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Hierarchically structured directories have recently prolifer- 
ated with the growth of the Internet, and are being used 
to store not only address books and contact information for 
people, but also personal profiles, network resource informa- 
tion, and network and service policies. These systems pro- 
vide a means for managing scale and heterogeneity, while 
allowing for conceptual unity and autonomy across multi- 
ple directory servers in the network, in a way far superior 
to what conventional relational or object-oriented databases 
offer. Yet, in deployed systems today, much of the data is 
modeled in an ad hoc manner, and many of the more so- 
phisticated “queries” involve navigational access. 

In this paper, we develop the core of a formal data 
model for network directories, and propose a sequence 
of efficiently computable query languages with increasing 
expressive power. The directory data model can naturally 
represent rich forms of heterogeneity exhibited in the real 
world. Answers to queries expressible in our query languages 
can exhibit the same kinds of heterogeneity. We present 
external memory algorithms for the evaluation of queries 
posed in our directory query languages, and prove the 
efficiency of each algorithm in terms of its I/O complexity. 
Our ‘data model and query languages share the flexibility 
and utility of the recent proposals for semi-structured data 
models, while at the same time effectively addressing the 
specific needs of network directory applications, which we 
demonstrate by means of a representative real-life example. 
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1 Introduction 

Hierarchically structured directories have recently pro- 
liferated with the growth of the Internet, and a large 
number of commercial directory server implementations 
are now available (see [18] for a survey). They are cur- 
rently being used to store address books and contact 
information for people, enabling the deployment of a 
wide variety of network applications such as corporate 
white pages and electronic messaging. The Internet 
Engineering Task Force (IETF) has recently standard- 
ized the popular Lightweight Directory Access Protocol 
(LDAPv3) for modeling and querying network direc- 
tory information, as well as accessing network directory 
services [27, 26, 28, 161. An LDAP-based network direc- 
tory can be viewed as a highly distributed database, in 
which the directory entries are organized into a hierar- 
chical namespace and can be accessed using database- 
style search functions. 

More recently, LDAP is being proposed as the basis 
of the directory enabled networks (DEN) initiative 
for representing profiles of network users, devices, 
applications and services, as well as policies for the 
overall management of the network, in a directory (see, 
e.g., [l, 111). We demonstrate, using a real application 
in Section 2, that DEN applications use directories 
in ways that are considerably more complex than the 
current generation of directory enabled applications. 

Our thesis in this paper is that, although it is largely 
appropriate for the current generation of management 
and browser applications providing read/write interac- 
tive access to LDAP directories, the LDAP query Zan- 
guage is woefully inadequate for the new generation of 
DEN applications. For example, one cannot identify the 
highest priority policy in the directory that matches a 
given profile, using an LDAP query. With LDAP, DEN 
applications would have to specify not only which direc- 
tory entries need to be accessed, but also how to access 
them, using long sequences of queries. Three decades 
of research in high-level database query languages has 
proved the advantage of declarative languages, demon- 
strating that applications should merely have to specify 
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which directory entries need to be accessed, leaving the 
task of determining how to efficiently access directory 
entries to the query evaluation engine of the directory. 

In this paper, we seek to bridge the considerable 
gap between the directory query requirements of DEN 
applications and the constructs provided by the LDAP 
query language, and make the following contributions: 

We present a formal description of the core of a 
scalable network directory data model, in Section 3, 
in the spirit of LDAP and DNS. We illustrate that 
the directory data model can naturally represent 
the rich forms of heterogeneity needed by network 
directory applications. 

We devise a sequence of efficiently computable query 
languages, in Sections 4-6, retaining the core LDAP 
philosophy of incurring low resource requirements. 
Each language in this sequence illustrates a specific 
class of significant queries for DEN applications 
not supported by the current LDAP standard. 
Answers to queries can exhibit the same kinds of 
heterogeneity as directory instances. 

We compare the expressive power and computa- 
tiona.1 complexity of the query languages and evalu- 
ation algorithms we propose, as well as the current 
LDAP standard, in Section 7. Our central results 
are that: (a) the query languages exhibit a strict hi- 
erarchy of expressive power; and (b) queries written 
in any of the languages can be evaluated with time 
and I/O complexities that are linear in the size of 
the inputs to the query. 

After a survey of related work in Section 8, we conclude 
with a discussion in !Section 9. 

2 Motivation: Directory Enabled 
Networks 

A directory enabled network (DEN) represents profiles 
of network users, applications and services, as well as 
policies for the overall management of the network, in 
a directory (see, e.g., [l, 111). In this section, we 
introduce and motivate one running example, to be used 
throughout the paper, from actual DEN applications 
that we have studied. 

Example 2.1 [Supporting Location and Device 
Independent Access] 
In order to reach the vast majority of telephone 
subscribers, a caller needs to know the network address 
(telephone number) of the terminal closest to the 
subscriber’s current location, for example, his office 
phone, car phone, etc. The Telephony Qver Packet 
networks (TOPS) prqject [3] has the goal of providing 
a simple dial-by-name capability that allows subscribers 

to move between terminals or to use mobie terminals 
while being reachable by the same name. We briefly 
describe the TOPS directory requirements. 

Directory Contents: Each TOPS subscriber is rep- 
resented in the network directory by a directory en- 
try that contains the subscriber profile (e.g. full name, 
address, authentication credentials, etc.), and a set of 
prioritized subscriber policies that determine how the 
subscriber can be reached.’ 

Each TOPS policy consists of a query handling projJc 
(&HP), th t 11 a a ows subscribers to control access by 
specifying who can reach them, and a set of call 
appearances, representing the different way; in which 
the subscriber can be reached by the caller w io satisfies 
the &HP. A call appearance is typically associated with. 
a terminal device or server and consists cf a set of 
attributes that identify the type, network address and 
terminal capabilities of the call appearance. 

Subscriber profiles are created at the time of TOPS 
service subscription, while subscriber policies can be 
created and modified dynamically. 

Directory Queries and Answers: In order to call a 
subscriber, the calling application queries the directory 
using the logical name of the subscriber to obtain 
his call appearances, In addition, callers may also 
supply their own logical name, the types of media. to 
be included in the call, the capabilities of tne calling 
terminal, etc. 

