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ABSTRACT

Query optimizers nowadays draw upon many sources of in-
formation about the database to optimize queries. They
employ runtime statistics in cost-based estimation of query
plans. They employ integrity constraints in the query rewrite
process. Primary and foreign key constraints have long
played a role in the optimizer, both for rewrite opportuni-
ties and for providing more accurate cost predictions. More
recently, other types of integrity constraints are being ex-
ploited by optimizers in commercial systems, for which cer-
tain semantic query optimization techniques have now been
implemented.

These new optimization strategies that exploit constraints
hold the promise for good improvement. Their weakness,
however, is that often the “constraints” that would be use-
ful for optimization for a given database and workload are
not explicitly available for the optimizer. Data mining tools
can find such “constraints” that are true of the database,
but then there is the question of how this information can
be kept by the database system, and how to make this infor-
mation available to, and effectively usable by, the optimizer.

We present our work on soft constraints in DB2. A soft con-
straint is a syntactic statement equivalent to an integrity
constraint declaration. A soft constraint is not really a
constraint, per se, since future updates may undermine it.
While a soft constraint is valid, however, it can be used by
the optimizer in the same way integrity constraints are. We
present two forms of soft constraint: absolute and statistical.
An absolute soft constraint is consistent with respect to the
current state of the database, just in the same way an in-
tegrity constraint must be. They can be used in rewrite, as
well as in cost estimation. A statistical soft constraint differs
in that it may have some degree of violation with respect to
the state of the database. Thus, statistical soft constraints
cannot be used in rewrite, but they can still be used in cost
estimation.
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We are working long-term on absolute soft constraints. We
discuss the issues involved in implementing a facility for ab-
solute soft constraints in a database system (and in DB2),
and the strategies that we are researching. The current DB2
optimizer is more amenable to adding facilities for statistical
soft constraints. In the short-term, we have been implement-
ing pathways in the optimizer for statistical soft constraints.
‘We discuss this implementation.

1. INTRODUCTION

Integrity constraints (ICs) have long been the key means for
expressing semantics in databases. 1Cs are declarative state-
ments just as are queries written in SQL. Unlike queries how-
ever, an IC expresses a property that must be true about the
database. Once declared, the database system is obliged to
protect the integrity of the database as expressed by its ICs.
The availability of a mechanism to express explicitly declara-
tive, semantic characterizations in databases has proven use-
ful for other purposes beyond ensuring database integrity as
well [9]. In the 1980’s, semantic query optimization (SQO)
techniques were introduced which offer additional optimiza-
tion opportunities by exploiting the database’s ICs [17]. More
recently, certain SQO techniques have been implemented
and employed successfully in the optimizers of commercial
systems [6, 24]. These techniques have been seen to offer
tremendous cost improvements for certain types of queries
in standard, common workloads and databases. We believe
there is great promise in further development and deploy-
ment of SQO techniques.

A disadvantage of these techniques though is that the se-
mantic characterizations they require are not always avail-
able as ICs associated with the database. This is not to say
that these characterizations do not generally hold in real-
world databases. Rather, there exists evidence that they
often do. They rarely are, however, available explicitly as
ICs. This is the case for several reasons.

1. Only recently have people started to use ICs in greater
concentration as they seek to capture more business
logic in the database, and hence, to place these busi-
ness rules under the protection of the database system.
The expense of integrity checking has always limited
people’s use of ICs.

Many potentially useful semantic characterizations true
of a database simply are not known. If known, they
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could potentially be expressed as ICs [13].

. Even if a useful characterization is true, there may be
no justification to make it an IC. That is, there is no
reason to insist that this remain true, that it is a part
of the database’s integrity.

On point 1, database developers desire to express more busi-
ness logic in the database. This must drive database re-
search and development to provide greater expressiveness
for ICs and greater optimization of constraint checking. On
point 2, there has been successful data mining work as of
late to discover useful constraint-like characterizations over
databases. This work is focused on the discovery of useful
“constraints” for use in query optimization [10]. On point
3, little work exists. There simply are not alternate mecha-
nisms to express declarative constraint-like characterizations
of a database aside from ICs.

Towards addressing point 3, we describe useful new mech-
anisms that we are implementing in DB2 for expressing se-
mantic information in databases. We introduce new types
of “constraint” information.

An informational constraint is an integrity constraint (IC)
for which an external promise has been made that it will
never be violated. Thus informational constraints never
need to be (expensively) checked by the system, but they
may be used by the optimizer just as any other IC. This
addresses, in part, point 1 from above.

