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Abstract 
We present a novel algorithm to compute large itemsets 
online. The user is free to change the support threshold 
any time during the first scan of the transaction sequence. 
The algorithm maintains a superset of all large itemsets and 
for each itemset a shrinking, deterministic interval on its 
support. After at most 2 scans the algorithm terminates 
with the precise support for each large itemset. Typically 
our algorithm is by an order of magnitude more memory 
efficient than Apriori or DIC. 

1 Introduction 

Mining for association rules is a form of data mining 
introduced in [AIS93]. The prototypical example is 
based on a list of purchases in a store. An association 
rule for this list is a rule such as “85% of all customers 
who buy product A and B also buy product C and D” . 
Discovering such customer buying patterns is useful for 
customer segmentation, cross-marketing, catalog design 
and product placement. 

We give a problem description which follows [BMUT97]. 
The support of an itemset (set of items) in a transaction 
sequence is the fraction of all transactions containing 
the itemset. An itemset is called large if its support 
is greater or equal to a user-specified support thresh- 
old, otherwise it is called small. An association rule 
is an expression X =+ Y where X and Y are disjoint 
itemsets. The support of this rule is the support of 
X U Y. The confidence of this rule is the fraction of 
all transactions containing X that also contain Y, i.e. 
the support of X U Y divided by the support of X. 
In the example above, the “85%” is the confidence of 
the rule {A, B} 3 {C, D}. For an association rule to 
hold, it must have a support > a user-specified support 
threshold and a confidence 2 a user-specified confidence 
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threshold. Existing algorithms proceed in 2 steps to 
compute association rules: 

1. Find all large itemsets. 

2. For each large itemset 2, find all subsets X, such 
that the confidence of X + Z\X is greater or equal 
to the confidence threshold. 

We address the first step, since the second step can 
already be computed online, c.f. [AY97]. Existing large 
itemset computation algorithms have an offline or batch 
behaviour: given the user-specified support threshold, 
the transaction sequence is scanned and rescanned, 
often several times, and eventually all large itemsets 
are produced. However, the user does not know, in 
general, an appropriate support threshold in advance. 
An inappropriate choice yields, after a long wait, either 
too many or too few large itemsets, which often results 
in useless or misleading association rules. 

Inspired by online aggregation, c.f. [He196, HHW97], 
our goal is to overcome these difficulties by bringing 
large itemset computation online. We consider an 
algorithm to be online if: 1) it gives continuous 
feedback, 2) it is user controllable during processing and 
3) it yields a deterministic and accurate result. Random 
sampling algorithms produce results which hold with 
some probability < 1. Thus we do not view them as 
being online. 

In order to bring large itemset computation online, we 
introduce a novel algorithm called Carma (Continuous 
Association Rule Mining Algorithm). The algorithm 
needs, at most, two scans of the transaction sequence 
to produce all large itemsets. 

During the first scan, the algorithm continuously con- 
structs a lattice of all potentially large itemsets (large 
with respect to the scanned part of the transaction se- 
quence). For each set in the lattice, Carma provides a 
deterministic lower and upper bound for its support. 
We continuously display, e.g. after each transaction 
processed, the resulting association rules to the user 
along with bounds on each rule’s support and confi- 
dence. The user is free to adjust the support and con- 
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fidence thresholds at any time. Adjusting the support 
threshold may result in an increased threshold for which 
the algorithm guarantees to include all large itemsets in 
the lattice. If satislied with the rules and bounds pro- 
duced so far, the user can stop the rule mining early. 

During the second scan, the algorithm determines 
the precise support of each set in the lattice and 
continuously removes all small itemsets. 

Existing algorithms need to rescan the transaction 
sequence before any output is produced. Thus, they 
can not be used on a stream of transactions read from 
a network for example. In contrast, using Carma’s first- 
scan algorithm, we can continuously process a stream 
of transactions and generate the resulting association 
rules online, not requiring a rescan. 

While not being faster in general, Carma outperforms 
Apriori and DIC on low support thresholds and is up 
to 60 times more memory efficient. 

