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Abstract 

It is envisaged that the application of the multilevel security 
(MLS) scheme will enhance flexibility and effectiveness of 
authorization policies in shared enterprise databases and 
will replace cumbersome authorization enforcement practices 
through complicated view definitions on a per user basis. 
However, as advances in this area are being made and ideas 
crystallized, the concomitant weaknesses of the MLS databases 
are also surfacing. We insist that the critical problem with 
the current model is that the belief at a higher security level is 
cluttered with irrelevant or inconsistent data as no mechanism 
for attenuation is supported. Critics also argue that it is 
imperative for MLS database users to theorize about the belief 
of others, perhaps at different security levels, an apparatus 
that is currently missing and the absence of which is seriously 
felt. 

The impetus for our current research is this need to provide 
an adequate framework for belief reasoning in MLS databases. 
We demonstrate that a prudent application of the concept of 
inheritance in a deductive database setting will help capture 
the notion of declarative belief and belief reasoning in MLS 
databases in an elegant way. To this end, we develop a function 
to compute belief in multiple modes which can be used to 
reason about the beliefs of other users. We strive to develop a 
poised and practical logical characterization of MLS databases 
for the first time based on the inherently difficult concept of 
non-monotonic inheritance. We present an extension of the 
acclaimed Datalog language, called the MultiLog, and show 
that Datalog is a special case of our language. We also suggest 
an implementation scheme for MultiLog as a front-end for 
CORAL. 

Key Words: MLS databases, belief assertion, reasoning, 
inheritance and overriding, deductive databases. 

1 Introduction 

Research into multilevel secure (MLS) relational models has 
intensified in recent years as defense and corporate database 
applications demand more flexible and fine grain, yet, effective, 
authorization protocols for increased sharing of knowledge 
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[8, 12, 19, 24, 271. Traditional ways of defining fine grain 
authorization were to create complicated views on a per user 
basis that essentially limited access to an entire column in a 
relation in an all or nothing fashion. Thus authorization at 
the individdal data level could not be defined easily. 

Multilevel secure relational models have been around for 
some time and have attracted significant attention from 
established academician and researchers. Prototypes and 
commercial MLS databases are being built although a clear 
consensus on the gross features is yet to be reached. It turns 
out that the MLS model has very stringent and complicated 
security policies and capturing all these policies has proven 
to be very difficult. However, the abundant recent research 
into MLS relational databases shows that MLS policies are 
well suited for sensitive defense and corporate database 
applications in a natural way. Research has also established 
that the model is effective and outperforms current relational 
authorization principles for such applications. Generally, 
according to this view, users with a security clearance level 
c would be able to access only the data that are equal 
or lower in security classification than c. This view of 
data and users is in perfect agreement with the traditional 
view of corporate knowledge and administrators’ control on 
such knowledge. However, the simplicity of the model 
has been found to be deceiving and the implementation 
of the apparently simple concept has demanded significant 
investigations and development. 

Recent research shows that users in the MLS model 
potentially have a cluttered view and ambiguous belief of 
data [16]. The extraction process of knowledge and belief 
about data from such databases is manual and error prone. 
Ad hoc knowledge extraction is quite an undertaking, and 
understanding what others believe is not easily possible. 
Critics argue that it is imperative for users to theorize about 
the belief of other users at different levels. Current models, 
unfortunately, do not provide any support to this end. The 
aim of this research is to address some of these issues that have 
been identified as bottlenecks for contemporary proposals. 
In the following sections, we expose the limitations of the 
representative proposals using an example that we adapt from 
the literature. We suggest possible functional enhancements 
and strive to develop a logic based query language, called 
MultiLog, for MLS databases. 

Instead of developing yet another language, in this paper 
we extend the acclaimed Datalog language syntactically, define 
an operational semantics, and then explain the functionality of 
MultiLog by rewriting it in a variant of Datalog - i.e., CORAL. 
We report that while we view the current proposal as an 
implementation framework for MultiLog, a more theoretical 
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treatment of MultiLog is possible [14] that gives MultiLog the 
status of a query language in its own right. 

1.1 Outline of the Paper 

We have planned the presentation of the current research as 
follows. We first present a brief introduction to multilevel 
relational model in section 2. We refrain from presenting 
a detailed discussion on the MLS model for the sake of 
conciseness and in order to focus our attention to the 
development of a belief model and a declarative query 
language. Interested readers are referred to [12] and [16] for 
an eloquent discussion on MLS relational models and belief 
assertion in MLS models respectively. Then in section 3, 
we expose the limitations of well known and representative 
MLS proposals in the literature. We pinpoint the weaknesses 
of these proposals espec:ially with respect to belief models of 
users. In this section, we also discuss a possible belief model 
on intuitive grounds and introduce the idea of a parametric 
belief function. Section 4 discusses contemporary research 
and identifies the contributions of MultiLog in the light of 
these proposals. We develop the syntax and semantics of 
MultiLog in section 5. The semantics is given by developing 
the notion of a simple and consistent database, and by giving 
an operational semantics of MultiLog for such databases. 
A reduction semantics is also presented in section 6 which 
serves as the implementation framework for our language. 
We prove that the two semantics are logically equivalent and 
consistent. We then discuss several implementation related 
issues in section 7, some of which remain part of our future 
investigation. We summarize and conclude in section 8. 

2 The Multilevel Relational Data 
Model 

In this section, we present a very brief introduction to the 
MLS relational model for the sake of completeness. Multilevel 
relational model is shaped after Bell-LaPadula security model. 
In this security model, data are called the objects and processes 
or users are called subjects. Every object is assigned a security 
classification, and every subject is assigned a clearance. The 
security classification of objects and clearances of subjects is 
collectively referred to as access classes (or levels). An access 
class has two components - a hierarchy of levels (e.g., Top 
Secret (T), Secret (S), Classified (C) and Unclassified (U)‘), 
and an unordered set of categories (e.g., NATO, Army, Navy, 
etc.). Access classes are p.artially ordered in a lattice such that 
given two access classes ci and cz, ci 2 cz if, and only if, the 
hierarchical component of cl is greater than or equal to that of 
cz and the categories in c:, is a superset of those in ~2. In this 
case, we say that level cl dominates level cz. For simplicity, we 
will drop the category components of access classes throughout 
this paper without the loss of any generality. 

The restrictions imposed by Bell-LaPadula model may be 
summarized as follows: 

1. A subject is allowed to have read access to an object if the 
subject has a clearance that dominates the classification of 
the object. This is called the simple security property. 

2. A subject is allowed a write access to an object only 
if the subject’s cleara,nce is dominated by the object’s 
classification. This is known as the *-property. 

‘We may assume that level T is higher in security cla.Mication 
than level S, denoted T > S. ‘We also aSsume that, S > C, and finally 
c > u. 

A discussion on the implications of these properties maty be 
found in [12]. But it is important to mention hem that these 
properties are necessary but not sufficient for effecl,ive security 
enforcement. 

Bell-LaPadula restrictions imply that the subjec:ts at differ- 
ent clearance levels see different versions of a multilevel rela-, 
tion. For example, a user with a clearance level c will see only 
those data that have classifications dominated by c. We will 
discuss the views at different levels later in the next section 
using an example. 

