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Abstract

Currently, there is tremendous interest in providing ad-hoc
mining capabilities in database management systems. As a
first step towards this goal, in [15] we proposed an archi-
tecture for supporting constraint-based, human-centered,
exploratory mining of various kinds of rules including asso-
ciations, introduced the notion of constrained frequent set
queries (CFQs), and developed effective pruning optimiza-
tions for CFQs with 1-variable (1-var) constraints.

While 1-var constraints are useful for constraining the an-
tecedent and consequent separately, many natural examples
of CFQs illustrate the need for constraining the antecedent
and consequent jointly, for which 2-variable (2-var) con-
straints are indispensable. Developing pruning optimiza-
tions for CFQs with 2-var constraints is the subject of this
paper. But this is a difficult problem because: (i) in 2-
var constraints, both variables keep changing and, unlike
1-var constraints, there is no fixed target for pruning; (ii) as
we show, “conventional” monotonicity-based optimization
techniques do not apply effectively to 2-var constraints.

The contributions are as follows. (1) We introduce a notion
of quasi-succinctness, which allows a quasi-succinct 2-var
constraint to be reduced to two succinct 1-var constraints
for pruning. (2) We characterize the class of 2-var con-
straints that are quasi-succinct. (3) We develop heuristic
techniques for non-quasi-succinct constraints. Experimen-
tal results show the effectiveness of all our techniques. (4)
We propose a query optimizer for CFQs and show that
for a large class of constraints, the computation strategy
generated by the optimizer is ccc-optimal, i.e., minimizing
the effort incurred w.r.t. constraint checking and support
counting.

1 Introduction

Since the introduction of association rules 1], the develop-
ment of effective mechanisms for mining large databases has
been the subject of numerous studies, which can be broadly
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divided into two groups. The first group includes stud-
ies focusing on performance and efficiency issues, e.g., the
Apriori framework [2, 11}, partitioning [16], sampling [24],
incremental updating [6], etc. The second group includes
studies that go beyond the initial notion of association rules
to other kinds of mined rules, e.g., multi-level rules [8, 21],
quantitative and multi-dimensional rules [22, 7, 14, 10],
rules with item constraints [23), mining long patterns (3],
correlations and causal structures {4, 20], ratio rules [12],
etc.

Recently it has been recognized that the integration of data
mining technologies with database management systems is
of crucial importance [5). Furthermore, it has been argued
that the fundamental distinction of a data mining system
from a statistical analysis program or a machine learning
system should be that the former: (i) offers an ad-hoc min-
ing query language and (ii) supports efficient processing
and optimization of mining queries [9, 19]. Sarawagi et al.
(18] study the suitability of different architectures for the
integration of association mining with DBMS and study
the relative performance tradeoffs. Tsur et al. [25] explore
the question of how techniques like the well-known Apriori
algorithm can be generalized beyond their current appli-
cations to a generic paradigm called query flocks. While
these are important results toward enabling the integration
of association mining and DBMS, we contend that ad-hoc
mining still cannot be supported until the following funda-
mental problems in the present-day model of mining, first
identified in [15], are addressed satisfactorily: (i) lack of
user exploration and guidance (e.g., expensive computation
undertaken without user’s approval), and (ii) lack of focus
(e.g., cannot limit computation to just a subset of rules that
are of interest to the user). In effect, this model functions
as a black box, admitting little user interaction in between.

To address these problems, in [15], we proposed a 2-phase
architecture that opens up the black box, and introduced
the paradigm of constrained mining queries, which together
support constraint-based, human-centered exploratory min-
ing of various kinds of rules, including associations. The
foundation for the first phase of the architecture is a rich set
of constraint constructs, including domain, class, and SQL-
style aggregate constraints, which enable users to specify
what kind of mined rules are to be computed. The core part
in processing constrained mining queries is computing fre-
quent sets that satisfy the specified constraints. This leads
to the notion of constrained frequent set queries (CFQ). For-
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mally, a CFQ ' is a query of the form: {(S,T)|C}, where
S, T are set variables, and C is a set of constraints imposed
on S, T, including the usual frequency constraints. The an-
swer to the CFQ consists of all pairs of frequent sets (S, T)
satisfying C. The primary reason why (constrained) fre-
quent sets are chosen to be the intermediate results for the
first phase of the computation is that frequent sets repre-
sent a common denominator for many kinds of rules of the
form § = T, where = can mean association rules, corre-
lations, etc. Furthermore, the computation cost of finding
(constrained) frequent sets far dominates the cost of form-
ing the final rules (which is done in the second phase of
our architecture [15]). Thus, optimizing the computation
of (constrained) frequent sets is critical to the success of a
system that supports ad-hoc mining.

We illustrate CFQs using the market-basket domain. Apart
from the transaction database trans(TID, Itemset), sup-
pose there is auxiliary information stored in the relation
itemInfo(Item, Type, Price), which gives the type and
price of each item. The CFQ:

{(5,T)| SC Item & T C Item & freg(S) & freq(T) &
sum(S.Price) <100 & avg(T.Price) > 200}

intends to find pairs of frequent itemsets (S,7T), where S
has a total price no more than $100 and T has an average
price no less than $200. Subsequently, such pairs may be
used to compute rules of the form S = T, suggesting that
the purchase of cheaper items “leads to” the purchase of
more expensive ones. Here, freq(S) says that itemset S
has a support above the user specified threshold. In the
sequel, we will drop constraints of the form S C Item or
freq(S) and will assume them implicitly. Constraints such
as sum(S.Price) < 100 and avg(T.Price) > 200 are called
1-var constraints, because each constraint involves one set
variable, and one side of the constraint is a constant. 1-var
constraints are useful in conditioning the antecedent and/or
consequent separately. The CFQ:

{(S5,T) | sum(S.Price) < avg(T.Price)}

is different from the first query. It uses a 2-var constraint —
involving two set variables. 2-var constraints are useful in
constraining the antecedent and consequent jointly.

The main technical results reported in {15] are pruning opti-
mizations — for 1-var constraints — that guarantee a level of
performance that is commensurate with the selectivities of
the constraints in the user specified query. Those optimiza-
tions are based on two key properties of 1-var constraints,
namely anti-monotonicity and succinctness. These prop-
erties are exploited in an algorithm called CAP, by pushing
the constraints deeply in an Apriori-style levelwise algo-
rithm. We showed in [15] that CAP is effective in bring-
ing about a very significant speedup (e.g., up to 80 times
faster) compared with the naive extension to the Apriori
algorithm, Apriori*, which finds all frequent sets first and
then checks them for constraint satisfaction.

As the examples in Section 2 will show, 2-var constraints
are natural, ubiguitous, and indispensable in constraining
the consequent and antecedent jointly. However, CAP can

1In [158], CFQs were called constrained association queries
(CAQs). As explained here, CFQs represent a more accurate de-
scription of the computation than CAQs.

only optimize 1-var constraints, and its treatment of 2-var
constraints is no smarter than the naive algorithm. This
is the subject of this paper. The key question here is: If
there are pruning optimizations that are so effective for 1-
var constraints, could there be optimizations as effective for
2-var constraints? As a preview, this paper provides the
following answers to this question:

1. Many association mining algorithms (e.g., the Apri-
ori algorithm and its variants) depend critically on
some kind of monotonicity property for their effi-
ciency. The first contribution of this paper is a neg-
ative, but rather important, result — few 2-var con-
straints are monotone (or anti-monotone). This re-
veals the reality that developing pruning optimization
for 2-var constraints is a difficult problem, and mono-
tonicity is not the answer this time.

