Belief Reasoning in MLS Deductive Databases

Hasan M. Jamil
Department of Computer Science
Mississippi State University, USA

jamil@CS.MsState.Edu

Abstract

It is envisaged that the application of the multilevel security
(MLS) scheme will enhance flexibility and effectiveness of
authorization policies in shared enterprise databases and
will replace cumbersome authorization enforcement practices
through complicated view definitions on a per user basis.
However, as advances in this area are being made and ideas
crystallized, the concomitant weaknesses of the MLS databases
are also surfacing. We insist that the critical problem with
the current model is that the belief at a higher security level is
cluttered with irrelevant or inconsistent data as no mechanism
for attenuation is supported. Critics also argue that it is
imperative for MLS database users to theorize about the belief
of others, perhaps at different security levels, an apparatus
that is currently missing and the absence of which is seriously
felt.

The impetus for our current research is this need to provide
an adequate framework for belief reasoning in MLS databases.
We demonstrate that a prudent application of the concept of
inheritance in a deductive database setting will help capture
the notion of declarative belief and belief reasoning in MLS
databases in an elegant way. To this end, we develop a function
to compute belief in multiple modes which can be used to
reason about the beliefs of other users. We strive to develop a
poised and practical logical characterization of MLS databases
for the first time based on the inherently difficult concept of
non-monotonic inheritance. We present an extension of the
acclaimed Datalog language, called the MultiLog, and show
that Datalog is a special case of our language. We also suggest
an implementation scheme for MultiLog as a front-end for
CORAL.

Key Words: MLS databases, belief assertion, reasoning,
inheritance and overriding, deductive databases.

1 Introduction

Research into multilevel secure (MLS) relational models has
intensified in recent years as defense and corporate database
applications demand more flexible and fine grain, yet, effective,
authorization protocols for increased sharing of knowledge

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copics bear this notice and the full citation on the first page. To copy
otherwisc, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD '99 Philadelphia PA

Copyright ACM 1999 1-58113-084-8/99/05...$5.00

(8, 12, 19, 24, 27]. Traditional ways of defining fine grain
authorization were to create complicated views on a per user
basis that essentially limited access to an entire column in a
relation in an all or nothing fashion. Thus authorization at
the individual data level could not be defined easily.

Multilevel secure relational models have been around for
some time and have attracted significant attention from
established academician and researchers. Prototypes and
commercial MLS databases are being built although a clear
consensus on the gross features is yet to be reached. It turns
out that the MLS model has very stringent and complicated
security policies and capturing all these policies has proven
to be very difficult. However, the abundant recent research
into MLS relational databases shows that MLS policies are
well suited for semsitive defense and corporate database
applications in a natural way. Research has also established
that the model is effective and outperforms current relational
authorization principles for such applications. Generally,
according to this view, users with a security clearance level
¢ would be able to access only the data that are equal
or lower in security classification than c¢. This view of
data and users is in perfect agreement with the traditional
view of corporate knowledge and administrators’ control on
such knowledge. However, the simplicity of the model
has been found to be deceiving and the implementation
of the apparently simple concept has demanded significant
investigations and development.

Recent research shows that users in the MLS model
potentially have a cluttered view and ambiguous belief of
data [16]. The extraction process of knowledge and belief
about data from such databases is manual and error prone.
Ad hoc knowledge extraction is quite an undertaking, and
understanding what others believe is not easily possible.
Critics argue that it is imperative for users to theorize about
the belief of other users at different levels. Current models,
unfortunately, do not provide any support to this end. The
aim of this research is to address some of these issues that have
been identified as bottlenecks for contemporary proposals.
In the following sections, we expose the limitations of the
representative proposals using an example that we adapt from
the literature. We suggest possible functional enhancements
and strive to develop a logic based query language, called
MultiLog, for MLS databases.

Instead of developing yet another language, in this paper
we extend the acclaimed Datalog language syntactically, define
an operational semantics, and then explain the functionality of
MultiLog by rewriting it in a variant of Datalog - i.e., CORAL.
We report that while we view the current proposal as an
implementation framework for MultiLog, a more theoretical

109

treatment of MultiLog is possible [14] that gives MultiLog the
status of a query language in its own right.

1.1 QOutline of the Paper

We have planned the presentation of the current research as
follows. We first present a brief introduction to multilevel
relational model in section 2. We refrain from presenting
a detailed discussion on the MLS model for the sake of
conciseness and in order to focus our attention to the
development of a belief model and a declarative query
language. Interested readers are referred to [12] and [16] for
an eloquent discussion on MLS relational models and belief
assertion in MLS models respectively. Then in section 3,
we expose the limitations of well known and representative
MLS proposals in the literature. We pinpoint the weaknesses
of these proposals especially with respect to belief models of
users. In this section, we also discuss a possible belief model
on intuitive grounds and introduce the idea of a parametric
belief function. Section 4 discusses contemporary research
and identifies the contributions of MultiLog in the light of
these proposals. We develop the syntax and semantics of
MultiLog in section 5. The semantics is given by developing
the notion of a simple and consistent database, and by giving
an operational semantics of MultiLog for such databases.
A reduction semantics is also presented in section 6 which
serves as the implementation framework for our language.
‘We prove that the two semantics are logically equivalent and
consistent. We then discuss several implementation related
issues in section 7, some of which remain part of our future
investigation. We summarize and conclude in section 8.

2 The Multilevel Relational Data
Model

In this section, we present a very brief introduction to the
MLS relational model for the sake of completeness. Multilevel
relational model is shaped after Bell-LaPadula security model.
In this security model, data are called the objects and processes
or users are called subjects. Every object is assigned a security
classification, and every subject is assigned a clearance. The
security classification of objects and clearances of subjects is
collectively referred to as access classes (or levels). An access
class has two components — a hierarchy of levels (e.g., Top
Secret (T), Secret (S), Classified (C) and Unclassified (U)'),
and an unordered set of categories (e.g., NATO, Army, Navy,
etc.). Access classes are partially ordered in a lattice such that
given two access classes ¢; and ca, ¢1 > ¢z if, and only if, the
hierarchical component of ¢; is greater than or equal to that of
¢z and the categories in ¢; is a superset of those in c¢2. In this
case, we say that level ¢1 dominates level ¢c2. For simplicity, we
will drop the category components of access classes throughout
this paper without the loss of any generality.

The restrictions imposed by Bell-LaPadula model may be
summarized as follows:

1. A subject is allowed to have read access to an object if the
subject has a clearance that dominates the classification of
the object. This is called the simple security property.

2. A subject is allowed a write access to an object only
if the subject’s clearance is dominated by the object’s
classification. This is known as the x-property.

!We may assume that level T is higher in security classification
than level S, denoted T > S. We also assume that S > C, and finally
Cc>u.

A discussion on the implications of these properties may be
found in {12]. But it is important to mention here that these
properties are necessary but not sufficient for effective security
enforcement.

Bell-LaPadula restrictions imply that the subjects at differ-
ent clearance levels see different versions of a multilevel rela-
tion. For example, a user with a clearance level c will see only
those data that have classifications dominated by ¢. We will
discuss the views at different levels later in the next section
using an example.

Formally, a multilevel relation (similar to classiczl relations)
consists of two parts: scheme and instances, definec| as follows:

Definition 2.1 (Scheme) Let A,,..., A, be da'a attribute
names, Ci,...,Cyr be classification attribute names for each of
the data attributes, and T'C be the tuple-class attribute. Let
the domains of each data attribute A; be D;. Let the domain
of each C; be specified by a range [L;, H;] such that it defines
a sub-lattice of access classes ranging from L; up to H;. let the
domain of TC be the range [lub*{L; : i = 1,...,r}, ub{H; :
t = 1,...,n}]. Then R(A:,Ch, As,Cs,...,A,,C..,TC) is a
multilevel relation scheme.

