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Abstract 
Classification is an important data mining problem. Given a training database 
of records, each tagged with a class label, the goal of classification is to 
build a concise model that can be used to predict the class label of future, 
unlabeled records. A very popular class of classifiers are decision trees. All 
current algorithms to construct decision trees, including all main-memory 
algorithms, make one scan over the training database per level of the tree. 

We introduce a new algorithm (BOAT) for decision tree construction 
that improves upon earlier algorithms in both performance and fimctionality. 
BOAT constructs several levels of the tree in only two scans over the training 
database, resulting in an average performance gain of 300% over previous 
work. The key to this performance improvement is a novel optimistic 
approach to tree construction in which we construct an initial tree using a 
small subset of the data and refine it to arrive at the final tree. We guarantee 
that any difference with respect to the “real” tree (i.e., the tree that would be 
constructed by examining all the data in a traditional way) is detected and 
corrected. The correction step occasionally requires us to make additional 
scans over subsets of the data; typically, this situation rarely arises, and can 
be addressed with little added cost. 

Beyond offering faster tree construction, BOAT is the first scalable 
algorithm with the ability to incrementally update the tree with respect to both 
insertions and deletions over the dataset. This property is valuable in dynamic 
environments such as data warehouses, in which the training dataset changes 
over time. The BOAT update operation is much cheaper than completely re- 
building the tree, and the resulting tree is guaranteed to be identical to the 
tree that would be produced by a complete re-build. 

1 Introduction 

Classification is an important data mining problem. The 
input is a dataset of training records (also called training 
database), each record has several attributes. Attributes 
whose domain is numerical are called numerical attributes, 
whereas attributes whose domain is not numerical are called 
categorical attributesl. There is one distinguished attribute 
called the class label. (We will denote the elements of 
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the domain of the class label attribute as class labels; the 
semantics of the term class label will be clear from the 
context.) The goal of classification is to build a concise model 
of the distribution of the class label in terms of the predictor 
attributes. The resulting model is used to assign class labels 
to future records where the values of the predictor attributes 
are known but the value of the class label is unknown. 
Classification has a wide range of applications, including 
scientific experiments, medical diagnosis, fraud detection, 
credit approval, and target marketing [FPSSU96]. 

Many classification models have been proposed in the 
literature [MST94, Han97]. Classification trees [BFOS84], 
also called decision trees, are especially attractive in a data 
mining environment for several reasons. First, due to their 
intuitive representation, the resulting classification model is 
easy to assimilate by humans [BFOS84, MAR96]. Second, 
decision trees do not require any parameter setting from the 
user and thus are especially suited for exploratory knowledge 
discovery. Third, decision trees can be constructed relatively 
fast compared to other methods [SAM96, GRG98]. Last, 
the accuracy of decision trees is comparable or superior to 
other classification models [Mur95, LLS97]. In this paper, 
we restrict our attention to decision trees. 

We introduce a new algorithm called BOATS that addresses 
both performance and functionality issues of decision tree 
construction. BOAT outperforms existing algorithms by a 
factor of three while constructing exactly the same decision 
tree; the increase in speed does not come at the expense of 
quality. The key to this performance improvement is a novel 
optimistic approach to tree construction, in which statistical 
techniques are exploited to construct the tree based on a small 
subset of the data, while guaranteeing that any difference 
with respect to the “real” tree (i.e., the tree that would 
be constructed by examining all the data) is detected and 
corrected by a subsequent scan of all the data. If correction is 
not possible, the affected part of the tree needs to be processed 
again; typically, this case rarely arises, or only affects a small 
portion of the tree and can be addressed with little added cost. 

In addition, BOAT enhances functionality over previous 
methods in two major ways. First, BOAT is the first scal- 
able algorithm that can maintain a decision tree incrementally 
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when the training dataset changes dynamically. For exam- 
ple, in a credit card company new transactions arrive con- 
tinuously; it is crucial that a decision tree based fraud de- 
tection system can rejlect the most recent fraudulent transac- 
tions. One possibility is to rebuild the tree from time to time, 
e.g., every night, which is an expensive operation. Instead of 
rebuilding, BOAT allows us to “update” the current tree to in- 
corporate new training data while maintaining the best tree. 
That is, the tree resulting from the update operation is exactly 
the same tree as if a traditional algorithm were run on the 
modified training database. The update operation in BOAT is 
much cheaper than a complete rebuild of the tree. 

Second, BOAT greatly reduces the number of database 
scans, and is thus well-suited for training databases defined 
through complex queries over a data warehouse, as long 
as random samples from parts of the training database can 
be obtained. (It is :possible to obtain a random sample 
for a broad class of queries [Olk93].) For example, in 
a data-warehousing environment, BOAT enables mining of 
decision trees from arry star-join query without materializing 
the training set. All previous algorithms need the training 
database to be materialized to run efficiently. In addition, 
in most cases, BOAT does not write any temporary data 
structures on secondary storage, and thus has low run-time 
resource requirements. 

The remainder of the paper is structured as follows. In 
Section 2, we formally introduce the problem of decision tree 
construction. We present our new algorithm in Section 3 and 
show it can be extended to work in a dynamic environment in 
Section 4. We present results from a performance evaluation 
in Section 5. We survey existing work on decision tree 
classifiers in Section 6 and conclude in Section 7. 

2 Preliminaries 
2.1 Problem Definition 
In this section, we first introduce some terminology and 
notation that we will use throughout the paper. We then state 
the problem formally and give some background knowledge 
about decision tree construction. Let Xl,...,Xm,C be 
random variables where Xi has domain dom(Xi); we assume 
without loss of generality that dam(C) = { 1,2, . . . , Ic}. A 
classz@er is a function d : dom(X1) x - -- x dom(X,) t) 
dam(C). Let P(X’, C’) be a probability distribution on 
dom(X1) x .-. x dom(X,) x dam(C) and denote by t = 
(t.x,,... , t.X,, t.C) a. record randomly drawn from P, i.e., 
t has probability P(X’, C’) that (t.Xl, . . . , t.X,) E X’ and 
t .C E C’ . We define the misclassljication rate Rd of classifier 
d to be P(d((t.Xl,. . . ,t.Xm)) # t.C). In terms of the 
informal introduction, the training database D is a random 
sample from P, the Xi correspond to the predictor attributes 
and C is the class label attribute. 