2. Anti-monotonicity and succinctness play a substan-
tial role in optimizing 1-var constraints. Unfortu-
nately, (anti-)monotonicity does not work any more
and succinctness does not apply to 2-var constraints
directly. To this end, the second contribution of this
paper is the concept of quasi-succinctness for 2-var
constraints. Given a 2-var constraint C(S,T), we
reduce it to two 1-var succinct constraints of the
form C1(S5,qc1) and Cz(T,qcz), where gci1,qcz2 are
constants, not given in the query, but can be very
efficiently computed. A key technical result is a com-
plete characterization of the class of all quasi-succinct
constraints allowed in the CFQ language. Experi-
mental results will show that the speedup achievable
for 2-var quasi-succinct constraints is comparable to
that achieved for 1-var succinct constraints in [15],
while incurring minimal additional overhead.

3. While quasi-succinctness is effective in the optimiza-
tion of domain and class constraints and aggrega-
tion constraints involving min() and maz(), it does
not handle 2-var constraints involving sum() and/or
avg(). The third contribution of this paper is two-
fold. First, given such a non-quasi-succinct constraint,
we show how we can induce a weaker 2-var constraint
that 4s quasi-succinct, and can therefore be exploited
in optimization as before. Second, because the opti-
mization effected by the weaker induced constraints
may be inadequate for some constraint combinations,
we develop a heuristic iterative pruning algorithm for
those situations. The algorithm is based on a com-
binatorial analysis of the question: given all the fre-
quent sets of size k for some k > 2, what is a good
upper bound on the size of the largest frequent set?
Even though CFQs with sum() and avg() constraints
are the hardest to optimize, experimental results will
show that the proposed heuristics are effective.

4. The last contribution of this paper is the development
of a query optimizer for CFQs. To measure the qual-
ity of the computation strategies generated by the op-
timizer, we propose the notion of ccc-optimality. This
notion captures the intuition that the effort spent by
a strategy in invoking the two fundamental opera-
tions — support counting and constraint checking —
should be minimized. We will establish that for a
large class of constraints, the query optimizer gener-
ates strategies that are ccc-optimal.
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Section 2 gives more examples of CFQs with 2-var con-
straints, and summarizes the concepts of anti-monotonicity
and succinctness for 1-var constraints. Section 3 introduces
and examines anti-monotonicity for 2-var constraints. Sec-
tion 4 introduces and analyzes quasi-succinctness, and de-
velops pruning optimizations for such constraints. Section 5
develops pruning optimizations for non-quasi-succinct con-
straints. Section 6 introduces ccc-optimality and presents
a query optimizer that generates ccc-optimal strategies for
a large class of constraints. Section 7 presents experimen-
tal results demonstrating the effectiveness of the optimiza-
tions. Section 8 discusses open research problems. For lack
of space, the reader is referred to [13] for complete details
of the proofs.

2 Background

Readers familiar with [15] can skip this section. A CFQ is
a query of the form {(S,T) | C}, where C is a conjunction of
domain, class, and aggregation constraints. For our exam-
ples below, we assume the transaction database trans (TID,
Itemset) with auxiliary information in itemInfo(Item,
Type, Price). The CFQ

{(5,T) | count(S.Type) = 1 & count(T.Type) =1 &
S.Type # T.Type}

asks for pairs of frequent sets containing items of different
types (but each set, on its own, containing items of the
same type, e.g., count(S.Type) = 1). Similarly, the CFQ

{(S,T) | S.-Type N T.Type = @B}

asks for frequent itemsets whose associated type sets are
disjoint. The CFQ

{(5,T) | S.Type = {Snacks} & T.Type = {Beers} &
maz(S.Price) < min(T.Price)}

finds pairs of frequent sets of cheaper snack items and of
more expensive beer items.

Definition 1 (1-var anti-monotonicity) A 1-var
constraint C is aenti-monotone iff for any set S: S does not
satisfy C = VS D S, S’ does not satisfy C.

When a 1-var constraint is anti-monotone, it can be opti-
mized in exactly the same way as the frequency constraints
are optimized in the well-known Apriori algorithm. A key
result in [15] is the characterization of all 1-var anti-monotone
constraints, among those allowed in the CFQ language. For
any 1-var constraint C, its solution space SATc(Item) is the
set consisting of all the subsets of Item that satisfy C. We
refer to elements of SAT¢(Item) as valid sets w.r.t. C.

Definition 2 (Succinctness) 1. I C Itemis a suc-
cinct set if it can be expressed as op(Item) for some
selection predicate p.

2. SP C 2™ is a succinct powerset if there is a fixed
number of succinct sets Item;, ..., Item; C Itemsuch
that SP can be expressed in terms of the strict pow-
ersets of Item,...,Item; using union and minus.

3. A l-var constraint C is succinct provided sAT¢(Item)
is a succinct powerset.

The key property of a succinct 1-var constraint C is that its
solution space can be expressed using a succinct description,

which yields a member generating function that generates
exactly the solution space SAT¢(Item) of C. In this manner,
a succinct constraint can simply operate in a generate-only
environment — and need not be in a generate-and-test envi-
ronment. This leads to significant speedup (e.g., 10 times
faster). The following lemma from [15] is important to the
subject matter of this paper.

Lemma 1 1-var domain, class, and aggregation constraints
involving only min() and/or maz() are succinct; 1-var con-
straints involving sum() and/or avg() are not. .

3 Anti-monotonicity for 2-var
Constraints

Many association mining techniques depend critically on
some kind of monotonicity property for efficiency. Given
how successful anti-monotone 1-var constraints are in prun-
ing, it is natural to try to imitate the same success in prun-
ing 2-var constraints. There is, however, a huge complica-
tion. A 1-var constraint C(S), by definition, only has one
variable S, and has one side of the constraint constant. Be-
cause this side of the constraint never changes, there is a
fixed target for the pruning of S to take effect. In contrast,
a 2-var constraint C(S,T) has two variables, representing
two “degrees of freedom.” Pruning S is complicated by the
fact that T' may change, and vice versa for pruning T. The
following analysis will confirm this observation.

To begin, we need to formalize the notion of the solution
space SAT¢ of a 2-var constraint C(S,T'). Throughout this
paper, for simplicity and concreteness, we assume that S
ranges over the set of items, i.e. S C Item, and that T
ranges over some domain Dom. But for the sake of general-
ity, we will refer to instances of variable S (resp., variable
T) as S-sets (resp., T-sets). Obviously, the definitions are
applicable if both variables range over the same domain,
i.e. Dom = Item. But assuming that the two variables come
from different domains makes it clearer whether S or 7 is
being discussed. 2 More importantly, this shows the gener-
ality of the framework in allowing two different domains to
interact in the same constraint. Furthermore, we assume
that there is an attribute A of elements of Item and an at-
tribute B of elements of Dom, such that S.4A and T.B are
in the same domain, to facilitate the interaction of the two
domains. In general, A and/or B could be absent. For ex-
ample, if 7" ranges over the Type domain, then we can speak
of a constraint with S.Type and T, such as S.Type C 7.

With S and T defined as above, the solution space of a
2-var constraint C(S,T) is given by:

SATG (Item, Dom) = {(So, 7o) | So C Item & Tp C Dom &
(So,To) satisfies C}

In the sequel, we refer to these (So,Tp) pairs that together
satisfy C as the valid pairs w.r.t. C. For the subject matter
discussed later on, we often consider only one variable at a
time. This leads to the following definition.

Definition 3 (Valid S-sets) For a given 2-var constraint

C, the set of all valid S-sets w.r.t. C is: SATS(Item) =
{So | 3To : freq(To) & (So,To) € SATc(Item,Dom)}.