The caller provided information, along with the time 
of day, the compatibility between the caller’s and 
callee’s terminal capabilities, etc., are matched against 
the QHPs of the subscriber’s policies. The response to 
such a query is the set of call appearances where the 
subscriber can be reached, corresponding to the high- 
est priority policy that matches the given information. 
This provides subscribers with customizability, and con- 
siderable control over the privacy of their information. 

When the calling TOPS application rece:ves this 
information, it may use the call appearances directly, 
taking into consideration user/application policy, or it 
may present the call appearances to the caller, who can 
choose from amongst the call appearances based on his 
current needs. 1 

3 The Directory Data Model 

In this section, we present a formal description of the 
core of a scalable network directory data modf:l, based 

‘More generally, a policy in a directory enabled network 
application defines the desired behavior between multiple objects, 
and has two components: a profile and an action. The profile 
identifies the objects that are relevant to the policy, and the action 
specifies the desired behavior; both are defined by the v.%lues of a 
collection of attributes. 
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on LDAP [27] and DNS [22], that is particularly suitable 
for DEN applications. We then revisit our motivating 
application, and illustrate the modeling of its data using 
the network directory data model. 

3.1 Directory Schema 

We assume pairwise disjoint infinite sets A, C of at- 
tributes and class names, as well as a set 7 of type 
names. Each type t E ‘J has an associated do- 
main, denoted dam(t). We use dam(7) to abbreviate 
Ute7 dam(t). Without 1 oss of generality, we assume 
that the attribute objectclass is in A and that 7 in- 
cludes the basic types string and int.’ We also assume 
the existence of a complex type distinguishedName E 
7, whose domain consists of sequences of sets of pairs 
in A x dam(7). As explained later, values of this type 
are used as keys to identify directory entries. 

Definition 3.1 [Directory Schema] A directory 
schema is a 4-tuple S = (C, A, 7, o) where: (a) C c C 
is a finite set of class names; (b) A c A is a finite set of 
attributes, such that objectclass E A; (c) r : A + 7 
is a function that associates a type with each attribute, 
such that r(objectClass) = string; and (d) cr : C -+ 
2A is a function that associates a set of attributes with 
each class name. 

For a class c E C, we call o(c) the set of allowed 
attributes of c.~ 1 

As a schema element, the notion of a class plays a role 
similar to that of a relation in the relational model, or 
a class in the object-oriented model. A key difference 
stems from the decoupling of attributes from classes: 
since the type of an attribute is defined independently 
of the classes having the attribute, occurrences of the 
same attribute in multiple classes share the same type. 

3.2 Directory Instance 

Just as the relational model uses relations as a single 
uniform data structure, our model uses a forest as a sin- 
gle data structure. We call nodes of this forest directory 
entries. Intuitively, each entry has a distinguished name 
and may “hold” information in the form of a set of (at- 
tribute, value) pairs. These intuitions are formalized 
below. We assume an infinite set R of objects called 
directory entries. 

Definition 3.2 [Directory Instance] A directory 
instance of a directory schema S = (C, A, r, CX) is a 4- 
tuple I = (R, class, val, dn), such that: 

2Commercial directory servers, such as Netscape Directory 
Server 3.1, additionally provide types to deal with telephone 
numbers, binary data, and distinguish between case-sensitive and 
case-insensitive strings. 

3An LDAP directory schema distinguishes between required 
and allowed attributes. This distinction is not relevant to the 
contributions of this paper. 

R c R is a finite set of directory entries, 

the function class : R -+ 2’ associates with each 
directory entry a non-empty set of classes from C, 
to which it belongs, 

vu1 : R + 2AXdom(r) is a function that associates 
with each directory entry a set of (attribute, value) 
pairs4, s.t. the following conditions are satisfied: 

(a) For each entry r E R, if val(r) contains a pair 
(a, u) then there exists a class name c E class(r) 
s.t. a E o(c), r(a) = t and v E dam(t). That is, 
val(r) contains this pair only if the attribute a is 
an allowed attribute for at least one of T’S classes, 
and the value v is of the right type. 

(b) For every class name c E C, for every directory 
entry T E R, (objectClass,c) E val(r) iff c E 
class(r). That is, the classes that r belongs to 
must be the values of T’S objectclass attribute. 

4. dn : R -+ distinguishedName is a function that 
associates with each directory entry r a sequence 
Sl,‘.., s, of sets of (attribute, value) pairs, referred 
to as the distinguished name of r. The first set, si, 
in the sequence is called the relative distinguished 
name of r, denoted by rdn(r). Distinguished names 
must satisfy the conditions: (i) Vr, r’ E R : r # r’ + 
dn(r) # dn(r’), that is, dn must be a key of each 
directory entry; and (ii) rdn(r) 2 val(r). 1 

We use the (relative) distinguished names to induce 
a hierarchy among directory entries. We say that: 
(a) entry r E R is a parent of entry r’ E R if dn(r’) = 
rdn(r’),dn(r); entry r’ is said to be a child of entry 
r. (b) entry r E R is an ancestor of entry r’ E R 
if there exist sets of (attribute, value) pairs ~1,. . . , s, 
s.t. dn(r’) = ~1, . . . , s,,, , dn(r); entry r’ is said to be a 
descendant of r. Abusing terminology, we also use the 
hierarchical relationships between distinguished names, 
e.g., to say that dn(r) is a parent (child, ancestor, 
descendant) of dn(r’). 

Note the resemblance between distinguished names 
and fully qualified file names in the UNIX system. 
While the latter uses only one attribute (the file name) 
to distinguish between the files in a UNIX directory, 
our model allows more flexibility using an arbitrary set 
of (attribute, value) pairs to distinguish between the 
children of a directory entry. Also observe that since 
distinguishedName E 7, entries can have attributes 
whose value is the dn of some other entry and, hence, 
can serve as directory entry references. 

Directory entries are the basic units for holding 
information in the directory data model, similar to 

4Note that several pairs with the same attribute name may 
belong to the set, hence an attribute may have multiple values in 
a directory entry. 
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. 
records in the relational model, and objects in the 
object-oriented model. A significant difference arises, 
as we shall see shortly, due to the modeling flexibility 
allowed by the directory data model. Several examples 
of directory entries and the use of distinguished names 
are presented below in Section 3.4. 

