM*98). Because the convex hull is enclosed in the hyper-
rectangle defined by the 2 comer points (n}cl, e ’"’::1) and



count ]
B lower bound stamp point
of class2
® bucket boundary .
——— e entrenen s e, ..
Each attribute
value maps
........... to one
stamp point

Count of class 1

confidence

interval

! Attribute Values

Figure 3: Mapping from attribute values to stamp points and
the lower bound

(nzz, ,nmz) it is enclosed by the 2% comer points. For
example, (nl , ﬁz,ngl, ,n’c ) is one of the corner points.
Thus, the value of the impurity functlon for ali attribute values
inside the interval [z, 2] can be lower-bounded by the value
of the impurity function at the 2* corner points. For example,
ifk = 2 the four comer points are (nl ,n2 ), (nmz,nﬁz)
(nl,,n2,),and (nl,,n2 ). Figure 3 illustrates this situation
for the case of two class labels. In the general case with &k

class labels, the following lemma holds.

Lemma 3.1 Let n be a node in the tree, X be a numerical
predictor attribute and z; < :cz, T; € dom(X ) be two attribute
values with stamp points (n ,...,n5 ) and (n,,...,nk),
respectively. Let Py, ., be the set of stamp points of all
attribute values between ; and x5 that occur in F,. Let impg
be a concave impurity function. Let S be the set of 2% corner

points of the hyper-rectangle defined by (nl,,...,n¥ ) and
(5. conky): § 2 = (ko omk,)s (nd iy, k),
o (nl,,...,nk)}. Then
(P 2 PSP T) 2
(m,.l.n.’ia)esimps(nl,...,nk)
Proof: This is an application of a result in Mangasar-

ian [Man94] to the decision tree setting. (]

Before we discuss how we use Lemma 3.1, we define the
notion of a discretization f of a numerical variable X. For
a random variable X with a numerical domain dom(X), we
call a function f : dom(X) ~ N a discretization of X if
x; < z; implies that f(z;) < f(z;) for z;,2; € dom(X).
(Actually, f(X) is a new random variable with domain N,
where N denotes the set of natural numbers.) We call each
k € N a bucket of f, and if f(z) = k we say that x belongs
to bucket k (under f). We call a value ' € dom(X ) such that
Vz € dom(X) : (z < 2’ = flz) L fF@&') A (z > 7' =
f{z") > f(z)) a bucket boundary.

175

At each node n, we calculate a discretization f for the
splitting attribute from the sample D’. During the cleanup
phase, we construct the stamp points at the bucket boundaries
of f through simple counting. We use Lemma 3.1 to
calculate a lower bound on the value of the impurity function
for each bucket; let ¢ be the minimum of all these lower
bounds. Then we compare 7 with the minimum value of the
impurity function i’ calculated during the cleanup phase for
the splitting attribute. If i < #’, then the final split point
might fall into bucket B instead of inside the confidence
interval; in this case we discard node n and its subtree.
Lemma 3.1 therefore gives us a condition that is necessarily
true whenever the final split point is outside the confidence
interval. Thus, in the case of a numerical splitting atiribute,
we can detect whether the second part of the coarse splitting
criterion is correct.

It remains to show how we can detect the case that the
first part of the coarse splitting criterion, namely the choice
of splitting attribute, is incorrect. Consider a node n and
let the minimum value of the impurity function given the
coarse splitting criterion is true be ¢/, ie., if the coarse
splitting attribute X,, is categorical, ¢’ is the value of the
impurity function of the coarse splitting subset, if the coarse
splitting attribute X, is numerical, 7’ is the minimum value
of the impurity function over all attribute values inside the
confidence interval. Whenever n is processed during the
cleanup phase, we can calculate the minimum value of the
impurity function for all categorical attributes exactly and
compare it with ', For the remaining numerical variables, we
calculate discretizations during the sampling phase and obtain
the values of the stamp points of the discretization boundaries
during the cleanup phase. Then we use Lemma 3.1 to lower
bound the value of the impurity function at all buckets. If i’ is
still the global minimum, then the splitting attribute from the
coarse splitting criterion is actually the final splitting attribute.

