XML Data Management:
Go Native or Spruce Up Relational Systems?

Per-Ake Larson (Moderator)
Microsoft Research
One Microsoft Way
Redmond, WA 98052
palarson@microsoft.com

Abstract

XML data is likely to be widely used as a data exchange
format but users also need to store and query XML data.
The purpose of this panel is to explore whether and how to
best provide this functionality.

1. Pandlists

Dana Florescu (Propel Software Corporation)
Goetz Graefe (Microsoft)

Guido Moerkotte (University of Mannheim)
Hamid Pirahesh (IBM Almaden Research Center)
Harald Schoning (Software AG)

2. Panel objectives

XML datais rapidly gaining acceptance. Many recommen-
dations and standards related to XML have been proposed -
see http://www.w3.org/XML for more details. It is com-
mon wisdom that XML will be the universal data exchange
format but users also need to be able to store and manipu-
late XML data efficiently. The World Wide Web Consor-
tium has recently released a working draft of XQuery
http://www.w3.org/TR/xquery), a query language for XML
data. However, a query language only defines how to ex-
press queries against XML data; we still have to build sys-
tems that store the data and evaluate the queries. The ques-
tion for this panel is how to best provide this functionality.

3. XML data management issues

Like al panels, this one will go wherever the panelists and
the audience decide to take it, but hereisalist of possible
issuesto explore. First, several different architectures for
XML data management systems are possible:

1. Go native, i.e. build a complete XML data manage-
ment system from scratch.
2. Add a freestanding XML layer on top of a relational

system. What functionality should be included?

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citdion on thefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

ACM SIGMOD 2001 May 21-24, Santa Barbara, California USA
Copyright 2001 ACM 1-58113-332-4/01/05...$5.00

620

3. Add somelevel of XML functionality to relational sys-
tems. If so, what functionality?

4. Modify an object-oriented database system for XML.

5. Something else altogether.

Which architecture provides the best solution hinges on the
more fundamental question of what users want to do with
XML data, which may depend on what type of XML data
is being considered and usage patterns. This raises a num-
ber of questions.

1. What do we know about user requirements for XML

data management at this stage?

Are there different requirements for different types of
XML data?

If so, what characteristics of XML data are important
from a data management point of view: small versus
large documents, free-form versus schema-bound
documents, many versus few instances, volatile versus
stable, short lived versus long lived, deep vs. shallow
trees, and so on?

Are usage patterns perhaps more important than the
characteristics of the data? For example, frequency of
access/update, complex queries versus simply retriev-
ing a complete stored document, level of concurrent
access, and so on.

Are there new system requirements, such as small
memory footprint, fast startup time, or ability to runin
process with the application?

Are clear classes of data types and usage patterns
emerging, similar to, say, OLTP and OLAP, whose re-
quirements are well understood?

Isthere, perhaps, no silver bullet and we need multiple,
complementary solutions? If the market isn't big
enough to pay for the development cost, what is the
best compromise?