3.3 Hierarchical Directory Namespace and 
the Influence of DNS 

Each directory entry T is associated with a unique name, 
its distinguished name, and the set of entries is orga- 
nized into a hierarlchical namespace; this hierarchical 
organization is called the directory information forest 
(DIF).5 The hierarchical directory namespace typically 
corresponds to administrative responsibilities for por- 
tions of the namespace, and may reflect political, ge- 
ographic, and/or organizational boundaries. Different 
network operators or large businesses own portions of 
the namespace and operate their own directory servers 
for their part of thle namespace. This is very similar 
to the way the Domain Name System (DNS) operates, 
which has served superlatively in allowing maintenance 
of its namespace in a distributed fashion, and in pro- 
viding very rapid lookups in the namespace [22]. 

As with DNS, the network directory can be main- 
tained in a highly distributed fashion, with each di- 
rectory server provicling directory services for a limited 
number of “domains” in the directory information for- 
est. The basic mechanism is akin to DNS in that at 
the time of registration of a domain in the DIF, a pri- 
mary and (perhaps) some secondary directory servers’ 
are identified as the owners of the hierarchical names- 
pace rooted at the domain entry. Each of these di- 
rectory servers must provide directory services for each 
“host” in the domain. As with DNS, it is also possi- 
ble to split a domain into subdomains, with a different 
(primary and secondary) directory server for each sub- 
domain. Thus, the network directory service can be 
supplied in a highly ‘distributed fashion. 

3.4 Motivating Application Revisited 

For our motivating network application, the higher 
levels of the directory information forest correspond to 
the DNS domain and host name hierarchy. Details are 
omitted for lack of space. 

Example 3.1 [Supporting Location and Device 
Independent Access] 
The TOPS application currently stores its subscriber 
data and the query handling profiles in a home-grown 
directory, customized for its needs [3]. When the 

51n LDAP, this is referred to as a directory information tree, 
but in our formal model, this could be a forest. We need this 
extension to obtain the closure property for our query languages. 

6 Secondary directory servers ensure that one unreachable 
network will not necessarily cut off network directory service. 

TOPS data is modeled in the network directory data 
model, each TOPS subscriber is associated with a sub- 
tree whose root is a child of the directory entry with d71 
ou=userProfiles, dc=research, dc=att, dc=com.7 

The root of such a subtree is a directory entry 
with the profile of the TOPS subscriber, having classes 
inetOrgPerson and TOPSSubscriber, and a~lditionally 
specifying values for attributes surName, commonblame 
and uid. The various TOPS query handling profiles 
(QHPs) are children entries of the TOPS subscriber. 
Two sample entries are: Jagadish’s weekend QHP: 
which has a higher priority (a lower value for the 
priority attribute), and Jagadish’s working hours 
QHP, which has a lower priority. Each cd the call 
appearances corresponding to a given &HP is a child 
entry of the QHP entry in the directory. Sample call 
appearance entries corresponding to Jagadish’s working 
hours &HP are: his office phone number, which has a 
higher priority; and his secretary’s office phone number, 
which has a lower priority. On the other hand, his voice 
messaging mailbox may be the only call aopearrmce 
specified corresponding to his weekend QHP. 

Note that different TOPS subscribers +wn non- 
overlapping portions of the hierarchical directory name- 
space, and each TOPS subscriber represents and man- 
ages his own policies, profiles and actions in his personal 
namespace. This is ideal for TOPS, and similar personal 
directory applications. 1 

3.5 Advantages of Network Directories 

One may wonder whether directories are indeed natural 
for storing the data in our motivating application. Why 
not a relational or an object-oriented database? There 
are two significant reasons why directories are more 
appropriate here. 

First, the directory data model defines a hierarchical 
namespace for entries which enables highly distributed 
management of entries across directory servers in the 
network, while still permitting a conceptually unified 
view of the data. This is not directly supported by the 
relational and object-oriented models. 

Second, the directory data model can represent and 
manipulate the heterogeneity inherent in real-world 
networked entities in a very easy, natural and flexible 
manner, which is critical for ensuring the autonomy 
of the different directory servers: (a) An entry can 
specify values for attributes in the definitiors of any 
of its classes, without requiring a single (most-specific) 
class to contain this union of attributes in its definition. 
(b) Different entries belonging to the same set of classes 
may contain very different attributes. (c) A directory 
entry can have multiple values for an attribute. In 

7For simplicity, the rdn’s in all our examples contain a single 
(attribute, value) pair. Hence, instead of writing E\ dn as a 
sequence of singleton sets of (attribute, value) pairs, we simply 
write the dn as a sequence of (attribute, value) pairs. 
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comparison, the relational and object-oriented models 
are considerably more rigid and too homogeneous for 
networked applications. 

The directory data model shares the flexibility of 
the recently proposed models for semi-structured data 
(see, e.g., [2, 8, 14]), while at the same time effectively 
addressing the specific needs of network directory 
applications. The specific “restrictions” we impose, 
such as the hierarchical namespace, are typical in 
the context of network directories, and critical for 
performance, as discussed above. However, arbitrary 
DAGs and cyclic data can be described easily by having 
attributes “pointing” to the referenced entries. 

4 The Query Language JC,,: Boolean 
Operators 

4.1 Atomic Queries 

An atomic query consists of a base directory entry, a 
search scope, and an atomic filter, similar to an atomic 
LDAP query [27, 16, 171. The base entry, specified by 
its distinguished name, is the entry relative to which the 
filter is to be evaluated. The scope indicates whether 
the filter is to be evaluated only at the base entry 
(base), down to all children of the base entry (one), 
or down to all descendants of the base entry (sub). 

The choice of atomic filters depends on the set 
of base types 7 in the directory data model. For 
concreteness, we use atomic filters for the base types 
string and int in our examples. These atomic filters 
can compare individual attributes with integer values 
(e.g., priority < 3), test for the presence of an 
attribute (e.g., telephoneNumber=*), or do wildcard 
comparisons with the string value of an attribute (e.g., 
commonName=* j ag*). Intuitively, a directory entry T 
satisfies an atomic filter F, denoted T b F, if at least 
one of the (attribute, value) pairs of T satisfies F. For 
example, 

r k (a = *) W 3(u)((a,u) E vat(r)) 

In general, a query Q is a function that maps a 
directory instance I = (R, class, val, dn) of directory 
schema S to an instance I’ = (R’, class, val, dn) 
of schema S, such that R’ 2 R. Since all other 
components remain unchanged, we only enumerate the 
result set of directory entries R’ when specifying the 
semantics of a query Q, denoted by M(Q). 