How do we find a “good” discretization f for a numerical
predictor attribute X at node n in the tree? Note that the only
purpose f serves is to allow the application of Lemma 3.1
to (1) check whether the actual split point is inside the
confidence interval in case X is the coarse splitting attribute
or to (2) check whether the final splitting attribute could be
X, in case X is not the coarse splitting attribute. If f has too
few buckets, the lower bound produced by Lemma 3.1 will
be very crude; thus the lemma might too often indicate that
a bucket could have a split point with a lower value ¢ < 7'
of the impurity function, even though there is no attribute
value in the discretization bucket that actually achieves i.
Too many buckets of f are not a problem; the lower bound
of Lemma 3.1 will be very tight. But since BOAT requires
discretizations for all numerical predictor attributes at each
node of the subtree currently under construction, we cannot
afford to have overall too many discretization buckets due
to main memory constraints. What we would like is to
construct at each node as many buckets as “necessary”. How
many buckets are necessary at node n for numerical predictor
attribute X? We construct the bucket boundaries before the



cleanup scan from the in-memory sample as follows. We
scan the attribute values occurring in F;, constructed from the
sample D’ from smallest to largest value. If the lower bound
of the current bucket is much higher from the estimated lowest
value of the impurity function at node 7, then the bucket can
be enlarged. Otherwise a new bucket boundary is set. This
procedure constructs many buckets in regions of the attribute
space where the value of the impurity function is close to the
overall minimum and the bounds produced by Lemma 3.1
need to be quite tight in order not to signal a false alarm.
The procedure constructs few buckets in regions where the
value of the impurity function is much larger than the overall
minimum.

Since we can detect all cases of incorrectness of the coarse
splitting criterion at a node 7, we have shown the following
lemma to be correct.

Lemma 3.2 Consider a node n of the final decision tree and
let i’ be the minimum value of the impurity function given
that the coarse splitting criterion at n is correct. If ¢’ is not the
global minimum of the impurity function at node n, then our
algorithm will detect this case.

3.5 Putting the Parts Together

We now explain how the parts of the algorithm described in
Sections 3.2 to 3.4 are put together to arrive at a fast, scalable,
deterministic algorithm for decision tree construction.

We first take a sample D' C D from the training database
and construct a sample tree with coarse splitting criteria at
each node using bootstrapping. Then we make a scan over the
database D and process each tuple by “streaming it” down the
tree. At the root node n, we first update the category-class-
label counts for all categorical predictor attributes. Then we
update the counts of the buckets for each numerical predictor
attribute. If the splitting attribute from the coarse splitting
criterion at n is categorical, we send ¢ to the child node of n
as predicted by the splitting criterion. If the splitting attribute
from the coarse splitting criterion at n is numerical and ¢ falls
inside the confidence interval, we write ¢ to a temporary file
Sn at node n. Otherwise we send ¢t down the tree. Note that
we can stop tree construction if the size | F},| of the family of
a node n is small enough to fit in-memory because in this case
it is always cheaper to rur a main-memory algorithm on F,,.

After the database scan, the tree is processed top-down.
At each node, we use our lower bounding technique to
check whether the global minimum value of the impurity
function could be lower than ¢’, the minimum impurity value
calculated from either the complete information about the
categorical splitting attribute or from examining the tuples in
Sp. If the check is successful (i.e., ¢’ is the global minimum),
we are done with node n. If the check indicates that the
global minimum could be less than i/, we discard n and its
subtree during the current construction and call our algorithm
recursively on n after processing the rest of the tree. In most
cases, the family of tuples F,, is already so small that F,,
completely fits in-memory, and thus an in-memory algorithm
can be used to finish construction of the subtree rooted at na.

176

4  Extensions to a Dynamic Environment

We outline briefly how the information about the coarse split-
ting criterion can be used to extend BOAT to support incre-
mental updates of the decision tree in a dynamic environment
where the training dataset changes over time through both in-
sertions and deletions.

Consider the root node n of the tree. The training dataset
D was generated by an unknown underlying probability
distribution P. Since D is a random sample from P, all
statistics obtained from D are only approximations of true
parameters of the distribution. Now consider a new “chunk”
of training data D; that needs to be incorporated into the tree.
If D, is drawn from the same underlying distribution, the new
tree Tpyp, that models D U D; will not be very “different”
from Tp. This fuzzy notion of difference is actually exactly
the same notion as described in Section 3.2. In Section 3.2,
we are given a sample D' from an underlying distribution
(represented by D) and would like to know how different the
tree Tp is from the tree Tp. The coarse splitting criteria
in T actually capture the randomness of D' by allowing
the split point for numerical splitting attributes to fluctuate
inside the confidence interval. Thus, another view of the
coarse splitting criterion is that it captures a set of possible
final splitting criteria, all highly likely given the underlying
probability distribution P as captured by D.