2 Overview 

The paper is structured as follows: In Section 3, we 
put our algorithm in the context of related work. 
In Section 4, we give a sketch of Carma. It uses 
two distinct algorithms Phase1 and PhaseII for the 
first and second scan respectively. In Section 5 we 
describe Phase1 in detail. In Subsection 5.1 we 
introduce .support lattices and support sequences, the 
building blocks for the Phase1 algorithm presented in 
Subsection 5.2. We illustrate Phase1 on an example in 
Subsection 5.3. We discuss changing support thresholds 
in Subsection 5.4. After a short description of Phase11 
in Subsection 6.1, we combine in Subsection 6.2 Phase1 
with PhaseII, yielding Carma. In Section 7 we 
discuss our implementation. After a brief discussion of 
implementa,tional details in Subsection 7.1, we compare 
in Subsection 7.2 the performance of Carma with 
Apriori and DIC. In Subsection 7.3 we analyze how the 
support intervals evolve during the first scan. We end 
with our conclusion in Section 8. In Appendix A we 
summarize performance results of Apriori, Carma and 
DIC on further datasets. 

3 Related Work 

Most large itemset computation algorithms are related 
to the Apriori algorithm due to Agrawal & Srikant, 
c.f. [AS94]. See [AY98] for a survey of large 
itemset computation algorithms. Apriori exploits the 
observation that all subsets of a large itemset are large 
themselves. It is a multi-pass algorithm, where in the k- 
th pass all large itemsets of cardinality Ic are computed. 
Hence Apriori needs up to c + 1 scans of the database 
where c is the maximal cardinality of a large itemset. 

In [SON951 a 2-pass algorithm called Partition is 
introduced. The general idea is to partition the 

database into blocks such that each block fits into 
main-memory. In the first pass, each block is loaded 
into memory and all large itemsets, with respect to 
that block, are computed using Apriori. Merging al;. 
resulting sets of large itemsets then yields a superset 
of all large itemsets. In the second pass, the actual 
support of each set in the superset is computed. After 
removing all small itemsets, Partition produces the set 
of all large itemsets. 

In contrast to Apriori, the DIC (Dynamic Itemset 
Counting) algorithm counts itemsets of different car- 
dinality simultaneously, c.f. [BMUT97]. The transac- 
tion sequence is partioned into blocks. The itemsets 
are stored in a lattice which is initialized by all single- 
ton sets. While a block is scanned, the count (number 
of occurences) of each itemset in the lattice is adjusted. 
After a block is processed, an itemset is added to the 
lattice if and only if all its subsets are potentially large, 
i.e. large with respect to the part of the transaction 
sequence for which its count was maintained. At the 
end of the sequence, the algorithm rewinds to the be- 
ginning. It terminates when the count of each itemset 
in the lattice is determined. Thus after a finite num- 
ber of scans, the lattice contains a superset of all large 
itemsets and their counts. For suitable block sizes, DIC 
requires fewer scans than Apriori. 

We note that all of the above algorithms: 1) require 
that the user specifies a fixed support threshold in 
advance, 2) do not give any feedback to the user while 
they are running and 3) may need more than two scans 
(except Partition). Carma, in contrast: 1) allows the 
user to change the support threshold at any time, 2) 
gives continuous feedback and 3) requires at most two 
scans of the transaction sequence. 

Random sampling algorithms have been suggested 
as well, c.f. [Toi96, ZPLO96]. The general idea. is 
to take a random sample of suitable size from the 
transaction sequence and compute the large items&s 
using Apriori or Partition with respect to that sampl’e. 
For each itemset, an interval is computed such that 
the support lies within the interval with probability Iz 
some threshold. Carma, in contrast, deterministically 
computes all large itemsets along with the precise 
support for each itemset. 

Several algorithms based on Apriori were proposed to 
update a previously computed set of large itemsets due 
to insertion or deletion of transactions, cf. [CHNW961, 
CLK97, TBAR97]. These algorithms require a rescan 
of the full transaction sequence whenever an itemset 
becomes large due to an insertion. Carma, in contrast, 
requires a rescan only if the user needs the precise 
support of the additional large itemsets, instead of the 
continuously shrinking support intervals provided by 
PhaseI. 

