
Online Association Rule Mining

Christian Hidber
International Computer Science Institute, Berkeley

hidber@icsi.berkeley.edu

Abstract
We present a novel algorithm to compute large itemsets
online. The user is free to change the support threshold
any time during the first scan of the transaction sequence.
The algorithm maintains a superset of all large itemsets and
for each itemset a shrinking, deterministic interval on its
support. After at most 2 scans the algorithm terminates
with the precise support for each large itemset. Typically
our algorithm is by an order of magnitude more memory
efficient than Apriori or DIC.

1 Introduction

Mining for association rules is a form of data mining
introduced in [AIS93]. The prototypical example is
based on a list of purchases in a store. An association
rule for this list is a rule such as “85% of all customers
who buy product A and B also buy product C and D” .
Discovering such customer buying patterns is useful for
customer segmentation, cross-marketing, catalog design
and product placement.

We give a problem description which follows [BMUT97].
The support of an itemset (set of items) in a transaction
sequence is the fraction of all transactions containing
the itemset. An itemset is called large if its support
is greater or equal to a user-specified support thresh-
old, otherwise it is called small. An association rule
is an expression X =+ Y where X and Y are disjoint
itemsets. The support of this rule is the support of
X U Y. The confidence of this rule is the fraction of
all transactions containing X that also contain Y, i.e.
the support of X U Y divided by the support of X.
In the example above, the “85%” is the confidence of
the rule {A, B} 3 {C, D}. For an association rule to
hold, it must have a support > a user-specified support
threshold and a confidence 2 a user-specified confidence

Permission to ,,,akc digital or hard topics of all or part of this work fo’
persona\ or classroom ,lse is granted without fee provided tlut copies
are not mac\c or distributed br profit or commercial advantage and thai
topics bear this notice and the 11111 citation WI the lirst PaS. T” Copy
ot,,cr,vise, tn republish, to post on scrvcrs or to rcdistributc to lists.
requires prior specific permissioll and/or a fee.
S~GMOD ‘99 Philadelphia PA
Copyright ACM 1999 I-581 13-084-8/99/05...$5°0

threshold. Existing algorithms proceed in 2 steps to
compute association rules:

1. Find all large itemsets.

2. For each large itemset 2, find all subsets X, such
that the confidence of X + Z\X is greater or equal
to the confidence threshold.

We address the first step, since the second step can
already be computed online, c.f. [AY97]. Existing large
itemset computation algorithms have an offline or batch
behaviour: given the user-specified support threshold,
the transaction sequence is scanned and rescanned,
often several times, and eventually all large itemsets
are produced. However, the user does not know, in
general, an appropriate support threshold in advance.
An inappropriate choice yields, after a long wait, either
too many or too few large itemsets, which often results
in useless or misleading association rules.

Inspired by online aggregation, c.f. [He196, HHW97],
our goal is to overcome these difficulties by bringing
large itemset computation online. We consider an
algorithm to be online if: 1) it gives continuous
feedback, 2) it is user controllable during processing and
3) it yields a deterministic and accurate result. Random
sampling algorithms produce results which hold with
some probability < 1. Thus we do not view them as
being online.

In order to bring large itemset computation online, we
introduce a novel algorithm called Carma (Continuous
Association Rule Mining Algorithm). The algorithm
needs, at most, two scans of the transaction sequence
to produce all large itemsets.

During the first scan, the algorithm continuously con-
structs a lattice of all potentially large itemsets (large
with respect to the scanned part of the transaction se-
quence). For each set in the lattice, Carma provides a
deterministic lower and upper bound for its support.
We continuously display, e.g. after each transaction
processed, the resulting association rules to the user
along with bounds on each rule’s support and confi-
dence. The user is free to adjust the support and con-

145

fidence thresholds at any time. Adjusting the support
threshold may result in an increased threshold for which
the algorithm guarantees to include all large itemsets in
the lattice. If satislied with the rules and bounds pro-
duced so far, the user can stop the rule mining early.

During the second scan, the algorithm determines
the precise support of each set in the lattice and
continuously removes all small itemsets.

Existing algorithms need to rescan the transaction
sequence before any output is produced. Thus, they
can not be used on a stream of transactions read from
a network for example. In contrast, using Carma’s first-
scan algorithm, we can continuously process a stream
of transactions and generate the resulting association
rules online, not requiring a rescan.

While not being faster in general, Carma outperforms
Apriori and DIC on low support thresholds and is up
to 60 times more memory efficient.

2 Overview

The paper is structured as follows: In Section 3, we
put our algorithm in the context of related work.
In Section 4, we give a sketch of Carma. It uses
two distinct algorithms Phase1 and PhaseII for the
first and second scan respectively. In Section 5 we
describe Phase1 in detail. In Subsection 5.1 we
introduce .support lattices and support sequences, the
building blocks for the Phase1 algorithm presented in
Subsection 5.2. We illustrate Phase1 on an example in
Subsection 5.3. We discuss changing support thresholds
in Subsection 5.4. After a short description of Phase11
in Subsection 6.1, we combine in Subsection 6.2 Phase1
with PhaseII, yielding Carma. In Section 7 we
discuss our implementation. After a brief discussion of
implementa,tional details in Subsection 7.1, we compare
in Subsection 7.2 the performance of Carma with
Apriori and DIC. In Subsection 7.3 we analyze how the
support intervals evolve during the first scan. We end
with our conclusion in Section 8. In Appendix A we
summarize performance results of Apriori, Carma and
DIC on further datasets.