Using the same statistical notion of difference as discussed
in the previous paragraph, and as represented by the coarse
splitting criterion, our algorithm to update the tree in a
dynamic environment works as follows. We keep the
information that we collected during the cleanup phase from
D at each node n of the tree. Thus, associated with each node
n with numerical predictor attribute, is a file S,, that contains
all tuples that fell inside the confidence interval [iZ,, i£] during
the scan over D. To incorporate a new set of tuples D,
into the tree, we stream the tuples ¢ € D, down the tree as
if they were part of D and we were making the scan over
D during the cleanup phase. Following the processing of
D, we again process the tree top-down, exactly as in the
cleanup phase. If D; is also a random sample from the
same underlying probability distribution, then by construction
of the coarse splitting criterion, the final splitting criterion
at node n will be included in the set of splitting criteria
captured by the coarse splitting criterion of n and thus we
can calculate the final splitting criterion at n exactly—all this
while scanning ), exactly once! Deletions can be handled
in the same way. Assume that D; expired and is removed
from the training dataset. Then we can process D; as for
insertion, but with the difference that instead of inserting
tuples, we remove the respective tuples from the tree and
update the counts maintained to ensure detection of changes
of the coarse splitting criterion.

This algorithm has the following properties. If D is
sufficiently different from D, then this will be detected by our
lower-bound techniques which will indicate that the coarse
splitting criterion at a node n is not correct any more. In this
case, the affected part of the tree, namely the subtree rooted



at n, needs to be rebuilt. Note that only the part of the tree
in which the distribution has sufficiently changed needs to be
rebuilt. This cost model is very attractive in a real-life setting:
If new data arrives (or old data expires), but the changes
in the training dataset are only due to random fluctuations
(in the precise statistical sense), then the cost to update the
tree is very low and involves only a scan over the dataset
that is to be inserted or deleted. It there are changes in the
distribution, the cost paid is proportional to the “seriousness”
of the changes: if the splitting attribute at the root node
changes, the whole tree needs to be completely rebuilt. But if
the distribution changes only in a part of the attribute space,
only the subtree that models that part of the space needs to
be rebuilt. In addition, showing that statistically significant
changes have happened in part of the tree is a valuable tool
for the analyst who can be informed that specific parts of the
tree have changed significantly, even though other parts of the
tree might only have changed slightly inside the confidence
intervals. This insight is much more than what could be
extracted by just comparing the two trees Tp and Tpup,
(or Tp and Tp\ p, ). Using such a comparison, it is possible
to point out changes in the splitting predicates but it is not
possible to assess whether these changes are due just to the
randomness in the overall process or due to a change in the
underlying distribution.

We emphasize that, as in the static case, the adaptation of
our algorithm to a dynamic environment always guarantees
that the tree constructed is exactly the same tree as if a
traditional algorithm was run on the changed training dataset.

5 Experimental Evaluation

The two main performance measures for classification tree
construction algorithms are: (i) the predictive quality of
the resulting tree, and (ii) the decision tree construction
time [LLS97]. BOAT can be instantiated with any split se-
lection method from the literature that produces binary trees
without modifying the result of the algorithm. Thus, quality is
an orthogonal issue to our algorithm, and we can concentrate
solely on decision tree construction time. In the remainder
of this section we show the results of a preliminary perfor-
mance study of our algorithm for a variety of datasets for
impurity-based split selection methods. Based on some ob-
servations about impurity-based split selection methods from
our experiments, we also show performance results for an-
other non-impurity based split selection method. The results
demonstrate that BOAT achieves significant performance im-
provements (two to five times). Finally, we also show some
performance results for classification tree maintenance in a
dynamic environment.