21t is also possible that even though S and T range over the same
domain, their associated 1-var constraints may ultimately force them
to different parts of the domain. For example, we could have a CFQ
with min(S.Price) < 100 & min(T.Price) > 200 or another CFQ
with min{S.Prica) > 100 & T.Type = {Snacks}.
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The set of all valid T-sets w.r.t. C can be defined similarly.
Note that in the earlier definition of SAT¢(Item, Dom), the
valid pairs (So,Th) need not be frequent. But in Defini-
tion 3, a valid S-set is one-sided in its use of frequency con-
straints, since the S-set need not be frequent. The reason
for this asymmetry will become clear in the next section. A
valid S-set that is also frequent, is referred to as a frequent
valid S-set.

The spirit of pruning boils down to a smart computation
of the set of all frequent, valid pairs that does not require
an exhaustive enumeration of all possibilities. In particu-
lar, for anti-monotonicity, the hope is that if there is an
S-set So that does not satisfy the constraint in conjunc-
tion with all T-sets examined so far, then all supersets of
So cannot possibly satisfy the constraint, and hence, can
be safely discarded, regardless of what lies ahead in fu-
ture computation. This motivates the following definition
of anti-monotonicity for 2-var constraints. In the definition,
we use the notation sug,j (Item) to denote the set of solu-
tions Sp related to some frequent T-set Tp of size < j, i.e.
SATE,; (Ttem) = {So | 3To : freq(To) & |To| < j & (S0, To) €
SATc(Item, Dom)}. By Definition 3, SATE (Item) is identical
to U]. SAT‘(S;J (Item).

Definition 4 (2-var anti-monotonicity) A 2-var
constraint C(S,T') is anti-monotone with respect to S iff for
any S-set Sp such that for some integer j, the pair (So,T)
violates C, for all frequent T-sets T of size < j, it is the
case that for all supersets S’ of Sp, the pair (S, T') vio-
lates C, for all frequent 7-sets T’ of any size, i.e. So ¢
SATZ ;(Item) => V& D So, S’ ¢ SATZ(Item).

Anti-monotonicity w.r.t. T can be similarly defined. For
example, SSANT.B = @ is an anti-monotone 2-var con-
straint w.r.t. both § and 7. Consider a set So such that
it is not in SATZ ;(Item). This implies So.ANT.B # @
for all T-sets of size < j. It is obvious that this violation
relationship is preserved when Sy grows bigger and/or T
grows bigger. Anti-monotonicity w.r.t. 7 has an identi-
cal argument. Another example of an anti-monctone 2-var
constraint is maz(S. A) < min(T.B).

Anti-monotone 2-var constraints can lead to effective prun-
ing. Once S is verified not to be in SATE-, ;(Item) for some
j (e.g., 7 = 1), all its supersets can be removed from con-
sideration. As an effective pruning mechanism for 2-var
constraints, this is not the problem with anti-monotonicity.
The problem with anti-monotonicity is that there are very
few 2-var constraints that are anti-monotone. This state-
ment is based on a detailed analysis we have conducted,
from which we have identified the class of all 2-var con-
straints that are anti-monotone. For space limitations, we
do not provide an exhaustive list of combinations and only
summarize in Figure 1 the results for a representative sub-
set of 2-var constraints. The second column of the ta-
ble in Figure 1 identifies which 2-var constraints are anti-
monotone. (The third column does the same for quasi-
succinctness, which will be discussed in the next section.)
Among the domain and class constraints, SANT.B =@ is
the only anti-monotone 2-var constraint. Among the con-
straints involving maz() and/or min() shown in the table,
maz(S.A) < min(T.B) is the only instance. And none
of the constraints involving sum() and avg() shown in the
table is anti-monotone. We have the following result ascer-
taining the correctness of the table in Figure 1.

[ 2-var Constraint I Anti-Monotone | Quasi-Succinct |
SANT.B=0 yes yes
SANT.B#9 no yes
SACT.B no yes
S.AZLTB no yes
S.A=TB no yes
maz(S.A) < min(T.B) yes yes
min(S.4) < min(T.B) no yes
maz(S.A) < maz(T.B) no yes
min(S.4) < maz(T.B) no yes
sum S.Ag < maz(T.B) no no
sum(S.A) < sum(T.B) no no
avg(S.A) < avg(T.B) no no

Figure 1: Characterization of 2-var Constraints: Anti-

Monotonicity and Quasi-Succinctness

Theorem 1 For each constraint C listed in Figure 1, C is
anti-monotone iff the table says so.

Proof Sketch. We have already argued why S.ANT.B = @
is anti-monotone. Here we only show the proof of one
negative case, namely C = min(S.A) < min(T.B). Con-
sider a set Sp such that it is not in SATf;,j (Item) for some
integer j. In other words, min(So.A) > min(T.B) for
all T-sets of size < j. However, for all supersets S’ of
Se, min(So.4A) > min(S’.A). Thus, it is possible that
there may be a Ty such that min(S’.4) < min(Tb.B), thus
putting (8, Tp) in the solution space. -

Though not exhaustive, Figure 1 captures the reality that
few 2-var constraints are anti-monotone. This is a negative,
but important, result, showing the difficulty in optimizing
2-var constraints.

4 Quasi-succinctness

The analysis conducted in the previous section reveals that
when pruning for a variable in a 2-var constraint, it is im-
portant to have the other variable present a fixed target
— not one that keeps on changing. This forms the basis
for the concept of quasi-succinctness to be introduced be-
low. Intuitively, a 2-var constraint C(S,T) is quasi-succinct
if it can be reduced to two l-var succinct constraints of
the form C1(S,gc:) and C2(T, qc¢t), where gcs, gc: are con-
stants such that the set of all valid S-sets and the set of
all valid T-sets are preserved under the reduction. The
motivation for such a definition is that we would like to de-
couple the dependency or the constraint binding the two
variables together so that pruning for S and T can occur
independently, and as soon as possible. In this section,
we first present a detailed analysis of one particular con-
straint so as to introduce the various concepts associated
with quasi-succinctness. Then we simply summarize our
quasi-succinctness results for many other constraints.

4.1 The Non-overlapping Constraint: a Case

Study
As a concrete example, we consider the constraint C(S,T) =
S.ANT.B = #. Throughout this paper, we use the no-
tation L5 to denote the set of all elements contained in
any frequent S-set of size j, ie. L7 = {e |35 : 5 C
Item & freq(S) & |S| = j & e € S}. Similarly, L] denotes
the set of all elements contained in any frequent T-set of
size j. As usual, the notation L7 .A denotes {e.4 | e € L} }.
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Given the constraint S AN T.B = @, the goal is to find
1-var succinct constraints for pruning candidate S- and 7T-
sets. The following lemma shows that for a candidate set
CS C Item to be a valid S-set w.r.t. SANT.B =0, it is
necessary that CS.A does not contain all elements in L7 .B.

Lemma 2 Let CS be a candidate S-set, i.e. CS C Item.
Then:

3 a frequent T-set T such that CSANT.B=0 =
CS.AP LT.B.

Proof Sketch. Suppose CS.A D LT.B. Let T be a fre-
quent T-set of any size. By the definition of frequent sets,
we have T C Ly, and thus T.B C CS.A. This implies
CSANT.B #0. .

The 1-var constraint, C1(S) = CS.A 2 LT.B, can be re-
garded as a pruning condition for candidate S-sets. The
above lemma gives a sound pruning condition for candidate
S-sets. A pruning condition C; is sound w.r.t. the original
2-var constraint C, if it does not prune away any valid S-
set, i.e., CS € sATZ (Item) = (S € SAT¢, (Item). Con-
versely, a pruning condition C: for S-sets is tight ® w.r.t.
the original 2-var constraint C, if it prunes away every S-
set that is not valid, i.e., CS € SAT¢, (Item) —> CS €
SATS (Item). The following lemma shows that, apart from
being sound, the condition CS.A 2 LT.B is also a tight
pruning condition for candidate S-sets.