Formally, a multilevel relation (similar to classic:1 relations) 
consists of two parts: scheme and instances, defined as foIllows: 

Definition 2.1 (Scheme) Let AI, . . , A, be da!a attribute 
names, Cl, . . , C, be classification attribute names for eac:h of 
the data attributes, and TC be the tuple-class attribute. Let 
the domains of each data attribute Ai be Di. Let the domain 
of each C; be specified by a range [Li, Hi] such that it defines 
a sub-lattice of access classes ranging from Li up to H;. let the 
domain of TC be the range [Zub {Li : i = 1,. . , r,.}, Zub{H; : 
i = l,..., n}]. Then R(AI,CI,AZ,CZ ,..., A,,C,:,TC) is a 
multilevel relation scheme. 

The classification attributes (CS) in a scheme S registers 
the security classification of the attribute values, while the 
tuple classification TC registers the access class c where the 
tuple was inserted/updated. In general, a user is allowed to 
see the entire tuple (including TC) if the user’s clearance level 
dominates the tuple classification c. 

Definition 2.2 (Instance) Let R(AI,CI,AZ,CG,. ..,. A,, 
C,,TC) be a multilevel relation scheme. Then: a multi- 
level relation instance r is a set of ordered tuples of the form 
(al,cl,a2,c2 ,... ,an,cn,tc) such that each ai ED;, or a; = I, 
and tc = lub{ci : i = l,.. . ,n}. If ai # I then ci E [L;,l&]. 
Also, ci # I for any a;. 

Definition 2.3 (View at c) Let T be a multilevel relation 
instance over the scheme R(A1, Cl, AZ, CZ, . . , A,, C,, TC). 
Then, the view at access class c is a relation instance rc derived 
from r such that rc is a set of ordered tuples of the form 
(a1,c1,az,c2 ,... ,an,cn,tc) where each ai E D;, or ai = I, 
c~c~andtc=Zub{c;:i=l,...,n}. 

In a view at access class c, for every tuple t E T, :[Ai] is in 
rc if, and only if c > t[Ci], otherwise t[Ai] = I in T,, i.e., when 
c I tp,]. 

Multilevel relations are required to satisfy several integrity 
properties. We will discuss these properties in relation to 
MultiLog in definitions 5.3 and 5.4. We, however, :.ntroduce 
the notion of apparent primary keys in this section. Since 
multilevel relations have different instances at different access 
classes, the notion of keys becomes clouded because a relation 
instance is now a collection of sets of tuples rather than a 
single set of tuples. The user specified primary key cannot be 
used as the primary key anymore. Consequently, the primary 
key is known as the apparent primary key, and is denoted by 
AK. The classification of AK is denoted by CAK. It is easy 
to show that in multilevel relations, AK, CAK, Ci -+ A; holds 
for every data attribute Ai. As such, the primary key of a 
multilevel relation can be defined as AK U CAK U CR where, 
CR is the set of classification attributes for data attributes not 
in AK [12]. Figure 1 shows an example of a multilevel relation. 

‘Least upper bound. 
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3 Belief Models in MLS Databases 

Consider the following example adapted from Jukic and 
Vrbsky [16]. This example exposes some of the difficulties 
faced by users in contemporary MLS databases trying to 
form a belief about the data. The apparent primary 
key [12], Starship, of the relation Mission is underlined. 
Note that the relation satisfies the functional dependency 
AK, CAK, Ci + Ai for all attribute Ai in the scheme of 
M&eon3, where AK is the apparent key (i.e., Starship), CAK 
is the security classification of the apparent key, and C; is 
the security classification of the attribute A;, and thus satisfy 
the polyinstantiation integrity [12]. Also notice that tuples 
t4 and t5 are possible through a series of updates if required 
polyinstantiation [12] is enforced. 

Atlantis 
Voyager 
Phantom 
Phantom 
Atlantis 
Atlantis 
Voyager 
Falcon 
Eagle I 

Objective Destin 
Shipping S Pluto s 
Diplomacy U Vulcan U 
Swing S Mars U 
Swing S Omega U 
SUPPlY S Venus S 
Diplomacy U Vulcan U 
Diplomacy U Vulcan U 
Training U Mars U 
Piracy U Venus U 
Patrolling U Degoba U I 

TC 
S 
S 
S 
S 
S 
C 
U 
U 
U 
U 

Figure 1: MLS relation Mtsse’on(Startship, Cl, Objective, 
C2, Destination, CS, TC). 

The interpretation of the above relation is obviously less 
than simple and there exist many opinions. This is partly 
because the interpretation is mostly application or user 
dependent. Jajodia and Sandhu [12] define interpretation at 
a given level in terms of visibility rules and classify visible 
tuples as true, or coweT stories. The following query in the 
framework of [12] would produce the entire M&-ion relation 
when submitted by an user with a S level clearance. It will, 
however, reduce the relation in figure 2 if submitted by a U 
level user r 

select * 
from mission 

Figure 2: U level view of Mission. 

In contrast to the above, a C level user’s view is the relation 
in figure 3. We point out here that the tuples t4 and t5 do 
not subsume each other as discussed in [12]. Subsumption 
helps clear the unwanted and irrelevant tuples while hiding 

3Note that Tid is not part of the scheme. We use it for the 
convenience of reference. 

4The tuples identified with asterisk subsumes [12] other tuples in 
the view. 

the existence of higher level tuples. Ordinarily a null value 
in a tuple will show up only if part of a lower level tuple 
is updated by a higher level user who possibly left the key 
classification unchanged. This will force polyinstantiating the 
database to hide the higher level update from the lower level 
users. However, the lower key classification that remained as 
part of the higher level tuple will now force introduction of 
null values as the key remained visible to a lower level user. 
Fortunately, the nulls will be subsumed (in most cases) by 
the lower level tuple with non null values. But if the lower 
level tuple is now deleted, and the key classification of the 
higher level tuple stays unchanged, a tuple with null values 
will surface as it did in the case of the tuples t4 and t5. 

Tid ) Starship ( Objective ) Destin 1 TC 
to I Phantom U I I U I Omega U I C 

Figure 3: A C level user view of the Mission. 

It is our contention that such tuples compromise the security 
of the MLS databases, perhaps due to unawareness or due to 
intentional malice on the part of the higher level user. The 
point here is that current models do not prevent this from 
happening. In this instance, the C level user knows that a 
cover story has been given to the U level user but fails to 
determine the cover story. Furthermore, she now knows that 
she was also given a cover story by a higher level user. To 
our knowledge, this phenomenon was not been discovered in 
any earlier research. We call tuples such as t4 and t5, surprise 
stom’es. 

However, it is easy to observe that forming an opinion 
about the visible data remains the responsibility of the user. 
Users proceed to determine the meaning of tuples by making 
extensive comparisons with other tuples. Only after they 
perform this extra step can they know whether the tuples 
are cover stories or real tuples. We maintain that it is still 
unclear as to what to make of the lower level true tuples or the 
tuples with null values that flow from higher levels, the surprise 
stories. Should a user believe such tuples or ignore them? Is 
it really necessary to assume that just because a tuple was 
contributed by a lower level user it is useless, independent of 
the existence of a higher level tuple that possibly contradicts 
the lower level tuple? There has been no simple answer to 
these questions. 