Definition 4.1 [Semantics of an Atomic Query] 
The semantics of an atomic query (B ? Scope ? F), is 
given by enumerating the possible values of the scope 
Scope, as described below: 

M(B ? base ?F) dgf {r~r~ERr~FFAdn(r)=B} 

M(B ? one ? F) d&f {r 1 r E R A r + F A (&x(r) = B 

V dn(r) is a child of B)) 

M(B ? sub? F) dsf {r 1 r E RA r + F A (dn(r) = B 
V &z(r) is a descendant of B)} 1 

We require that atomic queries can be evaluated 
efficiently. This is not a restrictive assumption, since 
the atomic queries considered above are all supported 
by LDAP, and can be evaluated with the help of B-tree 
indexes for integer and distinguishedName filters, and 
trie and suffix tree indexes [al] for string filters. 

4.2 Boolean Operators 

Atomic queries can be combined using the boolean 
operators: and (&), or (I), and set difference (-), to 
form complex & queries, using a parenthesized prefix 
notation. The boolean operators have the obvious set- 
theoretic semantics. 

Observe that, in LDAP, only atomic filters (but not 
queries) can be combined using the boolean operators: 
and (&), or (I), not (!), to form complex LDAP filters. 
That is, a complex LDAP query can have a single base- 
entry-DN and a single scope, whereas different atomic 
queries in a complex & query may have different base- 
entry-DNs and different scopes. We have not defined 
the LDAP query language formally, since it is virtually 
identical, for our purposes, to CO, except for this one 
material difference. 

Example 4.1 [Use of Different Base Entries] 
To locate directory entries whose surName is jagadish 
in AT&T, except those in Research, we can formulate 
the following & query: 

(- (dc=att, dc=com ? sub ? surName=jagadish) 
(dc=research, dc=att, dc=com ? sub ? 
surName= jagadish) ) 

This query cannot be formulated as a single LDAP 
query (see Section 7); the application would have to 
pose two separate LDAP queries, and compute the 
difference within the application. 1 

A boolean expression can be evaluated efficiently, 
using straightforward list merging techniques, when 
each of the inputs to the boolean operator is represented 
as a sorted list. Jacobson et al [19] describe an elegant 
table-driven algorithm, with linear I/O complexity, that 
takes sorted input lists and computes a sorted output 
list for this task. 

For reasons that will become obvious when we con- 
sider the evaluation of sophisticated queries over the di- 
rectory, we choose the sort order to be the lexicographic 
ordering on the reuerse of the string representation of 
the distinguished names of the directory entries [28]. 
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5 The Query Language ,Cl: 
Hierarchy Operators 

Queries expressed in .CO over a network directory, while 
richer than standard LDAP queries, can take advantage 
of the hierarchical organization of the directory entries 
in only a very limited fashion, as we see in the examples 
below. The language Cl extends .CO with hierarchical 
selection operators that allow much richer means for 
exploiting the hierarchical organization of directory 
entries. We present some examples before describing 
the formal semantics of the additional operators. 

5.1 Illustrative Examples 

Example 5.1 [Selecting Parents and Children] 
Suppose we want to ask the query “Find organi- 
zational units in AT&T that directly contain en- 
tries with surName=jagadish”. All organizational 
units can be located using the CO query “(dc=att, 
dc=com ‘.’ sub ? o’bjectClass=orgUnit)“. All en- 
tries in AT&T with surName=jagadish can be lo- 
cated using the LO query “(dc=att, dc=com ? sub ? 
surName=jagadish.)“. These two LO queries can be 
composed into a single 11 query, to obtain the desired 
result, using the binary hierarchical selection operator 
children (c), as follows: 

(c (dc=att, dc=com ? sub ? objectClass=orgUnit) 
(dc=att, dc=com ? sub ? surName=jagadish)) 

This query returns each entry that satisfies the first 
operand of the binary children operator, and has at 
least one child entry that satisfies the second operand 
of the binary children operator. 

Similar examples also arise when trying to model and 
unambiguously locate organizational and personal lists 
in directories; see [20] for more details. i 

Example 5.2 [Selecting Path Constrained An- 
cestors and Desc.endants] 
The hierarchical organization of directory entries al- 
lows dctlbject entries to be children of other dcobject 
entries, and orgUnit entries to be children of other 
0rgUnit entries. One often wishes to locate the 
closest orgUnit ancestor entry of another directory 
entry.a Consider! for example, the query “Which 
organizational uni-ts in AT&T contain entries with 
surName=jagadishn? The above query can, for exam- 
ple, be specified as:: 

(d,(dc=att, dc=com ? sub ? objectClass=orgUnit) 
(dc=att, dc=com ? sub ? surName=jagadish) 
(dc=att, dc=com ? sub ? objectClass=orgUnit)) 

This query returns each entry r1 that satisfies the first 
operand of the ternary descendants, operator, and has 
at least one descendant entry r:! that satisfies the second 

8Using the descendants operator, one could locate all the 
0rgUnit ancestor entries. 

operand of descendants,, provided there is no entry 
13, rs # ~1, r3 # r2, such that r3 is a descendant entry. 
of r1 and r:! is a descendant entry of rg, and rg satisfies 
the third operand of descendants,. 1 

5.2 Hierarchical Selection Formalized 

Cl extends CO with six operators, c, p, d, a, d, a.ndi a,, 
whose semantics are described below. 

Definition 5.1 [Semantics of Hierarchi,zal Selec- 
tion Queries] The semantics of the six hierarchica:/ 
selection operators is given in Figure 1. 1 

5.3 Evaluating Hierarchical Selection 
Operators 

The straightforward way of computing the Ll ierarchical 
selection operators, parents and children, by indepen- 
dently testing whether an entry of the first operand is 
in the output by finding a “witness” entry in the second 
operand, is a quadratic algorithm. 

The key to a more efficient computation of parents 
and children is to use a stack-based algorithm in 
conjunction with a sorted representation of the two 
operands using lexicographic ordering of the reverse 
of the dn’s. Such an algorithm (with efficient CPIJ 
time complexity) was presented in [20]. In this pa- 
per, we have adapted their algorithm to (,2) improve 
the I/O complexity of the computation, and (b) atllow 
algorithms for the other operators to be obtained b,y ju- 
dicious modification of this basic algorithm. This rnod- 
ified algorithm, Algorithm ComputeHSPC, is presented 
in Figure 2. 