In [AY97] an Online Analytical Processing (OLAP) 
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style algorithm is proposed to compute association 
rules. The general idea is to precompute all large 
itemsets relative to some support threshold s using a 
traditional algorithm. The association rules are then 
generated online relative to an interactively specified 
confidence threshold and support threshold 2 s. We 
note that: 1) the support threshold s must be specified 
before the precomputation of the large itemsets, 2) 
the large itemset computation remains offline and 
3) only rules with support 2 s can be generated. 
Carma overcomes these difficulties by bringing the large 
itemset computation itself online. Thus, combining 
Carma’s large itemset computation with the online rule 
generation suggested in [AY97] brings both steps online, 
not requiring any precomputation. 

4 Sketch of the Algorithm 

Carma uses distinct algorithms, called Phase1 and 
PhaseII, for the first and second scan of the transaction 
sequence. In this section, we give a sketch of both 
algorithms. For a detailed description and formal 
definition see Section 5 and Section 6. 

During the first scan Phase1 continuously constructs 
a lattice of all potentially large itemsets. After each 
transaction, it inserts and/or removes some itemsets 
from the lattice. For each itemset IJ, Phase1 stores the 
following three integers (see Figure 1 below, the itemset 
{a, b} was inserted in the lattice while reading the j-th 
transaction, the current transaction index is i): 

count(v) the number of occurences of v 
since u was inserted in the lattice. 

firstTrans(v) the index of the transaction 
at which v was inserted in the lattice. 

maxMissed upper bound on the occurences of v 
before v was inserted in the lattice. 

Suppose we are reading transaction i and we have 
a lattice of the above form. For any itemset v 
in the lattice, we then have a deterministic lower 
bound count(v)/i and upper bound (maxMissed + 
count(v))/i on the support of v in the first i trans- 
actions. We denote these bounds by minSupport(v) 
and maxSupport respectively. The computation of 
maxMissed during the insertion of v in the lattice 
is a central part of the algorithm. It not only depends 
on v and i, the current transaction index, but also on 
the current and previous support thresholds, since the 
user may change the threshold at any time. 

After Phase1 has read a transaction, it increments 
count(v) for all itemsets II contained in the transaction. 
Next, it inserts some itemsets in the lattice, computing 
maxMissed and setting firstTrans to the current 
transaction index. Clearly, maxMissed is always less 
than the current transaction index. Eventually, Phase1 

may remove some itemsets from the lattice if their 
maxSupport is below the current support threshold. At 
the end of the transaction sequence, Phase1 guarantees 
that the lattice contains a superset of all large itemsets 
relative to some threshold. The threshold depends on 
how the user changed the support during the scan, c.f. 
Subsection 5.4. We then rewind to the beginning and 
start PhaseII. 

Phase11 initially removes all itemsets which are 
trivially small, i.e. itemsets with maxSupport below 
the last user specified threshold. By rescanning the 
transaction sequence, Phase11 determines the precise 
number of occurences of each remaining itemset and 
continuously removes all itemsets, which turn out to be 
small. Eventually, we end up with the set of all large 
itemsets along with their supports. 

5 Phase1 Algorithm 

In this section, we fully describe the Phase1 algorithm, 
which constructs a superset of all large itemsets while 
scanning the transaction sequence once. In Subsection 
5.1 we introduce support lattices and support sequences, 
the building blocks for PhaseI. We present the Phase1 
algorithm itself in Subsection 5.2. We illustrate the 
algorithm on an example in Subsection 5.3 and conclude 
this section with a discussion of changing support 
thresholds in Subsection 5.4. 