Tid Strrwbip Objeetiva Destin 

t1 Avenger S Shipping s Pluto s 
t2 Atlantis ucs DiplomDcy “CS Vulcan WCS 
t3 Voyager us Swing S Mars US 
*A Phantom us SDYhK u-s omcaa “S 

t: Phantom CS sup&; c-s Venus c-s 
t3 Voysger US Training u-s Mars US 
t9 Falcon u-s Piracy U-S “enua U-S 
t10 Eagle ” Patrolling U Degoba ” 

-1 TC 
s 

ucs 
S 
U-S 
S 
S 
C-S 
U-S 
U-S 

u 

Figure 4: Jukic and Vrbsky’s view of Mission 

Jukic and Vrbsky [16] addressed this issue of belief forma- 
tion in [16]. They, however, use a richer set of security labels 
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in which they encode the visibility rules and decide the status 
of a tuple at a given level. They would represent the Mission 
relation as shown in figure 4. 

The interpretation assigned to each tuple in Mission in 
their framework is shown in figure 5. We consider this 
interpretation to represent somewhat of a departure from 
Jajodia and Sandhu, but it actually provides a framework for 
asserting beliefs of the users directly. 

-- 
Tid 
t1 

tz 

t3 

:; 

:; 

t8 

19 

ho i 

-- 
U level 

invisibG 
true 
invisible 
true 
invisible 
invisible 
invisible 
true 
true 
true 

C level 
invisible 
true 
invisible 
irrelevant 
invisible 
invisible 
true 
irrelevant 
irrelevant 
irrelevant I 

S level 
true 
true 
true 
couef story 
true 
true 
cover story 
cover story 
mirage 
irrelevant 

Figure 5: Interpreta,tion of tuples at different levels 

3.1 Dynamic Belief Reasoning 

Our contention is that both these models of belief are 
inadequate and somewhat stringent. The Jajodia-Sandhu 
model is too basic where users are left to discover the truth. 
On the other hand, Jukic-Vrbsky model is too restrictive and 
has only fixed interpretations. Users in these frameworks really 
do not have any reasoning capabilities as the interpretations 
are already given. We believe a middle ground is warranted 
where the user is given the choice to reason and theorize 
about the beliefs of others and decide how she wants to believe 
information visible to her. 

In this direction, we assert that users should be given 
linguistic tools to view data as well as to construct meaning 
of the visible data. For example, the user may take a firm 
view of the data and insist that whatever is created at her 
security level only are correct and believable data. Thus lower 
level data are of no value. For example, a firm C level view of 
Mission relation could be as shown in figure 6. 

Figure 6: Conservative or firm view of Mission at level C. 

On the other hand, one :may want to believe the best she can 
in the absence of any info’rmation at her own level, either in 
a monotonic way or in an overriding fashion. The monotonic 
version of the best possibility can be called an optimistic view. 
In this view, an user accumulates all possible data that are 
visible and considers impcortant and thus believes the data. 
An optimistic view of Mission relation is shown in 7 for a C 
level user. Contrast this view with the C level user view in 
Jajodia and Sandhu shown in figure 3. In the optimistic view, 
the TC values become C while in figure 3, it retains the original 
source level information. 

The overriding version of the best possibility is called the 
cautious view. In this view, the visible information at a given 

Tid ) Starship ) Objective 
t4 1 Phantom U 1 I U 

) Destin x?j 
I Omega 

Figure 7: An optimistic view of Mission at :.evel C. 

level that has the highest security classification is retained 
and others filtered out. The fundamental assumption under 
this view is that a higher level information is more relitable 
and the lower level counterpart is a cover story. The table in 
figure 8 presents a cautious view at level C. It is interesting to 
note here that if the security levels form a partial order, and 
not a total order, a cautious view may still have conflicting 
information due to multiple incomparable sources (levels). 
This is reminiscent of the problem in object orientl?d systems 
with multiple inheritance. Consequently, we must settle for 
multiple models and associated unpredictability. 

The process of computing the cautious view presented in 
figure 8 from the C level view in figure 3 deserves some 
additional explanations. Note that tuple t4 does not subsume 
t5 and vice versa. In the cautious view, for every pair of tuples 
u and u such that u[AK] = w[AK], we create a tuple t such 
that for every attribute Ai E R, t[Ai] = u[Ai], t[Ci] = u[Ci] 
if u[Ci] 2 w[Ci], otherwise t[Ai] = v[Ai], t[C;] = v[C’i]. Notice 
that the process of creating t is reminiscent of inheritance with 
overriding in inheritance systems. Here, if a level llomina.tes 
another level, the values at the dominating level ovfarides .the 
values at the lower levels5. Hence, in figure 8, we have tuple 
t5, while t4 is missing. 

Tid ( Starship ( Objective [ Destin 
ts I Phantom C 1 I CII 
ts 

t8 

t9 

ho 

Atlantis 
Voyager 
Falcon 
Eagle 

U Diplomacy U Vulcan U C 
U Training U Mars ‘U c 
U Piracy U Venus CJ c 
U Patrolling U Degoba L ‘7 c 

Figure 8: Cautious view of Mission at level C. 

While we have discussed only three possible view;? of MLS 
data in the foregoing presentation, we recognize the fact that 
other views of the MLS relations are conceivable. In fact, 
Cuppens [7] proposes several such views, and we tl:ust that 
our views subsume all the views he has proposed, namely the 
additive view, the suspicious view and the trusted view. 

3.2 A Parametric Belief Function 

Consider the following query: 

List all starships that are spying on Mars withod any 
doubt. 

5Put it in object-oriented terminologies, lower 
access classes/classifications are treated like superclasses, and the 
higher access classes/classifications are treated like subclases. 
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A possible extended SQL query” is shown below. This is 
assuming that the visibility in all possible ways leads to a 
belief without doubt’. Note specially the simplicity of the SQL 
query below. An equivalent version of the same query using 
the syntax in either [12] or [27] would be far more complicated 
as they do not support belief modes. 

user context u 

select starship 
from mission m 
where mstarship in (select starship 

from mission 
where destination = mars and objective = spying 
believed cautiously) 

intersect 

(select starship 
from mission 
where destination = mars and objective = spying 
believed firmly) 

intersect 

(select starship 
from mission 
where destination = mars and objective = spying 
believed optimistically) 

The preceding discussion demonstrates that a linguistic 
instrument to compute ad hoc beliefs in multiple modes adds 
to the strength of the language. Ad hoc belief computation 
helps reasoning with the beliefs of users and facilitates 
understanding the knowledge base better. It also increases 
the expressibility of the query language. In this section, we 
introduce a parametric belief function for MLS databases as a 
candidate for belief computation model. 

The belief function discussed below assumes that the 
security labels form a partial order and that the set of belief 
modes are finite. This is not an unrealistic assumption and 
nor is it limiting. In fact this is the view almost all proposals 
take in regards to security levels. In the function below, we 
consider the modes we have already introduced in section 3, 
namely the firm (strict belief), optimistic (greedy belief) and 
cautious (conservative belief) modes. We will address the issue 
of adding user defined belief modes in a later section. 

