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Abstract

We present a novel algorithm to compute large itemsets
online. The user is free to change the support threshold
any time during the first scan of the transaction sequence.
The algorithm maintains a superset of all large itemsets and
for each itemset a shrinking, deterministic interval on its
support. After at most 2 scans the algorithm terminates
with the precise support for each large itemset. Typically
our algorithm is by an order of magnitude more memory
efficient than Apriori or DIC.
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Mining for association rules is a form of data mining
introduced in [AIS93]. The prototypical example is
based on a list of purchases in a store. An association
rule for this list is a rule such as “85% of all customers
who buy product A and B also buy product C and D”.
Discovering such customer buying patterns is useful for
customer segmentation, cross-marketing, catalog design
and product placement.

Introduction

We give a problem description which follows [BMUT97].

The support of an itemset (set of items) in a transaction
sequence is the fraction of all transactions containing
the itemset. An itemset is called large if its support
is greater or equal to a user-specified support thresh-
old, otherwise it is called small. An association rule
is an expression X = Y where X and Y are disjoint
itemsets. The support of this rule is the support of
X UY. The confidence of this rule is the fraction of
all transactions containing X that also contain Y, i.e.
the support of X UY divided by the support of X.
In the example above, the “85%” is the confidence of
the rule {A, B} = {C,D}. For an association rule to
hold, it must have a support > a user-specified support
threshold and a confidence > a user-specified confidence
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threshold. Existing algorithms proceed in 2 steps to
compute association rules:

1. Find all large itemsets.

2. For each large itemset Z, find all subsets X, such
that the confidence of X = Z\ X is greater or equal
to the confidence threshold.

We address the first step, since the second step can
already be computed online, c.f. [AY97]. Existing large
itemset computation algorithms have an offline or batch
behaviour: given the user-specified support threshold,
the transaction sequence is scanned and rescanned,
often several times, and eventually all large itemsets
are produced. However, the user does not know, in
general, an appropriate support threshold in advance.
An inappropriate choice yields, after a long wait, either
too many or too few large itemsets, which often results
in useless or misleading association rules.

Inspired by online aggregation, c.f. [Hel96, HHW97],
our goal is to overcome these difficulties by bringing
large itemset computation online. We consider an
algorithm to be online if: 1) it gives continuous
feedback, 2) it is user controllable during processing and
3) it yields a deterministic and accurate result. Random
sampling algorithms produce results which hold with
some probability < 1. Thus we do not view them as
being online.

In order to bring large itemset computation online, we
introduce a novel algorithm called Carma (Continuous
Association Rule Mining Algorithm). The algorithm
needs, at most, two scans of the transaction sequence
to produce all large itemsets.

During the first scan, the algorithm continuously con-
structs a lattice of all potentially large itemsets (large
with respect to the scanned part of the transaction se-
quence). For each set in the lattice, Carma provides a
deterministic lower and upper bound for its support.
We continuously display, e.g. after each transaction
processed, the resulting association rules to the user
along with bounds on each rule’s support and confi-
dence. The user is free to adjust the support and con-



fidence thresholds at any time. Adjusting the support
threshold may result in an increased threshold for which
the algorithm guarantees to include all large itemsets in
the lattice. If satisfied with the rules and bounds pro-
duced so far, the user can stop the rule mining early.

During the second scan, the algorithm determines
the precise support of each set in the lattice and
continuously removes all small itemsets.

Existing algorithms need to rescan the transaction
sequence before any output is produced. Thus, they
can not be used on a stream of transactions read from
a network for example. In contrast, using Carma’s first-
scan algorithm, we can continuously process a stream
of transactions and generate the resulting association
rules online, not requiring a rescan.

While not being faster in general, Carma outperforms
Apriori and DIC on low support thresholds and is up
to 60 times more memory efficient.

2

The paper is structured as follows: In Section 3, we
put our algorithm in the context of related work.
In Section 4, we give a sketch of Carma. It uses
two distinct algorithms Phasel and Phasell for the
first and second scan respectively. In Section 5 we
describe Phasel in detail. In Subsection 5.1 we
introduce support lattices and support sequences, the
building blocks for the Phasel algorithm presented in
Subsection 5.2. We illustrate Phasel on an example in
Subsection 5.3. We discuss changing support thresholds
in Subsection 5.4. After a short description of Phasell
in Subsection 6.1, we combine in Subsection 6.2 Phasel
with Phasell, yielding Carma. In Section 7 we
discuss our implementation. After a brief discussion of
implementational details in Subsection 7.1, we compare
in Subsection 7.2 the performance of Carma with
Apriori and DIC. In Subsection 7.3 we analyze how the
support intervals evolve during the first scan. We end
with our conclusion in Section 8. In Appendix A we
summarize performance results of Apriori, Carma and
DIC on further datasets.