The classification attributes (C;s) in a scheme S registers
the security classification of the attribute values, while the
tuple classification T'C registers the access class ¢ where the
tuple was inserted/updated. In general, a user is allowed to
see the entire tuple (including T'C) if the user’s clearance level
dominates the tuple classification c.

Definition 2.2 (Instance) Let R(A1,C1,A42,(Co,. .., An,
Cn,TC) be a multilevel relation scheme. Then, a multi-
level relation instance r is a set of ordered tuples of the form
(a1,c1,a2,c2,...,an,cn,tc) such that each a; € D;, orai = L,
and tc = lub{c; : i = 1,...,n}. If a; # L then ¢; = [L;, Hj].
Also, ¢; # L for any a;.

Definition 2.3 (View at ¢) Let r be a multilevel relation
instance over the scheme R(A:,Ci, A3, Cs, ..., An, Cn, TC).
Then, the view at access class c is a relation instance r. derived
from r such that r. is a set of ordered tuples of the form
(a1,¢1,a2,¢2,...,an,cn,tc) where each a; € D;, or a; = L,
¢>cand te=lub{c; :i=1,...,n}.

In a view at access class ¢, for every tuple £ € r, *[A;] is in
7c if, and only if ¢ > t[C};], otherwise t[{A;] = L in r, i.e., when
C S t[Ci].

Multilevel relations are required to satisfy several integrity
properties. We will discuss these properties in relation to
MultiLog in definitions 5.3 and 5.4. We, however, :ntroduce
the notion of apparent primary keys in this section. Since
multilevel relations have different instances at different access
classes, the notion of keys becomes clouded because a relation
instance is now a collection of sets of tuples rather than a
single set of tuples. The user specified primary key cannot be
used as the primary key anymore. Consequently, the primary
key is known as the apparent primary key, and is denoted by
AK. The classification of AK is denoted by Cax. It is easy
to show that in multilevel relations, AK,Cax,C: — A; holds
for every data attribute A;. As such, the primary key of a
multilevel relation can be defined as AK U Cax U Cr where,
Cr is the set of classification attributes for data attributes not
in AK [12]. Figure 1 shows an example of a multilevel relation.

2Least upper bound.

110

3 Belief Models in MLS Databases

Consider the following example adapted from Jukic and
Vrbsky [16]. This example exposes some of the difficulties
faced by users in contemporary MLS databases trying to
form a belief about the data. The apparent primary
key [12], Starship, of the relation Mission is underlined.
Note that the relation satisfies the functional dependency
AK,Cak,Ci — A; for all attribute A; in the scheme of
Mission®, where AK is the apparent key (i.e., Starship}, Cax
is the security classification of the apparent key, and C; is
the security classification of the attribute A;, and thus satisfy
the polyinstantiation integrity [12]. Also notice that tuples
t4 and t5 are possible through a series of updates if required
polyinstantiation {12] is enforced.

Tid | Starship Objective Destin TC
ty Avenger S | Shipping S | Pluto S |S
to Atlantis U | Diplomacy U | Vulcan U | §
ta Voyager U | Spying S | Mars Uujls
ty Phantom U | Spying S | Omega U | S
ts Phantom C | Supply S | Venus SIS
te Atlantis U | Diplomacy U | Vulcan U|C
ty Atlantis U | Diplomacy U | Vulcan U | U
ts Voyager U | Training U | Mars Uuju
tg Falcon U | Piracy U (| Venus Uulu
tio | Eagle U | Patrolling U | Degba U (U

Figure 1: MLS relation Mission(Startship, Cy, Objective,
C,, Destination, Cs, TC).

The interpretation of the above relation is obviously less
than simple and there exist many opinions. This is partly
because the interpretation is mostly application or user
dependent. Jajodia and Sandhu [12] define interpretation at
a given level in terms of visibility rules and classify visible
tuples as true, or cover stories. The following query in the
framework of [12] would produce the entire Mission relation
when submitted by an user with a S level clearance. It will,
however, i)roduce the relation in figure 2 if submitted by a U
level user”.

select *
from mission

the existence of higher level tuples. Ordinarily a null value
in a tuple will show up only if part of a lower level tuple
is updated by a higher level user who possibly left the key
classification unchanged. This will force polyinstantiating the
database to hide the higher level update from the lower level
users. However, the lower key classification that remained as
part of the higher level tuple will now force introduction of
null values as the key remained visible to a lower level user.
Fortunately, the nulls will be subsumed (in most cases) by
the lower level tuple with non null values. But if the lower
level tuple is now deleted, and the key classification of the
higher level tuple stays unchanged, a tuple with null values
will surface as it did in the case of the tuples ¢4 and ¢s.

Tid | Starship Objective Destin TC
tq Phantom U | L U [Omega U | C
ts Phantom Cc | L Ccl| 1 ciC
124 Atlantis U | Diplomacy U | Vulcan U | C
tg Voyager U | Training U | Mars U] U
to Falcon U | Piracy U | Venus U v
tio | Eagle U | Patrolling U | Degoba U | U

Figure 3: A C level user view of the Mission.

It is our contention that such tuples compromise the security
of the MLS databases, perhaps due to unawareness or due to
intentional malice on the part of the higher level user. The
point here is that current models do not prevent this from
happening. In this instance, the C level user knows that a
cover story has been given to the U level user but fails to
determine the cover story. Furthermore, she now knows that
she was also given a cover story by a higher level user. To
our knowledge, this phenomenon was not been discovered in
any earlier research. We call tuples such as ¢4 and ts, surprise
stories.

However, it is easy to observe that forming an opinion
about the visible data remains the responsibility of the user.
Users proceed to determine the meaning of tuples by making
extensive comparisons with other tuples. Only after they
perform this extra step can they know whether the tuples
are cover stories or real tuples. We maintain that it is still
unclear as to what to make of the lower level true tuples or the
tuples with null values that flow from higher levels, the surprise
stories. Should a user believe such tuples or ignore them? Is
it really necessary to assume that just because a tuple was

Tid | Starship Objective Destin TC contributed by a lower level user it is useless, independent of
ta Phantomr U | L U | Omega U | U the existence of a higher level tuple that possibly contradicts
ts Atlantis U | Diplomacy U | Vulcan U | U the lower level tuple? There has been no simple answer to
tg Voyager U | Training U | Mars Ul v these questions.
to Falcon U | Piracy U | Venus U | U
tio Eagle U | Patrolling U | Degoba U | U
Tid Starship Objective Destin TC
ty Avenger S Shipping s Pluto S 8
ty Atlantis ucs Dip!omucy ucs Vulcan ucs ucs
Figure 2: U level view of Mission. ;; e US| anyine vs | ome. Us | Us
ty Phantom us Spying s Omega us S
t; Phantom cs Supply El Venus S s
In contrast to the above, a C level user’s view is the relation ‘s ";:‘“;""‘ 83 i‘“’;‘?s S: 1‘\,;.::! g'ss ‘CJ:
- . ager A mn, - -
in figure 3. We point out here that the tuples ¢4 and ¢5 do te | Faicon U-s | Piracy U5 | Venss uv-s | US
t10 Eagle u Patrolling U Degoba U u

not subsume each other as discussed in [12]. Subsumption
helps clear the unwanted and irrelevant tuples while hiding

3Note that Tid is not part of the scheme. We use it for the
convenience of reference.

4The tuples identified with asterisk subsumes [12] other tuples in
the view.