Definition 3.1 Let R be a set of all possible MLS relations, 
R be the scheme of any relation T, S be a set of security 
labels, 5 and < be respectively a partial order and an ordering 
relation on S, and /J = {firm, optimistic, cautious} be a set 
of belief modes. Then the belief function p is defined as 
p : R x S x p + R such that, 

/ One of the following conditions hold: 

- m = firm and t E r and t[TC] = s 

- m = cautious and the following condition 
holds: 

P(r,s,m) = < t 
- 3u(u E r, t[TC] = s,u[TC] 5 

%t[AK,CAK] = u[AK, CAK], and 
Vi(Ai E R and A; $Z AK, 3v(v E 
r, t[Ai, Ci] = v[Ai,CJ, v[TC] 5 s, 
v[AK] = t[AK] and +w(w E r, 
w[AK] = t[AK], w[TC] 5 s, v[C;] 4 
Wil)))). 

t - m = optimistic and t E r and t[TC] 5 s 

61n a syntax that we would like to propose. 
7Notice that the semantics of belief is not the issue here, rather 

the process of assigning semantics is. Also note that the use of SQL 
syntax presented here is just for expository purposes which exactly 
is not our current mission. 

Notice that the above function p will produce the views in 
figure 6 through 8 except the tuples t4 and t5 in figure 7 and 
t:, in figure 8 respectively. We will take up the issue of these 
missing tuples in section 7 again and explain the reason for this 
behavior. But for now, we just remark that by disallowing 
these tuples, we are avoiding the generation of the surprise 
stories identified in this paper that compromises the security 
in MLS databases. Basically, /3 does not implement the filter 
function o in [12] which actually is the source of surprise 
stories. 

4 Contributions of MultiLog and 
Related Research 

The paucity of attempts aimed at developing a logical char- 
acterization for MLS models evidences that MLS deductive 
databases are really at their embryonic state. While there were 
several proposals such as [17, 6, 2, 10, 11, 251 that addressed 
the general issue of authorization in a deductive framework, 
only Cuppens addressed the issue of querying MLS deduc- 
tive databases [7]. The merits and exigencies of a deductive 
metaphor of MLS model is eloquently discussed in [26]. In [22] 
Pernul et al. discuss a prototype developed in CDL [9] show- 
ing that the design process of an MLS relational database, 
and the assignment of security labels to data and clearances 
to users may be significantly enhanced using their prototype 
that is capable of reasoning about the security assignment of 
the data elements. Their deductive filter prototype is based 
on a conceptual model developed in [23]. 

In his proposal [7], Cuppens brings out the inherent 
difficulty of developing a logic based query language for MLS 
databases. Although he did not propose linguistic tools or a 
proof procedure for the lack of a sound axiomatization, to our 
knowledge, this was the first and only attempt at developing 
a truly deductive query language for MLS databases until 
now. While Pernul et al.% 1221 prototyping tool is not a query 
language, it suggests that a natural and seamless integration 
of their tool and a MLS deductive database would result 
in an improved system. In such systems, users will not 
have to apply a transformation function from relational to 
deductive representation of their application and vice versa 
to comprehend and visualize its behavior. It also suggests 
that the uniformity of the system view could be supported 
from conceptual design to implementation, only if a logical 
rendition of MLS model was possible. 

Inspired by such necessity and a rich body of existing 
research in relational counterpart, we make a first-ever attempt 
to develop a query language, called MultiLog, for MLS 
deductive databases in two steps. In this paper, we develop 
a foundation for belief reasoning by providing a parametric 
belief function in the context of MultiLog, and suggest a 
computational framework by translating MultiLog databases 
into Datalog. A similar approach has been taken by Jajodia et 
al [ll] to capture multiple access control policies in databases 
in general. The insight developed in the current research 
serves as the basis for a complete logical synthesis of MultiLog 
which we develop in [14] as an orthogonal extension of the 
work contained in this paper in the direction of F-logic [18]. 
In [14] we present a complete proof procedure, model theory 
and fix-point characterization of MultiLog and show that 
all three characterizations are equivalent. This development 
is significant from a theoretical standpoint, but we do not 
attempt to include these results and associated discussion in 
this paper for the sake of brevity. Complete details may be 
found in [14]. 
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We make a crucial observation that the user views of 
the MLS databases at different security levels is mimetic of 
the notion of inheritance in object oriented systems in a 
slightly elaborate fashion. In both our attempts, we utilized 
this connection and exploited our experience in dealing with 
inheritance in logic based systems [5, 15, 131. The belief 
function presented in section 3.2 incorporates the results from 
our work in [15, 131 and extends the idea here further to cater 
to parametric inheritance. 

Our contributions in this paper may be summarized as 
follows: (i) we propose a F-logic like query language (unlike 
most others) for MLS deductive databases which can be 
directly used to model applications, (ii) we propose a model 
for parametric user belief in MLS databases to facilitate ad 
hoc belief querying and belief speculation, (iii) we provide 
linguistic instruments for belief querying in multiple modes, 
(iv) we support user defined belief modes making it possible 
to tailor the user view as needed, and (v) we show that Datalog 
is a special case of MultiLog. 

5 Overview of MultiLog Language 

The language L of MultiLog is a 7-tuple (P, 7, A, V, S, 5, cl) 
where (i) P is an infinite set of predicate names, (ii) 7 is 
an infinite set of function symbols including the symbol null, 
denoted I, (iii) A is a finite set of attribute names, (iv) V is 
a denumerable set of variable names, (iv) S is a finite set of 
labels intended to denote the security labels in our language, 
(v) 5 is a partial order on the symbols in S that captures the 
idea of the hierarchy of isecurity levels, and finally (vii) ~1 is a 
finite set of symbols for belief modes. The symbols in L are 
pairwise disjoint. 

The terms ‘,T of L are constructed as usual from FU V. Let 
the ground subset of 7 be denoted by 7’ which serves as the 
constants in our language. 

5.1 Formulas and Databases 

There are five types of atoms in our language: m-, b-, p-, l- 
and h-atoms. 

- MLS atoms or m-atoms: Let p be a predicate symbol in P 
of arity n - denoted p/n, a is an attribute name in A, 
v is a term in 7, and s and c are symbols in S U V. 

Then s[p(lc : a s v)] is an m-atoms. Intuitively, an m- 
atom represents a column of a tuple as in MLS relational 
database counterpart where a is an attribute name, 2) is a 
value and s and c are security labels. The label s denotes 
the security level of the predicate p and mimics the tuple 
classification TC in MLS relational model. 

sWe also allow a syntactic variant of m-atoms called an m- 

molecule or m-predicate. An m-predicate has the form s[p(le : ai 2 

~l,...,~lZ 3 v.J,,)] which is equivalent to the atomic conjunction 

s[p(lc : or 2 WI)] A ,.. A s[p(k : a, 2 w,)]. Again, an m- 
predicate may be viewed as a syntactic sugar for classical MLS 
tuples. The corresponding classical predicate representation of 
an m-predicate can be written as p(lc, al, ~1, or,. . , an,vn, cn, 8). 
The only difference with MLS tuples is of course that we include 
attribute names in our atoms/molecules. This approach was also 
taken in (15, 181, etc. The advantage of this syntax is that it gives 
a functional view of predicates and makes the columns position 
independent. In our discussion and examples that follow, we will 
freely use either the atomic or the molecular form as the situation 
demands. 