Overview

3 Related Work

Most large itemset computation algorithms are related
to the Apriori algorithm due to Agrawal & Srikant,
cf. [AS94). See [AY98] for a survey of large
itemset computation algorithms. Apriori exploits the
observation that all subsets of a large itemset are large
themselves. It is a multi-pass algorithm, where in the k-
th pass all large itemsets of cardinality k£ are computed.
Hence Apriori needs up to ¢ + 1 scans of the database
where ¢ is the maximal cardinality of a large itemset.
In [SON95] a 2-pass algorithm called Partition is
introduced.  The general idea is to partition the
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database into blocks such that each block fits into
main-memory. In the first pass, each block is loaded
into memory and all large itemsets, with respect to
that block, are computed using Apriori. Merging al.
resulting sets of large itemsets then yields a superset
of all large itemsets. In the second pass, the actual
support of each set in the superset is computed. After
removing all small itemsets, Partition produces the set
of all large itemsets.

In contrast to Apriori, the DIC (Dynamic Itemset
Counting) algorithm counts itemsets of different car-
dinality simultaneously, c.f. [BMUT97]. The transac-
tion sequence is partioned into blocks. The itemsets
are stored in a lattice which is initialized by all single-
ton sets. While a block is scanned, the count (number
of occurences) of each itemset in the lattice is adjusted.
After a block is processed, an itemset is added to the
lattice if and only if all its subsets are potentially large,
i.e. large with respect to the part of the transaction
sequence for which its count was maintained. At the
end of the sequence, the algorithm rewinds to the be-
ginning. It terminates when the count of each itemset
in the lattice is determined. Thus after a finite num-
ber of scans, the lattice contains a superset of all large
itemsets and their counts. For suitable block sizes, DIC
requires fewer scans than Apriori.

We note that all of the above algorithms: 1) require
that the user specifies a fixed support threshold in
advance, 2) do not give any feedback to the user while
they are running and 3) may need more than two scans
(except Partition). Carma, in contrast: 1) allows the
user to change the support threshold at any time, 2)
gives continuous feedback and 8) requires at most two
scans of the transaction sequence.

Random sampling algorithms have been suggested
as well, cf. [Toi96, ZPLO96]. The general idea is
to take a random sample of suitable size from the
transaction sequence and compute the large itemsets
using Apriori or Partition with respect to that sample.
For each itemset, an interval is computed such that
the support lies within the interval with probability >
some threshold. Carma, in contrast, deterministically
computes all large itemsets along with the precise
support for each itemset.

Several algorithms based on Apriori were proposed to
update a previously computed set of large itemsets due
to insertion or deletion of transactions, c.f. [CHNW96,
CLK97, TBAR97]. These algorithms require a rescan
of the full transaction sequence whenever an itemset
becomes large due to an insertion. Carma, in contrast,
requires a rescan only if the user needs the precise
support of the additional large itemsets, instead of the
continuously shrinking support intervals provided by
Phasel.

In [AY97] an Online Analytical Processing (OLAP)-



style algorithm is proposed to compute association
rules. The general idea is to precompute all large
itemsets relative to some support threshold s using a
traditional algorithm. The association rules are then
generated online relative to an interactively specified
confidence threshold and support threshold > s. We
note that: 1) the support threshold s must be specified
before the precomputation of the large itemsets, 2)
the large itemset computation remains offline and
3) only rules with support > s can be generated.
Carma overcomes these difficulties by bringing the large
itemset computation itself online. Thus, combining
Carma’s large itemset computation with the online rule
generation suggested in [AY97] brings both steps online,
not requiring any precomputation.

4 Sketch of the Algorithm

Carma uses distinct algorithms, called Phasel and
Phasell, for the first and second scan of the transaction
sequence. In this section, we give a sketch of both
algorithms. For a detailed description and formal
definition see Section 5 and Section 6.