A decision tree is a special type of classifier. It is a directed, 
acyclic graph T in the form of a tree. The root ofthe tree does 
not have any incoming edges. Every other node has exactly 
one incoming edge and may have outgoing edges. In this 
research, we concentrate on binary decision trees, since they 

are the most popular class of decision trees; our techniques 
can be generalized to non-binary decision trees, although we 
will not address that case in this paper. Thus we assume in the 
remainder of this paper that each node has either zero or two 
outgoing edges. If a node has no outgoing edges it is called 
a leaf node, otherwise it is called an internal node. Each le.af 
node is labeled with one class label; each internal node n is 
labeled with one predictor attribute X, called the sp,litting 
attribute. Each internal node n has a predicate qn, called the 
splitting predicate associated with it. If X, is a numerical 
attribute, q,, is of the form X,, 5 z,, where x, E dom(X,,); 
zn is called the split point at node n. If X,, is a categorical 
attribute, qn is of the form X,, E Y, where Y, C dom(X,); 
Y,, is called the splitting subset at node n. The combine:d 
information of splitting attribute and splitting predicates at 
node n is called the splitting criterion of n. If we talk about 
the splitting criterion of a node n in the final tree that is output 
by the algorithm, we sometimes refer to it as the$nalsplitting 
cn’terion. We will use the terms final splitting atnibute,jinaI 
splitting subset, andJina1 split point, analogously. 

We associate with each node n E T a predicate f,, : 
dom(X1) x .-- x dom(X,) I-+ {true, false), called its 
node predicate as follows: for the root node n, f,, dgf itrut:. 
Let n be a non-root node with parent p whose splitting 
predicate is qp. If n is the lefl child ofp, define f,, dgf f, ~q,; 

if n is the right child ofp, define fn dsf fp A lqp, Informally, 
fn is the conjunction of all splitting predicates on the int,emal 
nodes on the path from the root node to n. Since each 
leaf node n E T is labeled with a class label, it encodes a 
classification rule f,, + c, where c is the label of n. Thus the 
tree T encodes a function T : dom(X1) x . -a x dom(&,) I+ 
dam(C) and is therefore a classifier, called a decision tree 
class$ier. (We will denote both the tree as well as the induced 
classifier by T; the semantics will be clear from the context.) 
Let us define the notion of the family of tuples of a node 
in a decision tree T with respect to a database D. (We 
will drop the dependency on D from the notation since it 
is clear from the context.) For a node n E T with parent 
p, F,, is the set of records in D that follows the path from 
the root to n when being processed by the tree, formally 
F, ef {t E D : fn(t) = true). We can now formally 
state the problem of decision tree construction. 

Decision tree classification problem: Given a dataset 
D = {tl,..., t,,} where the ti are independent random 
samples from a probability distribution P, find a decision 
tree classifier T such that the misclassification rate R,(P) 
is minimal. 

A classification tree is usually constructed in two phases,. In 
phase one, the growth phase, an overly large decision tree is 
constructed from the training data. In phase two, the pruning 
phase, the final size of the tree T is determined with the goal 
to minimize RT. In this research, we concentrate on the 1xee 
growth phase, since due to its data-intensive nature it is a very 
time-consuming part of decision tree construction [MAR96, 
SAM96, GRG98]. (Cross-validation [BFOS84], a popular 
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Input: node n, partition D, split selection method CL 
%&t: decision tree for D rooted at n 
TDlkee(Node n, partition D, split selection method CL) 
(1) Apply CL to D to find the splitting criterion for n 
(2) if (n splits) 
(3) Use best split to partition D into D1 , D2 
(4) Create children nl and nz of n 
(5) TDTree(nl, Dl, CC) 
(6) TDTree(nz, D2, CL) 
(7) endif 

Figure 1: Top-Down Tree Induction Schema 
pruning technique for very small training datasets, requires 
construction of several trees from large subsets the data. Even 
though MDL-based pruning methods are more popular for 
large datasets [MAR96, RS98], our techniques can be used to 
speed up cross-validation for large training datasets as well.) 
How the tree is pruned is an orthogonal issue. 

All decision tree construction algorithms grow the tree top- 
down in the following greedy way: At the root node, the 
database is examined and a splitting criterion is selected. 
Recursively, at a non-root node n, the family of n is examined 
and from it a splitting criterion is selected. (This is the well- 
known schema for greedy top-down decision tree induction; 
for example, a specific instance of this schema for binary 
splits is shown in [MAR96]). This schema is depicted in 
Figure 1. All decision tree construction algorithms that we 
are aware of proceed according to this schema. Note that 
this schema requires one pass over the training database per 
level of the tree; the splitting criterion at a node n can not be 
computed unless the splitting criteria of all its ancestors in the 
tree are known. 

2.2 Split Selection Methods 
In this work, we consider split selection methods that pro- 
duce binary splits. We will concentrate on impurity-based 
split selection methods for two reasons. First, ‘this class 
of split selection methods is widely used and very popu- 
lar [BFOS84, Qui86]; studies have shown that this class 
of split selection methods produces trees with high predic- 
tive accuracy [LLS97]. Second, most previous work in the 
database literature uses this class of split selection meth- 
ods [MAR96, SAM96, FMM96, MFM+98, RS98], thus we 
can study the performance impact of our techniques while 
generating exactly the same output decision tree as previous 
methods. We would like to emphasize though, that our tech- 
niques described in Section 3 can be instantiated with other, 
not impurity-based split selection methods from the literature, 
e.g., QUEST [LS97], resulting in scalable decision tree con- 
struction algorithms. In Section 5, we also show experimental 
results with a non-impurity-based split selection method. 

Impurity-based split selection methods calculate the split- 
ting criterion by minimizing a concave impurity function 
imp, such as the entropy [Qui86], the gini-index [BFOS84] 
or the index of correlation [MFM+98]. (Arguments for the 
concavity of the impurity function can be found in Breiman 
et al. [BFOS84J.) The most popular split selection meth- 
ods such as CART [BFOS84] and C4.5 [Qui86] fall into 

this group; previous work in the database literature gen- 
erated scalable instantiations of these split selection meth- 
ods [MAR96, SAM96, RS98, GRG98]. At each node, all 
predictor attributes X are examined and the impurity of the 
best split on X is calculated. The final split is chosen such 
that the value of imp0 is minimized. In the next section we 
briefly detail how imp, is actually calculated for numerical 
predictor attributes. Calculation of imp, for categorical pre- 
dictor attributes is shown in the full paper. 

2.2.1 Numerical Predictor Variables 

In this section, we briefly explain how the class of impurity- 
based split selection methods computes the split point for 
numerical predictor variables. 

Let X be a numerical predictor variable, i.e., splits on X 
will be of the form X 5 z where z E dam(X). At a node n, 
each potential split point z E dam(X) induces a set of argu- 
ments 6: = (tV BL eR n,X,+,l,“‘, 7z,X,Z,k) n,X,z,l~“-~ eR n,X,z,k ) 

for the impurity function impO, where for i E dam(C): 

eL n,X,z,i gf P(X < x, C = iIf& and Oz,x,,,i ef P(X > 
z, C = iif,,). Informally, @t,x,Z,i is the probability that for a 
randomly drawn tuple t that belongs to the family of node 
n, t’s value for predictor attribute X is less than or equal 
to x and that t’s class label has value i. Since x induces 
this set of arguments for impe, we define impx (n, X, x) dgf 
im~B(e,L,X,z,l~e,LX,x,27.“~e~Xz,k~e~X,r,l, * * * ) eR n,X,z,k >. 

