Efficient and Cost-effective Techniques for Browsing and Indexing
Large Video Databases*

JungHwan Oh

Kien A. Hua

Computer Science Program, School of EECS
University of Central Florida, Orlando, FL 32816-2362
E-mail: {oh, kienhua}@cs.ucf.edu

Abstract

We present in this paper a fully automatic content-based
approach to organizing and indexing video data. Our
methodology involves three steps:

e Step 1: We segment each video into shots using a
Camera-Tracking technique. This process also extracts
the feature vector for each shot, which consists of two
statistical variances Var®4 and Var®“. These values
capture how much things are changing in the background
and foreground areas of the video shot.

e Step 2: For each video, We apply a fully automatic
method to build a browsing hierarchy using the shots
identified in Step 1.

o Step 3: Using the Var®4 and Var®# values obtained
in Step 1, we build an index table to support a
variance-based video similarity model. That is, video
scenes/shots are retrieved based on given values of
VarP4 and Var©4.

The above three inter-related techniques offer an integrated
framework for modeling, browsing, and searching large video
databases. Our experimental results indicate that they have
many advantages over existing methods.

KEYORDS: Shot detection, Video indexing, Video
browsing, Video similarity model, Video retrieval.

1 Introdao n

With the rapid advances in data compression and
networking technology, video has become an inseparable
part of many important applications such as digital
libraries, distance learning, public information systems,
electronic commerce, movies on demand, just to name
a few. The proliferation of video data has led to a

* This research is partially supported by the National Science
Foundation grant ANI-9714591.

Permission to make digital or hard copies of part or al of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific
permission and/or afee.

MOD 2000, Dallas, TX USA

© ACM 2000 1-58113-218-2/00/05 . . .$5.00

significant body of research on techniques for wvideo
database management systems (VDBMSs) [1]. In
general, organizing and managing video data is much
more complex than managing text and numbers due to
the enormous size of video files and their semantically
rich contents. In particular, content-based browsing
and content-based indexing techniques are essential. It
should be possible for users to browse video materials in
a non-sequential manner and to retrieve relevant video
data efficiently based on their contents.

In a conventional (i.e., relational) database manage-
ment system, the tuple is the basic structural element
for retrieval, as well as for data entry. This is not the
case for VDBMSs. For most video applications, video
clips are convenient units for data entry. However, since
an entire video stream is too coarse as a level of ab-
straction, it is generally more beneficial to store video
as a sequence of shots to facilitate information retrieval.
This requirement calls for techniques to segment videos
into shots which are defined as a collection of frames
recorded from a single camera operation. This process
is referred to as shot boundary detection (SBD).

Existing SBD techniques require many input param-
eters which are hard to determine but have a signifi-
cant influence on the quality of the result. A recent
study [2] found that techniques using color histograms
[3, 4, 5, 6] need at least three threshold values, and their
accuracy varies from 20% to 80% depending on those
values. At least six different threshold values are neces-
sary for another technique using edge change ratio [7].
Again, these values must be chosen properly to get sat-
isfactory results [2]. In general, picking the right values
for these thresholds is a difficult task because they vary
greatly from video to video. These observations indi-
cate that today’s automatic SBD techniques need to be
more reliable before they can be used in practice. From
the perspective of an end user, a DBMS is only as good
as the data it manages. A bad video shot, returned as
a query result, would contain incomplete and/or extra
irrelevant information. This is a problem facing today’s
VDBMSs. To address this issue, we propose to detect
shot boundaries in a more direct way by tracking the

camera motion through the background areas in the
video. We will discuss this idea in more detail later.

A major role of a DBMS is to allow the user to
deal with data in abstract terms, rather than the
form in which a computer stores data. Although shot
serves well as the basic unit for video abstraction, it
has been recognized in many applications that scene
is sometimes a better unit to convey the semantic
meaning of the video to the viewers. To support
this fact, several techniques have been proposed to
merge semantically related and temporally adjacent
shots into a scene [8, 9, 10, 11]. Similarly, it is
also highly desirable to have a complete hierarchy of
video content to allow the user to browse and retrieve
video information at various semantic levels. Such a
multi-layer abstraction makes it more convenient to
reference video information and easier to comprehend
its content. It also simplifies video indexing and storage
organization. One such technique was presented in [12].
This scheme abstracts the video stream structure in a
compound unit, sequence, scene, shot hierarchy. The
authors define a scene as a set of shots that are related
in time and space. Scenes that together give meaning
are grouped into a sequence. Related sequences are
assembled into a compound wunit of arbitrary level.
Other multilevel structures were considered in [13,
14, 15, 16, 17]. All these studies, however, focus
on modeling issues. They attempt to design the
best hierarchical structure for video representation.
However, they do not provide techniques to automate
the construction of these structures.

Addressing the above limitation is essential to han-
dling large video databases. One attempt was presented
in [18]. This scheme divides a video stream into multiple
segments, each containing an equal number of consec-
utive shots. Each segment is then further divided into
sub-segments. This process is repeated several times
to construct a hierarchy of video content. A drawback
of this approach is that only time is considered; and
no visual content is used in constructing the browsing
hierarchy. In contrast, video content was considered
in [19, 20, 21]. These methods first construct a pri-
ori model of a particular application or domain. Such
a model specifies the scene boundary characteristics,
based on which the video stream can be abstracted
into a structured representation. The theoretical frame-
work of this approach is proposed in [19], and has been
successfully implemented for applications such as news
videos [20] and TV soccer programs [21]. A disadvan-
tage of these techniques is that they rely on explicit
models. In a sense, they are application models, rather
than database models. Two techniques, that do not em-
ploy models, are presented in [11, 22]. These schemes,
however, focus on low-level scene construction. For
instance, given that shots, groups and scenes are the

416

structural units of a video, a 4-level video-scene-group-
shot hierarchy is used for all videos in [22].