3 Related Work

Most large itemset computation algorithms are related
to the Apriori algorithm due to Agrawal & Srikant,
c.f. [AS94]. See [AY98] for a survey of large
itemset computation algorithms. Apriori exploits the
observation that all subsets of a large itemset are large
themselves. It is a multi-pass algorithm, where in the k-
th pass all large itemsets of cardinality Ic are computed.
Hence Apriori needs up to c + 1 scans of the database
where c is the maximal cardinality of a large itemset.

In [SON951 a 2-pass algorithm called Partition is
introduced. The general idea is to partition the

database into blocks such that each block fits into
main-memory. In the first pass, each block is loaded
into memory and all large itemsets, with respect to
that block, are computed using Apriori. Merging al;.
resulting sets of large itemsets then yields a superset
of all large itemsets. In the second pass, the actual
support of each set in the superset is computed. After
removing all small itemsets, Partition produces the set
of all large itemsets.

In contrast to Apriori, the DIC (Dynamic Itemset
Counting) algorithm counts itemsets of different car-
dinality simultaneously, c.f. [BMUT97]. The transac-
tion sequence is partioned into blocks. The itemsets
are stored in a lattice which is initialized by all single-
ton sets. While a block is scanned, the count (number
of occurences) of each itemset in the lattice is adjusted.
After a block is processed, an itemset is added to the
lattice if and only if all its subsets are potentially large,
i.e. large with respect to the part of the transaction
sequence for which its count was maintained. At the
end of the sequence, the algorithm rewinds to the be-
ginning. It terminates when the count of each itemset
in the lattice is determined. Thus after a finite num-
ber of scans, the lattice contains a superset of all large
itemsets and their counts. For suitable block sizes, DIC
requires fewer scans than Apriori.

We note that all of the above algorithms: 1) require
that the user specifies a fixed support threshold in
advance, 2) do not give any feedback to the user while
they are running and 3) may need more than two scans
(except Partition). Carma, in contrast: 1) allows the
user to change the support threshold at any time, 2)
gives continuous feedback and 3) requires at most two
scans of the transaction sequence.

Random sampling algorithms have been suggested
as well, c.f. [Toi96, ZPLO96]. The general idea. is
to take a random sample of suitable size from the
transaction sequence and compute the large items&s
using Apriori or Partition with respect to that sampl’e.
For each itemset, an interval is computed such that
the support lies within the interval with probability Iz
some threshold. Carma, in contrast, deterministically
computes all large itemsets along with the precise
support for each itemset.

Several algorithms based on Apriori were proposed to
update a previously computed set of large itemsets due
to insertion or deletion of transactions, cf. [CHNW961,
CLK97, TBAR97]. These algorithms require a rescan
of the full transaction sequence whenever an itemset
becomes large due to an insertion. Carma, in contrast,
requires a rescan only if the user needs the precise
support of the additional large itemsets, instead of the
continuously shrinking support intervals provided by
PhaseI.

In [AY97] an Online Analytical Processing (OLAP)

146

style algorithm is proposed to compute association
rules. The general idea is to precompute all large
itemsets relative to some support threshold s using a
traditional algorithm. The association rules are then
generated online relative to an interactively specified
confidence threshold and support threshold 2 s. We
note that: 1) the support threshold s must be specified
before the precomputation of the large itemsets, 2)
the large itemset computation remains offline and
3) only rules with support 2 s can be generated.
Carma overcomes these difficulties by bringing the large
itemset computation itself online. Thus, combining
Carma’s large itemset computation with the online rule
generation suggested in [AY97] brings both steps online,
not requiring any precomputation.

4 Sketch of the Algorithm

Carma uses distinct algorithms, called Phase1 and
PhaseII, for the first and second scan of the transaction
sequence. In this section, we give a sketch of both
algorithms. For a detailed description and formal
definition see Section 5 and Section 6.

During the first scan Phase1 continuously constructs
a lattice of all potentially large itemsets. After each
transaction, it inserts and/or removes some itemsets
from the lattice. For each itemset IJ, Phase1 stores the
following three integers (see Figure 1 below, the itemset
{a, b} was inserted in the lattice while reading the j-th
transaction, the current transaction index is i):

count(v) the number of occurences of v
since u was inserted in the lattice.

firstTrans(v) the index of the transaction
at which v was inserted in the lattice.

maxMissed upper bound on the occurences of v
before v was inserted in the lattice.

Suppose we are reading transaction i and we have
a lattice of the above form. For any itemset v
in the lattice, we then have a deterministic lower
bound count(v)/i and upper bound (maxMissed +
count(v))/i on the support of v in the first i trans-
actions. We denote these bounds by minSupport(v)
and maxSupport respectively. The computation of
maxMissed during the insertion of v in the lattice
is a central part of the algorithm. It not only depends
on v and i, the current transaction index, but also on
the current and previous support thresholds, since the
user may change the threshold at any time.

