Querying Network Directories

H. V. Jagadish*
U of lllinois, Urbana-Champaign
jag@cs.uiuc.edu

Divesh Srivastava
AT&T Labs—-Research

divesh@research.att.com

Abstract

Hierarchically structured directories have recently prolifer-
ated with the growth of the Internet, and are being used
to store not only address books and contact information for
people, but also personal profiles, network resource informa-
tion, and network and service policies. These systems pro-
vide a means for managing scale and heterogeneity, while
allowing for conceptual unity and autonomy across multi-
ple directory servers in the network, in a way far superior
to what conventional relational or object-oriented databases
offer. Yet, in deployed systems today, much of the data is
modeled in an ad hoc manner, and many of the more so-
phisticated “queries” involve navigational access.

In this paper, we develop the core of a formal data
model for network directories, and propose a sequence
of efficiently computable query languages with increasing
expressive power. The directory data model can naturally
represent rich forms of heterogeneity exhibited in the real
world. Answers to queries expressible in our query languages
can exhibit the same kinds of heterogeneity. We present
external memory algorithms for the evaluation of queries
posed in our directory query languages, and prove the
efficiency of each algorithm in terms of its I/O complexity.
Our 'data model and query languages share the flexibility
and utility of the recent proposals for semi-structured data
models, while at the same time effectively addressing the
specific needs of network directory applications, which we
demonstrate by means of a representative real-life example.

*This work was done when the authors were at AT&T Labs—
Research, Florham Park, NJ 07932, USA.

t Currently on leave from Concordia University, Canada.
This work was done when the author was visiting AT&T Labs—
Research, Florham Park, NJ 07932, USA.

! This work was done when the author was visiting AT&T
Labs—Research, Florham Park, NJ 07932, USA.

Permission to make digital or hard copics of all or part of this worlf for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the !anst. page. Tq copy
otherwise, 1o republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-581 13-084-8/99/05...$5.00

Laks V. S. Lakshmanan'
IIT — Bombay
laks@math.iitb.ernet.in

133

Tova Milot
Tel-Aviv University
milo@math.tau.ac.il

Dimitra Vista*
Drexel University
dvista@mecs.drexel.edu

1 Introduction

Hierarchically structured directories have recently pro-
liferated with the growth of the Internet, and a large
number of commercial directory server implementations
are now available (see [18] for a survey). They are cur-
rently being used to store address books and contact
information for people, enabling the deployment of a
wide variety of network applications such as corporate
white pages and electronic messaging. The Internet
Engineering Task Force (IETF) has recently standard-
ized the popular Lightweight Directory Access Protocol
(LDAPv3) for modeling and querying network direc-
tory information, as well as accessing network directory
services {27, 26, 28, 16]. An LDAP-based network direc-
tory can be viewed as a highly distributed database, in
which the directory entries are organized into a hierar-
chical namespace and can be accessed using database-
style search functions.

More recently, LDAP is being proposed as the basis
of the directory enabled networks (DEN) initiative
for representing profiles of network users, devices,
applications and services, as well as policies for the
overall management of the network, in a directory (see,
e.g., [1, 11]). We demonstrate, using a real application
in Section 2, that DEN applications use directories
in ways that are considerably more complex than the
current generation of directory enabled applications.

Our thesis in this paper is that, although it is largely
appropriate for the current generation of management
and browser applications providing read/write interac-
tive access to LDAP directories, the LDAP query lan-
guage is woefully inadequate for the new generation of
DEN applications. For example, one cannot identify the
highest priority policy in the directory that matches a
given profile, using an LDAP query. With LDAP, DEN
applications would have to specify not only which direc-
tory entries need to be accessed, but also how to access
them, using long sequences of queries. Three decades
of research in high-level database query languages has
proved the advantage of declarative languages, demon-
strating that applications should merely have to specify

which directory entries need to be accessed, leaving the
task of determining how to efficiently access directory
entries to the query evaluation engine of the directory.

In this paper, we seek to bridge the considerable
gap between the directory query requirements of DEN
applications and the constructs provided by the LDAP
query language, and make the following contributions:

o We present a formal description of the core of a
scalable network directory data model, in Section 3,
in the spirit of LDAP and DNS. We illustrate that
the directory data model can naturally represent
the rich forms of heterogeneity needed by network
directory applications.

We devise a sequence of efficiently computable query
languages, in Sections 4-6, retaining the core LDAP
philosophy of incurring low resource requirements.
Each language in this sequence illustrates a specific
class of significant queries for DEN applications
not supported by the current LDAP standard.
Answers to queries can exhibit the same kinds of
heterogeneity as directory instances.

We compare the expressive power and computa-~
tional complexity of the query languages and evalu-
ation algorithms we propose, as well as the current
LDAP standard, in Section 7. Qur central results
are that: (a) the query languages exhibit a strict hi-
erarchy of expressive power; and (b) queries written
in any of the languages can be evaluated with time
and I/O complexities that are linear in the size of
the inputs to the query.

After a survey of related work in Section 8, we conclude
with a discussion in Section 9.

2 Motivation: Directory Enabled

Networks

A directory enabled network (DEN) represents profiles
of network users, applications and services, as well as
policies for the overall management of the network, in
a directory (see, e.g., [1, 11]). In this section, we
introduce and motivate one running example, to be used
throughout the paper, from actual DEN applications
that we have studied.

Example 2.1 {Supporting Location and Device
Independent Access]

In order to reach the vast majority of telephone
subscribers, a caller needs to know the network address
(telephone number) of the terminal closest to the
subscriber’s current location, for example, his office
phone, car phone, etc. The Telephony Over Packet
networkS (T'OPS) project [3] has the goal of providing
a simple dial-by-name capability that allows subscribers

134

to move between terminals or to use mobie terminals
while being reachable by the same name. We briefly
describe the TOPS directory requirements.

Directory Contents: FEach TOPS subscriber is rep-
resented in the network directory by a directory en-
try that contains the subscriber profile (e.g. full name,
address, authentication credentials, etc.), and a set of
prioritized subscriber policies that determine how the
subscriber can be reached.!

Each TOPS policy consists of a query hanc'ling profile
(QHP), that allows subscribers to control access by
specifying who can reach them, and a set of call
appearances, representing the different ways in which
the subscriber can be reached by the caller who satisfies
the QHP. A call appearance is typically associated with
a terminal device or server and consists cf a set of
attributes that identify the type, network address and
terminal capabilities of the call appearance.

Subscriber profiles are created at the time of TOPS
service subscription, while subscriber policies can be
created and modified dynamically.

Directory Queries and Answers: In order to call a
subscriber, the calling application queries the directory
using the logical name of the subscriber to obtain
his call appearances. In addition, callers may also
supply their own logical name, the types of media to
be included in the call, the capabilities of tae calling
terminal, etc.