111

Figure 4: Jukic and Vrbsky’s view of Mission

Jukic and Vrbsky (16] addressed this issue of belief forma-
tion in [16]. They, however, use a richer set of security labels

in which they encode the visibility rules and decide the status
of a tuple at a given level. They would represent the Mission
relation as shown in figure 4.

The interpretation assigned to each tuple in Mission in
their framework is shown in figure 5. We consider this
interpretation to represent somewhat of a departure from
Jajodia and Sandhu, but it actually provides a framework for

Tid | Starship Objective Destin TC
t4 Phantom U | L U)| Omega U | C

ts Phantom CcC| L C| Ll cCicC

te Atlantis U | Diplomacy U | Vulcan U | C

ts Voyager U | Training U | Mars ugpcC

tg Falcon U | Piracy U { Venus ulcC

tio Eagle U | Patrolling U | Degoba U) J

asserting beliefs of the users directly.

Tid | U level | C level S level

t invisible | invisible true

ta true true true

ts invisible | invisible true

ts true irrelevant cover story
t) invisible | invisible true

ts invisible | invisible true

ty invisible | true cover story
ts true irrelevant | cover story
to true irrelevant | mirage

tio0 true irrelevant | irrelevant

Figure 5: Interpretation of tuples at different levels

3.1

Our contention is that both these models of belief are
inadequate and somewhat stringent. The Jajodia-Sandhu
model is too basic where users are left to discover the truth.
On the other hand, Jukic-Vrbsky model is too restrictive and
has only fixed interpretations. Users in these frameworks really
do not have any reasoning capabilities as the interpretations
are already given. We believe a middle ground is warranted
where the user is given the choice to reason and theorize
about the beliefs of others and decide how she wants to believe
information visible to her.

Dynamic Belief Reasoning

In this direction, we assert that users should be given
linguistic tools to view data as well as to construct meaning
of the visible data. For example, the user may take a firm
view of the data and insist that whatever is created at her
security level only are correct and believable data. Thus lower
level data are of no value. For example, a firm C level view of
Mission relation could be as shown in figure 6.

Destin TC
Vulcan ulc

Tid | Starship
te Atlantis U

Objective
Diplomacy U

Figure 6: Conservative or firm view of Mission at level C.

On the other hand, one may want to believe the best she can
in the absence of any information at her own level, either in
a monotonic way or in an overriding fashion. The monotonic
version of the best possibility can be called an optimistic view.
In this view, an user accumulates all possible data that are
visible and considers important and thus believes the data.
An optimistic view of Mission relation is shown in 7 for a C
level user. Contrast this view with the C level user view in
Jajodia and Sandhu shown in figure 3. In the optimistic view,
the TC values become C while in figure 3, it retains the original
source level information.

The overriding version of the best possibility is called the
cautious view. In this view, the visible information at a given

112

Figure 7: An optimistic view of Mission at .evel C.

level that has the highest security classification is retained
and others filtered out. The fundamental assumgtion under
this view is that a higher level information is more reliable
and the lower level counterpart is a cover story. The table in
figure 8 presents a cautious view at level C. It is interesting to
note here that if the security levels form a partial order, and
not a total order, a cautious view may still have conflicting
information due to multiple incomparable sources (levels).
This is reminiscent of the problem in object oriented systems
with multiple inheritance. Consequently, we musi; settle for
multiple models and associated unpredictability.

The process of computing the cautious view presented in
figure 8 from the C level view in figure 3 deserves some
additional explanations. Note that tuple ¢4 does not subsume
t5 and vice versa. In the cautious view, for every pair of tuples
w and v such that u[AK] = v[AK], we create a tuple t such
that for every attribute A; € R, t[A:] = u[A:],t{Ci] = u[Ci]
if u[C;] > v[C;], otherwise t[A:] = v[A:], t[Ci] = v[C}]. Notice
that the process of creating ¢ is reminiscent of inheritance with
overriding in inheritance systems. Here, if a level Jdominates
another level, the values at the dominating level overrides the
values at the lower levels®. Hence, in figure 8, we have tuple
ts, while t4 is missing.

Tid | Starship Objective Destin TC
ts Phantom C | L [l BER c|C
te Atlantis U | Diplomacy U | Vulcan Ug|C
ts Voyager U | Training U { Mars gl cC
tg Falcon U | Piracy U | Venus J|C
tio | Eagle U | Patrolling U | Degoba J | C

Figure 8: Cautious view of Mission at level C.

While we have discussed only three possible views of MLS
data in the foregoing presentation, we recognize the fact that
other views of the MLS relations are conceivable. In fact,
Cuppens (7] proposes several such views, and we trust that
our views subsume all the views he has proposed, namely the
additive view, the suspicious view and the trusted view.

3.2 A Parametric Belief Function

Consider the following query:

List all starships that are spying on Mars withoui any
doubt.

5Put it in object-oriented terminologies, lower
access classes/classifications are treated like superclasses, and the
higher access classes/classifications are treated like subclasses.

A possible extended SQL query® is shown below. This is
assuming that the visibility in all possible ways leads to a
belief without doubt”. Note specially the simplicity of the SQL
query below. An equivalent version of the same query using
the syntax in either [12] or [27] would be far more complicated
as they do not support belief modes.

user context u
select starship
from mission m
where m.starship in (select starship
from mission
where destination = mars and objective = spying
believed cautiousiy)
intersect
(select starship
from mission
where destination = mars and objective = spying
believed firmly)
intersect
(select starship
from mission
where destination = mars and objective = spying
believed optimistically)

The preceding discussion demonstrates that a linguistic
instrument to compute ad hoc beliefs in multiple modes adds
to the strength of the language. Ad hoc belief computation
helps reasoning with the beliefs of users and facilitates
understanding the knowledge base better. It also increases
the expressibility of the query language. In this section, we
introduce a parametric belief function for MLS databases as a
candidate for belief computation model.

The belief function discussed below assumes that the
security labels form a partial order and that the set of belief
modes are finite. This is not an unrealistic assumption and
nor is it limiting. In fact this is the view almost all proposals
take in regards to security levels. In the function below, we
consider the modes we have already introduced in section 3,
namely the firm (strict belief), optimistic (greedy belief) and
cautious (conservative belief) modes. We will address the issue
of adding user defined belief modes in a later section.

Definition 3.1 Let R be a set of all possible MLS relations,
R be the scheme of any relation r, S be a set of security
labels, < and < be respectively a partial order and an ordering
relation on S, and pu = {firm, optimistic, cautious} be a set
of belief modes. Then the belief function § is defined as
[:R x S x g — R such that,

(| One of the following conditions hold:

-m=firmandt €r and {[TC] = s

- m = cautious and the following condition
holds:

Ju(u € ntTC) s,ulTC] =
Syt[AK)cAK] U[AK,CAK], and
Vi(A; € R and A4; ¢ AK, Fw(v €
L) t[Ai7Ci] = 'U[Ai,Ci], U[TC] =< s,
v[AK) t{AK] and -Jw(w € r,
w[AK] = t[AK], w[T'C] < s, v[C;] <
w[Ci]))))-

- m = optimistic and t € r and t[TC] <X s

ﬂ('r,s,m) = < t

\

6In a syntax that we would like to propose.

"Notice that the semantics of belief is not the issue here, rather
the process of assigning semantics is. Also note that the use of SQL
syntax presented here is just for expository purposes which exactly
is not our current mission.

113

Notice that the above function g will produce the views in
figure 6 through 8 except the tuples ¢4 and ¢5 in figure 7 and
ts in figure 8 respectively. We will take up the issue of these
missing tuples in section 7 again and explain the reason for this
behavior. But for now, we just remark that by disallowing
these tuples, we are avoiding the generation of the surprise
stories identified in this paper that compromises the security
in MLS databases. Basically, 8 does not implement the filter
function o in [12] which actually is the source of surprise
stories.