After Phase1 has read a transaction, it increments
count(v) for all itemsets II contained in the transaction.
Next, it inserts some itemsets in the lattice, computing
maxMissed and setting firstTrans to the current
transaction index. Clearly, maxMissed is always less
than the current transaction index. Eventually, Phase1

may remove some itemsets from the lattice if their
maxSupport is below the current support threshold. At
the end of the transaction sequence, Phase1 guarantees
that the lattice contains a superset of all large itemsets
relative to some threshold. The threshold depends on
how the user changed the support during the scan, c.f.
Subsection 5.4. We then rewind to the beginning and
start PhaseII.

Phase11 initially removes all itemsets which are
trivially small, i.e. itemsets with maxSupport below
the last user specified threshold. By rescanning the
transaction sequence, Phase11 determines the precise
number of occurences of each remaining itemset and
continuously removes all itemsets, which turn out to be
small. Eventually, we end up with the set of all large
itemsets along with their supports.

5 Phase1 Algorithm

In this section, we fully describe the Phase1 algorithm,
which constructs a superset of all large itemsets while
scanning the transaction sequence once. In Subsection
5.1 we introduce support lattices and support sequences,
the building blocks for PhaseI. We present the Phase1
algorithm itself in Subsection 5.2. We illustrate the
algorithm on an example in Subsection 5.3 and conclude
this section with a discussion of changing support
thresholds in Subsection 5.4.

5.1 Support Lattice & Support Sequence

For a given transaction sequence and an itemset v, we
denote by supp~ti(v) the support of v in the first i
transactions. Let V be a lattice of itemsets such that
for each itemset v E V we have the three associated
integers count(v), firstTrans(v) and maxMissed
as defined in Section 4. We call V a support lattice (up
to i and relative to the support threshold s) if and only if
V contains all itemsets II with supporti > s. Hence,
a support lattice is a superset of all large itemsets. For
each transaction processed, the user is free to specify an
arbitrary support threshold. Thus we get a sequence of
support thresholds g = (‘~1, ~2, . . .), where CQ denotes
the support threshold for the i-th transaction. We
call o a support sequence. By [r~ji we denote the
least monotone decreasing sequence which is up to i
pointwise greater or equal to CT and 0 otherwise (see
Figure 2 below). We call [o]i the ceiling of u up to i.
By avgi(u) we denote the running average of CJ up to i,
i.e. aUgi(0) = 4 Ci.=, Uj. We note that [~ji+i can
readily be computed from [Eli and oi+l, cf. [Hid98,
Lemma 2, Appendix C].

5.2 Phase1 Algorithm

In this subsection, we give a full description and formal
definition of the Phase1 algorithm. Phase1 computes a

147

lattice (~
transactions scanned current transaction

w
1

SUDD0l-l . .
threshold

0

/

(a) tb) ICI

ia,bl

t1 tz tl ti t ” t I I I I
L..-

‘“-1 ---...-A L.---_. . .._- -..- , I

maxMissed((a,b])
t

count((a,b))

firstTrans((a,b))

Figure 1

ceiling up to 100

1 1

f

I*

t 10 t
70 tloo

transactions

ceiling up to 10

Figure 2

ceiling up to 70

support lattice V as it scans the transaction sequence.
We define V recursively:

Initially Phase1 sets V to {0}, setting count, firstTrans
and maxMissed of (ij to 0. Thus V is a support lattice
for the empty transaction sequence.

Let V be a support lattice up to transaction i - 1.
We read the i-th transaction ti and want to transform V
into a support lattice up to i. Let pi be the current user-
specified support threshold. To maintain the lattice we
proceed in three steps: 1) increment the count of all
itemsets occuring in the current transaction, 2) insert
some itemsets in the l.attice and 3) prune some itemsets
from the lattice.

1) Increment: We increment count(v) for all itemsets
v E V that are contained in ti, maintaining the
correctness of all integers stored in V.

2) Insert: We insert a subset v of ti in V if and
only if all subsets w of v are already contained in V
and are potentially large, i.e. maxSupport > gi.
This corresponds to the observation that the set of
all large itemsets is closed under subsets. Inserting v
in V, we set firstTrans(v) = i and count(v) = 1,
since v is contained in the current transaction ti. Since
supporti > supporti for all subsets w of v and
W C ti we get

maxMissed 5 maxMissed + count(w) - 1.
By the following Theclrem 1 we have

SUf&DOTti-l (V) > UVgi-l([Oji-1) + * implies v E v.

Since v is not contained in V yet, we get thereby

Iv1 - 1
s”PPorti-l(v) i au.%-l(rflli-1) + i-l. (1)

Since maxMissed is an integer’ we get by inequality
(1)

maxMissed < [(i - l)avgibl([c71i-I)J + 1111 - 1.
Thus we define maxMissed as

min { [(i - l)UVgi.-l(rUli-l)J + (vJ - 1,

maxMissed + count(w) - 1 (w c v x2)

In particular we get maxMissed _< i - 1, since the
emptyset is a subset of v, 0 is an element of V and .the
count of 0 equals i, the current transaction index.