Since the underlying probability distribution P is not known, 
eL n,X,s,i (respectively, IY~,,,,,~) is estimated from the training 
database D by $i,x,Z,i (respectively, $t,,,,$ and impx is 

estimated from D by isx (n, X, x) as follows: B^r4,x,z,i dgf 
J{tEF,:t.X<+A t.C=i}l $R 

IF,1 3 n,X,+,i 
d&f l{t@,,:t.X>+ht.C=i}l 

IhI ,md 

isx (n, X, 2) dgf 

imPL9(~:,x,z.lr Blf;,x,z,ar 5-L iTR *** 7 n,X,+,k) n,X,r,l,“‘, iTR n,X,r,k >* 

Informally, for node n and predictor attribute X, $k,x,,,i is 
the proportion of tuples in F,, with t.X 5 z and class label 
i; FR n,X,+,i is the proportion of tuples in F, with t.X > x and 
class label i. 

3 BOAT-Bootstrapped Optimistic Decision Tree 
Construction 

In this section, we present BOAT, a scalable algorithm for 
decision tree construction. Like the RainForest framework 
or the PUBLIC pruning strategy [GRG98, RS98], BOAT is 
applicable to a wide range of split selection methods. To 
our knowledge, BOAT is the first decision tree construction 
algorithm that constructs several levels of the tree in a single 
scan over the database. All previous algorithms that we are 
aware of make one scan over the database for each level of the 
tree. We will explain the algorithm in several steps. We first 
give an informal overview without technical details to give the 
intuition behind our approach (Section 3.1). We then describe 
our algorithm in detail in Sections 3.2 to 3.5. We assume in 
the remainder of this section that CL is an impurity-based split 
selection method that produces trees with binary splits. 
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3.1 Overview 

Let T be the final tree constructed using split selection method 
CL on training database D. D does not fit in-memory, so we 
obtain a large sample D’ c D such that D’ fits in-memory. 
We can now use a traditional main-memory decision tree 
construction algorithm to compute a sample tree T’ from D’. 
Each node n E T’ has a sample splitting criterion consisting 
of a sample splitting attribute and a sample split point (or a 
sample splitting subset, for categorical attributes). Intuitively, 
T’ will be quite “similar” to the final tree T constructed from 
the complete training database D. But how similar is T’ to T? 
Can we use the knowledge about T’ to help or guide us in the 
construction of T, our final goal? Ideally, we would like to 
say that the final splitting criteria of T are very “close” to the 
sample splitting criteria of T’. But without any qualification 
and quantification of “similarity” or “closeness”, information 
about T’ is useless in the construction of T. 

Consider a node n in the sample tree T’ with numerical 
sample splitting attribute X, and sample splitting predicate 
X, < z. By T’ being close to T we mean that the final 
splitting attribute at node n is X and that the final split point is 
inside a confidence interval around z. If the splitting attribute 
at node n in the tree is categorical, we say that T’ is close to T 
if the sample splitting criterion and the tial splitting criterion 
are identical. Thus the notion of closeness for categorical 
attributes is more stringent because splitting attribute as well 
as splitting subset have to agree. 

In Section 3.2, we show how a technique from the statistics 
literature called bootstrapping [ET93, AD971 can be applied 
to the in-memory sam@e D’ to obtain a tree T’ that is close 
(in the sense just mentioned) to T with high probability. Thus, 
using bootstrapping, we leverage the in-memory sample D’ 
by extracting “more” information from it. In addition to 
a sample tree T’, we ialso obtain confidence intervals that 
contain the final split points for nodes with numerical splitting 
attributes, and the complete final splitting criterion for nodes 
with categorical splitting attributes. We call the information at 
a node n obtained through bootstrapping the coarse splitting 
criterion at node n. This part of the algorithm, which we call 
the samplingphase, is described in Section 3.2. 

Let us assume for the moment that the information obtained 
through bootstrapping is always correct. Using the sample 
D’ c D and the bootstrapping method, the coarse splitting 
criteria for all nodes n of the tree have been calculated and are 
correct. Now the search space of possible splitting criteria at 
each node of the tree is greatly reduced. We know the splitting 
attribute at each node n of the tree, for numerical splitting 
attributes we know a confidence interval of attribute values 
that contains the final split point, for categorical splitting 
attributes we know the tmal splitting subset exactly. Consider 
a node n of the tree with numerical splitting attribute. To 
decide on the final split point, we need to examine the value 
of the impurity function only at the attribute values inside 
the confidence interval. If we had all the tuples that fall 
inside the confidence interval of n in-memory, then we could 

Figure 2: Coarse splitting critera 

calculate the final split point exactly by calculating the valne 
of the impurity fimction at all possible split points inside the 
confidence interval. To bring these tuples in-memory, we 
make one scan over D and keep all tuples that fall i.nside 
a confidence interval at any node in-memory. Then we 
postprocess each node with a numerical splitting attribute to 
find the exact value of the split point using the tuples collected 
during the database scan. This postprocessing phase of the 
algorithm, the cleanup phase, is described in Section 3 3. 

The coarse splitting criterion at a node n obtained from the 
sample D’ through bootstrapping is only correct with high 
probability. This means that occasionally the final splitting 
attribute is different from the sample splitting attribute, or, 
if the sample splitting attribute is equal to the final splitting 
attribute, it could happen that the final split point is outside 
the confidence interval, or that the final splitting subs.et is 
different from the sample splitting subset. Since we ‘want 
to guarantee that our method generates exactly the same 
tree as if the complete training dataset were used, we have 
to be able to check whether the coarse splitting criteria 
actually are correct. In Section 3.4, we present a neces,sary 
condition that signals whenever the coarse splitting criterion 
is incorrect. Thus, whenever the coarse splitting criterion 
at a node n is not correct, we will detect it during the 
cleanup phase and can take necessary measures as explained 
in Section 3.5. Therefore we can guarantee that our method 
always finds exactly the same tree as if a traditional main- 
memory algorithm were run on the complete training dataset. 

3.2 Coarse Splitting Criteria 
We begin by formally defining the statistics that we assume 
to exist at each node n at the beginning of the cleanup phase. 
We call these statistics the coarse splitting criterion at node 
n. Then, we show how to calculate a coarse splitting criterion 
that is correct with high probability at each node n. 

Informally, the coarse splitting criterion at n restricts the set 
of possible splitting criteria at n to a small set; it is a “coarse 
view” of the final splitting criterion. The coarse splitting 
criterion for the two attribute types is shown in Figure 2; its 
first part is called the coarse splitting attribute. At a node n 
with numerical splitting attribute X,,, the second part of the 
coarse splitting criterion consists of an interval of attribute 
values such that the final split point on X,, is inside the 
interval with high probability. Formally, assume that the 
final splitting predicate at node n is X, 5 xc. Then the 
second part of the coarse splitting criterion at n consist of an 
interval [ik, i,“], ik, i,R E dom(X,) such that ik 5 i:, and 
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zz E [ik, iz]. Thus, to find the final split point, the value of 
the impurity function needs to be examined only at attribute 
values 2 E [ik, it]. 