The caller provided information, along with the time
of day, the compatibility between the caller’s and
callee’s terminal capabilities, etc., are matched against
the QHPs of the subscriber’s policies. The response to
such a query is the set of call appearances vrhere the
subscriber can be reached, corresponding to the high-
est priority policy that matches the given information.
This provides subscribers with customizability, and con-
siderable control over the privacy of their information.

When the calling TOPS application receives this
information, it may use the call appearances directly,
taking into consideration user/application policy, or it
may present the call appearances to the caller, who can
choose from amongst the call appearances based on his
current needs. |}

3 The Directory Data Model

In this section, we present a formal description of the
core of a scalable network directory data model, based

!More generally, a policy in a directory enabled network
application defines the desired behavior between multiple objects,
and has two components: a profile and an action. The profile
identifies the objects that are relevant to the policy, and the action
specifies the desired behavior; both are defined by the values of a
collection of attributes.

on LDAP [27]) and DNS [22], that is particularly suitable
for DEN applications. We then revisit our motivating
application, and illustrate the modeling of its data using
the network directory data model.

3.1

We assume pairwise disjoint infinite sets A,C of at-
tributes and class names, as well as a set T of type
names. FEach type ¢t € 7 has an associated do-
main, denoted dom(t). We use dom(7’) to abbreviate
Uier dom(t). Without loss of generality, we assume
that the attribute objectClass is in .4 and that 7 in-
cludes the basic types stringand int.2 We also assume
the existence of a complex type distinguishedName €
T, whose domain consists of sequences of sets of pairs
in A x dom(T). As explained later, values of this type
are used as keys to identify directory entries.

Directory Schema

Definition 3.1 [Directory Schema] A directory
schema is a 4-tuple S = (C, A, 7, @) where: (a) C CC
is a finite set of class names; (b) A C A is a finite set of
attributes, such that objectClasse€ A4; (c) 7: A>T
is a function that associates a type with each attribute,
such that r(objectClass) = string; and (d) o : C —
24 is a function that associates a set of attributes with
each class name.

For a class ¢ € C, we call a{c) the set of allowed
attributes of ¢.2 ||

As a schema element, the notion of a class plays a role
similar to that of a relation in the relational model, or
a class in the object-oriented model. A key difference
stems from the decoupling of attributes from classes:
since the type of an attribute is defined independently
of the classes having the attribute, occurrences of the
same attribute in multiple classes share the same type.

3.2

Just as the relational model uses relations as a single
uniform data structure, our model uses a forest as a sin-
gle data structure. We call nodes of this forest directory
entries. Intuitively, each entry has a distinguished name
and may “hold” information in the form of a set of (at-
tribute, value) pairs. These intuitions are formalized
below. We assume an infinite set R of objects called
directory entries.

Directory Instance

Definition 3.2 [Directory Instance] A directory
instance of a directory schema S = (C, A, 1,) is a 4-
tuple I = (R, class, val, dn), such that:

2Commercial directory servers, such as Netscape Directory
Server 3.1, additionally provide types to deal with telephone
numbers, binary data, and distinguish between case-sensitive and
case-insensitive strings.

3An LDAP directory schema distinguishes between required
and allowed attributes. This distinction is not relevant to the
contributions of this paper.

135

1. R C R is a finite set of directory entries,

. the function class : R — 2¢ associates with each
directory entry a non-empty set of classes from C,
to which it belongs,

. wval : R — 24%4o(T) is a function that associates
with each directory entry a set of (attribute, value)
pairs?, s.t. the following conditions are satisfied:

(a) For each entry » € R, if val(r) contains a pair
(a,v) then there exists a class name ¢ € class(r)
s.t.a € a(c), 7(a) =t and v € domn(t). That is,
val(r) contains this pair only if the attribute a is
an allowed attribute for at least one of r’s classes,
and the value v is of the right type.

For every class name ¢ € C, for every directory
entry r € R, (objectClass,¢) € val(r) iff ¢ €
class(r). That is, the classes that r belongs to
must be the values of 7’s objectClass attribute.

(b)

4. dn : R — distinguishedName is a function that
associates with each directory entry r a sequence
$1,.--, 8y of sets of (attribute, value) pairs, referred
to as the distinguished name of r. The first set, s;,
in the sequence is called the relative distinguished
name of r, denoted by rdn(r). Distinguished names
must satisfy the conditions: () Vr, 7 € R:r # v =
dn(r) # dn(r’), that is, dn must be a key of each
directory entry; and (ii) rdn(r) C val(r). |

We use the (relative) distinguished names to induce
a hierarchy among directory entries. We say that:
(a) entry r € R is a parent of entry v € R if dn(r') =
rdn(r'),dn(r); entry ' is said to be a child of entry
r. (b) entry r € R is an ancestor of entry r' € R
if there exist sets of (attribute, value) pairs s1,...,5m
s.t. dn(r') = s1,...,5m,dn(r); entry v is said to be a
descendant of r. Abusing terminology, we also use the
hierarchical relationships between distinguished names,
e.g., to say that dn(r) is a parent (child, ancestor,
descendant) of dn(r).

Note the resemblance between distinguished names
and fully qualified file names in the UNIX system.
While the latter uses only one attribute (the file name)
to distinguish between the files in a UNIX directory,
our model allows more flexibility using an arbitrary set
of (attribute, value) pairs to distinguish between the
children of a directory entry. Also observe that since
distinguishedName € 7, entries can have attributes
whose value is the dn of some other entry and, hence,
can serve as directory entry references.

Directory entries are the basic units for holding
information in the directory data model, similar to

4Note that several pairs with the same attribute name may
belong to the set, hence an attribute may have multiple values in
a directory entry.

records in the relational model, and objects in the
object-oriented model. A significant difference arises,
as we shall see shortly, due to the modeling flexibility
allowed by the directory data model. Several examples
of directory entries and the use of distinguished names
are presented below in Section 3.4.

3.3 Hierarchical Directory Namespace and

the Influence of DNS

Each directory entry r is associated with a unique name,
its distinguished name, and the set of entries is orga-
nized into a hierarchical namespace; this hierarchical
organization is called the directory information forest
(DIF).5 The hierarchical directory namespace typically
corresponds to administrative responsibilities for por-
tions of the namespace, and may reflect political, ge-
ographic, and/or organizational boundaries. Different
network operators or large businesses own portions of
the namespace and operate their own directory servers
for their part of the namespace. This is very similar
to the way the Domain Name System (DNS) operates,
which has served superlatively in allowing maintenance
of its namespace in a distributed fashion, and in pro-
viding very rapid lookups in the namespace [22].