In this paper, we do not fix the height of our browsing
hierarchy, called scene tree, in order to support a variety
of videos. The shape and size of a scene tree are
determined only by the semantic complexity of the
video. Our scheme is based on the content of the video.
Our experiments indicate that the proposed method can
produce very high quality browsing structures.

To make browsing more efficient, we also introduce
in this paper a variance-based video similarity model.
Using this model, we build a content-based indexing
mechanism to serve as an assistant to advise users
on where in the appropriate scene trees to start the
browsing. In this environment, each video shot is
characterized as follows. We compute the average colors
of the foreground and background areas of the frames in
the shot, and calculate their statistical variance values.
These values capture how much things are changing
in the video shot. Such information can be used to
build an index. To search for video data, a user can
write a query to describe the impression of the degree of
changes in the primary video segment. Our experiments
indicate that this simple query model is very effective
in supporting browsing environment. We will discuss
this technique in more detail.

In summary, we present in this paper a fully auto-
matic content-based technique for organizing and in-
dexing video data. Our contributions are as follows:

. We address the reliability problem facing today’s
video data segmentation techniques by introducing
a camera-tracking method.

. We fully automate the construction of browsing
hierarchies. Our method is general purpose, and
is suitable for all videos.

. We provide a content-based indexing mechanism to
make browsing more efficient.

The above three techniques are inter-related. They offer
an integrated framework for modeling, browsing, and
searching large video databases.

The remainder of this paper is organized as follows.
We present our SBD technique [23], and discuss
the extensions required to support our browsing and
indexing mechanisms in Section 2. The procedure for
building scene trees is described in details in Section
3. In Section 4, we discuss the content-based indexing
technique for video browsing. The experimental results
are examined in Section 5. Finally, we give our
concluding remarks in Section 6.

2 A Camera Tracking Technique for
SBD and Its Extension

To make the paper self-contained, we first describe our

SBD technique [23]. We then extend it to include

new features required by our browsing and indexing
techniques.

2.1 A Camera Tracking Approach to Shot
Boundary Detection

€«——> : Camera Motion
(b)

Figure 1: Background Area

Since a shot is made from one camera operation,
tracking the camera motion is the most direct way
to identify shot boundaries. This can be achieved by
tracking the background areas in the video frames as
follows. We define a fized background area (FBA) for
all frames as illustrated by the lightly shaded areas in
Figure 1(a). The rationale for the M shape of the FBA
is as follows:

e The bottom part of a frame is usually part of some
object(s).

e The top bar cover any horizontal camera motion.
e The two columns cover any vertical camera motion.

e The combination of the top bar and the left column
can track any camera motion in one diagonal
direction. The other diagonal direction is covered by
the combination of the top bar and the right column.
These two properties are illustrated in Figure 1(b).

The above properties suggest that we can detect a
shot boundary by determining if two consecutive frames

share any part of their FBAs. This requires comparing
each part of one FBA against every part of the other
FBA. To make this comparison more efficient, we
rotate the two vertical columns of each M shape FBA
outward to form a transformed background area (TBA)
as illustrated in Figure 2. From each TBA, which
is a two-dimensional array of pixels, we compute its
signature and sign by applying a modified version of the
image reduction technique, called Gaussian Pyramid
[24]. The idea of 'Gaussian Pyramid’ was originally
introduced for reducing an image to a smaller size.
We use this technique to reduce a two-dimensional
TBA into a single line of pixels (called signature) and
eventually a single pixel (called sign). The complexity
of this procedure is O(2°8(m+1) which is actually
O(m), where m is the number of pixels involved. The
interested reader is referred to [23] for the details. We
illustrate this procedure in Figure 3. It shows a 13 x 5
TBA being reduced in multiple steps. First, the five
pixels in each column are reduced to one pixel to give
one line of 13 pixels, which is used as the signature.
This signature is further reduced to the sign denoted
by sigan. The superscript and subscript indicate that
this is the sign of the background area of some frame 1.
We note that this rather small TBA is only illustrative.
We will discuss how to determine the TBA shortly.

o J

wi] TBA, 7]
P]

Figure 2: Shape Transformation of FBA
— Sign
/] 7N

Sample TBA (13 x 5) T

n

ignature

>"\

| TBA, o

00000

00000

00000

00000

00000
o]

—

Figure 3: Computation of Signature and Sign

We use the signs and signatures to detect shot
boundaries as illustrated in Figure 4. The first
two stages are quick-and-dirty tests used to quickly
eliminate the easy cases. Only when these two tests
fail, we need to track the background in Stage 3 by
shifting the two signatures, of the two frames under
test, toward each other one pixel at a time. For each
shift, we compare the overlapping pixels to determine
the longest run of matching pixels. A running maximum
is maintained for these matching scores. In the end, this
maximum value indicates how much the two images
share the common background. If the score is larger
than a certain threshold, the two video frames are
determined to be in the same shot.

Stage (1)

D,<10%

Matching

D,>=10%

Stage (2)

Sign D,<10%

Matching

D, >=10%

Stage (3)

[Bishare]]
Background A
Tracking [Signawfe.]]

Cut Not a cut

Figure 4: Shot Boundary Detection Procedure

2.2 Extension to the Camera Tracking

Technique

We define the fized object area (FOA) as the foreground
area of a video frame, where most primary objects
appear. This area is illustrated in Figure 1 as the
darkly shaded region of a video frame. To facilitate our
indexing scheme, we need to reduce the FOA of each
frame i to one pixel. That is, we want to compute its
sign, sign?A, where the superscript indicates that this
sign is for an FOA. This parameter can be obtained
using the Gaussian Pyramid as in signP4. This
computation requires the dimensions of the FOA. Given
r and c¢ as the dimensions of the video frame (see
Figure 1), we discuss the procedure for determining the
dimensions of TBA and FOA as follows.