5.1

The gap between the scalability requirements of real-life data
mining applications and the sizes of datasets considered in
the literature is especially visible when looking for possi-
ble benchmark datasets to evaluate scalability results. The
largest dataset in the often used Statlog collection of train-
ing databases [MST94] contains only 57000 records, and the

Datasets and Methodology

177

largest training dataset considered in [LLS97] has 4435 tu-
ples. We therefore use the synthetic data generator intro-
duced by Agrawal et al. in [AIS93], henceforth referred to as
Generator. This data generator has been used previously
in the database literature to study the performance of deci-
sion tree construction algorithms [SAM96, RS98, GRG98].
The synthetic data has nine predictor attributes. Each tu-
ple generated by the synthetic data generator has a size of
40 bytes (assuming binary files). Included in the genera-
tor are classification functions that assign class labels to the
records produced. We selected three of the functions (Func-
tion 1, 6 and 7) introduced in [AIS93] for our performance
study. In Function 1, two predictor attributes carry predic-
tive power with respect to the class label, Function 6 involves
three predicates, and in Function 7 the class label depends
on a linear combination of four predictor attributes [AIS93].
Note that our selection of predicates adheres to the methodol-
ogy used in the Sprint, PUBLIC and RainForest performance
studies [SAM96, RS98, GRG98].

We compare our algorithm to the RainForest algorithms,
which were shown to outperform previous work [GRG98].
The feasibility of the RainForest family of algorithms requires
a certain amount of main memory that depends on the size
of the initial AVC-group [GRG98], whereas BOAT does not
have any a-priori main memory requirements. Thus we
compared BOAT to the two extremes in the RainForest family
of algorithms. We chose the fastest algorithm, RF-Hybrid,
requiring the largest amount of main memory, and the slowest
algorithm, called RF-Vertical, requiring the smallest amount
of main memory. Since we are interested in the behavior of
our algorithm for datasets that are larger than main memory,
we stopped tree construction for leaf nodes whose family
would fit in-memory. Any smart implementation would
switch to a main-memory tree construction at this point.

In all the experiments reported here, we took an initial
sample of size 200000 tuples from the training database
and then performed 20 bootstrap repetitions with a sub-
sample size of 50000 tuples each. All our experiments
were performed on a Pentium Pro with a 200 Mhz processor
running Solaris X86 version 2.6 with 128 MB of main
memory. All algorithms are written in C++ and were
compiled using gce version pgec—2.90.29 with the -03
compilation option.

5.2  Scalability Results

First, we examined the performance of BOAT as the size of the
input database increases. For Algorithms RF-Hybrid and RF-
Vertical, we set the size of the AVC-group buffer to 3 million
and 1.8 million entries, respectively. For this experiment,
we stopped tree construction at 1.5 million tuples, which
corresponds to a size of the family of tuples at a node of
60 MB. (The threshold is set to 60 MB, because RF-Hybrid
uses around 60 MB of main memory in the optimized version
that we compared BOAT with.) Figures 4 to 6 show the
overall running times of the algorithms as the number of
tuples in the training database increases from 2 million to 10



Time in Seconds

Time in Seconds

Time in Seconds

Time in Seconds

180 Scalability -- Function 1
1600 BOAT: Cluggpxséé Z:
1400 RF-Vertical ~+—
1200 -
1000
800
600
400
200

0 p T v

2 NurbatofTuos i Milos.
Figure 4: Overall Time: F1

Noise Sensitivity - Function 1

600
BOAT: Clea B&’:,T, =
< leanuy -
500 RFPMM‘ -
RF-Vertica) +—
300
200
—— e
100 o D S R

0 : —

0 002 00 006 088 O
Noiss Factor

Figure 7: Noise: Time F1

Increase of the Number of Attributes: F1

1800
1600 BOAT: cle%nFu_p"&ﬁI 1_
1400 RF-Vertca
1200
1000
a0
800
)
0
% 510

+ 6§ 8
Additonal Number of Atributes

Figure 10: Extra Attributes: F1

s Changing Dataset — No Change in Distribution

BOAT: Update ~—
4000 BOAT: Repeated Rebuild —+—
RF—P\}ybrid: Repeated Robuild -»-
3500] RF-Vertical: Repated Rebuid
3000
2500
2000
1500
1000
m -
0 p— .
0