As with DNS, the network directory can be main-
tained in a highly distributed fashion, with each di-
rectory server providing directory services for a limited
number of “domains” in the directory information for-
est. The basic mechanism is akin to DNS in that at
the time of registration of a domain in the DIF, a pri-
mary and (perhaps) some secondary directory servers®
are identified as the owners of the hierarchical names-
pace rooted at the domain entry. Each of these di-
rectory servers must provide directory services for each
“host” in the domain. As with DNS, it is also possi-
ble to split a domain into subdomains, with a different
(primary and secondary) directory server for each sub-
domain. Thus, the network directory service can be
supplied in a highly distributed fashion.

3.4

For our motivating network application, the higher
levels of the directory information forest correspond to
the DNS domain and host name hierarchy. Details are
omitted for lack of space.

Motivating Application Revisited

Example 3.1 [Supporting Location and Device
Independent Access]

The TOPS application currently stores its subscriber
data and the query handling profiles in a home-grown
directory, customized for its needs [3]. When the

5In LDAP, this is referred to as a directory information tree,
but in our formal model, this could be a forest. We need this
extension to obtain the closure property for our query languages.

6Secondary directory servers ensure that one unreachable
network will not necessarily cut off network directory service.

136

TOPS data is modeled in the network directory data
model, each TOPS subscriber is associated with a sub-
tree whose root is a child of the directory entry with dn
ou=userProfiles, dc=research, dc=att, dc=com.’

The root of such a subtree is a directory entry
with the profile of the TOPS subscriber, having classes
inetOrgPerson and TOPSSubscriber, and additionally
specifying values for attributes surName, commonName
and uid. The various TOPS query handling profiles
(QHPs) are children entries of the TOPS subscriber.
Two sample entries are: Jagadish’s weekznd QHP,
which has a higher priority (a lower value for the
priority attribute), and Jagadish’s working hours
QHP, which has a lower priority. FEach cf the call
appearances corresponding to a given QHP is a child
entry of the QHP entry in the directory. Sample call
appearance entries corresponding to Jagadish’s working
hours QHP are: his office phone number, which has a
higher priority; and his secretary’s office phone number,
which has a lower priority. On the other hand, his voice
messaging mailbox may be the only call appearance
specified corresponding to his weekend QHP.

Note that different TOPS subscribers own non-
overlapping portions of the hierarchical directory name-
space, and each TOPS subscriber represents and man-
ages his own policies, profiles and actions in his perscnal
namespace. This is ideal for TOPS, and similar personal
directory applications. |

3.5

One may wonder whether directories are indeed natural
for storing the data in our motivating application. Why
not a relational or an object-oriented database? There
are two significant reasons why directories are more
appropriate here.

First, the directory data model defines a hierarchical
namespace for entries which enables highly distributed
management of entries across directory servers in the
network, while still permitting a conceptually unified
view of the data. This is not directly supported by the
relational and object-oriented models.

Second, the directory data model can represent and
manipulate the heterogeneity inherent in real-world
networked entities in a very easy, natural and flexible
manner, which is critical for ensuring the autonomy
of the different directory servers: (a) An entry can
specify values for attributes in the definitiors of any
of its classes, without requiring a single (most-specific)
class to contain this union of attributes in its definition.
(b) Different entries belonging to the same set of classes
may contain very different attributes. (c) A directory
entry can have multiple values for an attribute. In

Advantages of Network Directories

TFor simplicity, the rdn’s in all our examples contain a single
(attribute, value) pair. Hence, instead of writing & dn as a
sequence of singleton sets of (attribute, value) pairs, we simply
write the dn as a sequence of (attribute, value) pairs.

comparison, the relational and object-oriented models
are considerably more rigid and too homogeneous for
networked applications.

The directory data model shares the flexibility of
the recently proposed models for semi-structured data
(see, e.g., [2, 8, 14]), while at the same time effectively
addressing the specific needs of network directory
applications. The specific “restrictions” we impose,
such as the hierarchical namespace, are typical in
the context of network directories, and critical for
performance, as discussed above. However, arbitrary
DAGs and cyclic data can be described easily by having
attributes “pointing” to the referenced entries.

4 The Query Language L£y: Boolean
Operators

4.1 Atomic Queries

An atomic query consists of a base directory entry, a
search scope, and an atomic filter, similar to an atomic
LDAP query [27, 16, 17]. The base entry, specified by
its distinguished name, is the entry relative to which the
filter is to be evaluated. The scope indicates whether
the filter is to be evaluated only at the base entry
(base), down to all children of the base entry (one),
or down to all descendants of the base entry (sub).

The choice of atomic filters depends on the set
of base types 7 in the directory data model. For
concreteness, we use atomic filters for the base types
string and int in our examples. These atomic filters
can compare individual attributes with integer values
(e.g., priority < 3), test for the presence of an
attribute (e.g., telephoneNumber=+), or do wildcard
comparisons with the string value of an attribute (e.g.,
commonName=#jag*). Intuitively, a directory entry »
satisfles an atomic filter F', denoted r |= F, if at least
one of the (attribute, value) pairs of r satisfies F. For
example,

rif(a=x) < 3(v)((a,v) € val(r))

In general, a query @ is a function that maps a
directory instance I = (R,class,val,dn) of directory
schema S to an instance I’ = (R, class,val,dn)
of schema S, such that R C R. Since all other
components remain unchanged, we only enumerate the
result set of directory entries R’ when specifying the
semantics of a query @, denoted by M(Q).

Definition 4.1 [Semantics of an Atomic Query]
The semantics of an atomic query (B 7 Scope 7 F), is
given by enumerating the possible values of the scope
Scope, as described below:

def

M(B ?base? F) = {r|r €& RAr | FAdn(r) = B}
M(B ? one ? F) & {rlreRAr=FA(dn(r)=B

137

V dn(r) is a child of B)}
M(B?swb?F) ¥ {r|reRArE=FA(dn(r)=B
V dn(r) is a descendant of B)} |

We require that atomic queries can be evaluated
efficiently. This is not a restrictive assumption, since
the atomic queries considered above are all supported
by LDAP, and can be evaluated with the help of B-tree
indexes for integer and distinguishedName filters, and
trie and suffix tree indexes [21] for string filters.

4.2 Boolean Operators

Atomic queries can be combined using the boolean
operators: and (&), or (|}, and set difference (-}, to
form complex Ly queries, using a parenthesized prefix
notation. The boolean operators have the obvious set-
theoretic semantics.

Observe that, in LDAP, only atomic filters (but not
queries) can be combined using the boolean operators:
and (&), or (|}, not (!), to form complex LDAP filters.
That is, a complex LDAP query can have a single base-
entry-DN and a single scope, whereas different atomic
queries in a complex £y query may have different base-
entry-DNs and different scopes. We have not defined
the LDAP query language formally, since it is virtually
identical, for our purposes, to Lg, except for this one
material difference.