3) Prune: We prune the lattice by removing all
itemsets of cardinality 2 2 with a maxsupport below
the current support threshold pi, i.e. all small itemsets
containing at least 2 items. Since pruning incurs a
considerable overhead we only prune every [l/oil or
every 500 transactions2, whichever is larger. We note
that any heuristic pruning strategy is admissible as long
as only small itemsets are removed and whenever an
itemset is removed all its supersets are removed as well.
We chose the above pruning strategy for its memory
efficiency. Note that in this strategy 1-itemsets are
never pruned. Thus an item, which is not contained in
the lattice, did not appear in the transaction sequence
so far. Hence the strategy allows us to set maxMissed
to 0 whenever a 1-itemset is inserted in the lattice.

The resulting Phase1 algorithm is depicted in figure 3.

The correctness of the algorithm is given by the
following theorem:

Theorem 1 Let V be the lattice returned by PhaseI(T, o)
for a transaction sequence T of length n and support se-
quence u.

‘For a real number G we denote by [zJ the largest integer less
or equal to I, i.e. 1~) = max{i E Z) 2 > i}.

2For a real number 2 we denote by rz1 the least integer greater
or equal to I, i.e. [CCJ = min{i E Z) IC 5 i}.

148

Function PhaseI(transaction sequence (ti, . . . , tn),
support sequence c = (or,. . . , a,)
) : support lattice;

support lattice V;
begin

v := (0);
maxMissed := 0, firstTrans(w) := 0

count(w) := 0;
for i from 1 to n do

// 1) Increment
for all w E V with w c ti do count(v) + +;‘od;
// 2) Insert
for all w C ti with w $ V do

if VW c w : w E V and maxSupport > ui then
v := vu {w};
firstTrans(w) := i;
count(w) := 1;
maxMissed :=

min{ [(i - l)avgi-i([ali-i)] + (~1 - 1,
maxMissed + count(w) - 11 w C w };

if (w(== 1 then maxMissed := 0; fi;
f-t

773) Prune
if (i % max{ [l/oil, 500)) == 0 then

V := {w E V 1 maxSupport 2 (pi or lwl == 1);
fi;

od;
return V;

end;
Figure 3

Then V is a support lattice relative to the support
threshold

with c the maximal cardinality of a large itemset in T.
For any itemset w

“I - l support,(v) > avgn(Taln)+- implies v E v.
n

Proof: By double induction on c and n. For a de-
tailed proof see [Hid98, Theorem 2, Appendix C].

We illustrate Theorem 1 and in particular the support
threshold given by (3) in Subsection 5.4. We omitted
any optimization in the definition of PhaseI. For exam-
ple, the incrementation and insertion step can be ac-
complished by traversing the support lattice once. We
illustrate the algorithm itself on a simple example in
the following Subsection 5.3.

5.3 Example

We illustrate in this subsection the Phase1 algorithm on
a simple example, namely on the transaction sequence
T = ({a, b}, {a, b, c}, {b, c}) and the support sequence
o = (0.3, 0.9, 0.7), see Figure 4 below. As indicated
we denote by the triple the three associated integers for
each set in the support lattice V and by the interval the
bounds on its support.

We initialize V to {0} and the associated integers of
0 to (O,O,O). Reading tl = {a, b} we first increment
the count of 0, since 0 C tl. Because the empty
set is the only strict subset of a singleton set and
1 = maxSupport(0) >_ 01, we add the singletons {a}
and {b} to V. By maxMissed = 0 for all singleton
sets, we set their associated integers to (O,l, 1). Since
there is no set in V with maxSupport < 0.3, we can
not prune an itemset from V and the first transaction
is processed.

Reading t2 = {a, b, c} we first increment count for 0,
{a} and {b}. As above we insert the singleton set {c},
setting maxMisssed to 0. Since {a, b} 2 t2 and {a},
{b} are elements of V with a maxSupport 2 02 = 0.9,
we insert {a, b} in V. Since rcr] i = (0.3,0,0, . . .) we get
awgi ([oli) = 0.3 and

[(Z - l)awg1([glr)j + 2 - 1 = 1.
Hence maxMissed({a,b}) = 1 by equality (2) of
Subsection 5.2, since maxMissed(w)+count(w) = 2 for
w = {a} and w = {b}. We set the associated integers of
{a, b} to (1,2,1). W e note that maxSupport({a, b}) = 1
is a sharp upper bound, since supportz({a, b}) = 1.

Reading t3 = {b, c} we increment the count of 8,
{b} and {c}. We th en insert {b, c} since {b} and {c}
are elements of V with maxSupport above the new
user defined support threshold ~3 = 0.5. By [u)z =
(0.9,0.9,0,0,.. .) we get awg2([o12) = 0.9 and hence
[(3 - 1) . 0.91 + 2 - 1 = 2. Since maxMissed({c}) +
count({c}) - 1 = 1 we get

maxMissed({b, c,}) = min(2, l} = 1.
Because all itemsets have a maxsupport greater than
0.5 we can not remove any itemsets from the lattice. If
~3 was 0.7 instead of 0.5 we would not have inserted
(6, c} while we could have removed {a, b}. However we
could not have removed {c}, since our pruning strategy
during PhaseI never removes singelton sets.