2 4 6 8 10
Cumutative Number of New Tuples in Millions

Figure 13: Dynamic: No Change

Scalability -- Function 6

1800
BOAT ~—
1600 BOAT: Cb?gm e
1400 RF-Vertical -+—
3
]
£
]
£
E
2 4 6 & 1
Number of Tuples in Milions
Figure 5: Overall Time: F6
Noise Sensitivty - Function 6
600
BOAT ~+—
50 BOAT: Clea#m{\ -
RF-Vettical —
3 400
[+ S i
8
3 o
£
g
F 0 .—.——/
T
100 (NI
0 . , . .
0 002 004 006 008 Ot
Noise Factor
Figure 8: Noise: Time F6
Increase of the Number of Attributes: F6
1800
BOAT ~—
1600 BOAT: Cleanup Scan -+~
RF-Hybrd s
1400
2 100
3
§ 100
£ w0
g
F 600
400
20
0 .
¢ 10

. ions Mo s
Figure 11: Extra Attributes: F6

Dynamically Changing Dataset — Change in Distribution

1400 BOAT: Update ~—
BOAT: Repeated Flljgguaild -
1200
4 1000
c
$ m
£
E 600
=
400
200
0
0

2 4+ 6 8 10
Cumulative Number of New Tuples in Millions

Figure 14: Dynamic: Change

178

Scalabity - Funcion 7
2500
BOAT —
BOAT: Cleﬂwg% s
20 RF-Vertical -+—
3
§ 1500
3
2 100
E
500
0 : : .
0 2 4 8 8§10
Numbes of Tuples n Milions
Figure 6: Overall Time: F7
Noise Sensivty - Function 7
0
BOAT:Cloaup gy ——
600 ’ RFPHybrid -
RF-Vertical ~+-—
. X0
% - Yomomeeoeers ¥ =4
0
8
c
£ e
g
F
20 R ——
100
0 . . . : .
0 002 O0M 006 008 01
Noise Factor
Figure 9: Noise: Time F7
Impurity

Function \\/\/

Time in Seconds

Class |

(tass 2| Class 1’C1ass2
l I | l Values

0 u 4 o ¥
Figure 12: Instability

Dynamically Changing Dataset - Arival Cardinalty

Attribute

o] e
300
260
200
150
100
50
0 T T v

2 4 68 m
Cumulative Number of New Tuples in Miltions

Figure 15: Dynamic: Small Updates



million tuples. The trees produced by Function 7 have more
nodes before the threshold is reached, thus tree growth takes
longer than for the other two functions. BOAT outperforms

both RF-Hybrid and RF-Vertical in terms of running time; for

Functions 1 and 6, BOAT is faster by a factor of three and for
Function 7 hv a factor of two. Since tree construction was
stopped at 1.5 million tuples, BOAT achieves no speedup yet
for training database sizes of 2 million tuples (the resulting
tree has just three leaf nodes before the switch to the in-
memory implementation occurs). But the speedup becomes
more and more pronounced as the size of the training database
increases.

We also examined the effect of noise on the performance
of BOAT. We expected that noise would have a small impact
on the running time of BOAT. Noise mainiy affects splits
at lower levels of the tree, where the relative importance

UCI.WCUII lllUlVlUlidl i cuxuux auuuul.ca UCUI Castd, muuc LhG
most important predictor attributes have already been used at

the upper levels of the tree to nartition the trainine dataset

iy Vi AUV WIS Vi AV WU WU pRa el WIS ASLlllg RSIGSUR.

Figures 7 to 9 compare the overall running times on datasets
of size 5 million tuples while increasing the percentage of
noise in the data from 2 to 10 percent. As in the previous
experiment, we stopped tree construction at 1.5 million
tuples. The figures show that the running time of BOAT is
not dependent on the level of noise in the data.

Figure 10 shows the effect of adding extra attributes with
random values to the records in the input database. (Due to
space limitations we only show the Figure for Function I, the
behavior is similar for the other functions.) Adding attributes
increases tree construction time since the additional attributes
need to be processed, but does not change the final decision

troa

tree {The anlit calantinn mathad will never chanse such

(The split selection method will never choose such
a “noisy” attribute as the splitting attribute.) BOAT exhibits
a roughly linear scaleup with the number of additional
attributes added.