4 Contributions of MultiLog and

Related Research

The paucity of attempts aimed at developing a logical char-
acterization for MLS models evidences that MLS deductive
databases are really at their embryonic state. While there were
several proposals such as {17, 6, 2, 10, 11, 25} that addressed
the general issue of authorization in a deductive framework,
only Cuppens addressed the issue of querying MLS deduc-
tive databases [7]. The merits and exigencies of a deductive
metaphor of MLS model is eloquently discussed in [26]. In {22]
Pernul et al. discuss a prototype developed in £LDL {9] show-
ing that the design process of an MLS relational database,
and the assignment of security labels to data and clearances
to users may be significantly enhanced using their prototype
that is capable of reasoning about the security assignment of
the data elements. Their deductive filter prototype is based
on a conceptual model developed in [23).

In his proposal [7], Cuppens brings out the inherent
difficulty of developing a logic based query language for MLS
databases. Although he did not propose linguistic tools or a
proof procedure for the lack of a sound axiomatization, to our
knowledge, this was the first and only attempt at developing
a truly deductive query language for MLS databases until
now. While Pernul et al.’s [22] prototyping tool is not a query
language, it suggests that a natural and seamless integration
of their tool and a MLS deductive database would result
in an improved system. In such systems, users will not
have to apply a transformation function from relational to
deductive representation of their application and vice versa
to comprehend and visualize its behavior. It also suggests
that the uniformity of the system view could be supported
from conceptual design to implementation, only if a logical
rendition of MLS model was possible.

Inspired by such necessity and a rich body of existing
research in relational counterpart, we make a first-ever attempt
to develop a query language, called MultiLog, for MLS
deductive databases in two steps. In this paper, we develop
a foundation for belief reasoning by providing a parametric
belief function in the context of MultiLog, and suggest a
computational framework by translating MultiLog databases
into Datalog. A similar approach has been taken by Jajodia et
al [11] to capture multiple access control policies in databases
in general. The insight developed in the current research
serves as the basis for a complete logical synthesis of MultiLog
which we develop in [14] as an orthogonal extension of the
work contained in this paper in the direction of F-logic (18].
In [14] we present a complete proof procedure, model theory
and fix-point characterization of MultiLog and show that
all three characterizations are equivalent. This development
is significant from a theoretical standpoint, but we do not
attempt to include these results and associated discussion in
this paper for the sake of brevity. Complete details may be
found in [14].

We make a crucial observation that the user views of
the MLS databases at different security levels is mimetic of
the notion of inheritence in object oriented systems in a
slightly elaborate fashion. In both our attempts, we utilized
this connection and exploited our experience in dealing with
inheritance in logic based systems [5, 15, 13]. The belief
function presented in section 3.2 incorporates the results from
our work in [15, 13] and extends the idea here further to cater
to parametric inheritance.

Our contributions in this paper may be summarized as
follows: (i) we propose a F-logic like query language (unlike
most others) for MLS deductive databases which can be
directly used to model applications, (ii) we propose a model
for parametric user belief in MLS databases to facilitate ad
hoc belief querying and belief speculation, (iii) we provide
linguistic instruments for belief querying in multiple modes,
(iv) we support user defined belief modes making it possible
to tailor the user view as needed, and (v) we show that Datalog
is a special case of MultiLog.

5 Overview of MultiLog Language

The language £ of MultiLog is a 7-tuple (P, F, A, V,§,=<,u)
where (i) P is an infinite set of predicate names, (ii) F is
an infinite set of function symbols including the symbol null,
denoted L, (ili) A is a finite set of attribute names, (iv) V is
a denumerable set of variable names, (iv)} S is a finite set of
labels intended to denote the security labels in our language,
(v) = is a partial order on the symbols in & that captures the
idea of the hierarchy of security levels, and finally (vii) u is a
finite set of symbols for belief modes. The symbols in £ are
pairwise disjoint.

The terms T of L are constructed as usual from FUV. Let

the ground subset of 7 be denoted by 7 which serves as the
constants in our language.

5.1 Formulas and Databases

There are five types of atoms in our language: m-, b-, p-, I-
and h-atoms.

- MLS atoms or m-atoms: Let p be a predicate symbol in P
of arity n - denoted p/n, a is an attribute name in A,
v is a term in 7, and s and ¢ are symbols in S U V.

Then s[p(k : a 5 v)] is an m-atom®. Intuitively, an m-
atom represents a column of a tuple as in MLS relational
database counterpart where a is an attribute name, v is a
value and 8 and c are security labels. The label s denotes
the security level of the predicate p and mimics the tuple
classification TC in MLS relational model.

8We also allow a syntactic variant of m-atoms called an m-

. . c

molecule or m-predicate. An m-predicate has the form s[p(k : a; =
c A

v1,...,8n =3 vn)] which is equivalent to the atomic conjunction

slp(k : a1 4 vi)] A ... A s8lplk : an b vn)]. Again, an m-
predicate may be viewed as a syntactic sugar for classical MLS
tuples. The corresponding classical predicate representation of
an m-predicate can be written as p(k,a1,v1,€1,...,an,Vn,Cn, 8).
The only difference with MLS tuples is of course that we include
attribute names in our atoms/molecules. This approach was also
taken in [15, 18], etc. The advantage of this syntax is that it gives
a functional view of predicates and makes the columns position
independent. In our discussion and examples that follow, we will
freely use ejther the atomic or the molecular form as the situation
demands.

- Believed atoms or b-atoms: Let s[p(k:a S v)] be an m-
atom and m € p be a mode of belief by a rational agent.

Then s[p(k : a S5 v)] € m is a b-atom. Iatuitively, a

b-atom says that a rational agent believes p(k : a 4 v) at
level 8 in a mode m.

- Predicates or p-atoms: If p is a predicate symbol in P of
arity k - denoted p/k, and a1, ...,ar are terms in 7, then
plai,...,ax) is a p-atom. The sense of a p-atom is exactly
as the classical logic.

- Level or l-atoms: Let level/1 be a distinguished predicate
symbol in P, and 8 be a symbol in SUV. Then level(8) is
an l-atom. An l-atom declares the existence of a security
level in a database D.

- Hierarchy or h-atoms: Let order/2 be another distin-
guished predicate symbol in P, and ! and h be two sym-
bols in S UV. Then order(l, h) is an h-atom. Intuitively
an h-atom asserts that the security level [is lower than
h and that there are no other i such that order(l, <) and
order(%, h) hold.

Formulas of £ are defined as usual. A literal is either an
atom (A) or the negation of an atom (-.4). Folowing the
custom in logic programming, we only consider the definite
(Horn) clause fragment of our language. A clause in £ is an
expression of the form A « Bi,...,Bm such that A and B;s
are atoms of £. If the consequent of a clause is an m-atom,
we call the clause an m-clause. Similarly, we define p-, - and
h-clauses. We, however, do not have b-clauses as we do not
allow b-atoms to appear in the consequent.

Definition 5.1 (Databases and Queries) A duatabase A,
or equivalently a program P, in MultiLog is an expression of
the form (A, X, II, @), where (i) A is a set of I- and h-clauses
(possibly empty) defining the security levels and :nducing a
partial order on the levels, (ii) X is a set of m-clauses that
define the secured data component of A, (iii) IT is a set of p-
clauses (possibly empty), and finally (iv) Q is a set of clauses
of the form « Bi,..., B, called the queries.

While the above definition of programs is acceptable, we
consider a restricted subset of MultiLog programs for reasons
described below.