Let the dimensions of FOA be h and b, and those
of TBA be w and L as illustrated in Figure 1. We
first estimate these parameters as A/, b/, w', and L',

418

respectively. We choose w' to be 10% of the width of the
video frame, i.e., w' = | 5|. This value was determined
empirically using our video clips. They show that this
value of w' results in TBAs and FOAs which cover
the background and foreground areas, respectively, very
well. Using these w’, we can compute the other
estimates as follows: o' = c—2-w', k' = r — ', and
L'=c+2-h.

In order to apply the Gaussian Pyramid technique,
the dimensions of TBA and FOA must be in the size
set {1, 5, 13, 29, 61, 125, ...}. This is due to the fact
that this technique reduces five pixels to one pixel, 13
pixels to five, 29 pixels to 13, and so on. In general, the
Jjth element (s;) in this size set is computed as follows:

J
sp=1+Y 2" for j=1,2,3,..

=2

(1)

Using this size set, the proper value for w is the value
in the size set, which is nearest to w’. This nearest
number can be determined as follows. We first compute

ji=2+ [10g2($
Equation (1) gives us the desired value for w. Similarly,
we can compute L,h, and b. This approximation
scheme is illustrated in Table 1. As an example, let
¢ = 160. We have w' = | 12| = 16. The corresponding
j value is 3. Substituting j into Equation (1) gives us

13 as the proper value for w.

)J Substituting this value of j into

‘ h, b, whorl' ‘Nearestvalue ‘ h,b,worlL ‘

12 1 1
3,4,..,8 5 5
9,10, .., 20 13 13
21,22, .., 44 29 29
45,46, ..., 92 61 61

Table 1: Approximate the dimensions using the nearest
value from the size set.

In this section, we have described the computation of
the two sign values sign4 and sign®4, and provided
the procedure to determine the video shots. In the
next two sections, we will discuss how these shots and
signs are used to build browsing hierarchies and index
structures for video databases.

3 Building Scene Trees for

Non-linear Browsing

Video data are often accessed in an exploring or brows-
ing mode. Browsing a video using VCR like functions
(i-e., fast-forward or fast-reverse) [25], however, is te-
dious and time consuming. A hierarchical abstraction

allowing nonlinear browsing is desirable. Today’s tech-
niques for automatic construction of such structures,
however, have many limitations. They rely on ex-
plicit models, focus only on the construction of low-level
scenes, or ignore the content of the video. We discuss
in this section our Scene Tree approach which addresses
all these drawbacks.

In order to automate the tree construction process,
we base our approach on the visual content of the
video instead of human perception. First, we obtain
the video shots using our camera-tracking SBD method
discussed in the last section. We then group adjacent
shots that are related (i.e., sharing similar backgrounds)
into a sceme. Similarly, scenes with related shots are
considered related and can be assembled into a higher-
level scene of arbitrary level. We discuss the details
of this strategy and give an example in the following
subsections.

3.1 Scene Tree Construction Algorithm

Let A and B be two shots with |A| and |B| frames,
respectively. The algorithm to determine if they are
related is as follows.

1. Set i+ 1,5« 1.

2. Compute the difference D, of SignP4 of shot A and
.S’z'gn;-g“1 of shot B using the following equation. We
use the number 256 since in our RGB space red,

green and blue colors range from 0 to 255
) x 100(%)

o
(2)

If D, is less than 10%, then stop and return that
the two shots are related; otherwise, go to the next
step.

maz. dif ference in Sign®4s
256

Set i+ 7+ 1.

o If i > |A|, then stop and return that two shots are
not related; otherwise, set j <+ j + 1.

o If j > |BJ, then set j « 1.
5. Go to Step (2).

For convenience, We will refer to this algorithm as
RELATIONSHIP. Tt can be used in the following
procedure to construct a browsing hierarchy, called
scene tree, as follows.

1. A scene node SN? in the lowest level (i.e., level 0) of
scene tree is created for each shot#i. The subscript
indicates the shot (or scene) from which the scene
node is derived; and the superscript denotes the level
of the scene node in the scene tree.

2. Set i + 3.

419

3. Apply algorithm RELATIONSHIP to compare shot#i
with each of the shots shot#(i-2), - - -, shot#1 (in de-
scending order). This sequence of comparisons stops
when a related shot, say shot#j, is identified. If no
related shot is found, we create a new empty node,
connect it as a parent node to SN?, and proceed to
Step 5.

. We consider SN} ; and SN}. Three scenarios can
happen:

e If SN? | and SN]Q do not currently have a parent
node, we connect all scene nodes, SN? through

SN]9, to a new empty node as their parent node.

If SN, and SN} share an ancestor node, we
connect SN? to this ancestor node.

If SN) , and SN) do not currently share an
ancestor node, we connect SN? to the current
oldest ancestor of SN2 ;, and then connect the
current oldest ancestors of SN ; and SN to a
new empty node as their parent node.

. If there are more shots, we set ¢ «+ 7 + 1, and
go to step 3. Otherwise, we connect all the nodes
currently without a parent to a new empty node as
their parent.

. For each scene node at the bottom of the scene
tree, we select from the corresponding shot the
most "repetitive” frame as its representative frame,
i.e., this frame shares the same sign with the most
number of frames in the shot. We then traverse all
the nodes in the scene tree, level by level, starting
from the bottom. For each empty node visited, we
identify the child node, say SN/, which contains
shot#m which has the longest sequence of frames
with the same Sign®4 value. We rename this empty
node as SNS, and assign the representative frame
of SNE, to SNEHL.