The algorithm works for precisely the same reasons as 
the algorithm presented in [20], and we paraphrase their 
argument below because it will help us in understanding 
the correctness of subsequent algorithms in this paper. 
The correctness of Algorithm ComputeHSPC is based 
on the following two observations. (1) Adjacent entries 
on the stack always correspond to immediate (that is, 
no intervening entries) ancestor/descendant :?airs in the 
directory, from among the entries in the merge of lists 
Ll and L2. Also, every immediate ancestor/ljescendanl; 
pair in the merge of lists Ll and L2 will be adjalcent 
to each other on the stack at some point. (2) When 
an entry is pushed to the top of the s&k, all its 
ancestors in the merge of lists Ll and L2 are present 
on the stack. Also, an entry is removed from the stack 
only after all its descendants in the merge of Ll and 
L2 have been removed from the stack. Finally, the 
output of Algorithm ComputeHSPC is also sorted in 
the lexicographic order of reverse dn’s. 

The stack-based Algorithm ComputeHS:?C can be 
extended to compute the hierarchical selecl;ion opera- 
tors ancestors and descendants, as well as the path 
constrained hierarchical selection operators z.ncestors, 
and descendants,. 
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M(c QlQ2) dgf tfr 1 r-1 E M(QI) A (3(rz)(r2 E M(Q2) A rs is a child of r-1))) 

M(P QlQ2) !Lf jr1 ITI E M(Q1) A (3(rz)(r2 E M(Q2) A 72 is a parent of r-r))} 

M(d QlQ2) “Gf (r-1 I rr E M(QI) A (3(F2)(F2 E M(Qz) A r-2 is a descendant of rr))} 

M(a QlQ2) dAf {rl I rl E M(QI) A (3(n)(r2 E M(Q2) A r-2 is an ancestor of r-r))) 

M(dc QlQzQ3) dAf {rr 1 rr E M(Qr) A (3(rz)(rs E M(Q2) A r-2 is a descendant of FlA 

(B(rs)(fs E M(Q3) A 1”s is a descendant of r-1 A 1-2 is a descendant of r-a))))} 

M(o, QIQzQs) %f (r-1 1 rl E M(Q1) A (3(rz)(r2 E M(Q2) A r-2 is an ancestor of rlA 
(B(rs)(rs E M(Q3) A rs is an ancestor of rr A rs is an ancestor of r-s))))} 

Figure 1: Semantics of Hierarchical Selection Queries 

Algorithm ComputeHSPC (op, 151, Lc,) { 
Assumption: each of Ll and LZ are sorted based on the lexicographic ordering of the reverse dn’s. 

/* the reverse dn of a parent entry is a prefix of the reverse dn of a child entry */ 

/* Phase 1: each entry in Lr is associated with the number of its parents and children in L2 */ 
Initially stack S is empty, entry rl = firstElement(lr , Lz), and label(rl) = {; ) r-l E Li}. 

/* rr points to the first entry in the lexicographic merge of Ll and Lp */ 
repeat 

below = 0, above(rr) = 0. 
if (stack S is empty) push r-l on top of stack S, and rl = nextElement(lr , L2). 
else 

let t-t be the entry at the top of the stack S. 
if (r-t is an ancestor of rl) 

if ((2 E label(rr)) and (r-t is a parent of r-0) above(rt) = above(rt)+l. 
if ((2 E label(rt)) and (rt is a parent of 9-l)) below = 1. 
push rr on top of stack S, and r-l = nextElement(lr , Lz). 

else 
if (1 E label(rt)) associate values (above(rt), below( with entry rt in list Ll. 
pop stack. 

until (all entries in Lr and LZ have been processed and stack S is empty). 

/* Phase 2: list LI is scanned in order, and the result is output */ 
entry ~1 = firstElement( 
repeat 

if ((op is p) and (below > 0)) output rl. 
else if ((op is c) and (above(rr) > 0)) output rr. 
rl = nextElement( 

until (all entries in Ll have been processed). 

1 

Figure 2: Efficiently Computing parents and children 

def 
=%r(rl) = (r-2 I r-2 E M(Q2) A r-2 is a parent of rr} if op is p 

WsQ(rr) “Gf (F2 ) F2 E M(Q2) A r-2 is a descendant of rlA 

(BF3 I F3 E M(Q3) A r3 is a descendant of r-1 A r-2 is a descendant of rs)} if op is d, 

M(OP Ql 92 [Q31 aal 0 aa2) dAf {r ) r E M(Q1) A aal[r, wsQ(r), M(Ql), M(Q2), ws*] 0 

ad-,ws~(r), M(Ql), M(Q2), WSQ]} 

Figure 3: Semantics of Aggregate Selection Queries 
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For computing ancestors and descendants, we 
maintain two counts with each entry on the stack: 
(a) the number of lower (ancestor) stack entries belong- 
ing to list La, and (b) the number of higher (descendant) 
stack entries belonging to list Lz that were encountered. 
These two counts c.an be maintained in an incremen- 
tal fashion, when entries are pushed onto or popped 
from the stack. Doing so results in a stack-based algo- 
rithm, ComputeHSAD, for computing ancestors and 
descendants. Details are omittecl for lack of space. 

For computing ancestors, and descendantsc, the 
key is to keep track c’f stack entries from list Ls, and not 
to propagate the above(rt) and below counts through 
stack entries that are from L3. These two counts can 
be maintained in an incremental fashion, when entries 
are pushed onto or popped from the stack. Doing so 
results in a stack-based algorithm, ComputeHSAD,, for 
computing ancestors, and descendants,. 

A careful analysis of the algorithms show that all 
three have linear I/O) complexity. The crux of the proof 
is the observation that although particular stack entries 
may be swapped out (and eventually re-fetched) from 
the memory multiple times when the stack repeatedly 
grows and shrinks, the overall I/O that the algorithm 
incurs is either O(y + y) or O(y + )-$$ + y), 
depending on the al,gorithm, where B is the blocking 
factor, that is, the number of entries per disk page. 

Theorem 5.1 Algorithm ComputeHSPC correctly com- 
putes (p Ll L2) and (c Ll L=J), Algorithm Com- 
puteHSAD correctly computes (u Ll L2) and (d Ll Lz), 
and Algorithm ComputeHSAD, correctly computes (a, 

Ll Lz L3) and (dc LL L2 ~53). 