5.1 Support Lattice & Support Sequence 

For a given transaction sequence and an itemset v, we 
denote by supp~ti(v) the support of v in the first i 
transactions. Let V be a lattice of itemsets such that 
for each itemset v E V we have the three associated 
integers count(v), firstTrans(v) and maxMissed 
as defined in Section 4. We call V a support lattice (up 
to i and relative to the support threshold s) if and only if 
V contains all itemsets II with supporti > s. Hence, 
a support lattice is a superset of all large itemsets. For 
each transaction processed, the user is free to specify an 
arbitrary support threshold. Thus we get a sequence of 
support thresholds g = (‘~1, ~2, . . .), where CQ denotes 
the support threshold for the i-th transaction. We 
call o a support sequence. By [r~ji we denote the 
least monotone decreasing sequence which is up to i 
pointwise greater or equal to CT and 0 otherwise (see 
Figure 2 below). We call [o]i the ceiling of u up to i. 
By avgi(u) we denote the running average of CJ up to i, 
i.e. aUgi(0) = 4 Ci.=, Uj. We note that [~ji+i can 
readily be computed from [Eli and oi+l, cf. [Hid98, 
Lemma 2, Appendix C]. 

5.2 Phase1 Algorithm 

In this subsection, we give a full description and formal 
definition of the Phase1 algorithm. Phase1 computes a 
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support lattice V as it scans the transaction sequence. 
We define V recursively: 

Initially Phase1 sets V to {0}, setting count, firstTrans 
and maxMissed of (ij to 0. Thus V is a support lattice 
for the empty transaction sequence. 

Let V be a support lattice up to transaction i - 1. 
We read the i-th transaction ti and want to transform V 
into a support lattice up to i. Let pi be the current user- 
specified support threshold. To maintain the lattice we 
proceed in three steps: 1) increment the count of all 
itemsets occuring in the current transaction, 2) insert 
some itemsets in the l.attice and 3) prune some itemsets 
from the lattice. 

1) Increment: We increment count(v) for all itemsets 
v E V that are contained in ti, maintaining the 
correctness of all integers stored in V. 

2) Insert: We insert a subset v of ti in V if and 
only if all subsets w of v are already contained in V 
and are potentially large, i.e. maxSupport > gi. 
This corresponds to the observation that the set of 
all large itemsets is closed under subsets. Inserting v 
in V, we set firstTrans(v) = i and count(v) = 1, 
since v is contained in the current transaction ti. Since 
supporti > supporti for all subsets w of v and 
W C ti we get 

maxMissed 5 maxMissed + count(w) - 1. 
By the following Theclrem 1 we have 

SUf&DOTti-l (V) > UVgi-l( [Oji-1) + * implies v E v. 

Since v is not contained in V yet, we get thereby 

Iv1 - 1 
s”PPorti-l(v) i au.%-l(rflli-1) + i-l. (1) 

Since maxMissed is an integer’ we get by inequality 
(1) 

maxMissed < [(i - l)avgibl([c71i-I)J + 1111 - 1. 
Thus we define maxMissed as 

min { [(i - l)UVgi.-l(rUli-l)J + (vJ - 1, 

maxMissed + count(w) - 1 ( w c v x2) 

In particular we get maxMissed _< i - 1, since the 
emptyset is a subset of v, 0 is an element of V and .the 
count of 0 equals i, the current transaction index. 

3) Prune: We prune the lattice by removing all 
itemsets of cardinality 2 2 with a maxsupport below 
the current support threshold pi, i.e. all small itemsets 
containing at least 2 items. Since pruning incurs a 
considerable overhead we only prune every [l/oil or 
every 500 transactions2, whichever is larger. We note 
that any heuristic pruning strategy is admissible as long 
as only small itemsets are removed and whenever an 
itemset is removed all its supersets are removed as well. 
We chose the above pruning strategy for its memory 
efficiency. Note that in this strategy 1-itemsets are 
never pruned. Thus an item, which is not contained in 
the lattice, did not appear in the transaction sequence 
so far. Hence the strategy allows us to set maxMissed 
to 0 whenever a 1-itemset is inserted in the lattice. 

The resulting Phase1 algorithm is depicted in figure 3. 

The correctness of the algorithm is given by the 
following theorem: 

Theorem 1 Let V be the lattice returned by PhaseI(T, o) 
for a transaction sequence T of length n and support se- 
quence u. 

‘For a real number G we denote by [zJ the largest integer less 
or equal to I, i.e. 1~) = max{i E Z) 2 > i}. 