We note that each scene node contains a representa-
tive frame or a pointer to that frame for future use such
as browsing or navigating. The criterion for selecting
a representative frame from a shot is to find the most
frequent image. If more than one such image is found,
we can choose the temporally earliest one. As an ex-
ample, let us assume that shot#$5 has 20 frames and
the Sign®P4 value of each frame is as shown in Table 2.
Since Sign®4 is actually a pixel, it has three numeri-
cal values for the three colors, red, green and blue. In
this case, we use frame 1 as the representative frame
for shot#5 because this frame corresponds to an im-
age with the longest sequence of frames with the same
SignB4 values (i.e., 219, 152, 142). Although, the se-
quence corresponding to frames 15 to 20 also has the
same sequence length, frame 15 is not selected because

it appears later in the shot. Instead of having only one
representative frame per scene, we can also use g(s)
most repetitive representative frames for scenes with s
shots to better convey their larger content, where g is
some function of s.

Sign
Green

Frames

Red Blue

No. 1
No. 2
No. 3
No. 4
No. 5
No. 6
No. 7
No. 8
No. 9
No.10
No.11
No.12
No.13
No.14
No.15
No.16
No.17
No.18
No.19
No.20

219
219
219
219
219
219
226
226
213
213
213
213
200
200
228
228
228
228
228
228

152
152
152
152
152
152
164
164
149
149
149
149
137
137
160
160
160
160
160
160

142
142
142
142
142
142
172
172
134
134
134
134
123
123
149
149
149
149
149
149

Table 2: Frames in the shot#5

Now, let us evaluate the complexity of the two
algorithms above. The complexity of RELATIONSHIP
is O(]A| x|B]). The average computation cost, however,
is much less because the algorithm stops as soon as it
finds the two related scenes. Furthermore, the similarity
computation is based on only one pixel (i.e., Sign®4) of
each video frame making this algorithm very efficient.

The cost of the tree construction algorithm can be
derived as follows. Step 3 can be done in O(f? x n),
where f is the number of frames, and n is the number
of shots in a given video. This is because the algorithm
visits every shot; and whenever a shot is visited, it is
compared with every frame in the shots before it. In
Step 4 and Step 6, we need to traverse a tree. It can be
done in O(log(n)). Therefore, the whole algorithm can
be completed in O(f? x n).

3.2 Example to explain Scene Tree

(@ [shot 1 2] 3 T4J5] 6 [7]

@ Find Relation

8 [9 [10 1]

() [A_Te[Ai[eie] 22 [Tei [NNoRNNcTNee
['
L [: i i i i
' ' : ;
".F_(_:L_Q]_-_f_ela_t_e_d__. A
B. B1 related | D.D1D2 related
A, Al, A2 related

Figure 5: A video clip with ten shots

The scene tree construction algorithm is best illus-
trated by an example. Let us consider a video clip with
ten scenes as shown in Figure 5. For convenience, we
label related shots with the same prefix. For instance,

420

shot#1, shot#8 and shot#6 are related, and are labeled
as A, Al and A2, respectively. An effective algorithm
should group these shots into a longer unit at a higher
level in the browsing hierarchy. Using this video clip,
we illustrate our tree construction algorithm in Figure 6.
The details are discussed below.

EDED EREnichIcRIED)

[shotA [B] A1] [shotA [B] A1 [B1] [shotA [B] A1 [B1]C]|

[shotA [B] A1 [BL[C] A2 [€1 |

[shotA [B[A1 [Bi[C] A2]
(@

(e)

EN4

[shotA [B] AL [Bi[C] A2 | C1
U]

: Scene Node

SN

.@ : Empty Node

[shotA [B] AL [Bi[C] A2 | C1
(9

Figure 6: Scene Tree Building

Figure 6(a): We first create three scene nodes
SNY, SNY and SNY for shot#1, shot#2 and shot#3,
respectively. Applying algorithm RELATIONSHIP
to shot#3 and shot#1, we determine that the two
shots are related. Since they are related but neither
currently has a parent node, we connect them to
a new empty node called EN1. According to
our algorithm, we do not need to compare shot#2
and shot#3. However, shot#2 is connected to
EN1 because shot#2 is between two related nodes,
shot#3 and shot#1.

Figure 6(b): Applying the algorithm RELATION-
SHIP to shot#4 and shot#2, we determine that they
are related. This allows us to skip the comparison
between shot#4 and shot#1. In this case, since SNY
and SNY share the same ancestor (i.e., EN1), we
also connect shot#4 to EN1.

Figure 6(c): Comparing shot#5 with shot#3,
shot#2, and shot#1 using RELATIONSHIP, we
determine that shot#5 is not related to these three

shots. We, thus create SNY for shot#5, and connect
it to a new empty node EN2.

Figure 6(d): In this case, shot#6 is determined to
be related to shot#3. Since SN and SN currently
do not have the same ancestor, we first connect SN¢
to EN2; and then connect EN1 and EN2 to a new
empty node EN3 as their parent node.

Figure 6(e): In this case, shot#7 is determined to
be related to shot#5. Since SN2 and SN? share the
same ancestor node EN2, we simply create SN? for
shot#7 and connect this scene node to EN2.

Figure 6(f): This case is similar to the case of
Figure 6(c). shot#8 is not related to any previous
shots. We create a new scene node SN¢ for shot#8,
and connect this scene node to a new empty node
ENA.