We changed the parser for DB2 to accommodate the dec-
laration of informational constraints. Any of the ICs that
DB2 supports can be marked as informational. The sys-
tem has been adapted so that informational constraints are
ignored for checking, but the optimizer uses informational
constraints just as any other ICs.

Constructs similar to informational constraints exist in ORA-
CLE-8 where the standard integrity constraints are marked
with a rely option [23], so that they are not verified on up-
dates. There are a number of environments in which infor-
mational constraints are beneficial. In many data warehous-
ing environments, all data loading (so essentially all updat-
ing) is done by loader applications. These applications may
check certain data integrity themselves. It is not necessary
for the DBMS to recheck these same integrity constraints.
Such constraints can be marked as informational to avoid
checking. They are still available for the optimizer.

A soft constraint (SC), on the other hand, is an 1C-like state-
ment that is true with respect to the current state of the
database, but which does not carry the same weight as an
IC. The next update to the database could invalidate a soft
constraint. If a transaction would invalidate an actual IC (a
“hard” constraint), the transaction is aborted and the con-
sistency of the database is preserved. If a transaction would
invalidate a soft constraint, however, it is not aborted (for
that reason). Instead, if the transaction commits, the SC is
“aborted” since it is no longer consistent with the database.
Thus consistency of the database is still maintained, but by
different means. However, until a soft constraint becomes
invalid, the optimizer can use it as if it were an IC. This
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addresses point 3 from above.

Clearly then, SCs are not meant to protect the integrity of
the database as do ICs; but like ICs, they do semantically
characterize the database. As certain types of ICs are now
used in query optimization, SCs can be used in the optimizer
in the same way. If there are any useful characterizations of
the database valid with respect to the current state of the
database and useful for the optimizer with respect to the
workload, but which are not truly ICs (that is, the database
designer has no reason to specify these as rules), then these
could be expressed as SCs.

So far, we have only discussed SCs that are valid with respect
to the current state of the database, in the same sense that
ICs are. We can also consider SCs that are “soft” in a second
way as well: that the SC statement does not completely hold
with respect to the database. Instead, some “violations” of
the SC statement are acceptable. If the SC holds for most
data, then this could still be useful information. Thus, SCs
can be divided into:

e absolute soft constraints (ASCs), which have no viola-
tions in the current state of the database; and

o statistical soft constraints (SSCs), which can have some
degree of violation.

For a SSC, we keep two components: the constraint state-
ment itself, and statistical information, such as a confidence
factor, which is a measure of how closely the data adheres to
the constraint. (A SSC with a confidence of 100% is essen-
tially an ASC.) SSC candidates greatly outnumber ASC can-
didates. Therefore, it may be easier to discover useful SSCs.
SSCs are also easier to maintain, since it does not matter
when they go slightly stale. Like informational constraints,
SSCs do not have to be checked at update. Periodically, the
statistics of SSCs should be brought up to date, just as other
catalog statistics should be.

The paper is organized as follows. Related work is described
in Section 2. In Section 3 we discuss SSCs generally. In
Section 4, we discuss issues and strategies for implement-
ing ASCs. Section 5 contains a description of our imple-
mentation of the SSCs in DB2 and their use for cardinality
estimation. We conclude in Section 6.

2. RELATED WORK

Soft constraints, as described above, have also been called
state constraints or temporary constraints in the literature
[9]." So the basic idea is not new. Unfortunately, any
name in using the word “constraint” is a misnomer; soft
constraints do not constrain anything!?> Instead, they are
characterizations of the database.

Sybase supports a limited class of soft constraints. Sybase
will maintain max and min information for a table attribute.
This information is available as “constraint” information

! Although both of these terms, state constraints and tem-
porary constraints, have been overloaded in the literature to
mean other things too.

%In further work, we hope to devise a better name for these.



to the optimizer which can abbreviate range conditions in
a query using the SC information. The “SCs” are main-
tained synchronously—that is, at transaction time—so serve
as ASCs. On insert, this is clearly no more expensive than
checking a check constraint.

In [6], two techniques, join elimination and predicate intro-
duction, from the semantic query optimization literature [4]
are refined and implemented in DB2. The paper focuses
on join elimination of joins over foreign keys (referential in-
tegrity). Introduction of a predicate to a query may offer
new access paths via an index which were unavailable before.
Rules for selecting a specific subclass of predicates that can
be safely introduced are devised. Since the rewrite engine is
heuristic based and only one query (rewrite) can be passed
to the cost-based optimizer, it must be ensured that these
new rewrites will virtually always result in a query that can
be more efficiently executed.