Lemma 3 Let CS be a candidate S-set, i.e. CS C Item.
Then:

CS. A2 LT.B = 3 a frequent T-set T such that
CS.ANnT.B =0.

Proof Sketch. CS.A 2 LT.B implies that there exists an
element ¢ € LT such that t.B ¢ CS.A. But by definition
of LT, the set {t} is frequent. Thus, there exists a frequent
set — namely, {t} — such that CS.AN {t}.B = 0. ]

Recall that in Definition 3, valid S-sets are defined based
on frequent T-sets. If they were defined without requiring
T-sets to be frequent, the above two lemmas would not be
true, and the given constraint would not be a sound and
tight pruning condition. This explains why in Definition 3,
there is the one-sided use of the frequency constraints. The
following corollary gives a sound and tight condition for
pruning candidate sets for variable 7.

Corollary 1 Let CT be a candidate T-set, i.e. CT C Dom.
Then: 3 a frequent S-set S such that SSANCT.B =0 <
CT.B2Li.A =

Definition 5 (Quasi-succinctness) Constraint C(S,T)
is quasi-succinct if it can be reduced to two 1-var constraints
C1(S), C2(T) such that: (i) Ch, involving only the variable
S, is succinct, and is a sound and tight pruning condition for
candidate S-sets; and (i) C2, involving only 7', is succinct,
and is a sound and tight pruning condition for candidate
T-sets.

The above two lemmas and corollary show that the con-
straint C = S.ANT.B = § is quasi-succinct, because as
summarized in Lemma 1, the reduced constraints C1(S) =
S.A 2 LT.B and Co(T) = T.B 2 Li.A are succinct 1-
var constraints. This is great news from a computational

3Note that soundness and tightness are defined w.r.t. pruning —
not satisfaction — which explains the direction of the implications.

[[2-var constraint C ][ sound & tight C1(5) [[ sound & tight Ca{T) |
SANT.B=0 CS5A2LT.B CT.B2Li.A
SANT.B#8 CSANL .B#0 || CTBNL;. A#¢

S.ACT.B CSACL].B LY ANCT.B£60
S.A¢ZTB (CS #0) LY AZCT.B
SA=TB CSACL].B CT.BC L. A

Figure 2: Quasi-succinctness: Reduction of 2-var Domain
Constraints

standpoint. This is because succinct 1-var constraints can
operate in a generate-only environment, thus avoiding a
generate-and-test environment. Consequently, significant
speedup can be achieved. Now, thanks to quasi-succinctness,
the speedup that can be achieved for 1-var succinct con-
straints is directly applicable to optimizing 2-var quasi-
succinct constraints. Furthermore, in C1(S) and Ca(T)
above, the constants in the constraints are the sets LT.B
and L7 .A respectively. A key point here is that these sets
L% and LY are computed in any event for frequency veri-
fication purposes. Thus, the de-coupling process in quasi-
succinctness requires little extra cost. Last but not least, in
a customary, levelwise computational framework, the sub-
script 1 in both LY and LT implies that immediately after
the first iteration of counting, the 2-var constraint can be
de-coupled to effect separate pruning.

4.2 Other Domain Constraints

Based on the notion of quasi-succinctness illustrated so far,
we have conducted a detailed analysis of 2-var constraints.
Column 3 of the table in Figure 1 gives a complete charac-
terization of a representative subset of quasi-succinct con-
straints among those allowed in our CFQ language. Basi-
cally, all domain 2-var constraints are quasi-succinct. We
will comment on the other 2-var constraints shortly. For
the domain constraints shown in Figure 1, the table in Fig-
ure 2 shows their corresponding 1-var succinct constraints
C1(S) and Cz2(T). We have the following formal result to
ascertain the correctness of the entries in Figure 2.

Theorem 2 For each 2-var constraint C listed in the table
in Figure 2, the following holds:

e C1(8) is a succinct, sound and tight pruning condi-
tion for candidate S-sets; and

e C,(T) is a succinct, sound and tight pruning condi-
tion for candidate T-sets. .

The first entry in the table is proved by Lemmas 2, 3 and
Corollary 1. For lack of space, we do not include other
proofs here. But concerning the other entries in the table,
we make one observation: some of the 1-var constraints
shown in the table actually have less pruning power than
others. An extreme example is S.4 # T.B, in which case
the corresponding 1-var constraint for S is CS # @, which
has virtually no pruning power.

4.3 Aggregation Constraints Involving Only
min() and maz()
Next we turn our attention to 2-var aggregate constraints.

First, we focus on 2-var constraints of the form: agg,(S.A) 0
agg:2(T.B), where agg:,agg2 are either min() or maz(), 6
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2-var constraint C sound & tight C'1 (S) sound & tight Ca(T)
min(S.4) < min(T.B) min(CS.A) < min(CT.By > |
maz(LT.B) min(L$.A)
min{S.A) < maz(T.B) min(CS.A) < maz(CT.B) >
maz(LT.B) min(L{.A)
maz(S.A) < min(T.B) maz(CS5.A) < min{CT.B) >
maz(LT.B) min(L5.A4)
maz{S.A) < max(T.B) max{CS.A) < max(CT.B) >
maz(LT.B) min(L5.A)

Figure 3: Quasi-succinctness: Reduction of min() and
maz() Constraints

is one of =, <, >, and S.A and 7T.B are in the same do-
main. Again because there are many combinations, we only
summarize a few cases in Figures 1 and 3. Other cases
not shown can be handled similarly [13]. In terms of for-
mal results, as shown in the theorem below, in each case,
the accompanying 1-var constraints are guaranteed to be
succinct, sound and tight pruning conditions. For lack of
space, we only show a proof sketch for one 2-var constraint,
C = maz(S.A) < maz(T.B). It will become obvious later
why we pick this constraint for elaboration.

Theorem 3 For each 2-var constraint C(S,T) listed in
Figure 3, the following holds:

e C1(S) is a succinct, sound and tight pruning condi-
tion for candidate S-sets; and

e C(T) is a succinct, sound and tight pruning condi-
tion for candidate T'-sets.

Proof Sketch. Consider C = maz(S.A) < maz(T.B).
The following is to show that: (i) CS is a valid S-set w.r.t.
C iff CS satisfies the constraint maz(CS.A4) < max(LT.B);
and (ii) CT is a valid T-set w.r.t. C iff CT satisfies
maz(CT.B) > min(L$.A).

(For CS:) Suppose CS satisfies maz(CS.A) > maz(LT.B).
For any frequent T-set T, it is the case that maz(LT.B) >
maz(T.B), because T C LY. Thus, there will never be
a frequent T-set Ty such that the pair (CS,To) satisfies
constraint C, so CS cannot be valid. Now suppose CS
satisfies maz(CS.4) < maz(LY.B). Then there exists an
element t € LT such that max(CS.A) < t.B. Now consider
the set {t}. It is frequent, and the pair (CS, {t}) satisfies
C, implying CS is valid.

(For CT:) Suppose CT satisfies maz(CT.B) < min(L$.4).
Then as argued above, it is clear that for any frequent S-
set S, min(LY.A) < maz(S.A). Thus, there cannot be
a frequent S-set Sy such that the pair (So,CT) satisfies
constraint C. Now suppose CT satisfies maz(CT.B) >
min{L$ .A). Then there exists an element s € L{ such that
maz(CT.B) > s.A. This makes CT a valid T-set. a

There are two reasons why we choose to include the above
proof here. First, this serves as a concrete example of the
arguments showing the soundness and tightness of the prun-
ing conditions given in Figure 3. Second, the proof explains
many interesting regularities that exist among the condi-
tions given in the figure. For instance, the succinct con-
straint C1(S) is identical in the third and fourth rows of
the table. The observation here is that the proof for CS
given above works for either of the two 2-var constraints

maz(S.A) < min(T.B) or maz(5.4) < maz(T.B). Simi-
Jarly, notice the similarity between the succinct constraints
C2(T) for the same two constraints. The term min(L$.A)
appears in both succinct constraints, and min(T.B) in the
2-var constraint corresponds to min(CT.B) in the succinct
1-var constraint, and vice versa for maz(T.B). Again the
proof for CT above explains why.