Figure 6(g): shot#9 and shot#10 are found to
be related to the immediate previous node, shot#8
and shot#9, respectively. In this case, according
to the algorithm, both shot#9 and shot#10 are
connected to EN4. Since shot#10 is the last shot
of the video clip, we create a root node, and connect
all nodes which do not currently have a parent
node to this root node. Now, we need to name
all the empty nodes. EN1 is named SN| because
shot#1 contains an image which is "repeated” most
frequently among all the images in the first four
level-0 scenes. The superscript of ”1” indicates that
SN} is a scene node at level 1. As another example,
EN3 is named SN? because shot#1 contains an
image which is "repeated” most frequently among
all the images in the first seven level-0 scenes. The
superscript of ”2” indicates that SN} is a scene
node at level 2. Similarly, we can determine the
names for the other scene nodes. We note that the
naming process is important because it determines
the proper representative frame for each scene node,
e.g., SN7 indicates that this scene node should use
the representative frame from shot#7.

In Section 5, we will show an example of a scene tree
built from a real video clip.

4

In this section, we first discuss how SignP4 and
Sign©4, generated from our SBD technique, can be
used to characterize video data. We then present a
video similarity model based on these two parameters.

Cost-effective Indexing

4.1 A Simple Feature Vector for Video Data
To illustrate the concept of our techniques, we use the
same example video clip in Figure 5, which has 10
shots. From this video clip, let us assume that our

421

SBD technique generates the values of Sign®4s and
Sign©®4s for all the frames as shown in the 4th and
5th columns of Table 3, respectively. The 6th and

No. of start | No. of end

Shots frame frame Sign®4 Sign Var® | Var
#1(A) 1 75 Sign *, ..., Sign,* | Sign %, .., Sign, % | Var, 8 | Var, %
#2(8) 76 100 | Sign,A, ..., Sign B4 | Sign 0%, ..., Sign O | Var, B | Var,
#3 (A1) 101 140 | Sign,o,®, .., Sign,,®* | Sign o, %%, ..., Sign O | Var,, ® | Var, %
#4(B1) 141 170 Sign ..., Sign ;02 | Sign, %%, ..., Sign ;, °* | Varg, B | Varg,
#5(C) 171 290 Sign 1, ..., Sign B | Sign ;% .., Sign o O | Var, B | Var, ®
#6(A2) 291 350 Sign g, ..., Sign 15,2 | Sign g, %, .., Sign . ©* | Var,, B | Var,, %
#7(C1) 351 415 Sign e, ..., Sign ., B | Sign ¢, O, .., Sign ,, " | Var,, B | Var,,
#8(D) 416 495 Sign 6™, ..., Sign 5™ | Sign %%, ..., Sign 4% | Vary B | Var, O
#9(D) 496 550 Sign 1ge™, ..., Sign g ™ | Sign 6%, ..., Sign o B | Vary, B | Vary,
#10 (D2) 551 625 Sign g5, ®4, ..., Sign g™ | Sign g, ..., Sign ., | Vary, | Vary, %

Table 3: Results from Shot Boundary detection

7th columns of Table 3, which are called VarB4 and
Var©4, respectively, are computed using the following
equations:

l i om BA i o BAY2
; Sign; Sign;
Vv le.BA E]_k(g l] an;) (3)

where k and [are the first and last frames of the ith
shot, respectively. SignP4 is the mean value for all the
signs, and is computed as follows:

Zé:k SignjBA

jgnBA = 4
Sign; I—F+1)
Similarly, we can compute Var?4 as follows:
l o OA ; an OAN2
OA Zj:k (Szgnj — Sign*)
04 — 5
VaTz l _ k ()
- Zl'—k SzgnOA
—OA _ 2= j
Sign; I—F+1 (6)

We note that VarP4 and Var®4 are the statistical
variances of Sign®4s and Sign®4s, respectively, within
a shot. These variance values measure the degree of
changes in the content of the background or object area
of a shot. They have the following properties:

o If VarB4 is zero, it obviously means that there
is no change in Sign®4s. In other words, the
background is fixed in this shot.

If Var®4 is zero, it means that there is no change
in Sign©®4s. In other words, there is no change in
the object area.

If either value is not zero, there are changes in
the background or object area. A larger variance
indicates a higher degree of changes in the respective
area.

Thus, VarB4 and Var®4 capture the spatio-temporal
semantics of the video shot. We can use them to
characterize a video shot, much like average color, color
distribution, etc. are used to characterize images.
Based on the above discussions, we may be asked if
just two values, VarB4 and Var©4, are enough to cap-
ture the various contents of diverse kinds of videos. To
answer this concern, we note that videos in a digital
library are typically classified by their genre and form.
133 genres and 35 forms are listed in [26]. These genres
include ’adaptation’, ’adventure’, ’biographical’, ’com-
edy’, "historical’, ’'medical’, 'musical’, 'romance’, "west-
ern’, etc. Some examples of the 35 forms are ’anima-
tion’, ’feature’, ’television mini-series’, and ’television
series’. To classify a video, all appropriate genres and
forms are selected from this list. For examples, the
movie 'Brave Heart’ is classified as ’adventure and bi-
ographical feature’; and 'Dr. Zhivago’ is classified as
’adaptation, historical, and romance feature’. In total,
there are at least 4,655 (133 x 35) possible categories of
videos. If we assume that video retrieval is performed
within one of these 4,655 classes, our indexing scheme
using VarB4 and Var©4 should be enough to charac-
terize contents of a shot. We will show experimental
results in the next section to substantiate this claim.
Unlike methods which extract keywords or key-
frame(s) from videos, our method extracts (Varf4 and
Var©4) for indexing and retrieval. The advantage of
this approach is that it can be fully automated. Fur-
thermore, it is not reliance on any domain knowledge.

4.2 A Video Similarity Model

To facilitate video retrieval, we build an index table
as shown in Table 4. Tt shows the index information
relevant to two video clips, ’Simon Birch’ and "Wag the
Dog.” For convenience, we denote the last column as
D?. That is D? = VVarBA — /VarOA.