5.4 Changing Support Thresholds

We discuss in this subsection constant and changing
support thresholds. Phase1 guarantees that all itemset
with a support greater or equal to the support threshold
given by Theorem 1 are included in the itemset lattice.
We denote by the guaranteed support threshold this
threshold, i.e.

149

0 v (O,O,O) v (O!o!l,
NOI t,= 1 a, b I WI)

ot= 0.3

la) (b)
(OJJ) WJ)
11911 IL11

(maxMissed, tkstlrans, count)

[minSupport, maxSupport]

constant support threshold

10000 20000 30000 40000
transaction

Figure 5

with D the support sequence, c the maximal cardinality
of a large itemset and n the current transaction index.

First, suppose the user does not change the support
threshold. Hence we have a constant support sequence
0 = (s, s, s, . . .) f or some s. By (4) and avg,([aIn) = s
Phase1 includes at tr.ansaction n all large itemsets with
a support 2 s + ti Thus, the guaranteed threshold .
s+ + converges to” t he user specified support threshold
s as Phase1 scans the transaction sequence. To improve
the speed of convergence, we run Phase1 with a lower
threshold of s . 0.9 instead of s. As the guaranteed
threshold reaches s, we increase the threshold again
from s .0.9 to s, see Figure 5.

Next, consider changing support thresholds. Figure
6 depicts a scenario, where the user increases at
transaction 5’000 the initial support threshold of 0.75%
to 1.25% and then lowers it again to 1.0% at transaction
10’000. As above, we supply Phase1 with thresholds gi
lower than the user specified threshold, whenever the
guaranteed threshold does not equal the user specified
threshold. We set cri, the support sequence supplied to
Carma, to 0.9 ‘0.75% := 0.68% for i = 1, . ,4’999. The

Ia) (b)
(O,W (0,1,21
ILlI WI

\/
f%bl
WJ)
KWll

Figure 4

(8) (b) (cl
Kw) (OA3) WQ)

[0.66,0&i] [l,l] [O&6,0.66]

\/ \/
Ia,bJ tb,c)
WJ) (L3J)

[0.33,0.661 [0.33,0.661

1.5

1.25

1

0.75

0.5

changing support threshold
I I I , I

given by the user -
supplied to Carma -----

,puaranteed by Carma .--.-
. . . .

------I . . .-._
._____

1
I I 1 I I

10000 20000 30000 40000
transaction

Figure 6

guaranteed threshold (4) drops quickly 3, reaching a
value well below 1% at transaction 4’999. Since the new
user specified threshold of 1.25% at transaction 5’000
is greater than l%, we have equality until transact:ion
9’999. Hence we set oi to 1.25% for i = 5’000,. . . ,9’9’99.
As the user lowers the threshold to 1% we set ci to
0.9 . 1% = 0.9% from i = 10’000 until the guaranteed
threshold reaches 1.0% at transaction 35’000. We reset
(pi to 1% for all i > 35’000, since the user defined
threshold remains at 1% from now on.

We note that the guaranteed threshold is an upper
bound and thus a worst-case threshold. Typically, .a11
large itemsets are contained in the lattice well before
the guaranteed threshold reaches the user specificed
threshold.

6 Carma

In Subsection 6.1 we give a short description of PhaseHI,
the algorithm for the second scan. We then combine in
Subsection 6.2 Phase1 with Phase& yielding Carma.

3For this example we assumed that all large itemsets are of
cardinality 10 or less, i.e. c = 10.

150

Function Phase11 (support lattice V,
transaction sequence (ti, . . . , tn),
support sequence 0)

: support lattice;
integer ft, i = 0;
begin

v := V\{w E v (maxSupport < un };
while 3w E V : i < firstTrans(w) do

is+;
for all w E V do

ft := firstTrans(v);
if v G ti and ft < i then

count(w)++, maxMissed(w
fi;
if ft == i then

maxMissed := 0;
for all w E V:

do
v c w and maxSupport > maxSupport

maxMissed := count(w) - count(w);
od;

fi;
if maxSupport < gn then V := V\(w); fi;

od; od;
return V;

end;
Figure 7

6.1 Phase11

Let V be the support lattice computed by Phase1 and
let (T, be the user specified support threshold for the last
transaction read during the first scan. Phase11 prunes
all small itemsets from V and determines the precise
support for all remaining itemsets.

Initially Phase11 removes all trivially small item-
sets, i.e. itemsets with maxsupport < un, from V.
Scanning the transaction sequence, Phase11 increments
count and decrements maxMissed for each itemset con-
tained in the current transaction, up to the transaction
at which the itemset was inserted. Setting maxMissed
to 0 we get minsupport = maxsupport, the actual
support of the itemset. We remove the itemset if it
is small. Setting maxMissed = 0 for an item-
set w may yield maxSupport > maxSupport for
some superset w of v. Thus we set maxMissed =
count(w) - count(w) for all supersets w of w with

maxSupport > maxSupport(
Phase11 terminates as soon as the current transaction
index is past firstTrans for all itemsets in the lattice.
The resulting lattice contains all large itemsets along
with the precise support for each itemset. The algo-
rithm is shown in figure 7.