Definition 5.2 (Dependency Graph) Let CI be a clause
of the form A + Bi,...,B,. Let ~ denote the binary
relationship depends on. For CIl, we say that .4 depends on
Bi,...,Bn, denoted A — B;,..., A ~ B,,. The transitive
closure of the relation + with respect to A is called the
dependency graph of A.

We require that similar to MLS relational and classical
relational models, MultiLog database m-predicatss satisfy
several integrity constraints. First, we require that for every
m-predicate there is a key attribute AK for which the value is

k. Hence, there must be an m-atom of the form s{p(k : a 5

k)]. That is for every m-atom of the form s[p(k : b 4 v)] in

a program P°, we also have s[p(k : a 5 k)]. For such atoms,
k is identified as AK, ¢ as cak, s as TC, and for all other
atoms for which k is the key, a is identified as A;, ¢ as C; and
v as A; in a fashion similar to Jajodia and Sandhu [12].

9In fact, in [P].

114

Definition 5.3 (Admissible Databases) Let [] be the
meaning function of a logic program in the classical sense'®.
Let A = (A, X, I1,Q) be a MultiLog database. We say A4 is
admissible if, and only if, the following conditions hold:

- for every clause Cl = A « G € A, the dependency graph
of A does not contain atoms other than h- or l-atoms?!.

- for every clause Cl = A + G € X and every security label
s appearing in A and G, s is asserted by the meaning of
A, that is level(s) € [A].

- The meaning of A, i.e.,, [A], defines a partial order on the
set of security levels asserted by A.

We also require that every MultiLog database satisfy the
core integrity properties defined in Jajodia and Sandhu {12].
Hence, we incorporate the following consistency conditions
from [12] as a natural carry over. For an intuitive explanation
of these conditions, we refer the readers to [12] and [14].

Definition 5.4 (Consistent Databases) An admissible
database A = (A, X II,Q) is called consistent if, and only
if, the following conditions hold:

- Entity Integrity: Let AK be the apparent key of an m-
predicate!?. The database A satisfies entity integrity if,
and only if, for every m-predicate in [X'] of the form
s[p(k : a1 Bvr,. 0, 3 v5)], the following conditions
are true.

- v, € AK = v; # 113,

- v;,v; € AK = ¢; = ¢j, i.e., AK is uniformly classified,
and

- vi € AK = ¢; > cax (where caxk is defined to be the
classification of the apparent key AK).

- Null Integrity: The database A satisfies null integrity if,
and only if, for every m-predicate in [X] of the form
s[p(k : a1 4 v1,...,0n b v,)], the following conditions
are satisfied.

- v; =1 = ¢; = cax, i.e., nulls are classified at the level
of the key.

- We say that an m-predicate of the form s{p(k
a1 4 v1,...,0n & vn)] subsumes another m-predicate

s'[p(k' : ay < vh, ... an SF vy,)] if for every a;, either
(i) < vi,e; >=< v},¢; >, or (ii) v;i # L and v} = L.
We also require that there does not exists two distinct m-
predicates in [£] such that they subsume each other.

- Polyinstantiation Integrity: The database A satisfies polyin-
stantiation integrity if, and only if, for every m-predicate of
the form s{p(k : a1 3 v1,...,an 3 vn)] in [X] we have
for all v; : k,cak,c; = v;. We say that an m-predicate
slp(k : a: 2 V1,...,08n i vy,)] satisfies k, cax,ci = v;
if, and only if, there does not exist another m-predicate
s'p(k' : a; ool e S v,)] in [2] such that

<k,cakx,c; >=< k,c4x,c; > and v; # v;.

10 Assigns an Herbrand model to a program P.

Ulntuitively, the ground closure of A does not depend on the
clauses defined in other components of A.

121n this paper, we assume AK is a one attribute key for the sake
of simplicity. The case for multi-attribute key is discussed in section
7.

131f we assume that the key attribute is attribute e;, then vy % L.

Definition 5.5 (Level of Databases) Let A be a consis-
tent database, and u a user with a clearance ¢. The database
A is in level ¢, denoted (A, ¢}, if the user u with clearance ¢
accesses A.

For the remainder of this paper we assume only consistent
databases unless specified otherwise.

Example 5.1 (Encoding Mission in MultiLog) Consider
tuple ¢ in figure 1. In MultiLog molecular form, we represent
t1 as a rule (fact) r1: s[mission(avenger:starship - avenger;
objective > shipping; destination = pluto)].

5.2 Operational Semantics

In this section, we discuss the operational semantics of
MultiLog by presenting a goal directed sequent style proof
system. This style of proof systems has also been adopted in
languages such as Miller’s module language [20], Contextual
Logic Programming [21], SelfLog {3], ORLog [15], etc.

The proof system is defined as a set of properties for the
two proof predicates F and F*. This structure essentially gives
rise to a two tier proof system. The proof relation - defines
the provability of non b-atoms in general and F* defines the
provability of b-atoms in one of the modes in , i.e., {cau, opt,
fir}!*. In fact, H* encodes the belief function 3 discussed in
section 3.2, where u can be any of the defined modes of belief.
However, in some cases, the provability relations H* and +
coincide and are defined in terms of |.

Also in this proof system, goals are proved in the context
of a user clearance u, called the database level as defined in
definition 5.5. The context u may be determined at login
time or by using a separate authentication procedure, and the
interpreter may use the clearance level u dictated by the user’s
login id. Using this context, the proof system, in particular,
makes sure that provability of m-atoms guard against violation
of Bell-La Padula restrictions, i.e., the simple security property
(no read up) and the x-property (no write down) [1, 12].

5.3 Proof Rules

The proof rules given below has the following general form
where (4, u) is the database at level u (the user level), and
conclusion is any goal. The goal is provable at level u if the
assumptions hold at level u. However, the application of the
rule depends on the satisfiability of the associated conditions
on the right.

(A, u) - Assumptions

(A, u) - Conclusion (Conditions)

(RULE NAME)

For the sake of simplicity and without loss of any generality,
we assume that all molecular atoms are broken down to
atomic forms by replacing such molecules with the conjunction
of atomic components and then, if necessary, bringing the
program to disjunctive normal form by a preprocessor.

5.4 Remarks on the Proof Theory

The intuitive interpretation of the inference rules in figure 9 are
given alongside the rules. However, some additional comments

l4We are assuming here that {cau, opt, fir} are the only belief
modes in MultiLog. These are shorthand notations for cautious,
optimistic and firm belief modes respectively. The case for user
defined belief modes is discussed in section 7.

115

(A, u) g level(l) Reflexive rule for transitive closure of the order relation. The exit rule is covered
(REFLEXIVITY) {(Ayu) Fg U X1 by DEDUCTION-G.

(A, u) g order(l, H')
(TRANSITIVITY) (A,u) o H' < h[6] Recursive rule for transitive closure of the order relation to compute I < h.
(A, uyFogo L=< h

(EMPTY) (A, u) b O Empty goal is always true.