(A[B[C[D[E]F] [A[B[C[D[E[F]
1805 245 1 18 440
1159 1244 9 1 265
16.07 14.04 5.30
2573 282 11.42
2178 519 757
1781 1642 11.24
1937 070 281
3801 -1241 11.24
1397 -0.88
1331 -443

: Shot No.

: Start Frame No.
[C]:
[D]:

11 2049
2403
30.11
2290
16.59
3423
1867
2559
13.10

8.88

089
273
6.54

352
-19.09
124
584
20.89
831
35.07 -
7.54
17.23 -15.35
716 084

558

1332 End Frame No.

\/ var BA
[El:\var
E: var BA - \/ var %A

®

2
3
4
5
6
7
8
9 188
10 801

(@) Simon Birch (b) Wag the Dog

Table 4: Index Information for the two Clips

To search for relevant shots, the user expresses the
impression of how much things are changing in the
background and object areas by specifying the VarfA
and VarqOA values, respectively. In response, the

VarfA — VarqOA, and

return the ID of any shot ¢ that satisfies the following

system computes Dj

422

conditions:

(Dg —a) <Dy <(Dg +a) (7)

(y/VarBA - B) < \/VarBA < ({/VarBA+) (8)

Since the impression expressed in a query is very
approximate, o and [are used in the similarity
computation to allow some degree of tolerance in
matching video data. In our system, we set a = 8 =
1.0. We note that another common way to handle in-
exact queries is to do matching on quantized data.

In general, the answer to a query does not have to be
shots. Instead, the system can return the largest scenes
that share the same representative frame with one of
the matching shots. Using this information, the user
can browse the appropriate scene trees, starting from
the suggested scene nodes, to search for more specific
scenes in the lower levels of the hierarchies. In a sense,
this indexing mechanism makes browsing more efficient.

5

Our experiments were designed to assess the following
performance issues:

Experimental Results

o Qur camera tracking technique is effective for SBD.

e The algorithm, presented in Section 3, builds reli-
able scene trees.

e The variance values Varf4 and Var®4 make a good
feature vector for video data.

We discuss our performance results in the following
subsections.

5.1 Performance of Shot Boundary

Detection Technique

Two parameters 'recall’ and ’precision’ are commonly
used to evaluate the effectiveness of IR (Information
Retrieval) techniques [27]. We also use these metrics in
our study as follows:

o Recall is the ratio of the number of shot changes
detected correctly over the actual number of shot
changes in a given video clip.

e Precision is the ratio of the number of shot changes
detected correctly over the total number of shot
changes detected (correctly or incorrectly).

In a previous study [23], we have demonstrated
that our Camera Tracking technique is significantly
more accurate then traditional methods based on color
histograms and edge change ratios. In the current
study, we re-evaluate our technique using many more
video clips. Our video clips were originally digitized
in AVI format at 30 frames/second. Their resolution

Shot
Changes

Precisi-
on (Hp)

Recall
H)
0.97
0.87
0.88

Duration

Name L
(min:sec)

Silk Stalkings (Drama) 10:
11:

10:

24
38
22

95
106
116

0.87

Scooby Dog Show (Cartoon) 0.75

Friends (Sitcom) 0.75

47
27
44
09

156
111
50
48

0.96
0.78
0.89
0.89

Chicago Hope (Drama) 9: 0.84

12:

v

Programs 081

Star Trek(Deep Space Nine)
All My Children (Soap Opera) 5:

0.81

Flinstone (Cartoon) 6: 0.84

58
25
45
27

107
967
202
176

0.77
0.95
0.95
0.94

Jerry Springer (Talk Show) 4: 0.82
31:
14:

30:

TV Commercials 0.93

National (NBC)
Local (ABC)

0.93
News

0.91

10:
11:
11:
11:

03
52
08
01

246
224
164
103

0.90
0.94
0.95
0.98

Brave Heart 0.81

ATF

0.90
Movies

Simon Birch 0.83

Wag the dog 0.81

Tennis (1999 U.S. Open) 14:
15:
21:

10:

20
12
26
29

114
143
163

93

0.91
0.96
0.94
0.89

0.90

Sports

Events 0.85

Mountain Bike Race

Football 0.88

Today's Vietnam 0.84

Documentaries

16:50
53

24

127 0.90
0.86

0.89

For all mankind 0.81

53
65

Kobe Bryant 3: 0.78

Music Videos

Alabama Song 4: 0.84

Total 278:44 0.90

3629 ‘

0.85 ‘

Table 5: Test Video Clips and Detection Results for
Shot Changes

is 160 x 120 pixels. To reduce computation time, we
made our test video clips by extracting frames from
these originals at the rate of 3 frames/second. To
design our test video set, we studied the videos used
in [28, 7, 9, 10, 29, 30, 2]. From theirs, we created
our set of 22 video clips. They represent six different
categories as shown in Table 5. In total, this test set
lasts about 4 hours and 30 minutes. It is more complete
than any other test sets used in [28, 7, 9, 10, 29, 30, 2].
The details of our test video set and shot boundary
detection results are given in Table 5. We observe that
the recalls and the precisions are consistent with those
obtained in our previous study [23].

5.2 Effectiveness of Scene Tree

In this study, we run the algorithms in Section 3 to
build the scene tree for various videos. To assess the
effectiveness of these algorithms, we inspected each
video and evaluated the structure of the corresponding
tree and its representative frames. Since it is difficult
to quantify the quality of these scene trees, we show
one representative tree in Figure 7. This scene tree was
built from a one-minute segment of our test video clip
”Friends.” The story is as follows. Two women and one
man are having a conversation in a restaurant, and two
men come and join them. If we travel the scene tree
from level 3 to level 1, and therefore browsing the video
non-linearly, we can get the above story. We note that

423

the representative frames serve well as a summary of
important events in the underlying video.