- Believed atoms or b-atoms: Let s[p(rC : a -$ ?I)] be an m- 
atom and m E p be a mode of belief by a rational agent. 

Then s[p(lc : a s u)] < m is a b-atom. I:rtuitively, ,a 

b-atom says that a rational agent believes p(k : a -% .u) at 
level s in a mode m. 

- Predicates or p-atoms: If p is a predicate symbol in P of 
arity k - denoted p/k, and al,. . . , ak are terms in 7, then 
p(a1,... , ak) is a p-atom. The sense of a p-atom is exactly 
as the classical logic. 

- Level or l-atoms: Let level/l be a distinguishc,d predicate 
symbol in P, and s be a symbol in S U V. Then level(s) is 
an l-atom. An l-atom declares the existence of a security 
level in a database V. 

- Hierarchy or h-atoms: Let order/2 be another distin- 
guished predicate symbol in P, and 1 and h be two sym- 
bols in S U V. Then order(2, h) is an h-atom. Intuitively 
an h-atom asserts that the security level 2 is lower Ithan 
h and that there are no other i such that order(l,i) and 
order(i, h) hold. 

Formulas of L are defined as usual. A literal is eithe.r an 
atom (A) or the negation of an atom (-d). Foilowing the 
custom in logic programming, we only consider the definite 
(Horn) clause fragment of our language. A clause in L is an 
expression of the form A t 231,. . . , & such that A and &s 
are atoms of L. If the consequent of a clause is an m-at,om, 
we call the clause an m-clause. Similarly, we define p-, l- and 
h-clauses. We, however, do not have b-clauses as we do not 
allow b-atoms to appear in the consequent. 

Definition 5.1 (Databases and Queries) A database A, 
or equivalently a program P, in MultiLog is an expression of 
the form (A, 22, lir, Q), where (i) n is a set of I- and h-clauses 
(possibly empty) defining the security levels and ..nducing a 
partial order on the levels, (ii) E is a set of m-clauses that 
define the secured data component of A, (iii) II is a set of p- 
clauses (possibly empty), and finally (iv) & is a set of clauses 
oftheformt&,... , B,, called the queries. 

While the above definition of programs is acceptable, we 
consider a restricted subset of MultiLog programs for reasons 
described below. 

Definition 5.2 (Dependency Graph) Let CZ be a clause 
of the form A c &,...,a,. Let L denote the binary 
relationship depends on. For Cl, we say that A depends on 
Bi, , B,, denoted A L Bi, . , A L &. The transitive 
closure of the relation L with respect to A is called the 
dependency graph of A. 

We require that similar to MLS relational and classical 
relational models, MultiLog database m-predicatl?s satisfy 
several integrity constraints. First, we require that for every 
m-predicate there is a key attribute AK for which the value is 
L. Hence, there must be an m-atom of the form s[l)(/c : a 9 

Ic)]. That is for every m-atom of the form s[p(lc : b 14 v)] in 

a program Pg, we also have s[p(k : a -% k)]. For such atoms, 
k is identified as AK, c as CAK, s as TC, and for all oth.er 
atoms for which k is the key, a is identified as A;, c as C; and 
v as Ai in a fashion similar to Jajodia and Sandhu [12]. 

‘In fact, in [PI . 

114 



Definition 5.3 (Admissible Databases) Let I[ 1 be the 
meaning function of a logic program in the classical sense”. 
Let A = (A, Z, 17, Q) be a MultiLog database. We say A is 
admissible if, and only if, the following conditions hold: 

- for every clause Cl = A t S E A, the dependency graph 
of A does not contain atoms other than h- or l-atoms”. 

- for every clause CZ s A t B E Z: and every security label 
s appearing in A and S, s is asserted by the meaning of 
A, that is level(s) E I[ Al. 

- The meaning of A, i.e., [An , defines a partial order on the 
set of security levels asserted by A. 

We also require that every MultiLog database satisfy the 
core integrity properties defined in Jajodia and Sandhu [12]. 
Hence, we incorporate the following consistency conditions 
from [12] as a natural carry over. For an intuitive explanation 
of these conditions, we refer the readers to [12] and [14]. 

Definition 5.4 (Consistent Databases) An admissible 
database A = (A,E,Lf, &) is called consistent if, and only 
if, the following conditions hold: 

- Entity Integrity: Let AK be the apparent key of an m- 
predicate12. The database A satisfies entity integrity if, 
and only if, for every m-predicate in [C 1 of the form 

s[p(k : a1 3 VI,. . . , a,, “I v,)], the following conditions 
are true. 

- v; E AK + v; # 113. 

- vi, Vj E AK =+ ci = cj, i.e., AK is uniformly classified, 
and 

- v; ‘$ AK + ci y CAK (where CAK is defined to be the 
classification of the apparent key AK). 

- Null Integrity: The database A satisfies null integrity if, 
and only if, for every m-predicate in ([Cl of the form 

s[p(k: al 3 VI,... ,a, “3 v,)], the following conditions 
are satisfied. 

- Vi = 1 + ci = CAK, i.e., nulls are classified at the level 
of the key. 

- We say that an m-predicate of the form s[p(k : 

al ~vI,... , a, “1 vn)] subsumes another m-predicate 

s’(p(k’ : al “j v;, . , a, % vk)] if for every oi, either 
(i) < vi,ci >=< v:,c: >, or (ii) vi # I and vi = 1. 
We also require that there does not exists two distinct m- 
predicates in I[ Z 1 such that they subsume each other. 

- Polyinstantiation Integrity: The database A satisfies polyin- 
stantiation integrity if, and only if, for every m-predicate of 

theforms[p(k:ai%vi,... , a, “1 v,,)] in I[ Zj we have 
for all Vi : ~,CAK,C; + v;. We say that an m-predicate 

s[p(k : ai 3 VI,. . . ,an 3 vn)] satisfies k,C~~,ci + Vi 

if, and only if, there does not exist another m-predicate 

s’[p(k’ : ai “i v:,...,a, “b vi)] in [El such that 
< k,CAK,Ci >=< k,C>K,Ci > and v; #Vi. 

l”Assigns an Herbrand model to a program P. 
“Intuitively, the ground closure of A does not depend on the 

clauses defined in other components of A. 
121n this paper, we assume AK is a one attribute key for the sake 

of simplicity. The case for multi-attribute key is discussed in section 
7. 

131f we assume that the key attribute is attribute al, then ‘~1 # 1. 

Definition 5.5 (Level of Databases) Let A be a consis- 
tent database, and u a user with a clearance c. The database 
A is in level c, denoted (A, c), if the user u with clearance c 
accesses A. 

For the remainder of this paper we assume only consistent 
databases unless specified otherwise. 

Example 5.1 (Encoding Mission in MultiLog) Consider 
tuple tl in figure 1. In MultiLog molecular form, we represent 
tl as a rule (fact) ~1: s[mission(avenger:starship 4 avenger; 
objective 4 shipping; destination 1 Pluto)]. 