During the first scan Phasel continuously constructs
a lattice of all potentially large itemsets. After each
transaction, it inserts and/or removes some itemsets
from the lattice. For each itemset v, Phasel stores the
following three integers (see Figure 1 below, the itemset
{a, b} was inserted in the lattice while reading the j-th
transaction, the current transaction index is 1)

count(v) the number of occurences of v

since v was inserted in the lattice.
firstTrans(v) the index of the transaction

at which v was inserted in the lattice.
maxMissed(v) upper bound on the occurences of v

before v was inserted in the lattice.

Suppose we are reading transaction 7 and we have
a lattice of the above form. For any itemset v
in the lattice, we then have a deterministic lower
bound count{v)/i and upper bound (mazMissed(v) +
count(v))/i on the support of v in the first 7 trans-
actions. We denote these bounds by minSupport(v)
and mazSupport(v) respectively. The computation of
maxMissed(v) during the insertion of v in the lattice
is a central part of the algorithm. It not only depends
on v and 4, the current transaction index, but also on
the current and previous support thresholds, since the
user may change the threshold at any time.

After Phasel has read a transaction, it increments
count(v) for all itemsets v contained in the transaction.
Next, it inserts some itemsets in the lattice, computing
maxMissed and setting firstTrans to the current
transaction index. Clearly, mazMissed is always less
than the current transaction index. Eventually, Phasel
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may remove some itemsets from the lattice if their
mazSupport is below the current support threshold. At
the end of the transaction sequence, Phasel guarantees
that the lattice contains a superset of all large itemsets
relative to some threshold. The threshold depends on
how the user changed the support during the scan, c.f.
Subsection 5.4. We then rewind to the beginning and
start Phasell.

Phasell initially removes all itemsets which are
trivially small, i.e. itemsets with mazSupport below
the last user specified threshold. By rescanning the
transaction sequence, Phasell determines the precise
number of occurences of each remaining itemset and
continuously removes all itemsets, which turn out to be
small. Eventually, we end up with the set of all large
itemsets along with their supports.

5 Phasel Algorithm

In this section, we fully describe the Phasel algorithm,
which constructs a superset of all large itemsets while
scanning the transaction sequence once. In Subsection
5.1 we introduce support lattices and support sequences,
the building blocks for Phasel. We present the Phasel
algorithm itself in Subsection 5.2. We illustrate the
algorithm on an example in Subsection 5.3 and conclude
this section with a discussion of changing support
thresholds in Subsection 5.4.

5.1

For a given transaction sequence and an itemset v, we
denote by support;(v) the support of v in the first ¢
transactions. Let V be a lattice of itemsets such that
for each itemset v € V we have the three associated
integers count(v), firstTrans{v) and mazMissed(v)
as defined in Section 4. We call V' a support lattice (up
to ¢ and relative to the support threshold s) if and only if
V contains all itemsets v with support;(v) > s. Hence,
a support lattice is a superset of all large itemsets. For
each transaction processed, the user is free to specify an
arbitrary support threshold. Thus we get a sequence of
support thresholds o = (o1,09,...), where o; denotes
the support threshold for the i-th transaction. We
call 0 a support sequence. By [c]; we denote the
least monotone decreasing sequence which is up to 4
pointwise greater or equal to o and 0 otherwise (see
Figure 2 below). We call [o]; the ceiling of ¢ up to <.
By avg;(o) we denote the running average of ¢ up to ¢,
ie. avg;(o) = %E;ﬂ o;.  We note that [¢];4; can
readily be computed from [o]; and ¢i41, c.f. [Hid9§,
Lemma 2, Appendix CJ.

Support Lattice & Support Sequence

5.2 Phasel Algorithm

In this subsection, we give a full description and formal
definition of the Phasel algorithm. Phasel computes a
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support lattice V' as it scans the transaction sequence.
We define V recursively:

Initially Phasel sets V to {0}, setting count, firstTrans

and marMissed of ) to 0. Thus V is a support lattice
for the empty transaction sequence.

Let V be a support lattice up to transaction i — 1.
We read the i-th transaction #; and want to transform V'
into a support lattice up to ¢. Let o; be the current user-
specified support threshold. To maintain the lattice we
proceed in three steps: 1) increment the count of all
itemsets occuring in the current transaction, 2) insert
some itemsets in the lattice and 3) prune some itemsets
from the lattice.

1) Increment: We increment count(v) for all itemsets
v € V that are contained in ¢;, maintaining the
correctness of all integers stored in V.