Further, the I/O complexities of Algorithms Com- 

puteHSPC and ComputeHSAD are O(y + w), and 

the I/O complexity Oj’ComputeHSAD, is O(y+y+ 

y), where B is the blocking factor. m 

6 The Query Language ,C2: 
Aggregate Selection Operators 

Although more powerful than CO, there are still some 
important queries not supported by ,Ci. Consider 
the problem of identifying the highest priority query 
handling profile for a given TOPS subscriber, or 
the problem of locating TOPS subscribers who have 
specified more than 10 query handling profiles. The 
naturalness of these queries in DEN applications, 
and the important role played by aggregation in 
database query languages such as SQL, suggests the 
desirability of being able to express such queries 
involving aggregation against network directories. 

Introducing aggregabtion in our language requires con- 
siderable care. The standard approach used in rela- 
tional query languages gives primacy to aggregate com- 
putation. Incorporating aggregate computation directly 

in the network directory model would potentially re- 
quire the ability to dynamically create new direct,ory 
entries, associate the newly computed values with at- 
tributes of these entries, and place the entries in the 
hierarchical namespace. Doing so would destroy the 
simplicity of our family of query languages, which sim- 
ply select directory entries from the input directory 
instance. Alternatively, associating newly computed 
(attribute, value) pairs with existing directory entries 
would mix up the query language with the update lan- 
guage, and result in state-based computation, which is 
undesirable. Therefore, we argue that aggregate selec- 
tion should be viewed as a primitive in itself and incor- 
porated in our query languages. 

We extend the language ,Ci to support aggregate 
selection in two distinct ways. First, an aggregate 
computation followed by a selection can be performed 
on the result of any (atomic or complex) query, using 
the simple aggregate selection (g) operator. A 
second way of supporting aggregate selection is to 
extend each of the hierarchical selection operators by 
adding an extra aggregate selection filter operand. 
This performs an aggregate computation followed b,y a 
selection on the relationship between a directory entry 
in the first operand of the operator, and the set of its 
“witnesses” in the second operand of the operator. ‘We 
present some examples next. 

6.1 Illustrative Examples 

Example 6.1 [Simple Aggregate Selection] 
The query “Find the query handling profiles specified 
for the TOPS subscriber uid=jag, ou=userProf il.es, 
dc=research, dc=att , dc=com that are applicable for 
multiple days of the week” can be expressed as follows: 

(g (uid=jag, ou=userProfiles, dc=research, 
dc=att, dc=com ? sub ? objectClass=qHP) 

count(daysOfWeek) > 1) 

The aggregate selection filter “count (daysOfWeek) > 
I” is applied to each of the directory entries that sat- 
isfy “(uid=jag, ou=userProfiles, dc=research, dc=att, 
dc=com ? sub ? objectClass=QHP)“. The aggregatte 
term count(days0fWeek) is used to associate each en- 
try with a single value that is the number of values of 
the daysOfWeek attribute in the entry. Only entries 
with associated value greater than 1 are returned. 11 

Example 6.2 [Structural Aggregate Selection] 
The query “Find TOPS subscribers in dc=att, dc=com 
who have specified more than 10 query handling 
profiles” can be expressed by using the aggregate 
selection variant of the children operator as follows: 

(c (dc=att, dc=com ? sub ? 
objectClass=TOPSSubscriber) 

(dc=att, dc=com ? sub ? objectClass=qHP) 
count($2) > 10) 
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With each directory entry that satisfies the first operand 
of the children operator, are associated all its children 
entries that satisfy the query “(dc=att, dc=com ? 
sub ? objectClass=QHP)” (the second operand of the 
children operators). Against each such association, 
the aggregate selection condition “count ($2) > IO” is 
tested, and only those TOPS subscribers that have more 
than 10 children QHP entries are returned. 1 

6.2 Aggregate Selection Formalized 

.& extends Cr with one new operator g, and allows 
each of the six hierarchical selection operators in 
Lr to take an aggregate selection filter as a final 
operand. An aggregate selection filter is an arithmetic 
condition between two aggregate attributes, where 
each aggregate attribute is one of: (a) an integer 
constant, e.g., 10, (b) an entry aggregate of the form 
min(priority), or (c) an entry-set aggregate of the 
forms min(min(priority)) or count ($$> 

Definition 6.1 [Semantics of Simple Aggregate 
Selection Query] Given a directory entry T E R, and 
an entry aggregate ea of the form agg(a), the result of 
applying ea on r, denoted by ea[r], is given by: 

where {{. . .}} d enotes a multiset of values. Given 
a set of directory entries RI 2 R, and an entry-set 
aggregate esa of the form aggi(ea), where ea is an entry 
aggregate, the result of applying esa on RI, denoted by 
esa[R1], is given by: 

aggl(ea)[&] dGf aggl{{v ) 3(r)(r E Ri A 2, = ea[r])}} 

Given a set of directory entries RI C R, and an entry- 
set aggregate esa of the form count($$), the result of 
applying esa on RI, denoted by esa[Ri], is given by: 

count($$)[R1] dgf count{{r ( r E RI}} 

Finally, the semantics of a simple aggregate selection 
query of the form “(9 &i aal 0 aaz)” is: 

M(g Ql aal 6’ aaz) dgf {r I r E M(QI)A 
aal [r, M(Ql )I 0 aaz[r, M(Ql )I) 

where by aai[r, RI] we mean one of ci (an integer con- 
stant), eai [T], or esa; [RI], depending on the instantia- 
tion of the aggregate attribute, and 8 denotes an integer 
comparison operator. m 

Definition 6.2 [Semantics of Structural Aggre- 
gate Selection Queries] Given a directory entry 
r E R, a set of directory entries R, C R, and an en- 
try aggregate ea of the forms agg($l.a), agg($Z.a) or 
count($2), the result of applying ea on the (r, R,) pair, 
denoted by eu[r, R3], is given by: 

agg(Sl.a)[r, R,] “gf agg{{u 1 (a, V) E wal(r)}} 
agg(Wa)[r,&] dgf agg{{v (3(rl)(rl E R,A 