Example 4.1 [Use of Different Base Entries]

To locate directory entries whose surName is jagadish
in AT&T, except those in Research, we can formulate
the following Lo query:

(—(dc=att, dc=com ? sub ? surName=jagadish)
(dc=research, dc=att, dc=com ? sub ?
surName=jagadish))

This query cannot be formulated as a single LDAP
query (see Section 7); the application would have to
pose two separate LDAP queries, and compute the
difference within the application. |}

A boolean expression can be evaluated efficiently,
using straightforward list merging techniques, when
each of the inputs to the boolean operator is represented
as a sorted list. Jacobson et al [19] describe an elegant
table-driven algorithm, with linear 1/0O complexity, that
takes sorted input lists and computes a sorted output
list for this task.

For reasons that will become obvious when we con-
sider the evaluation of sophisticated queries over the di-
rectory, we choose the sort order to be the lexicographic
ordering on the reverse of the string representation of
the distinguished names of the directory entries [28].

The Query Language £;:
Hierarchy Operators

Queries expressed in Ly over a network directory, while
richer than standard LDAP queries, can take advantage
of the hierarchical organization of the directory entries
in only a very limited fashion, as we see in the examples
below. The language £; extends Lo with hierarchical
selection operators that allow much richer means for
exploiting the hierarchical organization of directory
entries. We present some examples before describing
the formal semantics of the additional operators.

5.1 Nlustrative Examples

Example 5.1 [Selecting Parents and Children]
Suppose we want to ask the query “Find organi-
zational units in AT&T that directly contain en-
tries with surName=jagadish”. All organizational
units can be located using the Ly query “(dc=att,
de=com ? sub 7 objectClass=orgUnit)”. All en-
tries in AT&T with surName=jagadish can be lo-
cated using the Lo query “(dc=att, dc=com 7 sub 7
surName=jagadish)”. These two Ly queries can be
composed into a single £, query, to obtain the desired
result, using the binary hierarchical selection operator
children (¢), as follows:

(¢ (dc=att, dc=com ? sub ? objectClass=orgUnit)
(dc=att, dc=com ? sub 7 surName=jagadish))

This query returns each entry that satisfies the first
operand of the binary children operator, and has at
least one child entry that satisfies the second operand
of the binary children operator.

Similar examples also arise when trying to model and
unambiguously locate organizational and personal lists
in directories; see [20] for more details. |

Example 5.2 [Selecting Path Constrained An-
cestors and Descendants]

The hierarchical organization of directory entries al-
lows dcObject entries to be children of other dcObject
entries, and orgUnit entries to be children of other
orgUnit entries. One often wishes to locate the
closest orgUnit ancestor entry of another directory
entry.® Consider, for example, the query “Which
organizational units in AT&T contain entries with
surName=jagadish”? The above query can, for exam-
ple, be specified as:

(d.(dc=att, dc=com ? sub ? objectClass=orgUnit)
(dc=att, dc=com 7 sub ? surName=jagadish)
(dc=att, dc=com ? sub ? objectClass=orglnit))

This query returns each entry r; that satisfies the first
operand of the ternary descendants,. operator, and has
at least one descendant entry 75 that satisfies the second

8Using the descendants operator, one could locate all the
orgUnit ancestor entries.

138

operand of descendants., provided there is no entry
rs,r3 # ri,r3 £ ro, such that r3 is a descendant entry
of r; and ry 1s a descendant entry of r3, and r3 satisfies
the third operand of descendants.. ||

5.2 Hierarchical Selection Formalized

Ly extends Ly with six operators, ¢, p,d,a,d. and a.,
whose semantics are described below.

Definition 5.1 [Semantics of Hierarchizal Selec-
tion Queries] The semantics of the six hierarchical
selection operators is given in Figure 1. ||

5.3 Evaluating Hierarchical Selection

Operators

The straiglltforward way of computing the Lierarchical
selection operators, parents and children, by indepen-
dently testing whether an entry of the first operand is
in the output by finding a “witness” entry in the second
operand, is a quadratic algorithm.

The key to a more efficient computation of parents
and children is to use a stack-based algorithm in
conjunction with a sorted representation of the two
operands using lexicographic ordering of the reverse
of the dn’s. Such an algorithm (with effizient CPU
time complexity) was presented in [20]. In this pa-
per, we have adapted their algorithm to (a) improve
the I/O complexity of the computation, and (b) allow
algorithms for the other operators to be obtained by ju-
dicious modification of this basic algorithm. This mod-
ified algorithm, Algorithm ComputeHSPC, is presented
in Figure 2.

The algorithm works for precisely the same reasons as
the algorithm presented in [20], and we paraphrase their
argument below because it will help us in uncerstanding
the correctness of subsequent algorithms in this paper.
The correctness of Algorithm ComputeHSPC is based
on the following two observations. (1) Adjacent entries
on the stack always correspond to immediate (that is,
no intervening entries) ancestor/descendant »airs in the
directory, from among the entries in the merge of lists
L, and L,. Also, every immediate ancestor/descendant
pair in the merge of lists Ly and Ly will ke adjacent
to each other on the stack at some point. (2) When
an entry is pushed to the top of the stzck, all its
ancestors in the merge of lists L; and L, are present
on the stack. Also, an entry is removed frora the stack
ounly after all its descendants in the merge of L; and
L, have been removed from the stack. Finally, the
output of Algorithm ComputeHSPC is also sorted in
the lexicographic order of reverse dn’s.

The stack-based Algorithm ComputeHS?C can be
extended to compute the hierarchical selecsion opera-
tors ancestors and descendants, as well as the path
constrained hierarchical selection operators encestors,
and descendants..

M QiQ2) & {r1 | r € M(Q1) AB(r2)(r2 € M(Q2) A 12 is a child of 1))}
M(p Q1Q2) «f {ri|r1 € M(Q1) A (3(r2)(r2 € M(Q2) A r2 is a parent of r1))}

M(d QiQ:) = {ry | € M(Qi)A(3(r2)(rz € M(Q2) A 12 is a descendant of ry))}
M(a Q1Q2) = {rilri € M(Q1) A (3(r2)(r2 € M(Q2) A r2 is an ancestor of r1))}

M(d. Q:Q2Q3) & {ri | ri € M(Q1) A (3(r2)(r2 € M(Q2) A r2 is a descendant of r1 A
(A(rs)(rs € M(Q3) Ars is a descendant of r1 A r; is a descendant of r3))))}

Mac Q1Q2Qs) ' {r1 | r1 € M(Q1) A (3(r2)(r2 € M(Q2) Arz is an ancestor of ry A
(A(rs)(rs € M(Qs) Ars is an ancestor of ry A rz is an ancestor of r3))))}

Figure 1: Semantics of Hierarchical Selection Queries

Algorithm ComputeHSPC (op, L1, L2) {

Assumption: each of L, and L; are sorted based on the lexicographic ordering of the reverse dn’s.
/* the reverse dn of a parent entry is a prefix of the reverse dn of a child entry */

/* Phase 1: each entry in L, is associated with the number of its parents and children in Ly */
Initially stack S is empty, entry r; = firstElement(L;, L;), and label(r;) = {¢ | r: € L,}.