During the experiments with BOAT we found out that
the instability of impurity-based split selection methods
deteriorates our performance results. By instability of a
split selection we mean that minimal changes in the training
dataset can result in selection of a very different split point.
As an extreme example, consider the situation shown at node
n in Figure 12; n is a numerical attribute with 81 attribute
values (0 to 80). Assume that there is nearly the same number
of tuples inside each interval of length 20 and assume that

tlha Rnal \MS + atteilaat, 1 [>T Th 1 1
uiC nna: Spiit is at attribute value 20. Aui'\'}‘dgh msertion

or deletion of just a few tuples, the global minimum of the
impurity function can be made to jump from attribute value
20 to attribute value 60 since both minima are very close to
each other. Thus if bootstrapping is applied to the situation
depicted in Figure 12, about half the time the split point will
be very close to attribute value 20 and the remaining times
the split point will be very close to attribute value 60. Since
the two splits are so far apart, the subtrees grown from the
two splits will very likely be different, and thus tree growth
stops at node n since two bootstrap samples disagree on the
splitting attributes of the children of n.

S

\©

5.3 Performance Results for Dynamically Changing

toanta

N
valasuiy

Since BOAT allows to update the tree dynamically, we also
compared the performance of the update operation in BOAT to
a repeated re-build of the tree. Due to space constraints, we

Yo ~exr e mbh 1, £
show performance numbers only for insertions of tuples into

the training datasets; since insertion and deletion of tuples are
handled symmetrically, the performance results for deletions
are analogous.

In our first experiment, we examined the performance
of the update operation for a changing training dataset
whose underlying data distribution does not change. We
ran BOAT on a dataset generated by Function 1 from the
synthetic data generator. Then we generated chunks of
data of size 2 million tuples each from the same underlying
distribution, but we set the level of noise in the new data
to 10%. Figure 13 shows the cumulative time taken to
incorporate the new data into the tree. Note that the time taken
for BOAT is independent of the size of the very first dataset
that was used to construct the original tree. If the underlying

ibution does not change, the in-memory information

data distri
about the coarse splitting criteria and the tuples inside the
confidence intervals that BOAT maintains is sufficient to
incorporate the new data and to update the tree without
examining the complete original training database. To give
a very conservative comparison of the update operation to
repeated re-builds, we assumed the size of the original dataset
to be zero. Thus the running time for the repeated re-
builds shown in Figure 13 is the cumulative time needed to
construct a tree on datasets of size 2 to 10 million tuples
for the respective algorithms Figure 15 shows a comparison

OI I'UIlIlll'lg llIIlt:b wr dIIlle bllulll\b Ul Laluumuty Ul blLC J.
million tuples versus 2 million tuples. The two curves are

ruaorlv uhanfu‘al
CIiicas.

What happens if the underlying distribution changes?
In our next experiment we modified Function 1 from the
synthetic data generator such that the tree in part of the
attribute space is different from the original tree generated by
Function 1. The results are shown in Figure 14. Even though
in the incremental algorithm parts of the tree get rebuild,
the incremental algorithm outperforms repeated rebuilds by

a factor of 2.

6 Related Work

Agrawal et al. introduce an interval classifier that could use
database indices to efficiently retrieve portions of the classi-
fied dataset using SQL queries [AGI*92]. Fukuda et al. con-
struct decision trees with two-dimensional splitting crite-
ria [FMM96]. The decision tree classifier SLIQ [MAR96]
was designed for large databases but uses an in-memory data
structure that grows linearly with the number of tuples in
the training database. This limiting data structure was elim-
inated by Sprint a scalable data access method, that re-

moves dll rClduUIlqupb UCLWCCH llld.lu memory a.ud amc uf

the dataset [SAMO96]. In recent work, Morimoto et al. de-

veloned aloorithms for decision tree construction for cate-

YOIUPVG QIpVIILHLILS 103 Loisiin 200 LRllsllvisiiss 222



gorical predictor variables with large domains [MFM198].
Rastogi and Shim developed PUBLIC, a MDL-based prun-
ing algorithm for binary trees that is interleaved with the tree
growth phase [RS98]. In the RainForest Framework, Gehrke
et al. proposed a generic scalable data access method that can
be instantiated with most split selection methods from the
literature [GRG98], resulting in a scalable classification tree
construction algorithm.

The tree induction algorithm ID5 restructures an exist-
ing tree in-memory [Utg89] in a dynamic environment un-
der the assumption that the complete training database fits
in-memory. Utgoff et al. extended this work and presented
a series of restructuring operations that can be used to de-
rive a decision tree construction algorithm for a dynamically
changing training database [UBC97] while maintaining the
optimal tree. But their techniques also assume that the train-
ing database fits in-memory. Efron and Tibshirani [ET93] and
Davison and Hinkley [ AD97] both are excellent introductions
to the bootstrap. In recent work, Megiddo and Ramakrishnan
used a form of bootstrapping to assess the statistical signifi-
cance of a set of association rules [MS98].