2) Insert: We insert a subset v of ¢; in V if and
only if all subsets w of v are already contained in V
and are potentially large, i.e. mazSupport(w) > o;.
This corresponds to the observation that the set of
all large itemsets is closed under subsets. Inserting v
in V, we set firstTrans(v) i and count(v) = 1,
since v is contained in the current transaction ¢;. Since
support;(w) > support;(v) for all subsets w of v and
w C ; we get

maxMissed(v) < mazMissed(w) + count(w) — 1.
By the following Thecrem 1 we have
support;_1(v) > avg;—1{[o)i=1) + L:’_L_l-l-

implies

veV.

148

Since v is not contained in V' yet, we get thereby

v =1
T

1)

support;_1(v) < avg;—1([o]iz1) +

Since mazMissed(v) is an integer! we get by inequality
(1)

mazMissed(v) < |(z — 1)avgi—1([oli-1)] + |v] — L.
Thus we define mazMissed(v) as

min { [(i - Davgi_1([o]i-1)] + |v| -1,
mazMissed(w) + count(w) — 1|w Cv ¥2)

In particular we get mazMissed(v) < i — 1, since the
emptyset is a subset of v, @ is an element of V and the
count of @ equals 3, the current transaction index.

3) Prune: We prune the lattice by removing all
itemsets of cardinality > 2 with a mazSupport below
the current support threshold o;, i.e. all small itemsets
containing at least 2 items. Since pruning incurs a
considerable overhead we only prune every [1/¢;] or
every 500 transactions®, whichever is larger. We note
that any heuristic pruning strategy is admissible as long
as only small itemsets are removed and whenever an
itemset is removed all its supersets are removed as well.
We chose the above pruning strategy for its memory
efficiency. Note that in this strategy l-itemsets are
never pruned. Thus an item, which is not contained in
the lattice, did not appear in the transaction sequence
so far. Hence the strategy allows us to set mazMissed
to 0 whenever a 1-itemset is inserted in the lattice.

The resulting Phasel algorithm is depicted in figure 3.

The correctness of the algorithm is given by the
following theorem:

Theorem 1 Let V be the lattice returned by Phasel(T, o)
for a transaction sequence T of length n and support se-
quence o.

!For a real number = we denote by |z] the largest integer less
or equal to x, i.e. |z} = max{i € Z|z > }.

2For a real number z we denote by [z] the least integer greater
or equal to x, i.e. [x] = min{i € Z|z < i}.



Function Phasel( transaction sequence (ti,...,¢t,),

support sequence ¢ = (01,...,0y)
) : support lattice;
support lattice V;
begin
V= {0};
mazMissed(v) = 0, firstTrans(v) := 0

count(v) := 0;
for i from 1 to n do
// 1) Increment
for all v € V with v C t; do count(v) + +; od;
// 2) Insert
forallv Ct; withv &€V do
if Yw C v: w € V and maxzSupport(w) > o; then
V=V Uu{v}
firstTrans(v) = i;
count(v) := 1;
mazMissed(v) :=
min{ [(i — Davgi—1([o]i-1)] +v] - 1,
mazMissed(w) + count(w) — 1jw C v };
if lv] == 1 then mazMissed(v) := 0; fi;
fi;
od;
// 3) Prune
if (¢ % max{{1/0;],500} ) == 0 then
V :={v € V|mazSupport(v) > o; or [v| ==1};
fi;
od;
return V;
end;
Figure 3

Then V is a support lattice relative to the support
threshold

avgn([o)a) + %—— (3)

with ¢ the mazimal cardinality of a large itemset in T.
For any itemset v

implies veV.

v -1
n

support,(v) > avgn([o]n) +

Proof: By double induction on ¢ and n. For a de-
tailed proof see [Hid98, Theorem 2, Appendix Cl.

We illustrate Theorem 1 and in particular the support
threshold given by (3) in Subsection 5.4. We omitted
any optimization in the definition of Phasel. For exam-
ple, the incrementation and insertion step can be ac-
complished by traversing the support lattice once. We
illustrate the algorithm itself on a simple example in
the following Subsection 5.3.

5.3 Example

We illustrate in this subsection the Phasel algorithm on
a simple example, namely on the transaction sequence
T = ({a,b},{a,b,c},{b,c}) and the support sequence
o = (0.3, 0.9, 0.7), see Figure 4 below. As indicated
we denote by the triple the three associated integers for
each set in the support lattice V and by the interval the
bounds on its support.