5.2 Operational Semantics 

In this section, we discuss the operational semantics of 
MultiLog by presenting a goal directed sequent style proof 
system. This style of proof systems has also been adopted in 
languages such as Miller’s module language [20], Contextual 
Logic Programming [21], SelfLog [3], ORLog [15], etc. 

The proof system is defined as a set of properties for the 
two proof predicates + and tC1. This structure essentially gives 
rise to a two tier proof system. The proof relation I- defines 
the provability of non b-atoms in general and t-‘” defines the 
provability of b-atoms in one of the modes in p, i.e., { cau, opt, 
j%}‘“. In fact, V‘ encodes the belief function p discussed in 
section 3.2, where p can be any of the defined modes of belief. 
However, in some cases, the provability relations t-’ and l- 
coincide and are defined in terms of l-. 

Also in this proof system, goals are proved in the context 
of a user clearance u, called the database level as defined in 
definition 5.5. The context ‘u. may be determined at login 
time or by using a separate authentication procedure, and the 
interpreter may use the clearance level ‘1~ dictated by the user’s 
login id. Using this context, the proof system, in particular, 
makes sure that provability of m-atoms guard against violation 
of Bell-La Padula restrictions, i.e., the simple security property 
(no read up) and the *-property (no write down) [l, 121. 

5.3 Proof Rules 

The proof rules given below has the following general form 
where (A,u) is the database at level u (the user level), and 
conclusion is any goal. The goal is provable at level u if the 
assumptions hold at level ‘1~. However, the application of the 
rule depends on the satisfiability of the associated conditions 
on the right. 

(RULE NAME) 
(A, u) F Assumptions 
(A,u)t- Conclusion 

( Conditions ) 

For the sake of simplicity and without loss of any generality, 
we assume that all molecular atoms are broken down to 
atomic forms by replacing such molecules with the conjunction 
of atomic components and then, if necessary, bringing the 
program to disjunctive normal form by a preprocessor. 

5.4 Remarks on the Proof Theory 

The intuitive interpretation of the inference rules in figure 9 are 
given alongside the rules. However, some additional comments 

14We are assuming here that {cau, opt, fir} are the only belief 
modes in MultiLog. These are shorthand notations for cautious, 
optimistic and firm belief modes respectively. The case for user 
defined belief modes is discussed in section 7. 
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(REFLEXIVITY) 
_ (A, u) t-0 level(l) Reflexive rule for transitive closure of the order relation. The exit rule is covered 

(44tel5l by DEDUCTION-G. 

(A, u) te order& H’) 
(TRANSITIVITY) (A, u) km H' 5 h[e] Recursive rule for transitive closure of the order relation to compute 1 3 h. 

-(A,u)teol~h 

(EMPTY) (4~) tc 0 Empty goal is always true. 

(AN”) (44 ts 81 (44 t.0 92Pl 
(44 tea 91,G2 

Splits the conjunction and proves individually. 

(A, u;, i-;; Ilp(lc : a 4 v)] 
(BELIEF) (A,u) t-g 1 5 u[e] Fires the proof predicate I-“’ and a success indicates I[p(k : a 3 v)] is be..ieved 

(4~) ttlb l[p(k : a 4 v)] <m 
at level 1 with security classification c, and 1 being dominated by U. 

(DEDUCTION-G) 
A’~GEA, 
0 = mgu(d, d’) 
A is p-, h- or l-atom 

Mimics classical deduction for non m-atom goals 

An m-atom goal is provable only if the antecedent 
(44 to wl A’tGEA, of the clause defining the goal is provable ant. the 

(DEDUCTION-G') (.b,u)kb 13 u[eu] 0 = mgu(d, A’) 

A = l[p(k : a s v)] 

database level dominates the security level 1 of - 
(44 I-w A the goal and hence does not violate the no read 

up rule. 

(DEDUCTION-B) 
p = fir or 
B is a non m-atom 

If B is conjunctive, or 0, or /A = fir, provability 
switches to classical deduction. The provabilny in 
these cases does not depend on the belief mode. 

(A,u)t.oR51 
(DESCEND-~) (A,u) F.g R[p(k : a 5 IJ)][o] - 

ldtu) toe Opt l[p(k: a 5 v)] 

(A,u) F-O order(R,l) 

(DESCEND-cl) (4.4 I- rv R[p(k : a 5 v)][u] 

(A, u) tyeu l[p(k : a 5 v)] 

(A,u)t--,R51 
(a,,~) i-0 R[p(k: a 4 v)][u] 

(DESCEND-CS) (A, 4 I-4 b 5 44 

(a,~) Fti l[p(k : a 3 v’)][&4] 

(4 4 tS;$ l[p(k: a s v)] 

(A,u) Fo 1’ 5 1 
(4~) te c 5 bbl 

(DESCEND-CS) (A, IL) I-$ l[p(k : a 5 v)][&] 

(a, u) ts; 1 Ip(k : a 5 v)] 

mgu(< 1, P, k, a >, 
< l’,p, k’, a ~1, 

A’tBEA, 

A’ = l’[p(k’ : a 5 v’)] 

mgu(< P, k a >, 
<p,k’,a >I, 

A’+-GEE, 

A’ = l’[p(k’ : a 3 v’)] 

Z[p(k : a 5 v)] is optimistically 

provable at 1 if p(k : a 4 w) is provable 

at any lower level R, i.e., l- R[p(k : a 5 
VI. 

In the absence of any information at 1, 1 

cautiously believes l[p(k : a 3 v)] only 
if an immediate lower level cauticusly 
believes it. 

The information at level 1 is rejected 
and a lower level information is accepted 
at 1 which has a higher security level c, 
and hence, is more secure. Note that, the 
security label at the lower label cannot 
be higher than 1 itself. 

The information at level 1 is the most 
secured compared to any lower level 
information, if it exists, i.e., has the 
highest security level c. 

(DESCEND-Cd) 
(d, U) te l[p(k : a 4 v)] 1 is the lowest level and hence l[pa:k : 

(A,u) t-7“ l[p(k : a 4 v)] 
( 4R,order(R,l)[O] E A ) 

a 5 v)] is the most secure information. 

-. 

Figure 9: MultiLog proof system. 
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AD, := 

~1 : level(u). 
7-2 : level(c). 
T3 : level(s). 

T4 : OTdeT(U, C). 

T5 : OTdeT(C, S). 

7-6 : u[l)(k : a 3 w)]. 
EDI := T7 : c[p(k : a % t)] t q(j). 

~8 : s(p(k : a -3 u)] t c[p(k : a 4 t)] < cau. 

&D, := TIO : ? c[p(k : a 3 v)] < opt. 