They show a marked improvement in performance over stan-
dard TPC-D and APB-1 OLAP benchmark queries, and
demonstrate that the techniques do not degrade performance
elsewhere. Another advantage of the work is that it employs
classes of integrity constraints that are commonly defined
(referential integrity and check constraints). The experi-
mental results presented employ ICs defined in the bench-
marks.

Of course, in environments where such ICs do characterize
the data but are not defined as ICs, these techniques cannot
work. However, any facility to discover referential integrity
and check constraints and to maintain these as SCs would
enable these optimization techniques.

Next, we review work to discover specific classes of “SCs”
over a database for the purpose of optimization. It is un-
likely that many of these SCs would be specified as ICs, so
discovery is the only way they would be obtained. It is also
unlikely that a DBA would want to promote any of these as
ICs since their integrity is not important to the semantics of
the database.

In [10], the goal is to discover certain linear correlations
between two numeric attributes in the database. This work
focuses on searching over pairs of attributes, A and B, which
appear together in a given table (call it table) and which
appear together commonly in workload queries, to discover
pairs which are linearly correlated. The goal is to discover
a best linear formula of the form

A=k(B)+b

and an € deviation such that all A’s values fall within € of
(k(B) +b). This could be expressed by the predicate

A between k(B) +b— e and k(B) +b+¢
Furthermore, this formula should be fairly selective (that is,
€ is small). So given a value for A, a small range over all
the possible B’s is selected. To limit the scope of discovery,

a threshold is used as a bound for acceptable values for e.

Assume that such a k, b, and € have been discovered for pair
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A and B with respect to table. Given the SQL query

select *
from table
where B = Xj;

for some constant X, and that there exists an index on
table.A but no index on table.B. The query can be rewrit-
ten as

select *
from table
where B = X and
A between kX +b—¢€ and kX + b+ ¢

This allows for the potential use of the index on A.

In [10], it was decided to explore attribute pairs only within
the same table because then discovered correlations could be
represented as check constraints. Since DB2 does not sup-
port yet inter-table check constraints (no inter-table con-
straints beyond foreign key), a linear correlation equation
between attributes from different tables could not be repre-
sented in DB2 as an IC. Of course, it would be possible in
principle to mine for these linear correlations between at-
tributes across common join paths. Such information could
lead to good optimization possibilities. But we would need
a way to represent the correlation information and to make
it available to the optimizer.

In [8], the focus is in fact on correlating two attributes, say
A and B, from two different tables, say one and two, re-
spectively, such that one M¢ two is a common join path.
This time, however, the focus is on how to find the “holes”
over one M¢ two with respect to ranges of A and B. That
is, selection conditions when A is selected over a given range
while B is selected over a given range, no tuples result in
one X¢ two. If one knows these two dimensional “holes”,
one can trim range conditions on A and B in queries that
involve one M two. This can reduce the number of pages
that need to be scanned for the join.

An algorithm is presented in [8] which can discover all the
maximal “holes” with respect to a pair of attributes and
a join path. The discovery algorithm is quite efficient and
is linear in the size of the resulting join table. In experi-
ments, good optimization has been demonstrated through
range restriction using the holes.

Extracting semantic information from database schemas and
contents, often called rule discovery, has been studied over
the last several years. Rules can be inferred from integrity
constraints [2, 3, 30] or can be discovered from database
content using machine learning or data mining approaches
[6, 7, 12, 27, 28, 30]. It has also been suggested that such
rules be used for query optimization [13, 27, 28, 30] in a
similar way that traditional integrity constraints are used in
semantic query optimization [4, 6, 17].

A lot of work has been devoted to the problem of estimat-
ing the size of the result of a query expression. Approaches
based on sampling were explored in [11, 18] and on his-
tograms in [15, 25]. [21] provides a survey of several tech-



niques and [16] provides an analysis of error propagation in
size estimation. Although the information about keys is of-
ten used in query result estimates, we are not aware of the
use of SCs for that purpose.

It has been observed that functional dependencies (FDs),
beyond key information, when explicitly represented can be
used for optimization in various cases [29]. They are most
effective to optimize group by and order by queries when it
can be inferred that some of the group by / order by at-
tributes are superfluous. This can save on sorting costs and
sometimes eliminate sorting from the query plan completely.

Since many databases are denormalized, in practice, for sup-
posed performance, or were never normalized in design, FD
information can be quite useful in further ways for an opti-
mizer. If so, FD information (beyond keys) could be explic-
itly represented when known. The opportunity to discover
FDs in databases should also generally be good. There has
been a fair amount of work in recent years that has improved
data mining for FDs [1, 14, 19, 20, 22, 26]. With a good
FD mining tool, FD information could be made available as
SCs.