We initialize V to {@} and the associated integers of
0 to (0,0,0). Reading t; = {a,b} we first increment
the count of @, since § C #;. Because the empty
set is the only strict subset of a singleton set and
1 = maxSupport(d) > o1, we add the singletons {a}
and {b} to V. By mazMissed = 0 for all singleton
sets, we set their associated integers to (0,1,1). Since
there is no set in V' with mazSupport < 0.3, we can
not prune an itemset from V and the first transaction
is processed.

Reading ¢, = {a,b,c} we first increment count for @,
{a} and {b}. As above we insert the singleton set {c},
setting mazMisssed to 0. Since {a,b} C t; and {a},
{b} are elements of V with a mazSupport > a3 = 0.9,
we insert {a,b} in V. Since [o]; = (0.3,0,0,...) we get
avgi(fe]1) = 0.3 and

(2 - VDavg1 (o) +2-1=1.
Hence mazMissed({a,b}) = 1 by equality (2) of
Subsection 5.2, since mazMissed(w)+count(w) = 2 for
w = {a} and w = {b}. We set the associated integers of
{a,b} to (1,2,1). We note that mazSupport({a,b}) =1
is a sharp upper bound, since supportz({a,b}) = 1.

Reading t3 = {b,¢} we increment the count of 0,
{b} and {c}. We then insert {b,c} since {b} and {c}
are elements of V with maxzSupport above the new
user defined support threshald o3 = 0.5. By [o]2 =
(0.9,0.9,0,0,...) we get avgz([o]2) = 0.9 and hence
[(3—-1)-09] +2—1=2. Since mazMissed({c}) +
count({c}) —1 =1 we get

mazMissed({b,c,}) = min{2,1} = 1.
Because all itemsets have a maxSupport greater than
0.5 we can not remove any itemsets from the lattice. If
o3 was 0.7 instead of 0.5 we would not have inserted
{b,c} while we could have removed {a,b}. However we
could not have removed {c}, since our pruning strategy
during Phasel never removes singelton sets.

5.4 Changing Support Thresholds

We discuss in this subsection constant and changing
support thresholds. Phasel guarantees that all itemset
with a support greater or equal to the support threshold
given by Theorem 1 are included in the itemset lattice.
We denote by the guaranteed support threshold this
threshold, i.e.

c+1 (4)

avgn(fola) +
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with o the support sequence, ¢ the maximal cardinality
of a large itemset and n the current transaction index.

First, suppose the user does not change the support
threshold. Hence we have a constant support sequence
o=(s,s,8,...) for some s. By (4) and avg,([c]n) = s
Phasel includes at transaction n all large itemsets with
a support > s + %‘;—l Thus, the guaranteed threshold
s+ 9’;'1;1 converges to the user specified support threshold
s as Phasel scans the transaction sequence. To improve
the speed of convergence, we run Phasel with a lower
threshold of s - 0.9 instead of s. As the guaranteed
threshold reaches s, we increase the threshold again
from s-0.9 to s, see Figure 5.

Next, consider changing support thresholds. Figure
6 depicts a scenario, where the user increases at
transaction 5°000 the initial support threshold of 0.75%
to 1.25% and then lowers it again to 1.0% at transaction
10°000. As above, we supply Phasel with thresholds o,
lower than the user specified threshold, whenever the
guaranteed threshold does not equal the user specified
threshold. We set ¢;, the support sequence supplied to
Carma, t0 0.9-0.75% = 0.68% for i = 1,...,4'999. The
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guaranteed threshold (4) drops quickly 2, reaching a
value well below 1% at transaction 4’999. Since the new
user specified threshold of 1.25% at transaction 5’000
is greater than 1%, we have equality until transaction
9'999. Hence we set o; to 1.25% for < = 5’000, . .., 9'999.
As the user lowers the threshold to 1% we set o; to
0.9-1% = 0.9% from ¢ = 10’000 until the guaranteed
threshold reaches 1.0% at transaction 35’°000. We reset
o; to 1% for all ¢ > 35000, since the user defined
threshold remains at 1% from now on.

We note that the guaranteed threshold is an upper
bound and thus a worst-case threshold. Typically, all
large itemsets are contained in the lattice well before
the guaranteed threshold reaches the user specified
threshold.

6 Carma

In Subsection 6.1 we give a short description of Phasell,
the algorithm for the second scan. We then combine in
Subsection 6.2 Phasel with Phasell, yielding Carma.