2For a real number 2 we denote by rz1 the least integer greater 
or equal to I, i.e. [CCJ = min{i E Z) IC 5 i}. 
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Function PhaseI( transaction sequence (ti, . . . , tn), 
support sequence c = (or,. . . , a,) 
) : support lattice; 

support lattice V; 
begin 

v := (0); 
maxMissed := 0, firstTrans(w) := 0 

count(w) := 0; 
for i from 1 to n do 

// 1) Increment 
for all w E V with w c ti do count(v) + +;‘od; 
// 2) Insert 
for all w C ti with w $ V do 

if VW c w : w E V and maxSupport > ui then 
v := vu {w}; 
firstTrans(w) := i; 
count(w) := 1; 
maxMissed := 

min{ [(i - l)avgi-i([ali-i)] + (~1 - 1, 
maxMissed + count(w) - 11 w C w }; 

if (w( == 1 then maxMissed := 0; fi; 
f-t 

773) Prune 
if ( i % max{ [l/oil, 500) ) == 0 then 

V := {w E V 1 maxSupport 2 (pi or lwl == 1); 
fi; 

od; 
return V; 

end; 
Figure 3 

Then V is a support lattice relative to the support 
threshold 

with c the maximal cardinality of a large itemset in T. 
For any itemset w 

“I - l support,(v) > avgn(Taln)+- implies v E v. 
n 

Proof: By double induction on c and n. For a de- 
tailed proof see [Hid98, Theorem 2, Appendix C]. 

We illustrate Theorem 1 and in particular the support 
threshold given by (3) in Subsection 5.4. We omitted 
any optimization in the definition of PhaseI. For exam- 
ple, the incrementation and insertion step can be ac- 
complished by traversing the support lattice once. We 
illustrate the algorithm itself on a simple example in 
the following Subsection 5.3. 

5.3 Example 

We illustrate in this subsection the Phase1 algorithm on 
a simple example, namely on the transaction sequence 
T = ({a, b}, {a, b, c}, {b, c}) and the support sequence 
o = (0.3, 0.9, 0.7), see Figure 4 below. As indicated 
we denote by the triple the three associated integers for 
each set in the support lattice V and by the interval the 
bounds on its support. 

We initialize V to {0} and the associated integers of 
0 to (O,O,O). Reading tl = {a, b} we first increment 
the count of 0, since 0 C tl. Because the empty 
set is the only strict subset of a singleton set and 
1 = maxSupport(0) >_ 01, we add the singletons {a} 
and {b} to V. By maxMissed = 0 for all singleton 
sets, we set their associated integers to (O,l, 1). Since 
there is no set in V with maxSupport < 0.3, we can 
not prune an itemset from V and the first transaction 
is processed. 

Reading t2 = {a, b, c} we first increment count for 0, 
{a} and {b}. As above we insert the singleton set {c}, 
setting maxMisssed to 0. Since {a, b} 2 t2 and {a}, 
{b} are elements of V with a maxSupport 2 02 = 0.9, 
we insert {a, b} in V. Since rcr] i = (0.3,0,0, . . .) we get 
awgi ([oli) = 0.3 and 

[(Z - l)awg1( [glr)j + 2 - 1 = 1. 
Hence maxMissed({a,b}) = 1 by equality (2) of 
Subsection 5.2, since maxMissed(w)+count(w) = 2 for 
w = {a} and w = {b}. We set the associated integers of 
{a, b} to (1,2,1). W e note that maxSupport( {a, b}) = 1 
is a sharp upper bound, since supportz({a, b}) = 1. 

Reading t3 = {b, c} we increment the count of 8, 
{b} and {c}. We th en insert {b, c} since {b} and {c} 
are elements of V with maxSupport above the new 
user defined support threshold ~3 = 0.5. By [u)z = 
(0.9,0.9,0,0,.. .) we get awg2([o12) = 0.9 and hence 
[(3 - 1) . 0.91 + 2 - 1 = 2. Since maxMissed({c}) + 
count({c}) - 1 = 1 we get 

maxMissed({b, c,}) = min(2, l} = 1. 
Because all itemsets have a maxsupport greater than 
0.5 we can not remove any itemsets from the lattice. If 
~3 was 0.7 instead of 0.5 we would not have inserted 
(6, c} while we could have removed {a, b}. However we 
could not have removed {c}, since our pruning strategy 
during PhaseI never removes singelton sets. 