Figure 10: Database DI. 

no, := ( Ts : q(j). 

femotv’l (empty) \ . “I 
(a,4 b-t 0 (Dl,C) te q 

(deduction-g) (deduction-g) 

(DI,c) FR/,, R< c (01,~) I- R[p(k : a; v)][R/u] (empty) 

(descend-o) 
(DI,c) kc 0 

(01,~) t& c[p(k : a 2; v)] 
(deduction-g) 

(DI,c)~,c~c 
(belief) 

(DI,c) k{R/u) c[p(k : a 3 v)] < OPt 

Figure 11: A proof tree for (&,c) I-(R/~) c[p(k : a 4 w)] << opt. 

are warranted. The EMPTY, AND and DEDUCTION-G are natural 
carryovers from classical logic which every interpreter has. The 
DEDUCTION-G' rule, however, is peculiar to MultiLog. This 
rule captures the idea that an m-atom is true via deduction 
if, and only if, the security level, namely 1, is dominated by 
the database level. Similarly, the BELIEF rule enforces the no 
read up policy similar to DEDUCTION-G', but now via the P 
proof rules. The proof rules DESCEND-• through DESCEND- 
~4 implement the belief function /3 discussed in section 3.2. 
In particular, rule DESCEND-• implements the opt visibility, 
while DESCEND-Cl through DESCEND-Cd capture MU visibility. 
The fir visibility is trivially captured by DEDUCTION-G' rule. 
The provability in any mode ,u (P‘) is equivalent to the general 
provability (I-) if the goal B is conjunctive, empty, or a b-atom. 
This observation leads to the inclusion of the DEDUCTION-B 
rule. 

As usual, and as in [21, 20, 41, a proof for (A,u) I- 80 is a 
tree, called the proof tree, rooted at (A,u) l-0 g with internal 
nodes that are instances of one of the above rules, and with 
leaf nodes that are labeled with the figure EMPTY. The height 
of a proof is the maximum of the number of nodes in all the 
branches in the proof tree, and the size of a proof is the number 
of nodes in the proof tree. 

Example 5.2 Consider the database D1 in figure 10, and 
query ~10. For this query, let us assume that the database is 
at level c. The procedure succeeds in constructing a successful 
proof tree (shown in figure ll), hence a proof. Observe that 
the leaf nodes are instances of the proof rule EMPTY, indicating 
a successful proof as defined in section 5.4. 

6 MultiLog Front-end for CORAL 

We now present a MultiLog front-end architecture for CORAL 
deductive database. While this front-end can be viewed 
as an implementation scheme for MultiLog, a more direct 
implementation is also possible. As we noted earlier, a detailed 
discussion on the model theory and fix-point characterization 
of MultiLog and their equivalence to the operational semantics 

presented here may be found in [14]. The front-end has the 
following architecture. 

6.1 Reduction to CORAL 

The reduction proceeds in three steps. First, we break the 
molecular formulas into atomic conjunctions and bring the 
program to disjunctive normal form. Then the resulting 
program is encoded into a CORAL program by applying a 
suitable translation function r that incorporates the user’s 
clearance level into the translated program too. Then, the 
query is executed on the encoded program by adding the 
MultiLog interpreter that augments the CORAL interpreter 
with the rules implementing the additional proof rules (the 
proof predicates) of MultiLog. As far as the users are 
concerned, the results are still given as a set of binding to 
the query variables, and hence the reduction process and the 
use of CORAL as a back-end remain transparent to the users. 

We are now ready to define an algorithm to reduce every 
MultiLog program to CORAL. This requires us to develop a 
translation function r that will map every MultiLog expression 
to CORAL expressions. We proceed as follows. 

Given any MultiLog expression 4, its encoding into CORAL, 
denoted 4*, is given by the following recursive transformation 
rules. In the following, r is an identity function on the terms 
and symbols in MultiLog. 

l Encoding of complex formulas: 

- 7(d t BI,...,&) = T(d) t T(~(&,u)), . . . , 
+@mr 4) 

l Encoding of atomic MultiLog formulas (given case by 
case) : 

- ~(Z[p(k : a 4 v)]) = rel(p, k,a, 0, c, 2). 

- ~(Zb(k : a 3 v)] << m) = bel(p, k,a,v,c,l,m). 
- +(a,... ,a,))=p(al,...,an). 
- r(level(L)) = level(l). 
- T(OTdeT(& h)) = OTdeT(i, h). 
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al 

a2 

a3 

a4 

a5 

a6 

a7 

aa 
a9 

dominate(X, Y) c order(X, Y). 
dominate(X, X) t level(X). 
dominate(X, Y) c order(X, Z), dominate(Z, Y). 

bel(P, K, A, V, C, H, fir) c rel(P, K, A, V, C, H) 
bel(P, K, A, V, C, H, opt) t rel(P, K, A, V, C, L), dominate(L, H). 
bel(P, K, A, V, C, H, cau) t rel(P, K, A, V, C, H), lorder(L, H). 
bel(P, K, A, V, C, H, cau) c order(L, H), lrel(P, K, A, V’, C’, H), bel(P, K, A, V, C, L, cau). 
bel(P, K, A, V, C, H, cau) t rel(P, K, A, V’, C’, H), rel(P, K, A, V, C, L), dominate(L, H), dominate(C’, (3). 
bel(P, K, A, V, C, H, cau) t rel(P, K, A, V, C, H), -rel(P, K, A, V’, C’, L), dominate(L, H), dominate(C, C’). 

Figure 12: MultiLog Inference Engine. 

l Encoding of reduction expressions (given case by case): 

- 7(X(23,‘(~)) = 7-(B) if 23 is a p-, l-, or h-atom. 

- r(A(B,u)) = ~(a), T(Z 5 u), ~(c 3 u) if a = I[p(rC : a 5 

u)], or B = Z[p(L : a S v)] < m. 

- ~(l 5 h) = dominate(Z, h). 

6.2 The MultiLog Engine 

Since CORAL has a classical inference engine, we must 
augment provability in CORAL with MultiLog provability 
relations so that together they achieve MultiLog functionality. 
Since the rules EMPTY, AND and DEDUCTION-G are part of 
CORAL engine, we encode most of the remaining rules and 
add to every program as a set of axioms A. Hence a reduced 
database A, is a pair (T(A), A). We chose to implement the 
set of axioms A directly in CORAL as shown in figure 12 
since this set is an invariant for every reduced program. It 
may be noted here that the axioms contain negation, while the 
programs do not, and that the axioms are actually stratified. 
This should not be confused with programs with negation as 
the axioms only implement the MultiLog inference engine. 

Notice that the mapping for the translation from the 
MultiLog proof rules to the axioms in the inference engine 
is not one to one. Apart from the comments above, we 
also do not implement an axiom for BELIEF, DEDUCTION-G', 
and DEDUCTION-B. The Ireason for this deviation is that the 
implementation of BELIEF and DEDUCTION-G' are part of the 
encoding process through X where we add two subgoals of the 
form 1 5 u and c 4 u for every m- and b-atom in the body of 
a clause (i.e., quer&). Th.e reason for this approach is that we 
do not model users and their clearances as first class entities 
in the database and hence, the level of the database we are 
interested in must be determined at the compile time since 
the reduced CORAL program cannot enforce the user specific 
view of the database. The rule DEDUCTION-B is a by product 
of the encoding style and the CORAL functionality. 

It is easy to establish. the correctness of the reduction 
through the following theorem. 

Theorem 6.1 (Correctness of Reduction) Let (A,u) be 
the database A at level U, and T(A) be its encoding in CORAL. 
Let M be the model for the reduced database A,. = (r(A), A). 
Then 

(A,u) Fe G - M k T(G)[O] 

for any MultiLog goal G. 

Proof Sketch: By showing that if the proof tree ir. MultiLog 
has height k, then the goal r(G)[B] is computed at step k by 
the fix-point operator TA, for A,. and showing that the model 
M = lfP(TA,). 