3For this example we assumed that all large itemsets are of
cardinality 10 or less, i.e. ¢ = 10.



Function Phasell ( support lattice V,
transaction sequence (#1,...
support sequence o )
support lattice;
integer ft, i =0;
begin
V = V\{v € V |mazSupport(v) < o, };
while 3v € V : i < firstTrans(v) do
i+
forallve V do
ft := firstTrans(v);
if v Ct¢; and ft < i then
count(v)++, mazMissed(v)—;

ﬁa
if ft == then

mazMissed(v) := 0,

forall we V:

v C w and mazSupport(w) > mazSupport{v)
do
mazMissed(w) := count(v) — count(w);

od; '

ﬁ.

if mazSupport(v) < o, then V := V\{v}; fi;
od; od,;

return V;
end;
Figure 7
6.1 Phasell

Let V be the support lattice computed by Phasel and
let 0, be the user specified support threshold for the last
transaction read during the first scan. Phasell prunes
all small itemsets from V and determines the precise
support for all remaining itemsets.

Initially Phasell removes all trivially small item-
sets, i.e. itemsets with mazSupport < o,, from V,
Scanning the transaction sequence, Phasell increments
count and decrements mazMissed for each itemset con-
tained in the current transaction, up to the transaction
at which the itemset was inserted. Setting mazMissed
to 0 we get minSupport = maxzSupport, the actual
support of the itemset. We remove the itemset if it
is small. Setting mazrMissed(v) 0 for an item-
set v may yield mazSupport(w) > maxSupport(v) for
some superset w of v. Thus we set mazMissed(w)
count(v) — count(w) for all supersets w of v with

mazSupport(w) > mazSupport(v).
Phasell terminates as soon as the current transaction
index is past firstTrans for all itemsets in the lattice.
The resulting lattice contains all large itemsets along
with the precise support for each itemset. The algo-
rithm is shown in figure 7.

Using Theorem 1 it is possible to determine that some

ytn),
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Function Carma ( transaction sequence T,
support sequence o)
support lattice;
support lattice V;
begin

V := Phasel( T, o };

V := Phasell( V, T, 0 );

return V;
end;

Figure 8

itemset with mazSupport > @, is small before we reach
its firstTrans transaction. Pruning these itemsets
and all their supersets speeds up Phasell by reducing
the lattice size as well as the part of the transaction
sequence which needs to be rescanned, c.f. [Hid98,
Appendix DJ.

6.2 Carma

Executing Phasell after Phasel, we get Carma, c.f. Fig-
ure 8. By Theorem 1 Phasel produces a superset of all
large itemsets with respect to the guaranteed thresh-
old. Phasell removes an itemset from the superset if
and only if it is small. Thus the resulting itemset con-
tains all large itemsets.

7

To assess the performance we tested Carma along
with Apriori and DIC on synthetic data generated by
the IBM test data generator, c.f. [AS94] ! . We
illustrate our findings on the synthetic dataset with
100’000 transactions of an average size of 10 items
chosen from 10’000 items and an average large itemset
size of 4 (T10.14.100K with 10K items). For runs
on further datasets see Appendix A. All experiments
were performed on a lightly loaded 300 MHz Pentium-
IT PC with 384 MB of RAM. The algorithms were
implemented in Java on top of the same itemset lattice
implementation. We cross compiled the Java class files
to an executable using Tower Technology’s TowerJ 2.2.

Implementation

7.1

Our implementation of an itemset lattice differs from a
hashtree in that all itemsets are stored in a single
hashtable. With the itemsets as keys, we can quickly
access any subset of a given itemset. This is important
for Carma, since whenever Carma inserts a new itemset
v, it accesses all its maximal subsets to compute
maxMissed(v). We represent the lattice structure by
associating to each itemset the set of all further items

Implementation Details

Thttp://www.almaden.ibm.com/cs/quest/syndata.html
dcomputed on T10.14.100K with 10K items at a support
threshold of 0.1%
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appearing in any of its supersets, c.f. [Bay98]. As
in the case of a hashtree, we need only one hashtable
access to pass from an itemset to one of its minimal
supersets. Thus we can enumerate all subsets of a
scanned transaction, which are contained in the lattice,
as quickly as in a hashtree.

Our implementation of Carma diverges from the
pseudo-code given in Subsection 5.2 only in that we
perform the Phasel incrementation and insertion step
simultaneously, enumerating the subsets of a scanned
transaction once.