5.4 Changing Support Thresholds 

We discuss in this subsection constant and changing 
support thresholds. Phase1 guarantees that all itemset 
with a support greater or equal to the support threshold 
given by Theorem 1 are included in the itemset lattice. 
We denote by the guaranteed support threshold this 
threshold, i.e. 

149 



0 v (O,O,O) v (O!o!l, 
NOI t,= 1 a, b I WI ) 

ot= 0.3 

la) (b) 
(OJJ) WJ) 
11911 IL11 

( maxMissed, tkstlrans, count ) 

[ minSupport, maxSupport ] 

constant support threshold 

10000 20000 30000 40000 
transaction 

Figure 5 

with D the support sequence, c the maximal cardinality 
of a large itemset and n the current transaction index. 

First, suppose the user does not change the support 
threshold. Hence we have a constant support sequence 
0 = (s, s, s, . . .) f or some s. By (4) and avg,( [aIn) = s 
Phase1 includes at tr.ansaction n all large itemsets with 
a support 2 s + ti Thus, the guaranteed threshold . 
s+ + converges to” t he user specified support threshold 
s as Phase1 scans the transaction sequence. To improve 
the speed of convergence, we run Phase1 with a lower 
threshold of s . 0.9 instead of s. As the guaranteed 
threshold reaches s, we increase the threshold again 
from s .0.9 to s, see Figure 5. 

Next, consider changing support thresholds. Figure 
6 depicts a scenario, where the user increases at 
transaction 5’000 the initial support threshold of 0.75% 
to 1.25% and then lowers it again to 1.0% at transaction 
10’000. As above, we supply Phase1 with thresholds gi 
lower than the user specified threshold, whenever the 
guaranteed threshold does not equal the user specified 
threshold. We set cri, the support sequence supplied to 
Carma, to 0.9 ‘0.75% := 0.68% for i = 1, . ,4’999. The 
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guaranteed threshold (4) drops quickly 3, reaching a 
value well below 1% at transaction 4’999. Since the new 
user specified threshold of 1.25% at transaction 5’000 
is greater than l%, we have equality until transact:ion 
9’999. Hence we set oi to 1.25% for i = 5’000,. . . ,9’9’99. 
As the user lowers the threshold to 1% we set ci to 
0.9 . 1% = 0.9% from i = 10’000 until the guaranteed 
threshold reaches 1.0% at transaction 35’000. We reset 
(pi to 1% for all i > 35’000, since the user defined 
threshold remains at 1% from now on. 

We note that the guaranteed threshold is an upper 
bound and thus a worst-case threshold. Typically, .a11 
large itemsets are contained in the lattice well before 
the guaranteed threshold reaches the user specificed 
threshold. 

6 Carma 

In Subsection 6.1 we give a short description of PhaseHI, 
the algorithm for the second scan. We then combine in 
Subsection 6.2 Phase1 with Phase& yielding Carma. 

3For this example we assumed that all large itemsets are of 
cardinality 10 or less, i.e. c = 10. 
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Function Phase11 ( support lattice V, 
transaction sequence (ti, . . . , tn), 
support sequence 0 ) 

: support lattice; 
integer ft, i = 0; 
begin 

v := V\{w E v ( maxSupport < un }; 
while 3w E V : i < firstTrans(w) do 

is+; 
for all w E V do 

ft := firstTrans(v); 
if v G ti and ft < i then 

count(w)++, maxMissed(w 
fi; 
if ft == i then 

maxMissed := 0; 
for all w E V: 

do 
v c w and maxSupport > maxSupport 

maxMissed := count(w) - count(w); 
od; 

fi; 
if maxSupport < gn then V := V\(w); fi; 

od; od; 
return V; 

end; 
Figure 7 

6.1 Phase11 

Let V be the support lattice computed by Phase1 and 
let (T, be the user specified support threshold for the last 
transaction read during the first scan. Phase11 prunes 
all small itemsets from V and determines the precise 
support for all remaining itemsets. 