5 Optimizing 2-var Constraints
Involving sum() and avg()

In the previous section, we have analyzed quasi-succinct
constraints. Next we turn to non-quasi-succinct constraints.
These are constraints involving sum() and avg(). Specif-
ically, we develop a two-pronged approach for optimizing
non-quasi-succinct constraints. First, we show how such
a constraint can induce weaker 2-var constraints that are
quasi-succinct, thereby making use of the results presented
in the previous section. Second, because for some constraint
combinations, the induced constraints may not always yield
adequate pruning by themselves, we develop an iterative
heuristic pruning algorithm of a different flavor.

5.1 Inducing Weaker Quasi-succinct
Constraints

To illustrate, consider the comnstraint C = sum(S.4) <
maz(T.B). Constraint C implies the weaker constraint
C' = maz(S.A) < maz(T.B), in the sense that CS €
SATS (Item) == CS € SATS, (Item), and similarly for CT.
Intuitively, for any candidate S-sets CS violating C’', CS
must also violate C. (The results in this section assume thas
the domains of A and B are non-negative.) We know from
Section 4 that C’ is quasi-succinct. Thus, we can use the
1-var succinct constraints C,(S) and Ca(T') (see the table
in Figure 3) as pruning conditions for C. Notice that even
though Ci(S) and C>(T) are sound and tight w.r.t. C’,
they are only sound pruning conditions for candidate S-
sets and T-sets w.r.t. C. Because the pruning is not tight,
when eventually the valid pairs w.r.t. C are computed, an
additional verification against C must be performed.

Based on the idea of inducing weaker constraints, the table
in Figure 4 shows the sound pruning conditions C;(S) and
Co(T) w.rt. C for a representative subset of aggregate
constraints involving sum() and/or avg(). In general, with
agg() denoting any aggregation allowed in our language,
(1) C = avg() < agy() induces €' = min() < agg(); (i)
C = sum() < agg() induces C' = maz() < agg(); and (iii)
C = agg() < avg() induces C' = agg() < maz(). We have
the following lemma.

Lemma 4 For each 2-var aggregate constraint C given in
the table of Figure 4, we have:

e C1(S) is a succinct and sound pruning condition for
candidate S-sets; and

e C2(T) is a succinct and sound pruning condition for
candidate T-sets. =

Induced weaker constraints can be quite effective in pruning
for many cases. But sometimes they may be too “loose”,
particularly for constraints involving only sum() and/or
avg(). A perfect example is the constraint C = sum(S.4) <
sum(T.B). It is not difficult to show that a sound pruning
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2-var constraint C induced weaker constraint C’

L

sound C1(5S) sound Cg(T) ]

avg(S.A) < min(T.B) min(S.A) < min(T.B)

min(CS.A) < maz(LT.B) [[ min(CT.B) > min(L.A)

sum(S.A) < maz(T.B) maz(S.A) < maz(T.B)

maz(CS.A) < maz(Ly.B) || maz(CT.B) > min(L{.A)

min(S.A) < maz(7T.B)

avg(S.A) < avg(T.B)

min(CS.A) < maz(L] .B)

maz(CT.B) > min(L].A)

Figure 4: Induced Weaker Congstraints for Constraints involving sum() and/or avg()

1. Set N}‘ to be the number of frequent sets of size k con-
taining %;.

2. Set JF to be the largest j with: N} > (k+] 1

3. Set Jk . to be maz{J¥ [1<i< m}.

maT

&)

Figure 5: Computing an Upper Bound on Largest Frequent
T-set, Jhas.

condition C1(S) is sum(CS.A) < sum(LT.B). But the con-
stant sum(LT . B) can be too large. The following numerical
example, which e will reuse later, illustrates this situa-
tion. Suppose LT = {t1,...,t100}. Suppose t;.B = i for all
1 < i £100. Then the pruning condition sum(CS.A) <
sum(LT.B) yields sum(CS.4) < (1 + ...+ 100) = 5050.
Below we develop another pruning technique primarily for
constraints involving only sum() and/or avg().
5.2 Heuristic Iterative Pruning with J%

The problem we have just seen about pruning sum(S.4) <
sum(T.B) raises the following question: if we cannot pro-
duce tight pruning conditions with one constraint and one
constant, can we produce a series of constraints with in-
creasingly stronger pruning power? Let us first observe
that between S and T, the pruning condition for S, hav-
ing the form sum(S.A) < V4, is likely to be of more value,
because the latter constraint is also anti-monotone (cf: Def-
inition 1), which permits effective optimization. Thus, let
us focus our attention on the S side, in the rest of this sec-
tion. An obvious — but ineffective — choice for the value V4
is sum(LT.B). Instead, in the following, we show how to
generate a series of values V3, ..., V¥ based on the frequent
T-sets of size 2 through k. To do so, we must first answer
the following question: given all the frequent T'-sets of size
k for some k > 2, what is an upper bound on the size of
the largest (in the cardinality sense) frequent T-set?

The procedure given in Figure 5 provides such a bound.
Given all the frequent T-sets of size k, let t1,...,¢n be an
enumeration of all the elements contamed in a.ny frequent
T-set of size k, i.e., elements in L. The intuition behind
Equation (1) in Flgure 5 is that in order for the element ¢;
to appear in at least one frequent T'-set of size k+ j, it must
appear in at least ("“ 1) frequent sets of size k. Thus, J¥,
being the maximum of all j’s satisfying Equation (1), gives
an upper bound on the largest frequent T- set contammg t;.

Hence, given all frequent T-sets of size k, JE . is an upper
bound on the size of the largest frequent T-set.

To continue with our earlier numerical example, suppose
there are 17 frequent sets of size 4 containing element t;,
i.e., N} = 17. Then it is not possible to have a frequent
set of size 7 containing ¢1, because otherwise, there should

1. For an arbitrary element t; € L{, among all frequent T-
sets of size k containing t;, let the set T.." be the one with
the maximum value of sum(T.B). Let that sum be Sumk.

2. Let E:‘ be the set of all elements of Lz' that are not in
T{‘ but co-occurring with ¢; in some frequent set of size
k. Let e1,...,ey be an enumeration of all the elements
in E," in descending order of their B-values, i.e. e1.B >
. > ew.B.
3. Set Ma:z:Sum to be Sum’c + Zuﬁ;’ ey.B.

4. Set V* to be maz{MazSum¥ [1 < i< m}.

Figure 6: Iterative Pruning Using JX ..

at least be ({Z1) = 20 frequent sets of size 4 containing
t:. In other words, the largest frequent set containing t1
is of size at most 6, i.e., J& = 2. Depending on the actual
distribution of the elements in the 17 frequent sets of size
4, and the frequency counts of the sets, the actual largest
frequent set containing ¢1 may in fact have size smaller than
6. But the point is that the best estimate we can make from
the given information is 6.

The following lemma says that for each element, as we in-
crease our knowledge from knowing all frequent sets of size
k to knowing all frequent sets of size k + 1, we can sharpen
our upper bound.