Using Theorem 1 it is possible to determine that some

Function Carma (transaction sequence T,
support sequence 0)

: support lattice;
support lattice V;
begin

V := PhaseI(T, cr);
V := PhaseII(V, T, cr);
return V;

end;
Figure 8

itemset with maxsupport > un is small before we reach
its firstTrans transaction. Pruning these itemsets
and all their supersets speeds up Phase11 by reducing
the lattice size as well as the part of the transaction
sequence which needs to be rescanned, c.f. [Hid98,
Appendix D].

6.2 Carma

Executing Phase11 after PhaseI, we get Carma, c.f. Fig-
ure 8. By Theorem 1 Phase1 produces a superset of all
large itemsets with respect to the guaranteed thresh-
old. Phase11 removes an itemset from the superset if
and only if it is small. Thus the resulting itemset con-
tains all large itemsets.

7 Implementation
To assess the performance we tested Carma along
with Apriori and DIC on synthetic data generated by
the IBM test data generator, c.f. [AS941 1 We
illustrate our findings on the synthetic dataset with
100’000 transactions of an average size of 10 items
chosen from 10’000 items and an average large itemset
size of 4 (T10.14.100K with 10K items). For runs
on further datasets see Appendix A. All experiments
were performed on a lightly loaded 300 MHz Pentium-
II PC with 384 MB of RAM. The algorithms were
implemented in Java on top of the same itemset lattice
implementation. We cross compiled the Java class files
to an executable using Tower Technology’s TowerJ 2.2.

7.1 Implementation Details

Our implementation of an itemset lattice differs from a
hashtree in that all itemsets are stored in a single
hashtable. With the itemsets as keys, we can quickly
access any subset of a given itemset. This is important
for Carma, since whenever Carma inserts a new itemset
w, it accesses all its maximal subsets to compute
maxMissed(We represent the lattice structure by
associating to each itemset the set of all further items

‘http://www.almaden,ibm.com/cs/quest/syndata.html
3computed on T10.14.100K with 10K items at a support

threshold of 0.1%

151

Memory on Ti 0.14.1 OOK (10K items)
2000000

1000000

s
%
E
22
2 100000

:
74

10000 B

500 ,
CPU time on Tl 0.14.1 OOK (1 OK items)

, I I I ,

1 .o 0.8 0.6 0.4 0.2 0.1 -1.0 0.8 0.6 0.4 0.2 0.1
support (%)
Figure 9

support (%)
Figure 10

large itemsets in lattice

In
‘iii 90 unfiltered lattice +-

E
filtered lattice --+

c 80
i%
3 = 70
RI
5
9 0 60

20000 40000 60000 80000
transaction
Figure 113

appearing in any of its supersets, c.f. [Bay98]. As
in the case of a hashtree, we need only one hashtable
access to pass from an itemset to one of its minimal
supersets. Thus we can enumerate all subsets of a
scanned transaction, which are contained in the lattice,
as quickly as in a hashtree.

Our implementation of Carma diverges from the
pseudo-code given in Subsection 5.2 only in that we
perform the Phase1 incrementation and insertion step
simultaneously, enum.erating the subsets of a scanned
transaction once.

Apriori and DIC were implemented as described in
[AS941 and [BMUTSi) respectively. For DIC we chose
a blocksize of 15000, which we found to be fastest.

7.2 Relative Performance

To compare Carma with Apriori and DIC we ran all
three algorithms on a range of datasets and (constant)
support thresholds. In this subsection we illustrate
our results on the ‘TlO.14.100K dataset with 10K
items. For support thresholds of 0.5% and above
Apriori outperformed Carma and DIC. We attribute
the superior speed of Apriori for these thresholds to the
observation that, for example, at 0.75% only 171 large
itemsets existed and all large itemsets were I-itemsets.
Thus Apriori completes in 2 scans allocating only 300

size of support intervals

average in unfiltered lattice -+-
median in unfiltered lattice -t--

median in filtered lattice ++--

0.075

0.050

0.025

0.000
20000 40000 60000 80000

transaction
Figure 123

P-itemsets. As the support threshold was lowered to
0.25% (0.1%) the number of large l-itemsets increased
to 1131 (3509) and the maximal cardinality to 4 (9).
We were not able to run Apriori (DIC) with thresholds
below 0.2% (0.25%), since the allocated itemsets did
not fit into main memory anymore. At 0.15% (0.1%)
Apriori would have allocated 2.8 million (6.2 million)
2-itemsets2, while Carma required only 51001 (97872)
itemsets. We note that DIC always allocates at least as
many itemsets as Apriori. At 0.25% and below Carma
outperformed Apriori and DIC.

We attribute the better performance of Carma over
Apriori to the 4 scans needed by Apriori while Carma
completed in 1.1 scans. We attribute the bet&
performance of Carma over DIC to the 2 scans needed
by DIC as well as to the 35 times smaller lattice
maintained by Carma, since both algorithms traverse
their lattices in regular intervals.