We now address the computation of the coarse splitting 
criterion. The main idea is to take a large sample D’ from 
the training database D and use an in-memory algorithm to 
construct a sample tree T’. Then we use a technique from 
the statistics literature called bootstrapping [ET93, AD971 
that allows us to quantify, at each node n, how accurate the 
splitting criterion obtained from the sample is with respect to 
the final splitting criterion. Recall that for a node n E T’, 
its splitting criterion is called sample splitting criterion to 
emphasize that it has been computed from the in-memory 
sample D’ c D; the final splitting criterion using the 
complete training database D might be different. We will also 
use the terms sample splitting attribute, sample splitpoint and 
sample splitting subset. 

We use bootstrapping to obtain the coarse splitting criterion 
as follows. First, we construct b bootstrap trees TI, . . . , Tb, 
constructed from training samples DI, . . . , Db obtained by 
sampling with replacement from D’. Then we process the 
trees top-down. For each node n, we check whether the b 
bootstrap splitting attributes at n are identical; if not, then we 
delete n and its subtree in all bootstrap trees. If at a node 
n the b bootstrap splitting attributes are the same categorical 
splitting attribute X,, we check whether all bootstrap splitting 
subsets are identical. If not, then we also delete n and its 
subtree in all bootstrap trees. The intuition for such stringent 
treatment of categorical splitting attributes is that as soon 
as two subtrees split on different subsets, the subtrees are 
incomparable. Then for each node n in the remaining tree, we 
set the coarse splitting attribute to be the bootstrap splitting 
attribute. If the bootstrap splitting attribute at node n is 
categorical, we set the coarse splitting subset equal to the 
bootstrap splitting subset. If the bootstrap splitting attribute 
at node n is numerical, we have b bootstrap split points from 
which we can obtain a confidence interval [ik, if] for the final 
split point, such that with high probability the final split point 
z* E [it;, $1. The level of confidence can be controlled by 
inncreasing the number of bootstrap repetitions. 

3.3 From Coarse to Exact Splitting Criteria 
In this section, we describe part of the cleanup phase of the 
algorithm. We show an algorithm that takes as input the 
sample tree T’ and the coarse splitting criteria. The algorithm 
makes one scan over the training database while collecting 
a small subset of the training database in-memory. (We will 
assume without loss of generality that this subset of tuples 
fits in-memory; the implementation used in the experimental 
evaluation in Section 5 writes temporary files to disk to be 
truly scalable. We further discuss this issue in Section 3.5.) 
Assuming that the coarse splitting criteria are correct, the in- 
memory information is used to compute the final splitting 
criterion at n. Thus, assuming we are given the coarse 
splitting criterion at each node n and the coarse splitting 
criteria are actually correct, we can compute the final tree in 

only one scan over the training database. In the remainder of 
this section, we assume that the coarse splitting criteria are 
correct; we show how this assumption can be checked in the 
next section. 

In order to describe the algorithm precisely, let us introduce 
the following notation. Let S be a set of tuples. At node n 
with numerical splitting attribute X, and confidence interval 
[ik, i:] from the coarse splitting criterion, define In(S) dsf 
{t : t E s : t.x, 5 ik}, in(S) Zf {t : t E s : t.x, > 
ii A t.X, 5 i:}, and m(S) dgf {t : t E S : t.X, > if;“}. 

Given the coarse splitting criterion at a node n, how can 
the final splitting criterion be computed? If the splitting 
attribute at n is categorical, the coarse splitting criterion is 
equal to the final splitting criterion; no extra computation is 
necessary. Thus, let us concentrate on the case where the 
splitting attribute at n is numerical. Since the final split point 
z: is inside the confidence interval 2: E [it;, it], we have to 
examine all possible split points inside the interval. Assume 
that n is the root node of the tree. To estimate the quality 
of an attribute value az E [ii, i:] as potential split point, the 
values B^f;,x, ,2 i and $f,x,xn ,x i are needed as arguments to the 
impurity function iFx (n, Xn, z) in order to calculate the 
impurity at x (see Section 2.2). Assume that we make one 
scan over the training database, during which we compute 
9 n,X, ,if; ,i and Q,X .a for all i E dam(C). In addition, 

n ,a, 7% 
we keep all tuples t E i,(Fn) in-memory. Then after the 
scan, the arguments to the impurity function iGx(n, X,, z) 
for each x E [it;, i:] can be calculated as follows: 

9 n,X,,+,i = 
I{t E F, : t.X 5 x A t.C = i}] 

IFA 
i+ n,X, ,i,t ,i * IF,1 + 1{t E in(Fn) : t.x 5 x A t.c = i}l 

= 

IFnI , 

the value $zx z i is calculated similarly. Thus, in one scan 
over the tramrng’ database, we can find the final splitting 
criterion at the root node n given the coarse splitting criterion 
at n: we retain the set in(&) in-memory and then calculate 
the value of the impurity function iFx (n, X,,, 2) at each 
potential split point x E [if;, it] using the tnples in-memory. 

Consider now the computation of the final split point x$ E 
b ‘f;, , if[“,] for the left child n’ of the root node n. After having 
computed the splitting criterion at n, we can use the same 
algorithm for n’: Make one pass over D, while collecting 
i,) (F,, ) in-memory and calculating I F,I (, @, x , + and 9 nr,** 
e^R n,,x,,,i,R,i for i E dam(C). This method will result in 
an algorithm that makes one scan over D per node in T 
during the cleanup phase. Is it possible to collect i,r(F,,~) 
and g;, x , + . and $2 x 7 n,,,~ I .R for i E dam(C) during the n’rt, 7% 
tirst scan? Unfortunately, the answer is no. If for a tuple 
t E D, t E In(D), then t belongs to F,/. Consider a triple 
t E i, (F,) n i,l (F,,, ). During the scan of D, the final 
splitting criterion of node n is not known yet. Thus, for all 
tuples t E in(Fn), we cannot decide yet whether to send t 
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to the left child or the :right child of n. Therefore after the 
first scan, F,,t is not complete yet, because some tuples got 
“stuck” at node n. Thus, if at a node n, t E i,(F,), we 
retain t in a set of tuples S,, and stop. If t $ i,(F,), then 
we update @x,,ik,i or $f,x . and recursively process t ,,i,R,a 
by sending it: to its subtree. The result of the scan is a set of 
tuples S,, at each node; for the root node n, S, = i,(F,), 
for a non-root node n, S,, c i, (F,). Note that after the scan 
at a node n, if a tuple t E in(Fn) \ S,, then t E &l(F,t) 
for some ancestor n’ of n. Thus, for each node n, all the 
tuples t E i,(F,) are actually in-memory, either in S,, or in 
S,,I for some ancestor n’ of n. This observation allows for 
the following top-down processing of the tree after the scan: 
We start at the root node n and find its splitting criterion. 
Then we process all tuples t E S,, recursively by the tree 
as during the scan of D. Since the splitting criterion at n has 
been computed we know the correct subtree for each tuple. 
Finally, we recurse on n’s children. Whenever a node n is 
processed, S, = i, (F,), because all the tuples t E i,t (F,! ) 
for all ancestors n’ of n have been processed and distributed 
to their respective children. 