Lemma 5 For all k > 2, it is necessary that for all 1 <
i<m, JFt < JF and Jl‘,ﬁ,;} < JE s

Before we return to the discussion of optimizing 2-var con-
straints involving sum() and evg(), we point out that JX ..
can be computed very efficiently. All the quantities N¥ can
be computed with one pass over all the frequent T-sets of
size k. These “counters” may best be maintained on-the-fly
as the frequent sets are computed. Regarding Steps 2 and
3 in Figure 5, it is easy to see that we can execute Step
3 only once based on the maximum N¥ value, instead of
solving Equation (1) m times for each 4, 1 < i < m. Thus,
the time taken to find J%,,, is negligible.

Recall that our objective is to effect iterative pruning for
the constraint sum(S.4) < sum(T.B), by producing a se-
ries of 1-var constraints sum(S.4) < V*, 1 < i < k, where
the upper bounds get tighter as ¢ increases. Figure 6 shows
how this series can be produced. To continue with our
earlier example, suppose for the element t1g9, that the fre-
quent 7T-set of size 4 containing ¢190 that has the maximum
sum(T.B) value, is the set {t10, ¢50, ts0, t100}. This set gives
a total sum of Sumigy = 240. (Recal] that we are assum-
ing, for simplicity, that ¢;.B = i.) Suppose that Jh s is 2,
and that among the other elements co-occurring with tmo
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Figure 7: A Schematic Diagram of the CFQ Query Optimizer

in any frequent T-set of size 4, the elements with the top-2
B-values are tgo and t75. Then the value of MazSumiyg is
given by 240 + 90 + 70 = 400. It is easy to see that for
any frequent T-set T containing ¢y00, sum(7T.B) is bounded
from above by 400.

Lemma 6 For any value of ¥ > 2, if CS is a valid S-
set w.r.t. the constraint sum(S.4) < sum(T.B), then it
necessarily satisfies sum(CS.4) < V*. »

Lemma T For all k > 2, it is necessary that V*¥+! < V¥,
.

In closing this section, we offer three extra comments. Flrst
we have discussed how to use J%,,. to derive a series of V*
values for sum(S.A) < V*. Given the constraint avg(S.A) <
agg(T.B), where agg() is sum() or avg(), we can derive a
series of A* values for avg(S.4) < A*.

Second, iterative pruning with J%,, makes sense only when
the lattice computations for S and T are “dovetailed”, in
that computing one level of the lattice for S is followed by
one level of T and vice versa. An attentive reader would
raise the following objection to dovetailing. Suppose the
only constraint in a given CFQ is sum(S.A) < sum(T.B).
Then, as argued above, we can expect to do very little
pruning on the T side for this constraint. One reasonable
strategy is to compute all frequent T-sets, find the global
maximum M = maz{sum(T.B) | freq(T)}, and then use
the condition sum(S.4) < M as a pruning condition for
candidate S-sets. Purely from the viewpoint of pruning,
this is convincing. However, this argument ignores the I/O
cost. In general, dovetailing between the lattices for § and
T allows for sharing of scans on the transaction database,
from which frequency constraints are verified. While it re-
mains an open problem as to what the optimal strategy for
computing a CFQ is, counting both CPU and 1/O costs,
we believe dovetaalmg is reasonable under many cucum-
stances. In those cases, iterative pruning based on JE oz is
an attractive strategy.

Finally, we note that usmg induced weaker constraints and
iterative pruning with J% . are complementary and work at
different times. Induced weaker constraints effect pruning

once and for all right after iteration 1 in frequency counting,
whereas pruning with JX . comes into effect multiple times
in subsequent iterations.

6 A CFQ Query Optimizer

So far our focus has been on how to optimize different kinds
of 2-var constraints on an individual basis. In this section,
we tie all these different pieces together into a query opti-
mization framework. Specifically, we present a CFQ query
optimizer which given a CFQ, produces an optimized com-
putation strategy for the CFQ, considering both 1-var and
2-var constraints. To evaluate the quality of the strategy
produced by the optimizer, we introduce the notion of ccc-
optimality. This notion seeks to capture the effort spent by
a strategy in invoking two fundamental operations — sup-
port counting and constraint checking. We show that for a
large class of constraints, the strategy is ccc-optimal.

6.1 A Schematic Diagram of the Optimizer

Figure 7 shows how the CFQ query optimizer operates when
presented with a set C of constraints. It first separates the
1-var and 2-var constraints, i.e. € = C; U 2. This sepa-
ration is purely syntactic. The set C2 of 2-var constraints
is then further divided into two subsets Cgs,Cngs, as fol-
lows. C,4s contains every quasi-succinct conmstraint in Ca,
while Cpngs = C2 — Cqs. Using the ideas in Section 5.1, from
each constraint in Cpgs, a weaker quasi-succinct constraint
is induced and added to the set C,s. Then based on the
material in Section 4, each quasi-succinct 2-var constraint
in Cqs is reduced to two l-var succinct constraints. This
transforms C4, into the corresponding Cgs,1. The latter is
then put together with the set of 1-var constraints from
the initial CFQ, i.e. Cgs,1 UCy. Together these constraints
are exploited by the CAP algorithm which provides opti-
mized execution of 1-var constraints [15]. If the set Cpngs
of non-quasi-succinct constraints is not empty, then the
iterative pruning strategy developed in Section 5.2 is ap-
plied. Specifically, at each level of the lattice computation
by CAP (and for that matter, Apriori as well), a candidate
set is only counted for frequency verification if it satisfies
the constraint induced by J¥,.. This additional filtering
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step is depicted in Figure 7 as an add-on to the CAP mod-
ule, which produces all frequent, valid S- and T-sets (cf:
Definition 3). * Finally, from among these sets, the fre-
quent, valid pairs are formed. This final step is trivial if
there is no 2-var constraint in the CFQ to begin with.

6.2 Performance Guarantee: CCC-Optimality

The query optimizer outlined in Figure 7 generates a spe-
cific strategy for computing a given CFQ. We evaluate be-
low the quality of this strategy. As shown in Figure 7, to
find all the frequent, valid pairs (S,T) for a given CFQ,
there are two steps involved: (i) finding all the frequent,
valid S- and T-sets; and (ii) forming the pairs. The dia-
gram in Figure 7 suggests that the first step requires a lot
more computational effort than the second step. Indeed,
experimental results indicate that the first step typically
requires a total runtime many orders of magnitude higher
than what the second step needs. Thus, in the ensuing
discussion, we only focus on the performance of the first
step.

To measure performance, we consider two cost components:
(i) the effort needed for constraint checking, and (i) that
for support counting. The level of granularity of our cost
model is such that for constraint checking, we count the
number of invocations of the constraint checking operation,
and for support counting we count the number of sets for
which support is counted. This leads to the notion of cce-
optimality, where “ccc” stands for constraint checking and
counting. We say that a candidate S-set C'S is valid w.r.t.
a set of constraints C if CS is valid w.r.t. all 1-var and 2-var
constraints in C in the sense defined in Sections 2 and 3.

Definition 6 (ccc-optimality) A computation strategy
is ccec-optimal for a class of constraints provided for every
set C of constraints from that class, it satisfies the following

conditions:
(1) the strategy counts for the support of a candidate
set CS iff: all subsets of CS are frequent, and CS is

valid;
(2) the s’trategy invokes the constraint checking opera-
tion on a candidate S-set CS, only if |CS] =1.

The first condition of ccc-optimality guarantees that when
a set CS is counted for its support: (i) all subsets of CS are
frequent, (ii) CS satisfies all 1-var constraints in C involving
S, and (iii) for every 2-var constraint C in C involving S
and T, there necessarily exists a frequent T-set CT, such
that (CS,CT) is a valid pair w.rt. C.° At this stage,
the frequency constraint is the only remaining requirement
that could possibly prevent CS from becoming a frequent,
valid S-set. Thus, in a bottom-up levelwise computational
framework, the first condition, in some sense, represents
the minimum number of sets that need to be counted for
support verification.