/* r1 poiuts to the first entry in the lexicographic merge of L; and L, */
repeat

below(r;) = 0, above(r;) = 0.

if (stack S is empty) push r; on top of stack S, and r; = nextElement(L,, L;).
else

let r: be the entry at the top of the stack S.
if (r+ is an ancestor of ;)
if ((2 € label(r:)) and (r: is a parent of r;)) above(r;) = above(r:)+1.
if ((2 € label(r:)) and (r; is a parent of r;)) below(r;) = 1.
push r; on top of stack S, and r; = nextElement(L,, L2).
else

if (1 € label(r:)) associate values (above(r:), below(r;)) with entry r, in list L;.
pop stack.

until (all entries in L, and Lz have been processed and stack S is empty).

/* Phase 2: list L; is scanned in order, and the result is output */
entry r; = firstElement(L;).
repeat
if ((op is p) and (below(r;) > 0)) output ;.
else if ((op is ¢) and (above(r;) > 0)) output ;.
ri = nextElement(L;).
until (all entries in L; have been processed).

Figure 2: Efficiently Computing parents and children

wsq(r:) ot {r2]r2 € M(Q2) A r2is aparent of r1} if opisp

wsg(ry) & {r2 | r2 € M(Q2) A rz is a descendant of riA

(Ars | rs € M(Qs3) A r3 is a descendant of ry A rz is a descendant of r3)} if op is d.

M(op Q1 Q2 [Qs] aar 8 aaz) = {r|r € M(Q) Aaar[r, wsg(r), M(Q1), M(Q2), wag) 6
aaz[r, wsq(r), M(Q1), M(Q2), wsgl}

Figure 3: Semantics of Aggregate Selection Queries

139

For computing ancestors and descendants, we
maintain two counts with each entry on the stack:
(a) the number of lower (ancestor) stack entries belong-
ing to list L2, and (b) the number of higher (descendant)
stack entries belonging to list Lo that were encountered.
These two counts can be maintained in an incremen-
tal fashion, when entries are pushed onto or popped
from the stack. Doing so results in a stack-based algo-
rithm, ComputeHSAD, for computing ancestors and
descendants. Details are omitted for lack of space.

For computing ancestors. and descendants,, the
key is to keep track cf stack entries from list Lz, and not
to propagate the above(r;) and below(r;) counts through
stack entries that are from L3z. These two counts can
be maintained in an incremental fashion, when entries
are pushed onto or popped from the stack. Doing so
results in a stack-based algorithm, ComputeHSAD,, for
computing ancestors, and descendants,.

A careful analysis of the algorithms show that all
three have linear I/O complexity. The crux of the proof
is the observation that although particular stack entries
may be swapped out (and eventually re-fetched) from
the memory multiple times when the stack repeatedly
grows and shrinks, the overall I/O that the algorithm
incurs is either O(JLB‘—l + J%?l) or O(LIE—;-[+ M’Bll +]%l),
depending on the algorithm, where B is the blocking
factor, that is, the number of entries per disk page.

Theorem 5.1 Algorithm Compute HSPC correctly com-
putes (p L1 Ls) and (¢ Ly L2), Algorithm Com-
puteHSAD correctly computes (a L1 L;) and (d Ly L,),
and Algorithm Compute HSAD, correctly computes (a.
Ll Lz L3) and (dc L1 L2 L3)

Further, the 1/O complezities of Algorithms Com-
puteHSPC and ComputeHSAD are O(L%l + ILBz_l), and
the 1/0 complexity of Compute HSAD., is O(LLBJ+H‘B—2L+
%), where B is the blocking factor. |

6 The Query Language £,:
Aggregate Selection Operators

Although more powerful than Ly, there are still some
important queries not supported by £;. Consider
the problem of identifying the highest priority query
handling profile for a given TOPS subscriber, or
the problem of locating TOPS subscribers who have
specified more than 10 query handling profiles. The
naturalness of these queries in DEN applications,
and the important role played by aggregation in
database query languages such as SQL, suggests the
desirability of being able to express such queries
involving aggregation against network directories.
Introducing aggregation in our language requires con-
siderable care. The standard approach used in rela-
tional query languages gives primacy to aggregate com-
putation. Incorporating aggregate computation directly

140

in the network directory model would potentially re-
quire the ability to dynamically create new directory
entries, associate the newly computed values with at-
tributes of these entries, and place the entries in the
hierarchical namespace. Doing so would destroy the
simplicity of our family of query languages, vhich sim-
ply select directory entries from the input directory
instance. Alternatively, associating newly computed
(attribute, value) pairs with ezisting directory entries
would mix up the query language with the update lan-
guage, and result in state-based computation, which is
undesirable. Therefore, we argue that aggrevate selec-
tion should be viewed as a primitive in itself and incor-
porated in our query languages.

We extend the language £, to support aggregate
selection in two distinct ways. First, an aggregate
computation followed by a selection can be performed
on the result of any (atomic or complex) query, using
the simple aggregate selection {g) operator. A
second way of supporting aggregate selection is to
extend each of the hierarchical selection operators by
adding an extra aggregate selection filter operand.
This performs an aggregate computation followed by a
selection on the relationship between a directory entry
in the first operand of the operator, and the set of its
“witnesses” in the second operand of the operator. We
present some examples next.