{4, u) g Gy (4,u) ko Gy[f)]

(AND) (A,) Fay C1,03 Splits the conjunction and proves individually.
3y o]

(A,u) Fp 1ip(k s 0 S v)] . o m . e

(BELIEF) (A, u) Fg U< ulf] Fires the pl.‘OOf pred.lcate [" anq a success 1nd1f:ates l[p.(k 1 a = v)] is be.ieved
(D) Foy p(k:a < <m at level 1 with security classification ¢, and I being dominated by u.
] ¢ .
A —GeA,
(DEDUCTION-G) -—((AA—’uE)i'_‘—’Lj]- 6 = mgu(A, A’) Mimics classical deduction for non m-atom goals.
1% Too A is p-, h- or l-atom

An m-atom goal is provable only if the antecedent

(4,u) Fo G[6] A +—GeA4, of the clause defining the goal is provable anc. the
(DEDUCTION-G’) (A, u) F4 I < u[fo] 6 = mgu(A, A') database level dominates the security level { of
(A,u) Fgop A A=lpk:aSv the goal and hence does not violate the no read

¢ Ip()l o 1ol

U .
_ s If G is conjunctive, or O, or g = fir, provability
(DEDUCTION-B) %_,%_tg_gg_ (S -i; {;Z;of m-atom) switches to classical deduction. The p’rovabilii;y in

’ 6 these cases does not depend on the belief mode.
(Au)Fo R<1 Uplk : a 5 v)] isc optimistically
(DESCEND-0) (A,u) ¢ Rlp(k : a S v)][o] provable at L f p(k:a = v) is provablce
(A, u) F‘Z’;t lpk:a S5 v)] at‘j]any lower level R, ie., F Rlp(k:a —
v)].
~3p, = . .

(4,u) Fo order(R,1) mgu(< 1,p,k,a >, In the absence of any mformagmn at I, 1
(DESCEND-C1) (A, u) F5°% Rip(k : a < v)][o] <U,p,k',a>), cautiously believes U[p(k : a = v)] only
A —Gea, if an immediate lower level cauticusly

cauw . C
{4, u) Fea® Up(k : @ — v)] A = Vp(k a L) o] believes it.

(4,u) o R X1 The information at level I is rejected
{(A,u) g R[p(k : a 5 v)][o] and a lower level information is accepted
(DESCEND-C2) (A, u) kg b < clob] at [which has a higher security lev:l ¢,
b, and hence, is more secure. Note that the
(A,u) by lp(k:a v)g[”%] security label at the lower label cannot
(A,u) Fosy Up(k - a = v)] be higher than { itself.
! "la s =

(‘(Aﬁ,‘;t)lh:aclj jb[fr] mgﬁ(ﬁ p’lk’ o>, The ix:iformation éitt]evel l ils the r]nos?
(DESCEND-G3) e <pk',a>), secured compared to any lower leve
(4,u) by Up(k : a = v)][0b] A —Gea, information, if it exists, i.e., has the

(A,u) 28 Up(k : a S5 v)] A= V(K a b) highest security level c.

l is the lowest level and hence I[p'k :
a 5 v)] is the most secure information.

(A, u) Fo Up(k : 2 S v)]
(A,u) F&a* Up(k - 0 S v)]

(DESCEND-C4) (-3R,order(R,1)[6] € A)

Figure 9: MultiLog proof system.

116

r1: level(u). T6
ra: level(c). Ep, = re:
Ap, = | r3: level(s). T8 :

rq : order(u,c).
rs: order(c,s).

Qp, =

ulp(k : a = v)].
cplk : a > t)] « q(5).
s[p(k : a = v)] + c[p(k: a = t)] K cau.

IIp, = I ro: q(4).

rio: ?eclplk:a D v)] < opt.

Figure 10: Database D.

———— (empty)
(D},C) Fe O

————— (empty)
<D1 y C) }"e w}

(deduction-g)

———————— (deduction-g)
(D1,¢) Frju R2c

(D1,¢) F R[p(k : & 3 v)][R/u]

——— (empty)
(Dlyc) }_z ()

(D1,c¢) }-?I’it/u} cp(k : a5 v)]

(descend-o) {deduction-g)

(D1,e)Fec<c

(D1,¢) F(Rryuy clo(k : a 2 v)] K opt

(belief)

Figure 11: A proof tree for (D1,c) F(r/u} c[p(k : a 3 v)] < opt.

are warranted. The EMPTY, AND and DEDUCTION-G are natural
carryovers from classical logic which every interpreter has. The
DEDUCTION-G’ rule, however, is peculiar to MultiLog. This
rule captures the idea that an m-atom is true via deduction
if, and onmly if, the security level, namely [, is dominated by
the database level. Similarly, the BELIEF rule enforces the no
read up policy similar to DEDUCTION-G’, but now via the F™
proof rules. The proof rules DESCEND-O through DESCEND-
¢4 implement the belief function 8 discussed in section 3.2.
In particular, rule DESCEND-O implements the opt visibility,
while DESCEND-C1 through DESCEND-C4 capture cau visibility.
The fir visibility is trivially captured by DEDUCTION-G’ rule.
The provability in any mode p (F*) is equivalent to the general
provability () if the goal G is conjunctive, empty, or a b-atom.
This observation leads to the inclusion of the DEDUCTION-B
rule.

As usual, and as in [21, 20, 4], a proof for (A, u) - G8 is a
tree, called the proof tree, rooted at (4, u) ¢ G with internal
nodes that are instances of one of the above rules, and with
leaf nodes that are labeled with the figure EMPTY. The height
of a proof is the maximum of the number of nodes in all the
branches in the proof tree, and the size of a proof is the number
of nodes in the proof tree.

Example 5.2 Consider the database D, in figure 10, and
query rig. For this query, let us assume that the database is
at level ¢. The procedure succeeds in constructing a successful
proof tree (shown in figure 11), hence a proof. Observe that
the leaf nodes are instances of the proof rule EMPTY, indicating
a successful proof as defined in section 5.4.

6 MultiLog Front-end for CORAL

We now present a MultiLog front-end architecture for CORAL
deductive database. While this front-end can be viewed
as an implementation scheme for MultiLog, a more direct
implementation is also possible. As we noted earlier, a detailed
discussion on the model theory and fix-point characterization
of MultiLog and their equivalence to the operational semantics

117

presented here may be found in [14]. The front-end has the
following architecture.

6.1 Reduction to CORAL

The reduction proceeds in three steps. First, we break the
molecular formulas into atomic conjunctions and bring the
program to disjunctive normal form. Then the resulting
program is encoded into a CORAL program by applying a
suitable translation function 7 that incorporates the user’s
clearance level into the translated program too. Then, the
query is executed on the encoded program by adding the
MultiLog interpreter that augments the CORAL interpreter
with the rules implementing the additional proof rules (the
proof predicates) of MultiLog. As far as the users are
concerned, the results are still given as a set of binding to
the query variables, and hence the reduction process and the
use of CORAL as a back-end remain transparent to the users.

We are now ready to define an algorithm to reduce every
MultiLog program to CORAL. This requires us to develop a
translation function 7 that will map every MultiLog expression
to CORAL expressions. We proceed as follows.

Given any MultiLog expression ¢, its encoding into CORAL,
denoted ¢*, is given by the following recursive transformation
rules. In the following, 7 is an identity function on the terms
and symbols in MultiLog.

¢ Encoding of complex formulas:
- 7(A « Bi,...,Ba) = 1(A) + 7(A(B1,w), ...,
T(A(Bm, u))
o Encoding of atomic MultiLog formulas (given case by
case):
— r([p(k:a 5 v)]) =rel(p, k,a,v,¢,1).
- 7(l[plk:a 5 v)] € m) = bel(p, k,a,v,¢,l,m).
- 7(p(a1,...,a.)) =plai,...,an).
— 1(level(l)) = level(l).
— 7(order(l, h)) = order(l, h).

L), dominate(L, H).
H), —order(L, H).
p

a1 dominate(X, Y) < order(X, Y).

a; dominate(X, X) + level(X).

a3 dominate(X, Y) + order(X, Z), dominate(Z, Y).

as bel(P,K, A V,C H,fir) «rel(P, K, A, V, C, H).
as bel(P, K, A, V, C, H, opt) «+ rel(P, K, A, V, C,

as bel(P, K, A, V, C, H, cau) «+ rel(P, K, A, V, C,

ar bel(P, K, A, V, C, H, cau) + order(L, H) -ﬂrel(, K,
as bel(P, K, A, V, C, H, cau) « rel(P, K, A, V', C’, H),
as bel(P,K, A, V,C, H cau) « rel(P, K, A, V, C,

H), -rel(P, K, A A\ C’ L), dominate(L, H), dominate(C, C).