3. SOFT CONSTRAINTS
3.1 Application

In DB2, there are three ways in which soft constraints could
be used in query optimization and execution.

e In rewrite. Currently, certain types of integrity con-
straints are used in the rewrite engine [6]. More types
will be accommodated over time. Any ASCs of the
right pattern can likewise be used.

Query plan parameterization. Some leeway can be
built into query plans. ASCs can be useful in setting
those parameters at run-time.

Cardinality Estimation. SCs can be used in the cost
model potentially to obtain better estimates on selec-
tivity factors. ASCs can be used for this, but SSCs
could be as well and perhaps more effectively (since
SSCs would presumably make available additional sta-
tistical information).

Later, we discuss this third application in more detail.

3.2 The sc Process

The work discussed in Section 2, and advances in data min-
ing in general, suggest that semantic characterizations that
are useful for optimization can be discovered and exploited.
Currently, there is no mechanism in RDBMSs to represent
such characterizations (SCs) and to maintain them. Our
motivation with SCs is to devise a useful representation for
these characterizations that would expedite both their use
in the optimizer and their maintenance.

There are three stages in a SC facility:

1. discovery,

2. selection, and
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3. maintenance.

Discovery can be done by off-line algorithms or opportunisti-
cally during light-load periods for the system. For the linear
correlation work [10] and the join hole work [8], there are al-
gorithms for discovery. For FDs, reasonable algorithms may
be close at hand.

Each discovery procedure is focused on a particular class of
SCs. Furthermore, input from the optimizer, the database’s
statistics, and the workload can likely be used to direct the
search towards those characterization that would be most
beneficial. Even so, certain discovered SCs will be more
worthwhile than others, and only some will be in fact use-
ful. The selection stage chooses the most promising of the
discovered SCs to keep. Which to choose will be based on
the estimated utility of each for the optimizer with respect
to the optimizer’s capabilities, the database’s statistics, and
the workload. The selection stage could be dynamic, select-
ing a larger set of SCs to begin and dropping ones that do
not prove to be useful over time. SCs might be inexpen-
sively maintained—perhaps not absolutely or maintained
asynchronously—but not employed over a probationary pe-
riod to assess their likely utility.

Any SCs that are chosen must be maintained. The expense
of a SC’s maintenance must be weighed against its utility.
The maintenance cost of certain classes of SCs will be inex-
pensive, while others’ may be prohibitive. Much research is
needed on maintenance strategies.

3.3 Implementation: ASCS versus sscs

ASCs are easiest to understand in a way: Any statement
that can serve as an IC potentially can serve as a ASC. Since
we know how to write and maintain (verify) many types of
ICs, we know as well for those types treated as ASCs.

Much of the optimization work discussed above would need
ASCs. Known linear correlations between attribute pairs
can be exploited to add a predicate to a query to allow for
an index use. This rewrite has to be semantically equiva-
lent to the original query for this query plan to evaluate to
the correct answers. Thus only a k, b, and e that classi-
fied at 100% (guaranteed) can be used. Likewise, join holes
require semantically equivalent rewrites. FDs used to abbre-
viate group by and order by clauses also must be semantically
equivalent for the answer set to be correct.

However, ASCs then are as expensive to maintain as ICs.
They must be checked on updates as are 1Cs. Therefore
as with ICs, it would only be practical to support a small
number of them for a given database.

We are able to augment DB2 to store ASCs easily. They are
treated as flagged 1Cs. (We have this mechanism already in
place in DB2 for informational constraints.) How to main-
tain them is not as clear. The maintenance policy of last
resort is to drop an ASC if it is ever violated. (A modified
version might be reinstated later by the discovery engine.)
There are many implementation issues about how this could
be done efficiently. How to weigh an ASC’s potential benefit
versus its predicted maintenance cost is also a question.



SSCs allow for greater, and far less expensive, maintenance
strategies. Since a SSC reflects the data to some partial de-
gree, absolute currency is not required. SSCs can be main-
tained asynchronously. Many more “useful” SSCs are likely
to be discovered than ASCs simply because SSCs allow for
a margin of error.

Meanwhile, SSCs seem to be only useful for filter factoring.
(Still, this alone may be quite useful.) There are also general
questions as to what form SSCs should have. What statisti-
cal information should be kept with SSCs? How much statis-
tical information? For instance, consider an ASC version of
linear correlations as discussed above. We might have that
90% of tuples in a table abide the linear equation relating A
and B with parameters k, b, and €gg9;. Should the databas
also keep €79 and eggo?