It is somewhat easy to make the observatior. that for 
any MultiLog program A = (A,,E,L’, Q), if the A and z 
components are empty and the & component do not contain 
any m- or b-atoms, A degenerates into a Datalog program. 
In this case, the proof trees generated by the interpreter for 
any successful proof will contain instances of the proof rules 
EMPTY, AND, and DEDUCTION-G which are exactly like classical 
proof trees for Datalog. The following proposition follows 
naturally. 

Proposition 6.1 (Extension) Let k* be the proof predicate 
for Datalog, and P be a Datalog program. Then for any 
Datalog goal B we have 

where A = (6,8, P, {t 8)) and ‘1~ is any user level (perhaps 
system). 

Proof Sketch: By showing that the proof rules for I-* is a 
subset of I- and that the proof trees are identical and yield 
identical bindings for 9, i.e., 6’ = 4. 

7 MultiLog System Implementation 
Issues 

It is perhaps desirable to avoid any mention of the security 
level of the data elements or the tuples, or the clearance level of 
users altogether and present an illusion of a classical relation to 
users. This is probably the motivation for the works reported 
in [7, 16, 271 where the authors avoid any mention of the 
attribute or the tuple classification altogether. Th:.s can be 
achieved in MultiLog by inserting don’t care variables “2 in 
place of missing level information in formulas. 

We have not incorporated the filter function u discussed in 
[12] in relation to inter instance integrity for several reasons. 
Firstly, it is still unclear if it makes any sense in a lo,;ic based 
framework such as ours. As we pointed out in section 3, the 
inheritance of null values gives rise to the unwanted property 
of surprise stories. We believe that Jajodia and Sandhu 
incorporated this aspect in their model for technical reasons 
only as it was unavoidable in their framework. Secondly, we 
have only considered inheritance of tuples from lower level 
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(FILTER) 

(A,u)E~~~R (44t-~c5Wl A lower level inherits part of the higher level tuples with data 
(44 l-e R[p(k : a 4; v)][dml elements whose security level is dominated by the current 

(44 I-W l[p(k : a 3 w)] lower level. 

(A,~)k+ldR (44~o~54~1 
(FILTER-NULL) (A, 4 b R[p(k : a 3 v)l[&d 

Inherit null only if the data element’s security level domi- 

(A, u) I-W l[p(k : a f -I-)] 
nates the current lower level. 

(USER-BELIEF) 
Just copy the proof for bel rule if the depth of b-atom is 
dominated by u. 

Figure 13: Additional rules for MultiLog proof system to incorporate filtering, filtering with null and user defined belief 
function. 

to upper levels in different modes of belief. If we were to 
accommodate this feature, a similar approach may be adopted 
to inherit formulas in the reverse direction. This extension can 
be handled orthogonally. To give an idea, the rule FILTER in 
figure 13 can be used to achieve this functionality15. 

A final reason for not allowing the filter function is as 
follows. Consider the relations in figures 7 and 8 corresponding 
to the optimistic and cautious view of the Mission relation at 
level C. Notice in particular that the tuples t4 and t5 contain 
null values. These tuples are the result of the application 
of the above mentioned filter function as these tuples have 
migrated from a higher security level to C. Now, if we 
simultaneously allow filtering and molecular programming as 
a syntactic variant of atomic programming, we are faced with 
an implementation problem if we are to keep the current proof 
system. Consider the proof for 

(A, c) F c[mission(phantom : starship 2 phantom; 

objective 4 X; destination 4 Y)], 

Or 

(A, c) l- c[mission(phantom : starship 3 phantom; 

objective 4 X; destination 4 Y)] << cau, 

or the version 

(A, c) + c[mission(phantom : starship + phantom; 
objective + X; destination + Y)] < opt 

using don’t care variables as discussed above. All these queries 
fail as the atomic conjunctions fail due to non-availability of 
objective and/or destination information. Since we do not 
have the filter function”, our current system does not fail for 
such reasons as these tuples are not supported in our model 
and are never a possibility. But if we were to support both 
inter instance integrity and molecular programming, we can 
proceed by adding one more proof rule FILTER-NULL for the 

151n fact, we will have to do much more. In addition to this rule 
we will have to make sure that the rest of the tuples get inherited 
only if the keys of the corresponding tuples do so too. We will also 
have to worry about the effect of this inheritance on the belief modes 
and the notion of subsumption discussed in [12]. 

16This means our databases do not satisfy the inter instance 
integrity discussed in [12] and we do not think it is detrimental to 
our system. But if needed we can incorporate this feature without 
any trouble as discussed in this section. 

filter function as shown in figure 13. 

For the sake of simplicity of presentation, we have also 
assumed single attribute keys throughout this paper. This 
restriction can also be relaxed in an actual implementation 
without much difficulty. An F-logic [18] like approach may 

be adopted to allow set values of the form Z[p(k : a -% v)] for 
key attributes while enforcing functionality requirement on the 
others, and by adjusting the proof rules accordingly. 

A final note about the possibility of user defined belief 
function in MultiLog. Such user tailored function is always 
possible. This can be achieved by simply defining rules using 
a distinguished predicate, say bel, with a predetermined list of 
arguments and associated meanings. Then, we could proceed 
to add a proof rule USER-BELIEF to copy this predicate as a 
proof for a b-atom as shown in figure 13. 

It should be pointed out here that this approach to user 
defined belief function is robust. That is, it does not pose 
any security threat to the system and does not break down 
the protocol. This is simply because the provability, and thus 
the satisfaction in interpretation structures, of m-atoms stays 
unchanged. 

8 Conclusion 

To our knowledge, MultiLog is the first logic based query 
language for MLS databases. It provides support for multiple 
belief models and ad hoc belief reasoning. It is free from 
security breach such as surprise stories identified in this paper. 
It also supports the possibility of tailoring the belief functions 
according to the application needs making it incremental. 

We have shown that MultiLog is a natural extension of 
Datalog. The scheme presented here for the implementation 
of MultiLog based on rewriting into CORAL has been shown 
to be consistent. Several implementation issues have also 
been discussed. While it is possible to write programs in 
Datalog that simulate the MultiLog behavior, such programs, 
nonetheless, are Datalog programs and does not provide the 
level of abstraction MultiLog does. In such programs, users 
must apply the transformation function r in their mental 
model of the database and be very judicious. Moreover, insuch 
programs the multilevel abstraction is lost or hidden making 
it difficult to reason with the program and debug. 
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While this paper deals with the implementation aspects of 
MultiLog, and the model for a parametric belief function, the 
theoretical foundations of MultiLog have been developed in 
[14] where we present a. sound and complete proof procedure 
with respect to the model theory and fix point semantics 
of MultiLog. We utilized a crucial connection between the 
concept of inheritance in. object-oriented systems and the views 
at different levels in a MLS database. This connection helped 
us to develop the logical semantics presented here and in 
[14]. We believe Cuppens’ difficulty in developing a complete 
axiomatization could have been removed if this connection was 
established. 

As future research, we would like to investigate further the 
issues raised in section 7. We also plan to run a comparison 
with existing relational MLS implementations and MultiLog. 
These are some of the issues we seek to investigate in the 
immediate future. 
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