6.1

Example 6.1 [Simple Aggregate Selection]

The query “Find the query handling profiles specified
for the TOPS subscriber uid=jag, ou=userProfiles,
dc=research, dc=att, dc=comthat are applicable for
multiple days of the week” can be expressed as follows:

Ilustrative Examples

(g (uid=jag, ou=userProfiles, dc=research,
dc=att, dc=com ? sub ? objectClass=QHP)
count (days0fWeek) > 1)

The aggregate selection filter “count (daysOfWeek) >
1” is applied to each of the directory entries that sat-
isfy “(uid=jag, ou=userProfiles, dc=research, dc=att,
dc=com 7 sub ? objectClass=QHP)”. The aggregate
term count(daysOfWeek) is used to associate each en-
try with a single value that is the number of values of
the daysOfWeek attribute in the entry. Only entries
with associated value greater than 1 are returned. ||

Example 6.2 [Structural Aggregate Selection]
The query “Find TOPS subscribers in de=att, dc=com
who have specified more than 10 query handling
profiles” can be expressed by using the aggregate
selection variant of the children operator as follows:

(¢ (dc=att, dc=com ? sub ?
objectClass=TOPSSubscriber)
(dc=att, dc=com ? sub ? objectClass=QHP)
count ($2) > 10)

With each directory entry that satisfies the first operand
of the children operator, are associated all its children
entries that satisfy the query “(dc=att, dc=com 7
sub 7 objectClass=QHP)” (the second operand of the
children operators). Against each such association,
the aggregate selection condition “count ($2) > 10” is
tested, and only those TOPS subscribers that have more
than 10 children QHP entries are returned. J]

6.2

L2 extends L£; with one new operator g, and allows
each of the six hierarchical selection operators in
Ly to take an aggregate selection filter as a final
operand. An aggregate selection filter is an arithmetic
condition between two aggregate attributes, where
each aggregate attribute is one of: (a) an integer
constant, e.g., 10, (b) an entry aggregate of the form
min(priority), or (c) an entry-set aggregate of the
forms min(min(priority)) or count($$).

Aggregate Selection Formalized

Definition 6.1 [Semantics of Simple Aggregate
Selection Query] Given a directory entry r € R, and
an entry aggregate ea of the form agg(a), the result of
applying ea on r, denoted by ea[r], is given by:

def

agg{{v | (a,v) € val(r)}}

where {{...}} denotes a multiset of values. Given
a set of directory entries Ry C R, and an entry-set
aggregate esa of the form aggi(ea), where ea is an entry
aggregate, the result of applying esa on Ry, denoted by
esa[Ry], is given by:

agg(a)[r]

def

aggi(ea)[f1] = aggt{{v|3(r)(r € Ry Av=ca[r])}}

Given a set of directory entries Ry C R, and an entry-
set aggregate esa of the form count($$), the result of
applying esa on R, denoted by esa[R,], is given by:

count($$)(R:] def count{{r | r € Ri}}

Finally, the semantics of a simple aggregate selection
query of the form “(¢ @1 aay 7 aay)” is:

M(g Q1 aay 9 aaz) def {r|r e M(@Q)A
aa[r, M(Q1)] 6 aaz[r, M(Q1)]}

where by aa;(r, R1] we mean one of ¢; (an integer con-
stant), ea;[r], or esa;[R,], depending on the instantia-
tion of the aggregate attribute, and 8 denotes an integer
comparison operator. [

Definition 6.2 [Semantics of Structural Aggre-
gate Selection Queries] Given a directory entry
r € R, a set of directory entries R, C R, and an en-
try aggregate ea of the forms agg($1.a), agg($2.a) or
count($2), the result of applying ea on the (r, R,) pair,
denoted by ealr, R,], is given by:

141

def

agg($l.a)r, R] &' agg{{v | (a,v) € val(r)}}
agg($2.a)[r, R.] = agg{{v | 3(r1)(r1 € RuA
(a,v) € val(r1))}}

count($2)[r, R,] ef count{{r; | r1 € Rs}}

Given sets of directory entries R;, Rs C R, a function
f : Ry — 2F2 that maps entries in R, to subsets of
entries in Ry, and an entry-set aggregate esa of the form
aggl(ea), where ea is an entry aggregate, the result
of applying esa on the (Ri, Ry, f) triple, denoted by
esa[Ry, Ra, f], is given by:
aggl(ea)[Ri, B, f] = aggt{{v|I(r)(r € Rin
v = ea[r, f(r)])}}

Given sets of directory entries Ry, B, C R, a function
f as above, and an entry-set aggregate esa of the form
count($1), the result of applying esa on the (R, R2, f)
triple, denoted by esa[R1, Ra, f], is given by:

def

count($1)[Ri, R} = count{{r |r € R1}}

Consider a query @ of the form “(op Q1 Q2 [Q3]
AggSelFilter)”. Every directory entry in M(Qh)
has a (possibly empty) op-witness set in M(Q); for
example, when op is a, the a-witness set of an entry is
the set of all its ancestors. We define the witness set
function, denoted wsg : M(@Q1) — 2M(@2) for a couple
of choices of op, in Figure 3. The other cases are similar.

Finally, we define the semantics of structural aggre-
gate selection queries matching “(op @1 Q2 aay & aaz)”
and “(op @1 Q2 @3 aa; ¢ aay)” in Figure 3, where by
aa;[r, R', R1, Ry, f] we mean one of ¢; (an integer con-
stant), ea;[r, R}, or esa;[Ry, Ry, f], depending on the
instantiation of the aggregate attribute, and 6 denotes
an integer comparison operator. [

Note that the L; hierarchical selection operators
are special cases of the structural aggregate selection
operators, obtained by setting the aggregate selection
condition to “count($2) > 0”.

6.3

A simple aggregate selection expression in L2 of the
form “(g L; AggSelFilter)”, where L; is a sorted list
of directory entries, can be evaluated using at most two
scans over the input list L;.

In the first scan, individual entry aggregates of
the form min(priority) can be computed on a per-
directory entry basis, and the aggregates can be
associated with the directory entry itself in list L.
During this first scan, entry-set aggregates of the
form count ($$) and min{(min(priority)) can also be
incrementally computed, using techniques similar to
those described in Ross et al. [24], and these aggregates
can be associated with the list L, itself. During the

Evaluating Simple Aggregate Selection

second scan of list £, a directory entry r is determined
to be in the result by comparing entry aggregates
associated with r, possibly with entry-set aggregates
associated with Ly or with constants, depending on the
form of the AggSelFilter.

Theorem 6.1 A simple aggregate selection erpression
in Lo of the form “(g L, AggSelFilter)” can be
computed with I/O complexity O(J—]fBiL), where B 1is the

blocking factor. |
6.4 Evaluating Structural Aggregate
Selection

Each of the algorithms ComputeHSPC, ComputeHSAD
and ComputeHSAD. can be readily extended to incor-
porate structural aggregate selection. We call the re-
" sulting algorithms ComputeHSAggPC, ComputeHSAg-
gAD, and ComputeHSAggAD, respectively, and use
ComputeHSAgg to refer to the algorithm that invokes
one of these three algorithms appropriately.

For illustrative purposes, we focus on extending Algo-
rithm ComputeHSAD. ComputeHSAD first computes,
for each directory entry in list L;, the total number of
its ancestors and its descendants in list Ly, and then
selects directory entries based on appropriate non-zero
counts. That is, the algorithm first computes the entry
aggregate count($2), and then checks the aggregate
selection condition count($2) > 0. The technique of
incrementally computing the value of the entry aggre-
gate count($2), for a directory entry r, using the val-
ues of the entry aggregates of the entries above and
below entry r on stack S can be easily generalized to
compute entry aggregates as well as entry-set aggregates
that use the aggregate functions min, max, sum, count
and average. In general, any “distributive” or “alge-
braic” aggregate [24] can be computed in this fashion.