(0, v) E ual(f-1)))) 

count($2)[r, R,] dGf count{{ri ] ri E R,)} 

Given sets of directory entries RI, Rz 2 R, a function 
f : RI + 2R1 that maps entries in RI to subsets of 
entries in Rz, and an entry-set aggregate esa of the form 
aggl(ea), where ea is an entry aggregate, the result 
of applying esa on the (RI, Rz, f) triple, denoted by 
esa[Rl, Rs, f], is given by: 

aggl(ea)[Rl, Rz, fl “zf aggl{{v I 3(r)(r E RIA 
v = 4r, f(r)l)I> 

Given sets of directory entries RI, R2 E R, a function 
f as above, and an entry-set aggregate esa of the form 
count($l), the result of applying esa on the (RI, Ra, f) 
triple, denoted by esa[Rl, Rz, f], is given by: 

count($l)[Ri, Rz] dAf count{{r 1 r E RI}} 

Consider a query Q of the form “(op &I Q2 C&s] 
AggSelFilterj”. Every directory entry in M(&I) 
has a (possibly empty) op-witness set in M(Q2); for 
example, when op is a, the a-witness set of an entry is 
the set of all its ancestors. We define the witness set 
function, denoted wSQ : M(&l) 4 Z”(Qa), for a couple 
of choices of op, in Figure 3. The other cases are similar. 

Finally, we define the semantics of stfuctural aggre- 
gate selection queries matching “(op &I Q2 aal 0 ~2)” 
and “(op Qi Qz Qa aai 0 aaz)” in Figure 3, where by 
aai[r, R’, RI, R2, f] we mean one of Ci (an integer con- 
stant), eai[r, R’], or esai [RI, R2, f], depending on the 
instantiation of the aggregate attribute, and 0 denotes 
an integer comparison operator. 1 

Note that the Cr hierarchical selection operators 
are special cases of the structural aggregate selection 
operators, obtained by setting the aggregate selection 
condition to “count ($2) > 0”. 

6.3 Evaluating Simple Aggregate Selection 

A simple aggregate selection expression in La of the 
form “(g Li AggSelFilter)“, where Ll is a sorted list 
of directory entries, can be evaluated using at most two 
scans over the input list Ll. 

In the first scan, individual entry aggregates of 
the form min(priority) can be computed on a per- 
directory entry basis, and the aggregates can be 
associated with the directory entry itself in list Ll. 
During this first scan, entry-set aggregates of the 
form count ($$> and min(min(priority) > can also be 
incrementally computed, using techniques similar to 
those described in Ross et al. [24], and these aggregates 
can be associated with the list Ll itself. During the 
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second scan of list 151, a directory entry r is determined 
to be in the result by comparing entry aggregates 
associated with r, possibly with entry-set aggregates 
associated with Ll or with constants, depending on the 
form of the AggSelFilter. 

Theorem 6.1 A simple aggregate selection expression 
in & of the form “(9 Ll AggSelFilter)” can be 

computed with I/O complexity O(y), where B is the 
blocking factor. i 

6.4 Evaluating Structural Aggregate 
Selection 

Each of the algorithms ComputeHSPC, ComputeHSAD 
and ComputeHSAD,, can be readily extended to incor- 
porate structural aggregate selection. We call the re- 
sulting algorithms ComputeHSAggPC, ComputeHSAg- 
gAD, and ComputeHSAggAD, respectively, and use 
ComputeHSAgg to refer to the algorithm that invokes 
one of these three algorithms appropriately. 

For illustrative purposes, we focus on extending Algo- 
rithm ComputeHSAD. ComputeHSAD first computes, 
for each directory entry in list Ll, the total number of 
its ancestors and its descendants in list Lz, and then 
selects directory entries based on appropriate non-zero 
counts. That is, the algorithm first computes the entry 
aggregate count($‘l), and then checks the aggregate 
selection condition count($2) > 0. The technique of 
incrementally computing the value of the entry aggre- 
gate count ($21, for a directory entry r, using the val- 
ues of the entry aggregates of the entries above and 
below entry r on stack S can be easily generalized to 
compute entry aggregates as well as entry-set aggregates 
that use the aggregate functions min, max, sum, count 
and average. In general, any “distributive” or “alge- 
braic” aggregate [24] : (an be computed in this fashion. 

Theorem 6.2 Algorithm ComputeHSAgg correctly com- 
putes (op Ll LZ [Lsj AS), for op being one of the 
six hierarchical operators p, c, a, d, a, and d,, and AS 
being an aggregate selection filter. Further, the I/O 

complexity of Algorithm ComputeHSAgg is O(q + 

y[+y]), where B is the blocking factor. 1 

7 Comparative Assessment 

7.1 Expressive Power 

As we introduced each query language construct, we 
motivated the need for the construct and suggested 
why it could not be captured in the earlier languages. 
We formally capture this intuition in the following 
theorems. The proofs follow the general line of 
arguments previously presented, and so are omitted. By 
LVAP we mean the LDAP query language as defined in 
this paper. (The commercial LDAP protocol has many 
components beyond the query language aspects being 
studied here.) 

Theorem 7.1 CVAP c CO c Cl c Gz. 1 

Recall that Cl extends CO with six new operators, 
We next consider the relationship between them. 

Theorem 7.2 (a) ,CO + {a, d} cannot express c,p. 
(b) ,!Za + {c,p} cannot express a, d. (c) & + {a, d, c,p} 
cannot express a,, d,. (d) CO + {a,, d,} can express all 

of a,d,c,p. D 

When we write & + (01,. . . , 0,) we mean the 
query language one would obtain from & by adding 
the operators 01, . . ..o.. The above series of claims 
shows that a language & + {ac, d,} has the sa.me 
expressive power as the language -Cl, but with strictly 
fewer operators. There are two reasons for our design 
decision. The first is ease of use: it is much simpler to 
write a binary a operator than a ternary a, operator. 
The second is efficiency of evaluation: to see this, note 
that (p &I 92) can be expressed as follows: 

(a, Q1 Qz (null-dn ? sub ? objectClass=*)) 

The third argument includes the whole directory in- 
stance, and would lead to a very expensive evaluation 
as written, since our algorithms have I/O complexity 
that is linear in the size of the inputs. 

7.2 I/O Complexity of Query Evaluation 
Each query expression can be evaluated bottom-up as 
follows. First, the atomic queries are evaluated, and tlhe 
resulting entries are sorted by the lexicographic ordering 
on the reverse of their dn’s. Next, each operator in 
the query tree is evaluated, as described in previous 
sections, and the result is pipelined to a higher operator 
in the query tree. Since each operator gets sorted input 
lists, and computes a sorted output list, no additional 
sorting of the result of an intermediate operator is 
necessary to compute the query results. 