Summarizing the results from this section, we have shown 
how to obtain the final splitting criterion for all nodes of 
the tree simultaneously in only one scan over the training 
database D, given that we know the coarse splitting criterion 
at each node n of the tree. 

3.4 How To Detect Failure 
In Section 3.2, we showed how to compute a coarse splitting 
criterion that is correct with high probability. In order to 
make the algorithm deterministic, we need to check during 
the cleanup phase whether the first part of the coarse splitting 
criterion, the coarse splitting attribute, is actually the final 
splitting attribute. In addition, given that this premise holds, 
we have to check that the second part of the coarse splitting 
criterion is correct. If not, then for a categorical splitting 
attribute, the split might involve a different subset. For a 
numerical splitting attribute, the split might be outside the 
confidence interval. 

Let us first address the case of how to detect whether 
the second part of the coarse splitting criterion is correct, 
assuming that the first part is correct. That is, for now we 
assume that the coarse splitting attribute X is equal to the final 
splitting attribute and concentrate on checking the second 
part of the coarse splitting criterion. The second part of the 
coarse splitting criterion for a categorical splitting attribute 
X consists of the coarse splitting subset .Y’; we have to 
check whether Y’ is equal to the final splitting subset Y. We 
perform this check by constructing the values On,x,{zl,i for 
each z E dam(X) and i E dam(C) during the cleanup scan 
in-memory. 

The second part of the coarse splitting criterion for a 
numerical splitting attribute consists of a confidence interval 
[ii, $1. Let 2: E [ii, $1 be the attribute value with 
th~minimum value of the impurity function, Let i’ dgf 
imp, (n, X, XL). In order to be sure that the final split point is 

not outside the confidence interval, we have to check that ti’ is 
the global minimum of the impurity function, and not just the 
local minimum inside the confidence interval. ConceptuaJly, 
we have to calculate the value of the impurity function at 
every z E dam(X), z $! [i,“, ifl”] and compare it with i’. For 
this calculation, we need to construct all values Bt,x,,,i and 
P n,x,s,i during the cleanup scan in-memory. But since we 
construct several levels of the tree together, it is prohibitive 
to keep all these values simultaneously in-memory during 
the cleanup-scan. (Constructing these values in-memory is 
analogous to constructing the AVC-sets [GRG98] of predictor 
attribute X for all nodes concurrently in main memory.) So 
we need a method that allows us to conclude that i’ is the 
global minimum of the impurity function over all attribute 
values of X without constructing aN values Ok,x,Z,i and 
eR n x z i in-memory. The remainder of this section addresses 
this issue. 

Consider node n with numerical predictor attribute X. (We 
will drop the dependencies on n and X from the notation in 
the following discussion.) Let Ni be the count of tuples in F, 
with class label i. Let x E dam(X) be an attribute value and 
let n: dgf I{t E F n : t.X _< x A t.C = i}l for i E dam(C). 
Thus each attribute value x E dam(X) uniquely determines 
a tuple of values (nk, . . . n:), called the stamp point of 
x [FMMT96a, FMMT96b, FMM96, MFM+98]. Thus, F, 
induces a set of stamp points in the k-dimensional plane. At 
a node n, let Ni be the number of tuples in the family o,f n 
with class label i; formally, Ni dgf It E D : t E F, A t.C = 
i}. Since at node n, Ni is fixed for all i E dam(C), the tuple 
(ni,..., nrtmiquely determines the value of the impurity 
function impx at attribute value x because we can rewrite %the 
arguments to the impurity function as follows: 

We can define a new function imps on the stamp points as 
follows: iGs(nr , . . . , nk) dgf 

Let x E dam(X) and let (ni, . . . nt) be the stamp point of 
attribute value z at node n. By construction of iGs, it holds 
that for z E dam(X) : i.s(ni, . . . nk) = impx(n, X, :c). 
Consider two attribute values x1 < 22 and let PZ,,=, ‘gf 
p:$‘...’ n,“..,) : t E F, A t.X > z1 A t.X 5 z:!}, 
* *, 21,Z2 is the set of stamp points of all attribute values 

between x1 and 22 that occur in F,,. Note that if x1 > 
52, nk, 2 n& for all i E dam(C). Since impx and 
thus imps are concave, the minimum value of the impurity 
function iG;-, will be on the convex hull of the stamp 
points pz, r12 [Man94, FMMT96a, FMMT96b, FMM96, 
MFM+98]. Because the convex hull is enclosed in the hyper- 
rectangle defined by the 2 comer points (n& , . . . , n& ) and 
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(&,-.. , n&), it is enclosed by the 2” comer points. For 
e=vle, (nk,, n&, 4, , . . . , nt,) is one of the comer points. 
Thus, the value of the impurity function for all attribute values 
inside the interval [xi, x2] can be lower-bounded by the value 
of the impurity function at the 2” comer points. For example, 
if Ic = 2, the four comer points are (n&, n&), (n&, n2,,), 
(n5,y n&L and (da7 n”,,). Figure 3 illustrates this situation 
for the case of two class labels. In the general case with k: 
class labels, the following lemma holds. 
Lemma 3.1 Let n be a node in the tree, X be a numerical 
predictor attribute and x1 < x2, xi E dam(X) be two attribute 
values with stamp points (n&, . . . , n&) and (n:,, . . . ,n&), 
respectively. Let Pz, ,+2 be the set of stamp points of all 
attribute values between xi and 22 that occur in F,,. Let imps 
be a concave impurity function. Let S be the set of 2” comer 
points of the hyper-rectangle defined by (n& , . . . , n&J and 

(n&,... ,&J S dsf {(n~l,...,n~t),(n~,,n~~,...,n~k), 
. . . ) (n&,... , n&)}. Then 

min 
(w , -.r~k)EPq,q 

imP,&l,...,nk) 2 

min 
(n1, . . ..nk)ES 

imps(nly...7 nk) 

Proof: This is an application of a result in Mangasar- 
ian [Man941 to the decision tree setting. cl 

Before we discuss how we use Lemma 3.1, we define the 
notion of a discretization f of a numerical variable X. For 
a random variable X with a numerical domain dam(X), we 
call a function f : dam(X) c) N a discretization of X if 
xi < xi implies that j(xi) 5 f(xj) for xi,xj E dam(X). 
(Act=W, f(X) is a new random variable with domain N, 
where N denotes the set of natural numbers.) We call each 
k E N a bucket off, and if f (x) = k we say that x belongs 
to bucket k (under f). We call a value x’ E dam(X) such that 
Vx E dam(X) : (x < x' +- f(x) < f (2’)) A (x > x’ =s 
f(x’) > f(x)) a bucket boundary. 