Given a set C of constraints, the naive algorithm, called
Apriori* in [15], can compute all frequent, valid sets by

4If induced weaker constraints are used for non-quasi-succinct
constraints, as described in Section 5.1, the output of CAP may
include, in addition to all the valid S- and T-sets, some S- and T-
sets not valid for the original constraints. Those will be discarded
when the final step of forming valid pairs is executed.

5We stress that we may not, and need not, know what exactly
CT is, as long as we know some such CT must exist. This is the
power of the material on quasi-succinctness in Section 4.

first computing all frequent sets, and then verifying whether
these frequent sets satisfy C. It is easy to see that for most
instances of C, Apriorit is not ccc-optimal because it vio-
lates the first condition by counting sets that are invalid.
Surprisingly, there are instances of C for which Apriorit is
ccc-optimal; we will characterize those instances shortly.

The first condition alone, however, does not necessarily
guarantee that the invocation of the constraint checking op-
eration is done a minimal number of times. As a counter-
example, consider the following “full-materialized” (FM)
strategy. FM first computes all valid sets by generating all
possible subsets and verifying each and every one against
the set C of constraints. Then among all the subsets that
satisfy C, it counts the support in ascending cardinality.
Clearly, FM satisfies the first condition above, as it counts
the minimum number of sets for support. Equally clearly,
FM leaves much to be desired as it performs constraint
checking too many times, indeed 2V times in the worst
case, where N is the size of the active domain (e.g., the
number of items).

This motivates the second condition in Definition 6, namely
that the number of invocations of constraint checking is re-
stricted to at most N. In a bottom-up levelwise compu-
tational framework, we believe this is a reasonable lower
bound, since it is not clear how one can do with fewer con-
straint checking invocations in that framework. With this
motivation, we contend that ccc-optimality is a very desir-
able goal for a computation strategy for CFQ to achieve.

Theorem 4 Algorithm CAP is ccc-optimal for the class of
1-var succinct constraints. ]

Recall from Figure 7 that Algorithm CAP is used to pro-
cess 1-var constraints. The above theorem states that CAP
achieves ccc-optimality for C if the set consists of only 1-var
succinct constraints. While the details of a proof are given
in [13], the general idea is that to any set of 1-var succinct
constraints, including those which are not anti-monotone,
there is a corresponding function, called the member gen-
erating function (MGF) in [15], that can generate exactly
those sets that satisfy the constraints. The MGF operates
in such a way that the second condition of ccc-optimality
is satisfied. Together with the MGF, CAP then guarantees
that the first condition of ccc-optimality is also met.

Corollary 2 The strategy generated by the CFQ query
optimizer is ccc-optimal for the class of constraints consist-
ing of 1-var succinct and 2-var quasi-succinct constraints.

]

Recall from Theorems 2 and 3 that each 2-var quasi-succinct
constraint can be reduced to two 1-var succinct constraints
preserving the valid S- and T-sets. These reduced 1-var
succinct constraints can be set up appropriately after all
the sets in the first levels of the lattices for S and T have
been counted for their support. This ensures that the sec-
ond condition of ccc-optimality is satisfied. Then by virtue
of Theorem 4, the computation strategy given by the CFQ
query optimizer makes use of CAP to guarantee that ccc-
optimality is achieved w.r.t. the reduced 1-var succinct
constraints. This then, by Definition 6, implies that this
strategy is ccc-optimal w.r.t. the 2-var quasi-succinct con-
straints as well.

In general, Apriorit is not ccc-optimal for 1-var succinct
constraints, and hence not for 2-var quasi-succinct con-
straints. However, in some situations, Apriori* may indeed
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Figure 8: Performance Speedup: Exploiting Quasi-succinctness

be ccc-optimal (as will the strategy given by the optimizer). 7.1 Quasi-succinctness: 2-var Constraints
If C consists of only 2-var quasi-succinct constraints where Only
the variables S and T effectively point to the same lat-
tice computation, then Apriori* is ccc-optimal. For exam-
1 i f a singl i in(S.4) <
fnf;'zs;p}l))o}sevfitﬁogséigsg Ta ﬁi;f:ﬁi?ilxr{m?gsoﬂi; shown in Figure 3, it can be reduced to the two succinct
say Ttem. The two 1-var constraints given in the first entry 1 V¥ constraints: ma:c(C;S' ‘Price) < maz(L{ Price) and
of the table in Figure 3 become trivial (e.g., min(CS.A) < min(CT.Price) > min(L7 Price). The efficiency gain by
maz(LT.A) = maz(L$.A)). Thus, every subset of Item is using these two 1-var constraints as a replacement of the

s3 Q. T-set! T 4 original 2-var constraint depends on the Price ranges of
a valid §- and T-set! In this case, the sirategy used by the S and T. The curve shown in Figure 8(a) corresponds to

optimizer effectively reduces to Apriori™. the case when S.Price is in the range [400,1000]. (We will
As for non-quasi-succinct constraints, the computatlon strat- comment on the effect on cha.ngmg this range shortly.) On
egy given by the optimizer (and trivially, Apriori*) is not the other hand, T.Price is in the range [0,v]. The x-axis
ccc-optimal because the strategy violates both conditions of the graph in Figure 8(a) shows the results for various
of ccc-optimality. While the two-pronged approach pro- values of v. For easier comparisons among different ranges
posed in Section 5 can be effective in cutting down the of Price, the x-coordinate is expressed in terms of the per-
number of sets counted for support and the number of centage overlap between the range of S.Price and the range
invocations of constraint checking, it does not guarantee of T.Price, i.e., z = 100% * (v — 400)/(1000 — 400), where
ccc-optimality. Developing ccc-optimal strategies for non- v > 400. For instance, v equal to 500 and 700 correspond to

In this set of experiments, we consider a single 2-var quasi-
succinct constraint maz(S.Price) < min(T.Price). As

quasi-succinct constraints is an open problem. the overlap percentage of 16.6% and 50% respectively. The
y-axis shows the speedup of explmtmg quasx-succmctness
7 Experimental Evaluation relative to Algorithm Aprlorl The graph in Figure S(a)

shows that the speedup is about 4 times when there is a
To evaluate the effectiveness of the various optimizations 16.6% overlap. In general, as there is more overlap, the
presented in this paper, we implemented all of them in C. constraint maz(SPrice) < min(T.Price) itself becomes
We used the program developed at IBM Almaden Research less selective and the speedup is reduced. But even for the
Center [2] to generate the transaction databases. While large percentage overlap of 83.4%, there is a speedup of over
we experimented with various databases, the results cited 1.5 times.
below are based on a database of 100,000 records and a do- . ) ) . .
main of 1000 items. The page size was 4Kbytes. All exper- The feffectlvepess of the pruning achieved by exploiting quasi-
iments were run in a time-sharing SPARC-10 environment, Succinctness is best explained by the following table (for the
and the speedup shown is w.r.t. total CPU + I/O time. Situation of 16.6% overlap). The columns of the table cor-
For comparisons, we include the results for the “baseline” Tespond to the sizes of the frequent sets. The two rows
algorithm Apriori*, which first generates all frequent sets describe the situations fo_r variable § and T. Each entry is
and then checks them for constraint satisfaction. Whenever ©f the form a/b, where a is the number of frequent sets sat-
appropriate, we include the results for the CAP algorithm i8fying the corresponding 1-var succinct constr aint, and b is
proposed in [15]. CAP optimizes 1-var constraints by push- simply the !;ota,l number of frequent sets of 'tha,t size. For
ing them deeply in an Apriori-style bottom-up framework. exa,r'np!i, without taking advantage of quasi-succinctness,
This algorithm does not optimize the 2-var constraints an- Apriori 'ﬁnds 372,122 and 8 frequent sets of sizes 2, 4 and
alyzed in this paper. 6 respectively for variable S. With quasi-succinctness ex-

ploited, our optimized strategy only needs to compute 153,
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21 and 1 frequent sets of the corresponding sizes. For vari-
able T, our optimized strategy stops after 3 levels, whereas
Apriori* needs to go to 6 levels.