Theorem 6.2 Algorithm ComputeHSAgg correctly com-
putes (op Ly Lo [Ls] AS), for op being one of the
six hierarchical operators p,c,a,d,a. and d,, and AS
being an aggregate selection filter. Further, the 1/0
complexity of Algorithm ComputeHSAgg is O(%‘-[+
Ll—;,%[[—i-l—l-‘Bi‘-]), where B is the blocking factor. |}

7

7.1

As we introduced each query language construct, we
motivated the need for the construct and suggested
why it could not be captured in the earlier languages.
We formally capture this intuition in the following
theorems. The proofs follow the general line of
arguments previously presented, and so are omitted. By
LDAP we mean the LDAP query language as defined in
this paper. (The commercial LDAP protocol has many
components beyond the query language aspects being
studied here.)

Comparative Assessment

Expressive Power

142

Theorem 7.1 LDAPC Lo CL1C Ly, |

Recall that £; extends Ly with six new operators.
We next consider the relationship between them.

Theorem 7.2 (a) Lo + {a,d} cannot express c,p.
(b) Lo+ {c,p} cannot express a,d. (c) Lo+ {a,d,c,p}
cannot express a,,d.. (d) Lo+ {a.,d.} can ezpress all
ofa,d,c,p.

When we write Lo + {01,...,0,} we mean the
query language one would obtain from £g by adding
the operators 01,...,0,. The above series of claims
shows that a language Lo + {a@.,d.} has the same
expressive power as the language £y, but with strictly
fewer operators. There are two reasons for our design
decision. The first is ease of use: it is much simpler to
write a binary a operator than a ternary a. operator.
The second is efficiency of evaluation: to see this, note
that (p @1 @2) can be expressed as follows:

(ac @1 Q2 (null-dn ? sub ? objectClass=+))

The third argument includes the whole directory in-
stance, and would lead to a very expensive evaluation
as written, since our algorithms have 1/0 complexity
that is linear in the size of the inputs.

7.2 I/0 Complexity of Query Evaluation

Each query expression can be evaluated bottom-up as
follows. First, the atomic queries are evaluated, and the
resulting entries are sorted by the lexicographic ordering
on the reverse of their dn’s. Next, each operator in
the query tree is evaluated, as described in previous
sections, and the result is pipelined to a higher operator
in the query tree. Since each operator gets sorted input
lists, and computes a sorted output list, ro additional
sorting of the result of an intermediate operator is
necessary to compute the query results.

We have established, as each operator was intro-
duced, the complexity of evaluating it using an appro-
priate algorithm. We can now put these results together
to obtain the following theorem.

Theorem 7.3 Any query Q in language Lo can be
computed using constant size of main memory, with /0
complezity O(|Q) - LI-I;—[), where |L| is the cumulative size
of the outputs of the atomic sub-queries of @, |Q| is the
number of nodes in the query tree of Q, and B 1s the
blocking factor. 1§

The leaf nodes of the query tree for any query @
involve atomic selection queries, which we assume can
be computed efficiently, either through a scan or using
appropriate indexes. This results in a cumulative L
directory entries for further processing up the query
tree. Every operator produces as output no more

directory entries than in its inputs, and each operator
can be evaluated with linear I/O complexity using a
constant size memory. We can thus evaluate the query
tree in reverse topologically sorted order, using constant
size memory, using |@}| steps, each of which in the worst
case has complexity O('—;—;—l).

7.3 Distributed Queries

Complex DEN queries can be issued by core network
elements such as hosts, routers, firewalls, and proxy
servers, as well as distributed network applications, typ-
ically to the “closest” directory server in the network.
If all the data that is relevant to the query is managed
by the queried directory server, then all the query pro-
cessing can be performed locally at this directory server
as discussed above.

In general, the data that is relevant to the query
may be managed by multiple directory servers in the
network. In this case, the query expression can be
evaluated bottom-up as follows. First, each atomic
query, whose base dn is managed by a directory
server different from the queried server, is issued to
the directory server that manages the base dn of
the atomic query. These directory servers can be
located efficiently using mechanisms similar to those
used in DNS. The results of those atomic queries are
shipped to the original queried directory server, which
then computes the query result using the algorithms
described previously.

8 Related Work

The network directory model is a hierarchical informa-
tion model, which should remind readers of the early
hierarchical data model (see, e.g., [25]) that led to the
development of many commercial databases, notably
IMS. A key difference between them is that these early
DBMSs provide only navigation-based access languages
for data manipulation, as opposed to declarative query
languages like LDAP.

Hierarchy has been a central focus in the study of
type systems (see, e.g., [10]) and description logics (see,
e.g., [6]). However, in these contexts, the hierarchy is on
the classes. In contrast, our hierarchy is at the instance-
level, and quite orthogonal to class hierarchies. For
example, two persons working for different companies
may have entries that are very far apart in the forest,
and yet both can be of class organizationalPerson.

Many algorithms are known to be very efficient over
hierarchical structures. Most relevant to us in this
literature are algorithms for checking the presence of
sets of edges and paths. Jacobson et al. {19] present
linear time merging-style algorithms for computing the
elements of a list that are descendants/ancestors of
some elements in a second list, in the context of focusing
keyword-based searches on the Web and in UNIX-style

143

file systems. Jagadish et al. [20] present linear time
stack-based algorithms for computing elements of a
list that are children/parents of some elements in a
second list, in the context of supporting personal and
organizational lists in an LDAP directory. We build
upon the works of [19] and [20], and devise stack-based
and merging-style algorithms for a much larger class of
queries for the directory data model.

The directory data model shares the flexibility of the
graph-based models (see, e.g., GraphLog [12], Hy+ [13],
and WebSQL [4]), and the recently proposed models
for semi-structured data (see, e.g., Lorel (2], UnQL [8]
and StruQL {14]), while at the same time effectively
addressing the specific needs of network directory
applications. A significant difference is that graph-
based and semi-structured models do not typically give
a first class status to the key features of our model,
such as hierarchical namespaces, and the definition of
node contents as sets of (attribute, value) pairs. While
these can be expressed within the general framework of
graph-based and semi-structured models using graphs
with labeled nodes and/or edges, making them first
class components of the model enables better analysis
of instances and optimization of queries in the specific
context of network directories. Similarly, while it is
true that the query languages for graph-based and semi-
structured data can express many of the operators of
our languages (and much more), focusing on the specific
operators that are important to the context of network
directories allowed us to design very efficient evaluation
algorithms for these operators.