At each node n, we calculate a discretization f for the 
splitting attribute from the sample D’. During the cleanup 
phase, we construct the stamp points at the bucket boundaries 
of f through simple counting. We use Lemma 3.1 to 
calculate a lower bound on the value of the impurity function 
for each bucket; let i be the minimum of all these lower 
bounds. Then we compare i with the minimum value of the 
impurity function i’ calculated during the cleanup phase for 
the splitting attribute. If i < a’, then the final split point 
might fall into bucket B instead of inside the confidence 
interval; in this case we discard node n and its subtree. 
Lemma 3.1 therefore gives us a condition that is necessarily 
true whenever the final split point is outside the confidence 
interval. Thus, in the case of a numerical splitting attribute, 
we can detect whether the second part of the coarse splitting 
criterion is correct. 

It remains to show how we can detect the case that the 
first part of the coarse splitting criterion, namely the choice 
of splitting attribute, is incorrect. Consider a node n and 
let the minimum value of the impurity function given the 
coarse splitting criterion is true be i’, i.e., if the coarse 
splitting attribute X, is categorical, i’ is the value of the 
impurity function of the coarse splitting subset, if the coarse 
splitting attribute X, is numerical, i’ is the minimum value 
of the impurity function over all attribute values inside the 
confidence interval. Whenever n is processed during the 
cleanup phase, we can calculate the minimum value of the 
impurity function for all categorical attributes exactly and 
compare it with i’. For the remaining numerical variables, we 
calculate discretizations during the sampling phase and obtain 
the values of the stamp points of the discretization boundaries 
during the cleanup phase. Then we use Lemma 3.1 to lower 
bound the value of the impurity function at all buckets. If i’ is 
still the global minimum, then the splitting attribute from the 
coarse splitting criterion is actually the final splitting attribute. 

How do we find a “good” discretization f for a numerical 
predictor attribute X at node n in the tree? Note that the only 
purpose f serves is to allow the application of Lemma 3.1 
to (1) check whether the actual split point is inside the 
confidence interval in case X is the coarse splitting attribute 
or to (2) check whether the final splitting attribute could be 
X, in case X is not the coarse splitting attribute. If f has too 
few buckets, the lower bound produced by Lemma 3.1 will 
be very crude; thus the lemma might too often indicate that 
a bucket could have a split point with a lower value i < i’ 
of the impurity function, even though there is no attribute 
value in the discretization bucket that actually achieves i. 
Too many buckets of f are not a problem; the lower bound 
of Lemma 3.1 will be very tight. But since BOAT requires 
discretizations for all numerical predictor attributes at each 
node of the subtree currently under construction, we cannot 
afford to have overall too many discretization buckets due 
to main memory constraints. What we would like is to 
construct at each node as many buckets as “necessary”. How 
many buckets are necessary at node n for numerical predictor 
attribute X? We construct the bucket boundaries before the 
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cleanup scan from the in-memory sample as follows. We 
scan the attribute values occurring in F,‘, constructed from the 
sample D' from smallest to largest value. If the lower bound 
of the current bucket is much higher from the estimated lowest 
value of the impurity function at node n, then the bucket can 
be enlarged. Otherwise a new bucket boundary is set. This 
procedure constructs many buckets in regions of the attribute 
space where the value of the impurity function is close to the 
overall minimum and the bounds produced by Lemma 3.1 
need to be quite tight in order not to signal a false alarm. 
The procedure constructs few buckets in regions where the 
value of the impurity function is much larger than the overall 
minimum. 

Since we can detect all cases of incorrectness of the coarse 
splitting criterion at a node n, we have shown the following 
lemma to be correct. 
Lemma 3.2 Consider a node n of the final decision tree and 
let i’ be the minimum value of the impurity function given 
that the coarse splitting criterion at n is correct. If i’ is not the 
global minimum of the impurity function at node n, then our 
algorithm will detect this case. 

3.5 Putting the Parts Together 
We now explain how the parts of the algorithm described in 
Sections 3.2 to 3.4 are put together to arrive at a fast, scalable, 
deterministic algorithm for decision tree construction. 

We first take a sample D’ c D from the training database 
and construct a sample tree with coarse splitting criteria at 
each node using bootstrapping. Then we make a scan over the 
database D and process each tuple by “streaming it” down the 
tree. At the root node n, we first update the category-class- 
label counts for all categorical predictor attributes. Then we 
update the counts of the buckets for each numerical predictor 
attribute. If the splitting attribute from the coarse splitting 
criterion at n is categoric:al, we send t to the child node of n 
as predicted by the splitti:ng criterion. If the splitting attribute 
from the coarse splitting criterion at n is numerical and t falls 
inside the confidence interval, we write t to a temporary file 
S,, at node n. Otherwise we send t down the tree. Note that 
we can stop tree construction if the size 1 F,) of the family of 
a node n is small enough to fit in-memory because in this case 
it is always cheaper to run a main-memory algorithm on F,. 

After the database scan, the tree is processed top-down. 
At each node, we use hour lower bounding technique to 
check whether the global minimum value of the impurity 
function could be lower than i’, the minimum impurity value 
calculated from either the complete information about the 
categorical splitting attribute or from examining the tuples in 
S,,. If the check is successful (i.e., i’ is the global minimum), 
we are done with node n If the check indicates that the 
global minimum could be less than i’, we discard n and its 
subtree during the current construction and call our algorithm 
recursively on n after processing the rest of the tree. In most 
cases, the family of tuples F,, is already so small that F, 
completely fits in-memory!, and thus an in-memory algorithm 
can be used to finish construction of the subtree rooted at n. 

4 Extensions to a Dynamic Environment 
We outline briefly how the information about the coarse split- 
ting criterion can be used to extend BOAT to support incre- 
mental updates of the decision tree in a dynamic environment 
where the training dataset changes over time through both in- 
sertions and deletions. 

Consider the root node n of the tree. The training dataset 
D was generated by an unknown underlying probability 
distribution P. Since D is a random sample from P, all 
statistics obtained from D are only approximations of true 
parameters of the distribution. Now consider a new “chunk’!’ 
of training data D1 that needs to be incorporated into the tree. 
If D1 is drawn from the same underlying distribution, the new 
tree TD”D, that models D U DI will not be very “different” 
from To. This fuzzy notion of difference is actually exa.ctly 
the same notion as described in Section 3.2. In Section 3.2, 
we are given a sample D' from an underlying distribution 
(represented by D) and would like to know how different the 
tree TO, is from the tree To. The coarse splitting criteria 
in Tp actually capture the randomness of D’ by allowing 
the split point for numerical splitting attributes to fluctuate 
inside the confidence interval. Thus, another view of the 
coarse splitting criterion is that it captures a set of possible 
fIna splitting criteria, all highly likely given the underlying 
probability distribution P as captured by D . 