l Ly La J Lz [ Ls Ly 1 Lg I
for S || 425/425 | 153/372 | 54/179 | 21/122 | 6/48 | 1/8 |
for T || 402/402 | 112/414 | 8/181 0/123 | 0/48 | 0/8

The graph shown in Figure 8(a) is based on S.Price falling
in the range [400,1000]. Enlarging (and shrinking respec-
tively) this range makes the constraint less (more) selective
and the speedup less (more) prominent. The following table
shows the speedup for a percentage overlap of 50%, when
the S.Price falls in the ranges of [300,1000], {400,1000] and
{500,1000] respectively.

Range of S.Price || Speedup for 50% overlap
300,1000 1.52 times
400,1000 1.84 times
500,1000 2.07 times

7.2 Quasi-succinctness: 2-var constraints
Together with 1-var constraints

In this set of experiments, we consider the constraints:
TPrice < 600 & S.Price > 400& S5.Type = T.Type.
We compare the relative eﬂic1ency of three strategies: (i)
the baseline Apriorit; (ii) the CAP algorithm which only
optimizes the first two 1-var constraints; and (iii) the strat-
egy of exploiting the quasi-succinct 2-var constraint, as well
as optimizing the 1-var constraints as in CAP (which is ex-
actly the strategy prescribed by the optimizer). Thus, the
difference in performance between the last two strategies is
purely based on the way quasi-succinctness is exploited.

The z-axis of the graph in Figure 8(b) gives the percentage
overlap between the Types of items of T (i.e., those items
satisfying T'.Price < 600) and the Types of items of S (i.e.,
those items satisfying S.Price > 400). The y-axis again
shows the speedup relative to the Apr10n+ algorithm. This
explains the horizontal line at y = 1 in the figure. Because
the CAP algorithm only optimizes the 1-var constraints and
only checks the 2-var constraint S.Type = T.Type at the
end, the percentage overlap variation has no bearing on the
relative performance of CAP. Thus, its performance curve
also gives a horizontal line, but this time at y = 1.5. In
other words, optimizing the 1-var constraints alone gives a
speedup of 1.5 times. In addition to this optimization, if
quasi-succinctness is applied to the 2-var constraint, very
significant additional speedup is achieved. For example, for
a 40% overlap in Type values, the total speedup is 6 times,
as compared with 1.5 times with only optimizations for 1-
var constraints. For a 20% overlap, the total speedup is
about 20 times.

The graph shown in Figure 8(b) is based on S.Price falling
in the range [400,1000] and T.Price in [0,600]. Enlarging
these ranges reduces the speedup of both curves relative to
Apriori*. The reason is that the larger the ranges, the less
selective the 1-var constraints are. However, the algorithm
CAP, optimizing only 1-var constraints, is more seriously
affected by these changes. Consequently, the gap between
whether quasi-succinctness is exploited or not is even wider.
The following table shows this phenomenon with a 40%

overlap in Type values. The third and fourth columns of the
table give the speedup for optimizing 1-var constraints only,
and for optimizing both kinds of constraints respectively.
The last column gives the ratio of the fourth column over
the third column.

S.Price | T.Price || Speedup for | Speedup for | Ratio
1-var only 1- and 2-var
100,1000 0,900 1.2 times 5 times 4.17
400,1000 0,600 1.5 times 6 times 4.0
800,1000 0,200 20 times 37.5 times 1.875

7.3 Optimizing sum() and avg() Constraints
with JE .

Section 5 gives two ways to optimize non-quasi-succinct
constraints. The experimental results presented so far al-
ready give an idea of the efficiency of the first approach of
inducing weaker constraints. Below we focus on the second
approach of iterative pruning with JE .2 In this experi-
ment, we consider sum(S Prlce) < sum(T.Price). Recall
ﬁ-om Sectlon 5 that pruning is achieved by finding a series
of V2,...,V* upper bounding sum(S.Price). In order for
the senes to develop, we pick a low support threshold for
S so that there are frequent sets on the S side that are of
high cardinality, and the effect of the pruning can be appre-
ciated. For the results reported below, the highest cardinal-
ity is 14, Furthermore, values of S.Price and T.Price are
made normally distributed, with different means but the
same variance. For the results reported below, the items
corresponding to S have a mean Price value of 1000 and
a variance of 100. The following table shows the speedup
with different mean T.Price values.

Mean of T.Price || Speedup with J!"ﬂ o
400 3.14 times
600 1.91 times
800 1.36 times
1000 1.11 times

When the mean Price value on the T side is much lower
than that on the S side, the constraint sum({S.Price) <
sum(T.Price) is reasonably selective. In this case, the it-
erative pruning strategy using J¥.. helps bring about a
proportionate amount of speedup. For instance, when the
mean Price value on the T side is 400, the speedup is about
3 times. But when the mean Price value increases, the
constraint itself is less selective. Consequently, the speedup
obtained is modest, e.g., only 1.4 times when the mean is
900. Compared w1th quasi-succinctness, pruning with JE s
delivers less spectacular results. We attribute this to the
relatively non-selective nature of the sum() and avg() con-
straints. The point is that iterative pruning does deliver a
level of performance commensurate with the selectivities of
these constraints that are hard to optimize.

8 Conclusions

Towards the eventual goal of supporting ad-hoc mining of
various kinds of rules, we proposed in [15] constrained fre-
quent set queries. The main contribution of [15] was in de-
veloping pruning optimizations for 1-var constraints. In this
paper, we consider 2-var constraints and develop pruning
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optimizations for them. We establish a negative result that
few 2-var constraints are anti-monotone, thus underscoring
the challenge posed by 2-var constraints w.r.t. pruning op-
timization. We introduce the notion of quasi-succinctness
and completely characterize the class of all such constraints
among those allowed in the CFQ language. Quasi-succinct
constraints can be reduced to two succinct 1-var constraints
which are sound and tight w.r.t. pruning away candidate S-
sets and T-sets. For constraints that are not quasi-succinct,
we develop a two-pronged approach consisting of: (i) induc-
ing weaker quasi-succinct constraints and exploiting them,
and (ii) adopting an iterative pruning strategy. Finally, we
propose a query optimizer for CFQs and show that for the
large class of 1-var succinct and 2-var quasi-succinct con-
straints, the strategy generated by the optimizer achieves
the very desirable goal of ccc-optimality. This notion cap-
tures the idea that the effort spent by the strategy in in-
voking support counting and constraint checking is mini-
mized. We establish the effectiveness of the optimizations
developed in the paper with experiments, which show sig-
nificant speedup, compared with Apriori* on the one hand,
and compared with CAP (which optimizes only 1-var con-
straints) on the other.

Many questions remain open, but we mention three here.
(1) As mentioned in Section 5, the strategies developed for
non-quasi-succinct constraints are not ccc-optimal. Devel-
oping such a strategy is an open problem. (2) The “cost
model” corresponding to ccc-optimality represents only a
first attempt to explore optimality issues. Developing more
detailed cost models for CFQs, as well as optimizers in-
corporating such models, is an interesting problem. (3) Ex-
panding the constraint language to incorporate more power-
ful, yet useful, constraint classes is another important prob-
lem.
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