5.3 Effectiveness of Varf4 and Vard4

To demonstrate that VarP4 and Var@4 indeed capture
the semantics of video data, we select arbitrary shots
from our data set. For each of these shots, we compute
its VarB4 and Var@4, and use them to retrieve similar
shots in the data set. If these two parameters are indeed
good feature values, the shots returned should resemble
some characteristics of the shot used to do the retrieval.

We show some of the experimental results in Figure 8,
Figure 9 and Figure 10. In each of these figures, the
upper, leftmost picture is the representative frame of
the video short selected arbitrarily for the retrieval
experiment. The remaining pictures are representative
frames of the matching shots. The label under each
picture indicates the shot and the video clip the
representative frame belongs to. For instance, #12W
represents the representative frame of the 12th shot of
"Wag the dog’. Due to space limitation, we show only
the three most similar shots in each case. They are
discussed below.

e Figure 8 The shot (#12W) is from "Wag the dog’.
This shot is a close-up of a person who is talking.
The DY, and VarEA for this shot are 5.86 and 17.37,
respectively, as seen in Table 4(b). The shot #102
from "Wag the dog’, and the shots #64 and #154
from ’Simon Birch’ were retrieved and presented in
Figure 8. The results are quite impressive in that all
four shots show a close-up view of a talking person.

Figure 9 The shot (#33W) is from "Wag the dog’,
and the content shows two people talking from some
distance. The D35 and VarE? for this shot are 1.46
and 9.37, respectively, as seen in Table 4(b). The
shot #11 from "Wag the dog’, and the shots #93,
and #108 from ’Simon Birch’ were retrieved and
presented in Figure 9. Again, the four shots are
very similar in content. All show two people talking
from some distance.

Figure 10 The shot (#768S) is from ’Simon Birch.’
The content is a person running from the kitchen to
the window. The D% and Var£? for this shot are
-0.78 and 23.55, respectively, as seen in Table 4(a).
The shot #87 from "Wag the dog’, and the shots
#1 and #4 from ’Simon Birch’ were retrieved and
presented in Figure 9. Two people are riding a bike
in shot #1S. In shot #4W, one person is running
in the woods. In shot #87, one person is picking
a book from a book shelf and walking to the living
room. These shots are similar in that all show a
single moving object with a changing background.

Level 3
Level 2
Level 1

#696

590

553

Figure 7: Scene Tree of ’Friends’

(5ND (SN (NG (SN (NG (SN (BN (SN (SN (BNg) BN,D (BN (BN (N, Level 0

"#553 #585 #5900 #628 #635 #658 #670 #675 #6986 #702 #706

540

424

#64S #1549

#93S #1088

Figure 9: Shots with similar index values - Set 2.

#4S] #8TW

Figure 10: Shots with similar index values - Set 3.

10

6 Concluding Remarks

We have presented in this paper a fully automatic
content-based approach to organizing and indexing
video data. There are three steps in our methodology:

e Step 1: A Camera-Tracking Shot Boundary Detec-
tion technique is used to segment each video into
basic units called shots. This step also computes
the feature vector for each shot, which consists of
two variances VarP4 and Var®4. These two val-
ues capture how much things are changing in the
background and foreground areas of the shot.

e Step 2: For each video, a fully automatic method is
applied to the shots, identified in Step 1, to build a
browsing hierarchy, called Scene Tree.

e Step 3: Using the VarP4 and Var©4 values ob-
tained in Step 1, an index table is built to support
a variance-based video similarity model. That is,

video scenes/shots are retrieved based on given val-
ues of VarB4 and Var®4.

Actually, the variance-based similarity model is not
used to directly retrieve the video scenes/shots. Rather,
it is used to determine the relevant scene nodes. With
this information, the user can start the browsing from
these nodes to look for more specific scenes/shots in the
lower level of the hierarchy.

Comparing the proposed techniques with existing
methods, we can draw the following conclusions:

e QOur Camera-Tracking technique is fundamentally
different from traditional methods based on pixel
comparison. Since our scheme is designed around
the very definition of shots, it offers unprecedented
accuracy.

e Unlike existing schemes for building browsing hier-
archies, which are limited to low-level entities (i.e.,
scenes), rely on explicit models, or do not consider
the video content, our technique builds a scene tree
automatically from the visual content of the video.
The size and shape of our browsing structure reflect
the semantic complexity of the video clip.

e Video retrieval techniques based on keywords are ex-
pensive, usually application dependent, and biased.
These problems remain even if the dialog can be
extracted from the video using speech recognition
methods [31]. Indexing techniques based on spatio-
temporal contents are available. They, however, rely
on complex image processing techniques, and there-
fore very expensive. Our variance-based similarity
model offers a simple and inexpensive approach to
achieve comparable performance. It is uniquely suit-
able for large video databases.

425

We are currently investigating extensions to our
variance-based similarity model to make the comparison
more discriminating. We are also studying techniques
to speed up the video data segmentation process.

References

[1]

[3]

[4]

[5]

[6]

[7]

[10]

A. Elmagarmid, H. Jiang, A. Helal, A. Joshi, and
M. Ahmed. Video Database Systems - Issues,
Products, and Applications. Kulwer Academic
Publishers, 1997.

R. Lienhart. @ Comparison of automatic shot
boundary detection algorithms. In Proc. SPIE
Vol. 8656, Storage and Retrieval for Image and
Video Databases VII, pages 290-301, San Jose, CA,
January 1999.

M. A. Smith and M. G. Christel. Automating the
creation of a digital vidoe library. In Proc. of ACM
Multimedia 95, pages 357-358, 1995.