Using the same statistical notion of difference as discussed 
in the previous paragraph, and as represented by the coarse 
splitting criterion, our algorithm to update the tree in a 
dynamic environment works as follows. We keep the 
information that we collected during the cleanup phase from 
D at each node n of the tree. Thus, associated with each node 
n with numerical predictor attribute, is a file S,, that contains 
all tuples that fell inside the confidence interval [if;, iz] during 
the scan over D. To incorporate a new set of tuples ,Dr 
into the tree, we stream the tuples t E D1 down the tree as 
if they were part of D and we were making the scan over 
D1 during the cleanup phase. Following the processing of 
D1, we again process the tree top-down, exactly as in the 
cleanup phase. If D1 is also a random sample from the 
same underlying probability distribution, then by construction 
of the coarse splitting criterion, the final splitting criterion 
at node n will be included in the set of splitting criteria 
captured by the coarse splitting criterion of n and thus we 
can calculate the final splitting criterion at n exactly-all this 
while scanning D1 exactly once! Deletions can be handled 
in the same way. Assume that D1 expired and is removed 
from the training dataset. Then we can process DI as fbr 
insertion, but with the difference that instead of inserting 
tuples, we remove the respective tuples from the tree and 
update the counts maintained to ensure detection of changes 
of the coarse splitting criterion. 

This algorithm has the following properties. If D1 iis 
sufficiently different from D, then this will be detected by our 
lower-bound techniques which will indicate that the coarse 
splitting criterion at a node n is not correct any more. In this 
case, the affected part of the tree, namely the subtree rooteld 
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at n, needs to be rebuilt. Note that only the part of the tree 
in which the distribution has sufficiently changed needs to be 
rebuilt. This cost model is very attractive in a real-life setting: 
If new data arrives (or old data expires), but the changes 
in the training dataset are only due to random fluctuations 
(in the precise statistical sense), then the cost to update the 
tree is very low and involves only a scan over the dataset 
that is to be inserted or deleted. It there are changes in the 
distribution, the cost paid is proportional to the “seriousness” 
of the changes: if the splitting attribute at the root node 
changes, the whole tree needs to be completely rebuilt. But if 
the distribution changes only in a part of the attribute space, 
only the subtree that models that part of the space needs to 
be rebuilt. In addition, showing that statistically significant 
changes have happened in part of the tree is a valuable tool 
for the analyst who can be informed that specific parts of the 
tree have changed significantly, even though other parts of the 
tree might only have changed slightly inside the confidence 
intervals. This insight is much more than what could be 
extracted by just comparing the two trees TO and TJJ~D, 
(or TD and TD\~,). Using such a comparison, it is possible 
to point out changes in the splitting predicates but it is not 
possible to assess whether these changes are due just to the 
randomness in the overall process or due to a change in the 
underlying distribution. 

We emphasize that, as in the static case, the adaptation of 
our algorithm to a dynamic environment always guarantees 
that the tree constructed is exactly the same tree as if a 
traditional algorithm was run on the changed training dataset. 
5 Experimental Evaluation 
The two main performance measures for classification tree 
construction algorithms are: (i) the predictive quality of 
the resulting tree, and (ii) the decision tree construction 
time [LLS97]. BOAT can be instantiated with any split se- 
lection method from the literature that produces binary trees 
without modifying the result of the algorithm. Thus, quality is 
an orthogonal issue to our algorithm, and we can concentrate 
solely on decision tree construction time. In the remainder 
of this section we show the results of a preliminary perfor- 
mance study of our algorithm for a variety of datasets for 
impurity-based split selection methods. Based on some ob- 
servations about impurity-based split selection methods from 
our experiments, we also show performance results for an- 
other non-impurity based split selection method. The results 
demonstrate that BOAT achieves significant performance im- 
provements (two to five times). Finally, we also show some 
performance results for classification tree maintenance in a 
dynamic environment. 

5.1 Datasets and Methodology 

The gap between the scalability requirements of real-life data 
mining applications and the sizes of datasets considered in 
the literature is especially visible when looking for possi- 
ble benchmark datasets to evaluate scalability results. The 
largest dataset in the often used Statlog collection of train- 
ing databases [MST941 contains only 57000 records, and the 

largest training dataset considered in [LLS97] has 4435 tu- 
pies. We therefore use the synthetic data generator intro- 
duced by Agrawal et al. in [AIS93], henceforth referred to as 
Generator. This data generator has been used previously 
in the database literature to study the performance of deci- 
sion tree construction algorithms [SAM96, RS98, GRG98]. 
The synthetic data has nine predictor attributes. Each tu- 
ple generated by the synthetic data generator has a size of 
40 bytes (assuming binary files). Included in the genera- 
tor are classification functions that assign class labels to the 
records produced. We selected three of the functions (Func- 
tion 1, 6 and 7) introduced in [AIS93] for our performance 
study. In Function 1, two predictor attributes carry predic- 
tive power with respect to the class label, Function 6 involves 
three predicates, and in Function 7 the class label depends 
on a linear combination of four predictor attributes [AIS93]. 
Note that our selection of predicates adheres to the methodol- 
ogy used in the Sprint, PUBLIC and RainForest performance 
studies [SAM96, RS98, GRG98]. 

We compare our algorithm to the RainForest algorithms, 
which were shown to outperform previous work [GRG98]. 
The feasibility of the RainForest family of algorithms requires 
a certain amount of main memory that depends on the size 
of the initial AVC-group [GRG98], whereas BOAT does not 
have any a-priori main memory requirements. Thus we 
compared BOAT to the two extremes in the RainForest family 
of algorithms. We chose the fastest algorithm, RF-Hybrid, 
requiring the largest amount of main memory, and the slowest 
algorithm, called RF-Vertical, requiring the smallest amount 
of main memory. Since we are interested in the behavior of 
our algorithm for datasets that are larger than main memory, 
we stopped tree construction for leaf nodes whose family 
would fit in-memory. Any smart implementation would 
switch to a main-memory tree construction at this point. 

In all the experiments reported here, we took an initial 
sample of size 200000 tuples from the training database 
and then performed 20 bootstrap repetitions with a sub- 
sample size of 50000 tuples each. All our experiments 
were performed on a Pentium Pro with a 200 Mhz processor 
running Solaris X86 version 2.6 with 128 MB of main 
memory. All algorithms are written in C++ and were 
compiled using gee version pgcc-2.90.29 with the -03 
compilation option. 

5.2 Scalability Results 

First, we examined the performance of BOAT as the size of the 
input database increases. For Algorithms RF-Hybrid and RF- 
Vertical, we set the size of the AVC-group buffer to 3 million 
and 1.8 million entries, respectively. For this experiment, 
we stopped tree construction at 1.5 million tuples, which 
corresponds to a size of the family of tuples at a node of 
60 MB. (The threshold is set to 60 MB, because RF-Hybrid 
uses around 60 MB of main memory in the optimized version 
that we compared BOAT with.) Figures 4 to 6 show the 
overall running times of the algorithms as the number of 
tuples in the training database increases from 2 million to 10 
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million tuples. The trees produced by Function 7 have more 
nodes before the threshold is reached, thus tree growth takes 
longer than for the other two functions. BOAT outperforms 
both RF-Hybrid and RF-Vertical in terms of running time; for 
Functions 1 and 6, BOAT is faster by a factor of three and for 
Function 7 by a factor of two. Since tree construction was 
stopped at 1.5 million tuples, BOAT achieves no speedup yet 
for training database sizes of 2 million tuples (the resulting 
tree has just three leaf nodes before the switch to the in- 
memory implementation occurs). But the speedup becomes 
more and more pronounced as the size of the training database 
increases. 