Initially Phase11 removes all trivially small item- 
sets, i.e. itemsets with maxsupport < un, from V. 
Scanning the transaction sequence, Phase11 increments 
count and decrements maxMissed for each itemset con- 
tained in the current transaction, up to the transaction 
at which the itemset was inserted. Setting maxMissed 
to 0 we get minsupport = maxsupport, the actual 
support of the itemset. We remove the itemset if it 
is small. Setting maxMissed = 0 for an item- 
set w may yield maxSupport > maxSupport for 
some superset w of v. Thus we set maxMissed = 
count(w) - count(w) for all supersets w of w with 

maxSupport > maxSupport( 
Phase11 terminates as soon as the current transaction 
index is past firstTrans for all itemsets in the lattice. 
The resulting lattice contains all large itemsets along 
with the precise support for each itemset. The algo- 
rithm is shown in figure 7. 

Using Theorem 1 it is possible to determine that some 

Function Carma ( transaction sequence T, 
support sequence 0) 

: support lattice; 
support lattice V; 
begin 

V := PhaseI( T, cr ); 
V := PhaseII( V, T, cr ); 
return V; 

end; 
Figure 8 

itemset with maxsupport > un is small before we reach 
its firstTrans transaction. Pruning these itemsets 
and all their supersets speeds up Phase11 by reducing 
the lattice size as well as the part of the transaction 
sequence which needs to be rescanned, c.f. [Hid98, 
Appendix D]. 

6.2 Carma 

Executing Phase11 after PhaseI, we get Carma, c.f. Fig- 
ure 8. By Theorem 1 Phase1 produces a superset of all 
large itemsets with respect to the guaranteed thresh- 
old. Phase11 removes an itemset from the superset if 
and only if it is small. Thus the resulting itemset con- 
tains all large itemsets. 

7 Implementation 
To assess the performance we tested Carma along 
with Apriori and DIC on synthetic data generated by 
the IBM test data generator, c.f. [AS941 1 We 
illustrate our findings on the synthetic dataset with 
100’000 transactions of an average size of 10 items 
chosen from 10’000 items and an average large itemset 
size of 4 (T10.14.100K with 10K items). For runs 
on further datasets see Appendix A. All experiments 
were performed on a lightly loaded 300 MHz Pentium- 
II PC with 384 MB of RAM. The algorithms were 
implemented in Java on top of the same itemset lattice 
implementation. We cross compiled the Java class files 
to an executable using Tower Technology’s TowerJ 2.2. 

7.1 Implementation Details 

Our implementation of an itemset lattice differs from a 
hashtree in that all itemsets are stored in a single 
hashtable. With the itemsets as keys, we can quickly 
access any subset of a given itemset. This is important 
for Carma, since whenever Carma inserts a new itemset 
w, it accesses all its maximal subsets to compute 
maxMissed( We represent the lattice structure by 
associating to each itemset the set of all further items 

‘http://www.almaden,ibm.com/cs/quest/syndata.html 
3computed on T10.14.100K with 10K items at a support 

threshold of 0.1% 
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appearing in any of its supersets, c.f. [Bay98]. As 
in the case of a hashtree, we need only one hashtable 
access to pass from an itemset to one of its minimal 
supersets. Thus we can enumerate all subsets of a 
scanned transaction, which are contained in the lattice, 
as quickly as in a hashtree. 

Our implementation of Carma diverges from the 
pseudo-code given in Subsection 5.2 only in that we 
perform the Phase1 incrementation and insertion step 
simultaneously, enum.erating the subsets of a scanned 
transaction once. 

Apriori and DIC were implemented as described in 
[AS941 and [BMUTSi) respectively. For DIC we chose 
a blocksize of 15000, which we found to be fastest. 