7.3 Support Intervals

Phase1 maintains a superset of the large itemsets in
the scanned part of the transaction sequence, bu.t
not necessarily a superset for the full transaction
sequence. First, we wanted to determine the percentage

2The number of candidate P-itemsets which Apriori allocates
is given by the number of large l-itemsets over 2.

152

of all large itemsets, i.e. with respect to the full
transaction sequence, contained in the lattice as Phase1
proceeds. After scanning 20000 (40000) transactions at
a threshold of 0.1% Carma included 99.3% (99.8%) of
all large itemsets in its lattice, see figure 11.

Between two pruning steps Phase1 replaced up to 50%
of all itemsets. The vast majority (typically > 95%)
of itemsets in the lattice eventually turned out to be
small. As we scan the transaction sequence we would
present a large number of association rules to the user
based on itemsets which are likely to be small. To
exclude those itemsets from the rule generation, which
are likely to be small, we filtered out all itemsets which
were inserted during the last 15% of the transaction
sequence, e.g. at transaction 20000 we filter out all
itemsets which were inserted at transaction 17000 or
later. The filtered lattice still contained 93.9% (97.8%)
of all large itemsets, after scanning 20000 (40000)
transactions respectively, c.f. figure 9. At the same
time the size of the filtered lattice was reduced to 32.6%
(16.0%) of its original size.

Recall that the support interval of an itemset in the
lattice is given by its minSupport and maxSupport.
Next, we wanted to determine how the size of the
support intervals, i.e. maxSupport - minSupport, in
the filtered lattice evolve as Phase1 proceeds. After
scanning 20000 (40000) transactions at a threshold of
0.1% the average interval size in the filtered lattice was
0.042% (0.032%), while 50% of all itemsets in the lattice
had an interval size below 0.004% (0.002%), c.f. figure
12.

8 Conclusion

We presented Carma, a novel algorithm to compute
large itemsets online. It continuously produces large
itemsets along with a shrinking support interval for
each itemset. It allows the user to change the support
threshold anytime during the first scan and always
completes in at most 2 scans.

We implemented Carma and compared it to Apriori
and DIC. While not being faster in general, Carma out-
performs Apriori and DIC on low support thresholds.
We attributed this to the observation that Carma is
typically an order of magnitude more memory efficient.
We showed that Carma’s itemset lattice quickly approx-
imates a superset of all large itemsets while the sizes of
the corresponding support intervals shrink rapidly. We
also showed that Carma readily computes large itemsets
in cases which are intractable for Apriori or DIC.

An interesting feature of the algorithm is that the
second scan ist not needed, whenever the shrinking sup-
port intervals suffice. Thus Phase1 can be used to con-
tinuously compute large itemsets from a transaction se-
quence read from a network, generalizing incremental
updates and not requiring local storage.

Acknowledgement: I would like to thank Joseph
M. Hellerstein, UC Berkeley, for his inspiration, guid-
ance and support. I am thankful to Ron Avnur for
the many discussions and to Retus Sgier, for his help
and suggestions. I would like to thank Rajeev Motwani,
Stanford University, for pointing out the applicability of
Carma to transaction sequences read from a network.
Also, I would like to thank Ramakrishnan Srikant, IBM
Almaden Research Center, for his remarks on speeding
up the convergence of the support thresholds.

References

[AIS93]

[AS941

[AY97]

[AY98]

Pay981

[BMUT97]

[CHNW96]

R. Agrawal, T. Imielinski, and A. Swami.
Mining association rules between sets of
items in large databases. In Proc. of the
ACM SIGMOD Conference on Manage-
ment of Data, pages 207-216, Washington,
D.C., May 1993.

R. Agrawal and R. Srikant. Fast algorithms
for mining association rules. In Proc. of the
20th Int’l Conf. on Very Large Databases,
Santiago, Chile, Sept. 1994.

Charu C. Aggarwal and Philip S. Yu. On-
line generation of association rules. Tech-
nical Report RC 20899 (92609), IBM Re-
search Division, T.J. Watson Research
Center, Yorktown Heights, NY, June 1997.

Charu C. Aggarwal and Philip S. Yu.
Mining large itemsets for association rules.
Bulletin of the IEEE Computer Society
Technical Comittee on Data Engineering,
pages 23-31, March 1998.

R. J. Bayardo Jr. Efficiently mining
long patterns from databases. In Proc.
of the 1998 ACM-SIGMOD International
Conference on Management of Data, pages
85-93, Seattle, June 1998.

Sergey Brin, Rajeev Motwani, Jeffrey D.
Ullman, and Shalom Tsur. Dynamic
itemset counting and implication rules for
market basket data. In Proceedings of
the ACM SIGMOD International Confer-
ence on Management of Data, volume 26,2
of SIGMOD Record, pages 255-264, New
York, May 13th-15th 1997. ACM Press.

D. Cheung, J. Han, V. Ng, and C.Y. Wong.
Maintenance of discovered association rules
in large databases: An incremental updat-
ing technique. In Proc. of 1996 Int’l Conf.
on Data Engineering (ICDE’96), New Or-
leans, Louisiana, USA, Feb. 1996.