A, V', C H), bel(P, K, A, V, C, L, cau).
rel(P, K, A, V, C, L), dominate(L, H), dominate(C’, ().

Figure 12: MultiLog Inference Engine.

Encoding of reduction expressions (given case by case):
— 7(A(B,w)) = 7(B) if B is a p-, I-, or h-atom.
- 7B, w) =7(B), Tl <u),T(c<v) if B=Iplk:a S

v)), or B=1pk:a S v)] < m.
— 7(l < h) = dominate(l, h).

6.2 The MultiLog Engine

Since CORAL has a classical inference engine, we must
augment provability in CORAL with MultiLog provability
relations so that together they achieve MultiLog functionality.
Since the rules EMPTY, AND and DEDUCTION-G are part of
CORAL engine, we enccde most of the remaining rules and
add to every program as a set of axioms A. Hence a reduced
database A, is a pair (7(A), A). We chose to implement the
set of axioms A directly in CORAL as shown in figure 12
since this set is an invariant for every reduced program. It
may be noted here that the axioms contain negation, while the
programs do not, and that the axioms are actually stratified.
This should not be confused with programs with negation as
the axioms only implement the MultiLog inference engine.

Notice that the mapping for the translation from the
MultiLog proof rules to the axioms in the inference engine
is not one to one. Apart from the comments above, we
also do not implement an axiom for BELIEF, DEDUCTION-G’,
and DEDUCTION-B. The reason for this deviation is that the
implementation of BELIEF and DEDUCTION-G’ are part of the
encoding process through A where we add two subgoals of the
form ! < u and ¢ < u for every m- and b-atom in the body of
a clause (i.e., queries). The reason for this approach is that we
do not model users and their clearances as first class entities
in the database and hence, the level of the database we are
interested in must be derermined at the compile time since
the reduced CORAL program cannot enforce the user specific
view of the database. The rule DEDUCTION-B is a by product
of the encoding style and the CORAL functionality.

It is easy to establish the correctness of the reduction
through the following theorem.

Theorem 6.1 (Correctness of Reduction) Let {A,u) be
the database A at level u, and 7(A4) be its encoding in CORAL.
Let M be the model for the reduced database A, = (1(A), A).
Then

(A,u) F¢ G <=> M = 7(G)[6]
for any MultiLog goal G.

Proof Sketch: By showing that if the proof tree ir. MultiLog
has height %, then the goal 7(G)[6] is computed at step k by
the fix-point operator T 4,. for A, and showing that the model

M= lfp(TA,).

It is somewhat easy to make the observatior. that for
any MultiLog program A = (A, X, 11,Q), if the A and ¥
components are empty and the @ component do not contain
any m- or b-atoms, A degenerates into a Datalog program.
In this case, the proof trees generated by the interpreter for
any successful proof will contain instances of the proof rules
EMPTY, AND, and DEDUCTION-G which are exactly like classical
proof trees for Datalog. The following proposition follows
naturally.

Proposition 6.1 (Extension) Let H* be the proof predicate
for Datalog, and P be a Datalog program. Then for any
Datalog goal G we have

P H Glf] <= (4,u) - G{¢]

where A =
system).

Proof Sketch: By showing that the proof rules for F* is a
subset of - and that the proof trees are identical and yield
identical bindings for G, i.e., 8 = ¢.

(0,0,P,{«~ G}) and u is any user level (perhaps

7 MultiLog System Implementation

Issues

It is perhaps desirable to avoid any mention of the security
level of the data elements or the tuples; or the clearan:e level of
users altogether and present an illusion of a classical relation to
users. This is probably the motivation for the works reported
in [7, 16, 27] where the authors avoid any mention of the
attribute or the tuple classification altogether. Th:s can be
achieved in MultiLog by inserting don’t care variables “” in
place of missing level information in formulas.

‘We have not incorporated the filter function o discussed in
[12] in relation to inter instance integrity for several reasons.
Firstly, it is still unclear if it makes any sense in a lozic based
framework such as ours. As we pointed out in section 3, the
inheritance of null values gives rise to the unwanted property
of surprise stories. We believe that Jajodia and Sandhu
incorporated this aspect in their model for technical reasons
only as it was unavoidable in their framework. Secondly, we
have only considered inheritance of tuples from lower level

118

(AQuyg IR (A,u) o c X [g]

(FILTER) (A,u) o Rlp(k - a S v)][¢o)

(A, u) Foos Up(k:a S v))

(A, u)Fe LX< R (A,u) o U <X c[d)]

A lower level inherits part of the higher level tuples with data
elements whose security level is dominated by the current
lower level.

Inherit null only if the data element’s security level domi-

(A, u) Fo Rlp(k : a 5 v)][¢o]
(A,) oo Up(k : a 5 1)]

(FILTER-NULL)

(A, u) Fy bel(p, k,a,v,c,l,m)
(A, u) ko 1 < uld]
(A, u) Fgo Uplk:a S v)]<m

(USER-BELIEF)

nates the current lower level.

Just copy the proof for bel rule if the depth of b-atom is
dominated by wu.

Figure 13: Additional rules for MultiLog proof system to incorporate filtering, filtering with null and user defined belief

function.

to upper levels in different modes of belief. If we were to
accommodate this feature, a similar approach may be adopted
to inherit formulas in the reverse direction. This extension can
be handled orthogonally. To give an idea, the rule FILTER in
figure 13 can be used to achieve this functionality'®.

A final reason for not allowing the filter function is as
follows. Consider the relations in figures 7 and 8 corresponding
to the optimistic and cautious view of the Mission relation at
level C. Notice in particular that the tuples ¢4 and ¢5 contain
null values. These tuples are the result of the application
of the above mentioned filter function as these tuples have
migrated from a higher security level to C. Now, if we
simultaneously allow filtering and molecular programming as
a syntactic variant of atomic programming, we are faced with
an implementation problem if we are to keep the current proof
system. Consider the proof for

{4, c) F c[mission(phantom : starship 5 phantom,
objective E) X; destination 5 Y)),

or

(4, c) - c[mission(phantom : starship 5 phantom;
objective Lt X; destination 5 Y)] < cau,

or the version

{4, c) + c[mission(phantom : starship — phantom;
objective ~ X;destination = Y)] < opt

using don’t care variables as discussed above. All these queries
fail as the atomic conjunctions fail due to non-availability of
objective and/or destination information. Since we do not
have the filter function'®, our current system does not fail for
such reasons as these tuples are not supported in our model
and are never a possibility. But if we were to support both
inter instance integrity and molecular programming, we can
proceed by adding one more proof rule FILTER-NULL for the

181n fact, we will have to do much more. In addition to this rule
we will have to make sure that the rest of the tuples get inherited
only if the keys of the corresponding tuples do so too. We will also
have to worry about the effect of this inheritance on the belief modes
and the notion of subsumption discussed in [12].

16This means our databases do not satisfy the inter instance
integrity discussed in [12] and we do not think it is detrimental to
our system. But if needed we can incorporate this feature without
any trouble as discussed in this section.

119

filter function as shown in figure 13.

For the sake of simplicity of presentation, we have also
assumed single attribute keys throughout this paper. This
restriction can also be relaxed in an actual implementation
without much difficulty. An F-logic [18] like approach may

be adopted to allow set values of the form I[p(k : a -5 v)] for
key attributes while enforcing functionality requirement on the
others, and by adjusting the proof rules accordingly.