We also examined the effect of noise on the performance 
of BOAT. We expected that noise would have a small impact 
on the running time of BOAT. Noise mainly affects splits 
at lower levels of the tree, where the relative importance 
between individual predictor attributes decreases, since the 
most important predictor attributes have already been used at 
the upper levels of the tree to partition the training dataset. 
Figures 7 to 9 compare the overall running times on datasets 
of size 5 million tuples while increasing the percentage of 
noise in the data from 2 to 10 percent. As in the previous 
experiment, we stopped tree construction at 1.5 million 
tuples. The figures show that the running time of BOAT is 
not dependent on the level of noise in the data. 

Figure 10 shows the effect of adding extra attributes with 
random values to the records in the input database. (Due to 
space limitations we only show the Figure for Function 1, the 
behavior is similar for the other functions.) Adding attributes 
increases tree construction time since the additional attributes 
need to be processed, but does not change the final decision 
tree. (The split selection method will never choose such 
a “noisy” attribute as the splitting attribute.) BOAT exhibits 
a roughly linear scaleup with the number of additional 
attributes added. 

During the experiments with BOAT we found out that 
the instability of impurity-based split selection methods 
deteriorates our performance results. By instability of a 
split selection we mean that minimal changes in the training 
dataset can result in selection of a very different split point. 
As an extreme example, consider the situation shown at node 
n in Figure 12; n is a numerical attribute with 8 1 attribute 
values (0 to 80). Assume that there is nearly the same number 
of tuples inside each interval of length 20 and assume that 
the final split is at attribute value 20. Through insertion 
or deletion of just a few tuples, the global minimum of the 
impurity function can be made to jump from attribute value 
20 to attribute value 60 since both minima are very close to 
each other. Thus if bootstrapping is applied to the situation 
depicted in Figure 12, about half the time the split point will 
be very close to attribute value 20 and the remaining times 
the split point will be very close to attribute value 60. Since 
the two splits are so far apart, the subtrees grown from the 
two splits will very likely be different, and thus tree growth 
stops at node n since two bootstrap samples disagree on the 
splitting attributes of the children of n. 

5.3 Performance Results for Dynamically Changing 
Datasets 

Since BOAT allows to update the tree dynamically, we also 
compared the performance of the update operation in BOAT to 
a repeated re-build of the tree. Due to space constraints, we 
show performance numbers only for insertions of tuples into 
the training datasets; since insertion and deletion of tuples are 
handled symmetrically, the performance results for deletions 
are analogous. 

In our first experiment, we examined the performance 
of the update operation for a changing training dataset 
whose underlying data distribution does not change. We 
ran BOAT on a dataset generated by Function 1 from the 
synthetic data generator. Then we generated chunks of 
data of size 2 million tuples each from the same underlying 
distribution, but we set the level of noise in the new data 
to 10%. Figure 13 shows the cumulative time taken to 
incorporate the new data into the tree. Note that the time taken 
for BOAT is independent of the size of the very first dataset 
that was used to construct the original tree. If the underlying 
data distribution does not change, the in-memory information 
about the coarse splitting criteria and the tuples inside the 
confidence intervals that BOAT maintains is sufficient to 
incorporate the new data and to update the tree without 
examining the complete original training database. To give 
a very conservative comparison of the update operation to 
repeated re-builds, we assumed the size of the original dataset 
to be zero. Thus the running time for the repeated re- 
builds shown in Figure 13 is the cumulative time needed to 
construct a tree on datasets of size 2 to 10 million tuples 
for the respective algorithms. Figure 15 shows a comparison 
of running times for arrival chunks of cardinality of size 1 
million tuples versus 2 million tuples. The two curves are 
nearly identical. 

What happens if the underlying distribution changes? 
In our next experiment we modified Function 1 from the 
synthetic data generator such that the tree in part of the 
attribute space is different from the original tree generated by 
Function 1. The results are shown in Figure 14. Even though 
in the incremental algorithm parts of the tree get rebuild, 
the incremental algorithm outperforms repeated rebuilds by 
a factor of 2. 

6 Related Work 
Agrawal et al. introduce an interval classifier that could use 
database indices to efficiently retrieve portions of the classi- 
fied dataset using SQL queries [AGI+92]. Fukuda et al. con- 
struct decision trees with two-dimensional splitting crite- 
ria [FMM96]. The decision tree classifier SLIQ [MAR961 
was designed for large databases but uses an in-memory data 
structure that grows linearly with the number of tuples in 
the training database. This limiting data structure was elim- 
inated by Sprint, a scalable data access method, that re- 
moves all relationships between main memory and size of 
the dataset [SAM96]. In recent work, Morimoto et al. de- 
veloped algorithms for decision tree construction for cate- 
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gorical predictor variables with large domains [MFM+98]. 
Rastogi and Shim developed PUBLIC, a MDL-based prun- 
ing algorithm for binary trees that is interleaved with the tree 
growth phase [RS98]. In the RainForest Framework, Gehrke 
et al. proposed a generic scalable data access method that can 
be instantiated with most split selection methods from the 
literature [GRG98], resulting in a scalable classification tree 
construction algorithm. 

The tree induction algorithm ID5 restructures an exist- 
ing tree in-memory [Utg89] in a dynamic environment un- 
der the assumption that the complete training database fits 
in-memory. Utgoff et al. extended this work and presented 
a series of restructuring operations that can be used to de- 
rive a decision tree construction algorithm for a dynamically 
changing training database lUBC97] while maintaining the 
optimal tree. But their techniques also assume that the train- 
ing database fits in-mermory. Efron and Tibshirani [ET931 and 
Davison and Hinkley [AD971 both are excellent introductions 
to the bootstrap. In recent work, Megiddo and Ramakrishnan 
used a form of bootstrapping to assess the statistical signifi- 
cance of a set of association rules [MS98]. 

7 Conclusions 

We introduced a new scalable algorithm BOAT for construct- 
ing decision trees from large training databases. BOAT is 
faster than the best existing algorithms by a factor of three 
while constructing exactly the same decision tree, and can 
handle a wide range of splitting criteria. Beyond improv- 
ing performance, BOAT enhances the functionality of ex- 
isting scalable decision tree algorithms in two major ways. 
First, BOAT is the fist scalable algorithm that can maintain a 
decision tree incrementally when the training data set changes 
dynamically. Second, BOAT greatly reduces the number of 
database scans, and o:ffers the flexibility of computing the 
training database on demand instead of materializing it, as 
long as random samples from parts of the training database 
can be obtained. In addition to developing the BOAT algo- 
rithm and proving it correct, we have implemented it and pre- 
sented a thorough performance evaluation that demonstrates 
its scalability, incremental processing of updates, and speed- 
up over existing algorithms. 
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