We have established, as each operator was intro- 
duced, the complexity of evaluating it using an appro- 
priate algorithm. We can now put these results together 
to obtain the following theorem. 

Theorem 7.3 Any query Q in language I!T~ can be 
computed using constant size of main memory, with I/O 

complexity 0(1&l. $$), where ILl is the cumulative sizle 
of the outputs of the atomic sub-queries of Q, I&[ is the 
number of nodes in the query tree of Q, and B is the 
blocking factor. 1 

The leaf nodes of the query tree for any query Q 
involve atomic selection queries, which we assume can 
be computed efficiently, either through a scan or using 
appropriate indexes. This results in a cumulative L 
directory entries for further processing up the query 
tree. Every operator produces as output no more 
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directory entries than in its inputs, and each operator 
can be evaluated with linear I/O complexity using a 
constant size memory. We can thus evaluate the query 
tree in reverse topologically sorted order, using constant 
size memory, using ]&I steps, each of which in the worst 
case has complexity O(u) B ’ 

7.3 Distributed Queries 

Complex DEN queries can be issued by core network 
elements such as hosts, routers, firewalls, and proxy 
servers, as well as distributed network applications, typ- 
ically to the “closest” directory server in the network. 
If all the data that is relevant to the query is managed 
by the queried directory server, then all the query pro- 
cessing can be performed locally at this directory server 
as discussed above. 

In general, the data that is relevant to the query 
may be managed by multiple directory servers in the 
network. In this case, the query expression can be 
evaluated bottom-up as follows. First, each atomic 
query, whose base dn is managed by a directory 
server different from the queried server, is issued to 
the directory server that manages the base dn of 
the atomic query. These directory servers can be 
located efficiently using mechanisms similar to those 
used in DNS. The results of those atomic queries are 
shipped to the original queried directory server, which 
then computes the query result using the algorithms 
described previously. 

8 Related Work 

The network directory model is a hierarchical informa- 
tion model, which should remind readers of the early 
hierarchical data model (see, e.g., [25]) that led to the 
development of many commercial databases, notably 
IMS. A key difference between them is that these early 
DBMSs provide only navigation-based access languages 
for data manipulation, as opposed to declarative query 
languages like LDAP. 

Hierarchy has been a central focus in the study of 
type systems (see, e.g., [lo]) and description logics (see, 
e.g., [S]). However, in these contexts, the hierarchy is on 
the classes. In contrast, our hierarchy is at the instance- 
level, and quite orthogonal to class hierarchies. For 
example, two persons working for different companies 
may have entries that are very far apart in the forest, 
and yet both can be of class organizationalperson. 

Many algorithms are known to be very efficient over 
hierarchical structures. Most relevant to us in this 
literature are algorithms for checking the presence of 
sets of edges and paths. Jacobson et al. [19] present 
linear time merging-style algorithms for computing the 
elements of a list that are descendants/ancestors of 
some elements in a second list, in the context of focusing 
keyword-based searches on the Web and in UNIX-style 

file systems. Jagadish et al. [20] present linear time 
stack-based algorithms for computing elements of a 
list that are children/parents of some elements in a 
second list, in the context of supporting personal and 
organizational lists in an LDAP directory. We build 
upon the works of [19] and [20], and devise stack-based 
and merging-style algorithms for a much larger class of 
queries for the directory data model. 

The directory data model shares the flexibility of the 
graph-based models (see, e.g., GraphLog [12], Hy+ [13], 
and WebSQL [4]), and the recently proposed models 
for semi-structured data (see, e.g., Lore1 [2], UnQL [8] 
and StruQL [14]), while at the same time effectively 
addressing the specific needs of network directory 
applications. A significant difference is that graph- 
based and semi-structured models do not typically give 
a first class status to the key features of our model, 
such as hierarchical namespaces, and the definition of 
node contents as sets of (attribute, value) pairs. While 
these can be expressed within the general framework of 
graph-based and semi-structured models using graphs 
with labeled nodes and/or edges, making them first 
class components of the model enables better analysis 
of instances and optimization of queries in the specific 
context of network directories. Similarly, while it is 
true that the query languages for graph-based and semi- 
structured data can express many of the operators of 
our languages (and much more), focusing on the specific 
operators that are important to the context of network 
directories allowed us to design very efficient evaluation 
algorithms for these operators. 

Several researchers have recently proposed schemas 
for semi-structured data, e.g., graph schemas [7], data 
guides [15], unary datalog schemas [23], Schema Defi- 
nition Language (ScmDL) [5] and description logics [9]. 
The various formalisms differ in the kind of restrictions 
they can impose on an object’s components: these vary 
from a simple upper bound on the sets of components 
(in graph schemas [7]) to arbitrary regular expressions 
(in ScmDL [5]). W e view our approach as complemen- 
tary to this body of work, and plan to investigate their 
integration in the future. 

9 Discussion 

LDAP directories have recently gained tremendous pop- 
ularity. A large number of directory server implemen- 
tations are now available from companies such as Criti- 
cal Angle, Lucent, Netscape, Novell, Sun and Tandem. 
Moving out from their traditional role of network-based 
servers for contact information and address books, 
LDAP directory services are now being used in a wide 
variety of applications. In fact, current and near future 
releases of many operating systems, including Windows 
NT and Solaris, will have LDAP directory services to 
manage OS resources. LDAP directory enabled net- 
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working is being promoted by major players including 
AT&T, Cisco, IBM and Microsoft. 

This paper represents a first attempt at devising a 
formal data model and sequence of query languages 
for this very popular “database”. Our formulation has 
several desirable characteristics, including the closure 
property that permits queries to be composed, which 
are not obvious in current commercial LDAP systems. 
We have also demonstrated the inability of the current 
LDAP standard to express many queries needed to sup- 
port applications eflkctively, with particular emphasis 
on directory-enabled networking. We have devised a 
series of extensions, and demonstrated that each lan- 
guage in this series enables the expression of a specific 
class of significant queries, for DEN applications, not 
supported by the current LDAP standard. We have 
shown that the increase in expressiveness is achieved 
without unduly increasing the computation cost. 

We have implemented some of the constructs in our 
query language for specific directory enabled applica- 
tions in AT&T, and are currently investigating their 
utility to other classes of network directory applications. 
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