A final note about the possibility of user defined belief
function in MultiLog. Such user tailored function is always
possible. This can be achieved by simply defining rules using
a distinguished predicate, say bel, with a predetermined list of
arguments and associated meanings. Then, we could proceed
to add a proof rule USER-BELIEF to copy this predicate as a
proof for a b-atom as shown in figure 13.

It should be pointed out here that this approach to user
defined belief function is robust. That is, it does not pose
any security threat to the system and does not break down
the protocol. This is simply because the provability, and thus
the satisfaction in interpretation structures, of m-atoms stays
unchanged.

8 Conclusion

To our knowledge, MultiLog is the first logic based query
language for MLS databases. It provides support for multiple
belief models and ad hoc belief reasoning. It is free from
security breach such as surprise stories identified in this paper.
It also supports the possibility of tailoring the belief functions
according to the application needs making it incremental.

We have shown that MultiLog is a natural extension of
Datalog. The scheme presented here for the implementation
of MultiLog based on rewriting into CORAL has been shown
to be consistent. Several implementation issues have also
been discussed. While it is possible to write programs in
Datalog that simulate the MultiLog behavior, such programs,
nonetheless, are Datalog programs and does not provide the
level of abstraction MultiLog does. In such programs, users
must apply the transformation function 7 in their mental
model of the database and be very judicious. Moreover, insuch
programs the multilevel abstraction is lost or hidden making
it difficult to reason with the program and debug.

While this paper deals with the implementation aspects of
MultiLog, and the model for a parametric belief function, the
theoretical foundations of MultiLog have been developed in
[14] where we present a sound and complete proof procedure
with respect to the model theory and fix point semantics
of MultiLog. We utilized a crucial connection between the
concept of inheritance in object-oriented systems and the views
at different levels in a MLS database. This connection helped
us to develop the logical semantics presented here and in
[14]. We believe Cuppens’ difficulty in developing a complete
axiomatization could have been removed if this connection was
established.

As future research, we would like to investigate further the
issues raised in section 7. We also plan to run a comparison
with existing relational MLS implementations and MultiLog.
These are some of the issues we seek to investigate in the
immediate future.

Acknowledgment: Research supported in part by a grant
from the Computer Science Department, Mississippi State
University, USA. The author would like to thank Durriya Meer
of Wright State University, USA for giving helpful comments
to improve the presentation of the initial version of the paper.

References

[1] D. E. Bell and L. J. La Padula. Secure computer systems:
Unified exposition and multics interpretation. Technical
Report ESD-TR-75-306, The MITRE Corporation, Bed-
ford, MA, March 1976.

P. Bonatti, 5. Kraus, and V. S. Subrahmanian. Founda-
tions of secure deductive databases. IEEE Transactions
on Knowledge and Data Engineering, 7(3):406-422, 1995.

M. Bugliesi. A declarative view of inheritance in logic
programming. In K. Apt, editor, Proc. Joint Int.
Conference and Symposium on Logic Programming, pages
113-130. The MIT Press, 1992.

M. Bugliesi and H. M. Jamil. A logic for encapsula-
tion in object oriented languages. In M. Hermenegildo
and J. Penjam, editors, Proceedings of the 6th Interna-
tional Symposium on Programming Language Implemen-
tation and Logic Programming (PLILP), pages 213-229,
Madrid, Spain, 1994. Springer-Verlag. LNCS 844.

M. Bugliesi and H. M. Jamil. A stable model semantics
for behavioral inheritance in deductive object oriented
languages. In G. Gottlob and M. Y. Vardi, editors, Pro-
ceedings of the 5th International Conference on Database
Theory (ICDT), pages 222-237, Prague, Czech Republic,
1995. Springer-Verlag. LNCS 893.

K. S. Candan, S. Jajodia, and V. S. Subrahmanian.
Secure mediated databases. In ICDE Proc., pages 35—
55, 1996.

F. Cuppens. Querying a multilevel database: A logical
analysis. In Proc of the VLDB Conference, Mumbai,
India, August 1996.

D. E. Denning, T. F. Lunt, R. R. Schell; M. Heckman,
and W. R. Shockley. A multilevel relational data model.
In Proc. of the IEEE Sympostum on Security and Privacy,
pages 220-234. IEEE Computer Society Press, 1987.

[9] D. Chimenti et. al. The LDL system prototype. IEEE
Journal on Data and Knowledge Engineering, 2(1):76-90,
1990.

(3]

[4]

(5]

(6]

(8]

10)

[11]

(12]

[16]

(17]

18]

(19]

(20]

[21]

(22]

23]

(24]

[25]

(261

[27]

120

S. Jajodia, P. Samarati, and V. S. Subrahmmanian. A
logical language for expressing authorizations. In Proc.
IEEE Symp. on Security and Privacy, peges 31-42,
Oakland, CA, May 1997.

S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. In SIGMOD Proc., pages 474-
485, 1997.

S. Jajodia and R. Sandhu. Toward a multilevel secure
relational data model. In Proc. of the Conf. ¢cn Manage-
ment of Data, pages 50-59, Denver, CO, May 1991. ACM
Press.

H. M. Jamil. Implementing abstract objects ‘with inher-
itance in Datalog™®8. In Proceedings of the 23rd Inter-
national Conference on Very Large Datebases (VLDB),
pages 56-65, Athens, Greece, 1997.

H. M. Jamil. A logical foundation for mls deductive
databases. Technical report, Department of Computer
Science, Mississippi State University, USA, November
1998. Submitted for publication.

H. M. Jamil and L. V. S. Lakshmanan. A declarative
semantics for behavioral inheritance and conflict resolu-
tion. In John Lloyd, editor, Proceedings of the 12th Inter-
national Logic Programming Symposium, pages 130-144,
Portland, Oregon, December 1995. MIT Press.

N. A. Jukic and S. V. Vrbsky. Asserting beliefs in mls
relational models. In Sigmod Record, pages 30-35, Ithaca,
NY, 1997. ACM Press.

V. Kessler and G. Wedel. Autlog — an advanced logic of
authentication. Manuscript.

M. Kifer, G. Lausen, and J. Wu. Logical Foundations for
Object-Oriented and Frame-Based Languages. Journal of
the Association of Computing Machinery, 42(3):741-843,
July 1995.

T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman,
and W. R. Shockley. The seaview security model. IEEE
Transactions on Software Engineering, 16(6):593-607,
1990.

D. Miller. A Logical Analysis of Modules in Logic
Programming. Journal of Logic Programming, 6(1/2):79-
108, January/March 1989.

L. Monteiro and A. Porto. Contextual Logic Program-
ming. In 6th ALP Inil. Conf. on Logic Programming,
1989.

G. Pernul, W. Winiwarter, and A. M. Tjoa. The
deductive filter approach to mls database proto:yping. In
Proc. of the 9th Annual Computer Security Agplications
Conference, Orlando, FL, December 1993.

G. Pernul, W. Winiwarter, and A. M. Tjoa. The entity
relationship model for multilevel security. In Proc. of the
12th Intl. Conf. on Entity-Relationship Approach, Dallas,
TX, December 1993.

K. Smith and M. Winslett. Entity modeling in the MLS
relational model. In Proc. of the 18th VLDB Conference,
pages 199-210, Vancouver, BC, August 1992.

A Spalka. Fundamental forms of confidensiality in
deductive databases. Manuscript.

W. Winiwarter. Why is deduction required for database
systems ? - some case studies. In Proc. of the 2nd Data
Engineering Forum, Tokyo, Japan, November 1995.

M. Winslett, K. Smith, and X. Qian. Formal query lan-
guages for secure relational databases. ACM Transactions
on Database Systems, 19(4):626-662, December 1994.