Apriori and DIC were implemented as described in
[AS94] and [BMUT97] respectively. For DIC we chose
a blocksize of 15000, which we found to be fastest.

7.2

To compare Carma with Apriori and DIC we ran all
three algorithms on a range of datasets and (constant)
support thresholds. In this subsection we illustrate
our results on the T10.14.100K dataset with 10K
items. For support thresholds of 0.5% and above
Apriori outperformed Carma and DIC. We attribute
the superior speed of Apriori for these thresholds to the
observation that, for example, at 0.75% only 171 large
itemsets existed and all large itemsets were 1-itemsets.
Thus Apriori completes in 2 scans allocating only 300

Relative Performance
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2-itemsets. As the support threshold was lowered to
0.25% (0.1%) the number of large 1-itemsets increased
to 1131 (3509) and the maximal cardinality to 4 (9).
We were not able to run Apriori (DIC) with thresholds
below 0.2% (0.25%), since the allocated itemsets did
not fit into main memory anymore. At 0.15% (0.1%)
Apriori would have allocated 2.8 million (6.2 million)
2-itemsets?, while Carma required only 51001 (97872)
itemsets. We note that DIC always allocates at least as
many itemsets as Apriori. At 0.25% and below Carma
outperformed Apriori and DIC.

We attribute the better performance of Carma over
Apriori to the 4 scans needed by Apriori while Carma
completed in 1.1 scans. We attribute the better
performance of Carma over DIC to the 2 scans needed
by DIC as well as to the 35 times smaller lattice
maintained by Carma, since both algorithms traverse
their lattices in regular intervals.

7.3
Phasel maintains a superset of the large itemsets in
the scanned part of the transaction sequence, but
not necessarily a superset for the full transaction
sequence. First, we wanted to determine the percentage

Support Intervals

2The number of candidate 2-itemsets which Apriori allocates
is given by the number of large l-itemsets over 2.



of all large itemsets, i.e. with respect to the full
transaction sequence, contained in the lattice as Phasel
proceeds. After scanning 20000 (40000) transactions at
a threshold of 0.1% Carma included 99.3% (99.8%) of
all large itemsets in its lattice, see figure 11.

Between two pruning steps Phasel replaced up to 50%
of all itemsets. The vast majority (typically > 95%)
of itemsets in the lattice eventually turned out to be
small. As we scan the transaction sequence we would
present a large number of association rules to the user
based on itemsets which are likely to be small. To
exclude those itemsets from the rule generation, which
are likely to be small, we filtered out all itemsets which
were inserted during the last 15% of the transaction
sequence, e.g. at transaction 20000 we filter out all
itemsets which were inserted at transaction 17000 or
later. The filtered lattice still contained 93.9% (97.8%)
of all large itemsets, after scanning 20000 (40000)
transactions respectively, c.f. figure 9. At the same
time the size of the filtered lattice was reduced to 32.6%
(16.0%) of its original size.

Recall that the support interval of an itemset in the
lattice is given by its minSupport and mazSupport.
Next, we wanted to determine how the size of the
support intervals, i.e. mazSupport — minSupport, in
the filtered lattice evolve as Phasel proceeds. After
scanning 20000 (40000) transactions at a threshold of
0.1% the average interval size in the filtered lattice was
0.042% (0.032%), while 50% of all itemsets in the lattice
had an interval size below 0.004% (0.002%), c.f. figure
12.

8

We presented Carma, a novel algorithm to compute
large itemsets online. It continuously produces large
itemsets along with a shrinking support interval for
each itemset. It allows the user to change the support
threshold anytime during the first scan and always
completes in at most 2 scans.

We implemented Carma and compared it to Apriori
and DIC. While not being faster in general, Carma out-
performs Apriori and DIC on low support thresholds.
We attributed this to the observation that Carma is
typically an order of magnitude more memory efficient.
We showed that Carma’s itemset lattice quickly approx-
imates a superset of all large itemsets while the sizes of
the corresponding support intervals shrink rapidly. We
also showed that Carma readily computes large itemsets
in cases which are intractable for Apriori or DIC.

An interesting feature of the algorithm is that the
second scan ist not needed, whenever the shrinking sup-
port intervals suffice. Thus Phasel can be used to con-
tinuously compute large itemsets from a transaction se-
quence read from a network, generalizing incremental
updates and not requiring local storage.

Conclusion
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