R. Lienhart, S. Pfeiffer, and W. Effelsberg. The
moca workbench: Support for creativity in movie
content analysis. In Proc. of the IEEE Int’l Conf.
on Multimedia Systems ’96, June 1996.

M. Abdel-Mottaleb and N. Dimitrova. Conivas:
Content-based image and video access system. In
Proc. of ACM Int’l Conf. on Multimedia, pages
427-428, Boston, MA, November 1996.

H. Yu and W. Wolf. A visual search system
for video and image databases. In Proc. IEEE
Int’l Conf. on Multimedia Computing and Systems,
pages 517-524, Ottawa, Canada, June 1997.

R. Zabih, J. Miller, and K. Mai. A feature-
based algorithm for detecting and classifying scene
breaks. In Proc. of ACM Multimedia ’95, pages
189-200, San Francisco, CA, 1995.

P. Aigrain, P. Joly, and V. Longueville. Medium
knowledge-based macro-segmentation of video into
sequences. In IJCAI Workshop on Intelligent
Multimedia Information Retrieval, pages 5-14,
1995.

H. Aoki, S. Shimotsuji, and O. Hori. A shot
classification method of selecting effective key-
frame for video browsing. In Proc. of ACM Int’l
Conf. on Multimedia, pages 1-10, Boston, MA,
November 1996.

M. M. Yeung, B. Yeo, and B. Liu. Extracting
story units from long programs for video browsing
and navigation. In Proc. of the IEEE Int’l
Conf. on Multimedia Systems 96, pages 296-304,
Hiroshima, Japan, June 1996.

11

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. Zhong, H. Zhang, and S-F Chang. Clustering
methods for video browsing and annotation. Tech-
nical report, Columbia University, 1997.

R. Hjelsvold and R. Midtstraum. Modeling and
querying video data. In Proc. of 20th Int’l Conf.
on Very Large Database (VLDB ’94), 1994.

G. Davenport, T. Smith, and N. Pincever. Cin-
ematic primitives for multimedia. In Proc. IEEE
Computer Graphics & Applications, pages 67-74,
July 1991.

R. Hamakawa and J. Rekimoto. Object composi-
tion and playback models for handling multimedia
data. In Proc. of ACM Multimedia, pages 273281,
Anaheim, CA, August 1993.

R. Weiss, A. Duda, and D. Gifford. Content-
based access to algebraic video. In Proc. of IEEE
Int’l Conf. Multimedia Computing and Systems,
Los Alamitos, CA, 1994.

J. M. Corridoni, A. D. Bimbo, D. Lucarella,
and H. Wenxue. Multi-perspective navigation
of movies. Journal of Visual Languages and
Computing, 7:445-466, July 1996.

H. Jiang and A. K. Elmagarmid. Wvtdb -
a semantic content-based video database system
on the world wide web. IEEFE Transactions on
Knowledge and Data Engineering, 10(6):947-966,
1998.

H. J. Zhang, S. W. Smoliar, and J. Wu. Content-
based video browsing tools. In Proc. of IS&T/SPIE
Con. on Multimedia Computing and Networking,
1995.

D. Swanberg, C. F. Shu, and R. Jain. Knowledge
guided parsing in video databases. In Proc. of
SPIE Symposium on Electronic Imaging: Science
and Technology, pages 13—24, February 1993.

H. Zhang and S. W. Smoliar. Developing power
tools for video indexing and retrieval. In Proc. of
SPIE Storage and Retrieval for Image and Video
Database, San Jose, CA, Jan. 1994.

Y. Gong, H. Chua, and X. Guo. Image indexing
and retrieval based on color histogram. In Proc. of
Int’l Conf. Multimedia Modeling, pages 115-126,
Singapore, Nov. 1995.

Y. Rui, T. S. Huang, and S. Mehratra. Construct-
ing table-of-cont for videos. ACM Multimedia Sys-
tems, 7(5):359-368, 1999.

426

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

JungHwan Oh, Kien A. Hua, and Ning Liang. A
content-based scene change detection and classi-
fication technique using background tracking. In
SPIE Conf. on Multimedia Computing and Net-
working 2000, San Jose, CA, Jan. 2000.

P. J. Burt and E. H. Adelson. The laplacian pyra-
mid as a compact image code. In IEEE Transac-

tions on Communications V COM-81, pages 532—
540, April 1983.

Kien A. Hua, W. Tavanapong, and J. Wang.
2psm: An efficient framework for searching video
information in a limited-bandwidth environment.
ACM Multimedia Systems, 7(5):396-408, Septem-
ber 1999.

B. Taves, J. Hoffman, and K. Lund. The mov-
ing image genre-form guide. In Motion Pic-
ture/Broadcasting/Recoreded Sound Division Li-
brary of Congress, 1997.

W. B. Frakes and R. Baeza-Yates. Information Re-
trieval - Data Structures and Algorithms. Prentice
Hall, Englewood Cliffs, 1992.

A. Hampapur, R. Jain, and T. Weymouth. Digital
video segmentation. In Proc. of ACM Multimedia,
pages 357-364, October 1994.

S. Chang, W. Chen, H. J. Meng, H. Sundaram, and
D. Zhong. Videoq: An automated content based
video search system using visual cues. In ACM
Proc. of the conf. on Mutimedia ’97, pages 313—
324, Seattle Washington, November 1997.

Y. Rui, T. S. Huang, and S. Mehratra. Exploring
video structure beyond the shots. In Proc. of
98 IEEE Conf. on Multimedia Computing and
Systems, pages 237-240, Austin Texas, June 1998.

H. D. Wactlar, M. G. Christel, Y. Gong, and
A. G. Hauptmann. Lessons learned from building
terabyte digital video library. Computer, pages 66—
73, February 1999.

12