Several researchers have recently proposed schemas
for semi-structured data, e.g., graph schemas [7], data
guides [15], unary datalog schemas [23], Schema Defi-
nition Language (ScmDL) [5] and description logics (9].
The various formalisms differ in the kind of restrictions
they can impose on an object’s components: these vary
from a simple upper bound on the sets of components
(in graph schemas [7]) to arbitrary regular expressions
(in ScmDL [5]). We view our approach as complemen-
tary to this body of work, and plan to investigate their
integration in the future.

9 Discussion

LDAP directories have recently gained tremendous pop-
ularity. A large number of directory server implemen-
tations are now available from companies such as Criti-
cal Angle, Lucent, Netscape, Novell, Sun and Tandem.
Moving out from their traditional role of network-based
servers for contact information and address books,
LDAP directory services are now being used in a wide
variety of applications. In fact, current and near future
releases of many operating systems, including Windows
NT and Solaris, will have LDAP directory services to
manage OS resources. LDAP directory enabled net-

working is being promoted by major players including
AT&T, Cisco, IBM and Microsoft.

This paper represents a first attempt at devising a
formal data model and sequence of query languages
for this very popular “database”. OQur formulation has
several desirable characteristics, including the closure
property that permits queries to be composed, which
are not obvious in current commercial LDAP systems.
We have also demonstrated the inability of the current
LDAP standard to express many queries needed to sup-
port applications eflectively, with particular emphasis
on directory-enabled networking. We have devised a
series of extensions, and demonstrated that each lan-
guage in this series enables the expression of a specific
class of significant queries, for DEN applications, not
supported by the current LDAP standard. We have
shown that the increase in expressiveness is achieved
without unduly increasing the computation cost.

We have implemented some of the constructs in our
query language for specific directory enabled applica-
tions in AT&T, and are currently investigating their
utility to other classes of network directory applications.

References

[1] Directory enabled networks ad hoc working group.
http://www.murchiso.com/den/.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel query language for semistructured
data. Journal on Digital Libraries, 1(1), 1996.

N. Anerousis, R. Gopalakrishnan, C. R. Kalmanek, A. E.
Kaplan, W. T. Marshall, P. P. Mishra, P. Z. Onufryk, K. K.
Ramakrishnan, and C. J. Sreenan. TOPS: An architecture
for telephony over packet networks. IEEE Journal on
Selected Areas in Communications, 17(1):91-108, 1999.

G. Arocena, A. Mendelzon, and G. Mihaila. Applications of
a web query language. In Proceedings of 6th International

WWW Conference, Santa Clara, CA, 1997.

C. Beeri and T. Milo. Schemas for integration and
translation of structured and semi-structured data. In
Proceedings of the International Conference on Database
Theory, 1999.

A. Borgida, R. J. Brachman, D. L. McGuinness, and
L. A. Resnick. CLASSIC: A structural data model for
objects. In Proceedings of the ACM SIGMOD Conference
on Management of Data, pages 58-67, Portland, Oregon,
June 1989.

P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Adding structure to unstructured data. In Proceedings of the
International Conference on Database Theory, pages 336—
350, Delphi, Greece, 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques for unstruc-
tured data. In Proceedings of the ACM SIGMOD Conference
on Management of Data, June 1996.

D. Calvanese, G. Giacomo, and M. Lenzerini. What
can knowledge representation do for semi-structured data?
In Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), 1998.

L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism. Computing Surveys,
17(4):471-521, 1986.

(2]

{3

[6]

(8]

[9]

f10]

144

[11]

(12]

23]

(14]

(15]

[16]

(17]

[20]

[21]

[22)

(23]

(24]

(25]

(26]

Cisco. Directory enabled networks. Available from
http://www.cisco.com/warp/public/734/den/.

M. P. Consens and A. O. Mendelzon. Graphlog: A visual
formalism for real life recursion. In Proceedings of the ACM
Symposium on Principles of Database Systems, Apr. 1990.

M. P. Consens and A. O. Mendelzon. Hy*: A hygraph-
based query and visualization system. In Proceedings of the
ACM SIGMOD Conference on Management of Data, pages
511-516, 1993.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A
query language for a web-site managementsystem. SIGMOD
Record, 26(3):4~11, Sept. 1997.

R. Goldman and J. Widom. DataGuides: Enabling query
formulation and optimization in semistructured databases.
In Proceedings of the International Conference on Very
Large Databases, 1997.

T. Howes. The string representation of LDAP search
filters. Request for Comments 2254. Available from
ftp://ds.internic.net /rfc/rfc2254.txt, Dec. 1997.

T. Howes and M. Smith. LDAP: Programming directory-
enabled applications with lightweight directory access proto-
col. Macmillan Technical Publishing, Indianapolis, Indiana,
1997.

Innosoft. Innosoft’s LDAP world implementa-
tion survey. Available from htip://www.critical-
angle.com/dir/lisurvey.html.

G. Jacobson, B. Krishnamurthy, D. Srivastava, and D. Su-
ciu. Focusing search in hierarchical structures with directory
sets. In Proceedings of the Seventh International Confer-
ence on Information and Knowledge Management (CIKM),
Washington, DC, Nov. 1998.

H. V. Jagadish, M. A. Jones, D. Srivastava, and D. Vista.
Flexible list management in a directory. In Proceedings of
the Seventh International Conference on Information and
Knowledge Management (CIKM), Washington, DC, Nov.
1998.

E. M. McCreight. A space-economical suffix tree construc-
tion algorithm. J. ACM, 23:262-272, 1976.

P. Mockapetris. Domain names: Concepts and fa-
cilities. Request for Comments 882. Available from
ftp://ds.internic.net/rfc/rfc882.txt, 1983.

S. Nestorov, S. Abiteboul, and R. Motwani. Inferring
structure in semistructured data. In Proceedings of the
Workshop on Management of Semi-structured Data, 1997.

K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex
aggregation at multiple granularities. In Proceedings of the
International Conference on Ezxtending Database Technol-
ogy, pages 263~-277, 1998.

J. D. Ullman. Principles of Database Systems. Computer
Science Press, 1982.

M. Wahl, A. Coulbeck, T. Howes, and S. Kille. Lightweight
directory access protocol (v3): Attribute syntax defi-
nitions. Request for Comments 2252. Available from
ftp://ds.internic.net /ric/rfc2252.txt, Dec. 1997.

M. Wahl, T. Howes, and S. Kille. Lightweight directory
access protocol (v3). Request for Comments 2251. Available
from ftp://ds.internic.net/rfc/rfc2251.txt, Dec. 1997.

M. Wahl, S. Kille, and T. Howes. Lightweight directory
access protocol (v3): UTF-8 string representation of distin-
guished names. Request for Comments 2253. Available from
ftp:/ /ds.internic.net /rfc/rfc2253.txt, Dec. 1997.