7  Conclusions

We introduced a new scalable algorithm BOAT for construct-
ing decision trees from large training databases. BOAT is
faster than the best existing algorithms by a factor of three
while constructing exactly the same decision tree, and can
handle a wide range of splitting criteria. Beyond improv-
ing performance, BOAT enhances the functionality of ex-
isting scalable decision tree algorithms in two major ways.
First, BOAT is the first scalable algorithm that can maintain a
decision tree incrementally when the training data set changes
dynamically. Second, BOAT greatly reduces the number of
database scans, and offers the flexibility of computing the
training database on demand instead of materializing it, as
long as random samples from parts of the training database
can be obtained. In addition to developing the BOAT algo-
rithm and proving it correct, we have implemented it and pre-
sented a thorough performance evaluation that demonstrates
its scalability, incremental processing of updates, and speed-
up over existing algorithms.

Acknowledgements: We thank Anand Vidyashankar for
introducing us to the bootstrap.

References

[AD97] A.C.Davison and D.V.Hinkley. Bootstrap Methods and their
Applications. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 1997.

R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami.
An interval classifier for database mining applications. VLDB
1992,

R. Agrawal, T. Imielinski, and A. Swami. Database mining:
A performance perspective. JEEE Transactions on Knowledge
and Data Engineering, 5(6):914-925, December 1993.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth, Belmont,
1984,

[AGIT92]

[AIS93]

{BFOS84]

180

[ET93}

[FMMO96]

[FMMT96a]

[FMMT96b]

[FPSSU96]

[GRGY8]

[Han97)

[LLS97]

[LS97]

[Man94]

[MARY6]

[MFM+98]

[MS98]

[MST94]

{Mur95]

[O1k93]
[QuiB6]
[RS98]
[SAMY6)

[UBC97]

[Utg89]

B. Efron and R. J. Tibshirani. 4n introduction to the bootstrap.
Chapman & Hall, 1993.

T. Fukuda, Y. Morimoto, and S. Morishita. Constructing
efficient decision trees by using optimized numeric association
rules. VLDB 1996.

T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data
mining using two-dimensional optimized association rules:
Scheme, algorithms, and visualization. SIGMOD 1996.

T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama.
Mining optimized association rules for numeric attributes.
PODS 1996.

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors. Advances in Knowledge Discovery and Data
Mining. AAAI/MIT Press, 1996.

J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - A
framework for fast decision tree construction of large datasets.
VLDB 1996.

D.J. Hand. Construction and Assessment of Classificaticn
Rules. John Wiley & Sons, Chichester, England, 1997.

Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. An empirical
comparison of decision trees and other classification methods.
Technical Report 979, Department of Statistics, University of
Wisconsin, Madison, June 1997.

Wei-Yin Loh and Yu-Shan Shih. Split selection methods for
classification trees. Statistica Sinica, 7(4), October 1997.

O. L. Mangasarian.  Nonlinear Programming. Classics
in Applied Mathematics. Society for Industrial and Applied
Mathematics, 1994.

M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable
classifier for data mining. In Proc. of the Fifth Int’l Conference
on Extending Database Technology (EDBT), Avignon, France,
March 1996.

Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama, and

K. Yoda. Algorithms for mining association rules for binary
segmentations of huge categorical databases. VLDB 1998.

N. Megiddo and R. Srikant. Discovering predictive association
rules. KDD 1998.

D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine
Learning, Neural and Statistical Classification. Ellis Hor-
wood, 1994.

S. K. Murthy. On growing better decision trees from data.
PhD thesis, Department of Computer Science, Johns Hopkins
University, Baltimore, Maryland, 1995.

F. Olken. Random Sampling from Databases. PhD thesis,
University of California at Berkeley, 1993.

J. Ross Quinlan. Induction of decision trees. Machine
Learning, 1:81-106, 1986.

R. Rastogi and K. Shim. Public: A decision tree classifier that
integrates building and pruning. VLDB 1998.

J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable
parallel classifier for data mining. VLDB 1996,

P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision
tree induction based on efficient tree restructuring. Machine
Learning, 29:5-44, 1997.

P.E. Utgoff. Incremental induction of decision trees. Machine
Learning, 4:161—-186, 1989.