153

[CLK97]

[He1961

[HHW97]

[Hid981

[SON951

[TBAR97]

[Toi96]

[ZPLO96]

David W. L. Cheung, S.D. Lee, and Ben-
jamin Kao. A general incremental tech-
nique for maintaining discovered associa-
tion rules. In Proceedings of the Fifth Inter-
national Conference On Database Systems
For Advanced Applications, pages 185-194,
Melbourne, Australia, March 1997.

Joseph M. Hellerstein. The case for
online aggregation. Technical Report
UCB//CSD-96-908, EECS Computer Sci-
ence Divison, University of California at
Berkeley, 1996.

Josepih M. Hellerstein, Peter J. Haas, and
Helen J. Wang. Online aggregation. SIG-
MOD ‘97, 1997.

C. Hidber. Online Association Rule Min-
ing. Technical Report TR-98-033, Interna-
tional Computer Science Institute, Berke-
ley, CA, September 1998. an earlier version
appeared as technical report UCB//CSD-
98-1004 of the Department of Electrical En-
gineering and Computer Science, Univer-
sity of California at Berkeley.

A. Savasere, E. Omiecinski, and S. Na-
vathe. An efficient algorithm for mining
association rules in large databases. In Pro-
ceedings of the Very Large Data Base Con-
ference, September 1995.

Shiby Thomas, Sreenath Bodagala, Khaled
Alsabt:i, and Sanjay Ranka. An efficient
algorithm for the incremental updation
of association rules in large databases.
In Proceedings of the 3rd International
conference on Knowledge Discovery and
Data lllining (KDD 97), New Port Beach,
California, August 1997.

Hannu Toivonen. Sampling large databases
for association rules. In T. M. Vijayara-
man, A.lejandro P. Buchmann, C. Mohan,
and Nandlal L. Sarda, editors, VLDB’96,
Proceedings of 22th International Confer-
ence on Very Large Data Bases, Mumbai
(Bombay), India, September 1996. Morgan
Kaufmann.

Mohammed Javeed Zaki, Srinivasan
Parthasarathy, Wei Li, and Mitsunori
Ogihara.. Evaluation of sampling for data
mining of association rules. Technical
Report 617, Computer Science Dept., U.
Rochester, May 1996.

154

A Performance Figures

1000000

g 100000

8 =
m

Memory on T10.14.1 OOK (I K items)

Aprior; + ! \
I

=.c;a~m;l:::~~:::::i::::.:::.::::::::i: :::::.:::::.:.:/::.:::=
=ii:ji:jR~:-~--:::.::‘:::::::::.::::::.~::::.::::::.:::::~:::::=,.. .: ,... .,

2000000

1000000

22
I
E a .e

p 100000

8 = m

Memory on Ti 0.14.1 OOK (2K items)

1.0 0.8 0.2 0.1

Memory on TlO.14.1 OOK (5K items)

1.0 0.8 0.4
s”;;ort (%)

0.2 0.1

1000 ,
CPU time on Tl0.14.lOOK (1K items)

I , I I I

600

0.8 0.6 0.4 0.2 0.1
support (%)

1000 ,
CPU time on TlO.14.1 OOK (2K items)

I 1 I 1 1

R
zl 600
s

Q 400

200

0
-1.0 0.8 0.4

su;;ort (“x2)
0.2 0.1

CPU time on TlO.14.1 OOK (5K items)

;;i mj

400

300

200

100

n I I

-1 .o 0.8 0.6 0.4 0.2 0.1
support (%)

155

2000000

1000000

z?

i?i
E a

‘g 100000

8
0 =
co

10000

2000000

1000000
In
5
if
d
-0
2 100000

2 = m

Memory on Tl 0.14.1 OOK (1 OK items)

,, ,:. . ..-..:-...-,I; 1,. : ::: : .:.:

i~~~:i

j ;. ..;;.a .;... ;;i;vy..

,;;..llz+l:.: : : ::.: .,::,,::,... :. :.:.

1.0 0.8 0.6 0.4 0.2 0.1
support (%)

Memorv on T20.14.1 OOK (1 OK items)

10000-i i i i 1
1.0 0.8 suodport 0.4 0.2 0.1

(%)

2000000

1000000

22
s
E a

‘g 100000

2 = ([I

10000

Memory on Tl 0.16.1 OOK (1 OK items)

~I

.carmgy* .::::; :..::::::: :::::: i :::.::::::::.: i:< :.:::
:::.:.: lFj*.r:- n, . ..e.~-i::.,::~iiiiiiiiiiiiiiiii ::~._:::::~, .:; ..:::.

1.0 0.8 0.6 0.4 0.2 0.1
support (%)

500
CPU time on T10.14.1 OOK (1 OK items)

I I I I
Aoriori *

-1.0 0.8 0.4
su;;ort (%)

0.2 0.1

CPU time on T20.14.lOOK (10K items)

y;;: piigg-7’

I’

2
0 /+

8 1000 -
f

%
i

: ,’

500 -

I
-1.0 0.8 0.4

su”pb”ort pa)
0.2 0.1

CPU time on T10.16.lOOK (10K items)

1;; pg--q

n
“1 .o 0.8 0.4

suopbort (%)
0.2 0.1

156