7.2 Relative Performance 

To compare Carma with Apriori and DIC we ran all 
three algorithms on a range of datasets and (constant) 
support thresholds. In this subsection we illustrate 
our results on the ‘TlO.14.100K dataset with 10K 
items. For support thresholds of 0.5% and above 
Apriori outperformed Carma and DIC. We attribute 
the superior speed of Apriori for these thresholds to the 
observation that, for example, at 0.75% only 171 large 
itemsets existed and all large itemsets were I-itemsets. 
Thus Apriori completes in 2 scans allocating only 300 
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0.000 
20000 40000 60000 80000 
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P-itemsets. As the support threshold was lowered to 
0.25% (0.1%) the number of large l-itemsets increased 
to 1131 (3509) and the maximal cardinality to 4 (9). 
We were not able to run Apriori (DIC) with thresholds 
below 0.2% (0.25%), since the allocated itemsets did 
not fit into main memory anymore. At 0.15% (0.1%) 
Apriori would have allocated 2.8 million (6.2 million) 
2-itemsets2, while Carma required only 51001 (97872) 
itemsets. We note that DIC always allocates at least as 
many itemsets as Apriori. At 0.25% and below Carma 
outperformed Apriori and DIC. 

We attribute the better performance of Carma over 
Apriori to the 4 scans needed by Apriori while Carma 
completed in 1.1 scans. We attribute the bet& 
performance of Carma over DIC to the 2 scans needed 
by DIC as well as to the 35 times smaller lattice 
maintained by Carma, since both algorithms traverse 
their lattices in regular intervals. 

7.3 Support Intervals 

Phase1 maintains a superset of the large itemsets in 
the scanned part of the transaction sequence, bu.t 
not necessarily a superset for the full transaction 
sequence. First, we wanted to determine the percentage 

2The number of candidate P-itemsets which Apriori allocates 
is given by the number of large l-itemsets over 2. 
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of all large itemsets, i.e. with respect to the full 
transaction sequence, contained in the lattice as Phase1 
proceeds. After scanning 20000 (40000) transactions at 
a threshold of 0.1% Carma included 99.3% (99.8%) of 
all large itemsets in its lattice, see figure 11. 

Between two pruning steps Phase1 replaced up to 50% 
of all itemsets. The vast majority (typically > 95%) 
of itemsets in the lattice eventually turned out to be 
small. As we scan the transaction sequence we would 
present a large number of association rules to the user 
based on itemsets which are likely to be small. To 
exclude those itemsets from the rule generation, which 
are likely to be small, we filtered out all itemsets which 
were inserted during the last 15% of the transaction 
sequence, e.g. at transaction 20000 we filter out all 
itemsets which were inserted at transaction 17000 or 
later. The filtered lattice still contained 93.9% (97.8%) 
of all large itemsets, after scanning 20000 (40000) 
transactions respectively, c.f. figure 9. At the same 
time the size of the filtered lattice was reduced to 32.6% 
(16.0%) of its original size. 

Recall that the support interval of an itemset in the 
lattice is given by its minSupport and maxSupport. 
Next, we wanted to determine how the size of the 
support intervals, i.e. maxSupport - minSupport, in 
the filtered lattice evolve as Phase1 proceeds. After 
scanning 20000 (40000) transactions at a threshold of 
0.1% the average interval size in the filtered lattice was 
0.042% (0.032%), while 50% of all itemsets in the lattice 
had an interval size below 0.004% (0.002%), c.f. figure 
12. 

8 Conclusion 

We presented Carma, a novel algorithm to compute 
large itemsets online. It continuously produces large 
itemsets along with a shrinking support interval for 
each itemset. It allows the user to change the support 
threshold anytime during the first scan and always 
completes in at most 2 scans. 

We implemented Carma and compared it to Apriori 
and DIC. While not being faster in general, Carma out- 
performs Apriori and DIC on low support thresholds. 
We attributed this to the observation that Carma is 
typically an order of magnitude more memory efficient. 
We showed that Carma’s itemset lattice quickly approx- 
imates a superset of all large itemsets while the sizes of 
the corresponding support intervals shrink rapidly. We 
also showed that Carma readily computes large itemsets 
in cases which are intractable for Apriori or DIC. 

An interesting feature of the algorithm is that the 
second scan ist not needed, whenever the shrinking sup- 
port intervals suffice. Thus Phase1 can be used to con- 
tinuously compute large itemsets from a transaction se- 
quence read from a network, generalizing incremental 
updates and not requiring local storage. 
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