It is possible that one would want to associate a second
measure with ASCs: a measure of currency. This is a second
dimension of statistics to measure the potential error in the
SSC statement, based upon activity since the last time it
was updated. Given a fact table of a million records and
the knowledge that only a thousand tuples are affected by
updates daily, the margin of error for an SSC as a row check
constraint on that table will be quite small over the course
of several days. But within a month’s time, the margin of
error would be 3%.

SSCs offer an opportunity to bridge statistical metadata kept
for databases and the structural and constraint metadata
(that is, ICs) that is kept for them. There are many questions
as how to combine best these types of information. We are
also interested in what classes of SSCs are most useful for
filter factoring.

4, ABSOLUTE SOFT CONSTRAINTS
An ASC should be

e demonstratably useful by the optimizer with respect
to the workload,

e not too expensive to check and/or to repair, and

e unlikely to be violated on update.

We have evidence that such ASCs exist for realistic databases
and workloads, as discussed in Section 2.

4.1 When an asc is Violated

We need to resolve whether, or when, an ASC can be and
should be used by rewrite. If ASCs are used in query plans,
those query plans are in jeopardy when the ASC is violated.
Even if the ASC is “repaired”, the old query plans are no
longer valid. This can have consequences for concurrency
and serializability.

There can be problems at run-time due to serializabilty: a
transaction (A) that executes a query rewritten by an ASC
runs concurrently with another transaction (B) that violated
(and so overturns) the same ASC. The possibility exists that
wrong answers could be generated by the transaction A.
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Dropping an ASC that has become invalid would require
an exclusive lock on the catalog. This would have the ef-
fect of strictly serializing this transaction with all other sec-
tions that depended on that ASC. It would not be good for
any I/U/D (insert/update/delete) statement to block in this
manner.

Except for a transaction level that allows dirty reads, it does
not seem that a transaction conflict with an ASC can arise;
by isolation, each transaction sees its own consistent snap-
shot of the database. However, not every serial equivalence
of B then A is acceptable. The issue of serializabilty for
ASCs in rewrite needs to be considered and settled.

One possible solution, if there are serializabilty problems
and if we want ASCs for rewrite, is as follows. Abort trans-
action A above since it conflicts with transaction B (in that
B overturns an ASC that A employs). Re-issue transaction
A (modified now not to use the ASC) after B commits. The
re-issue can be done behind the scenes just as is done in the
case of deadlock resolution. So the user who issued A sees
no difference except for more wait time. If our ASCs are
such that a violation event (like transaction B) is rare, this
will not happen often. Of course, what then if transaction
A aborts in the end anyway? Is the ASC then re-instated?

For reasons of practicality, deadlock resolution is done at the
application layer today. This means that the application for
transaction A would have to re-issue. We would need to be
careful when choosing to abort: transaction B may have just
started while transaction A has been running for hours. We
are pursuing how to resolve these issues.

A worse expense for ASC violations is that every pre-compiled
query plan that employes a violated ASC in its plan must be
dropped. This can be a serious issue for the workload, since
those queries must be recompiled before they can be used
again. Again, if ASC violation is a very rare event, this may
be acceptable. This deserves study. One possilbe tactic is
for a package to incorporate a “backup” plan which is ASC-
free. If an ASC is overturned, a flag is raised and packages
revert to the alternative plans.

Of course, for workload environments that predominantely
consist of dynamic queries (write and run once), this is not
an issue. Data warehousing environments are like this. Also,
it would be possible to restrict the use of ASCs in rewrite
just to dynamic queries and never for precompilation.

It may also be possible to cirumvent these issues altogether.
‘We may be able to support the notion of an absolute SC but
allow for exceptions all the same. This would require some
type of “exception handling” be built into any query plan
that employs an ASC. Then whenever the ASC is violated,
none of these inherent problems arise. We discuss such a
possibility in Section 4.4 in which we treat ASCs as a type of
AST. It may be possible to devise other ways to circumvent
these problems as well.

4.2 Runtime Optimization

It may be worth considering ASCs just for runtime query
parameterization. No ASCs would be used in rewrite. Sig-
nificant changes would be needed in the optimizer in order



to consider the available ASCs and to add the extra param-
eters. Certain classes of ASCs would be amenable to this
approach. Sybase’s min and max “ASCs” are used effectively
in this way. The actual values in the ASC are not impor-
tant, such as what the actual maximum value is. Rather,
the availability of this information (of the ASC) at runtime
is important. This does mean that the ASC has to be avail-
able whenever the query is executed. So the query plan is
reliant on the ASC in that respect. Thus, ASCs used in this
way would have to be maintainable.

4.3 Maintenance

It may be that for certain classes of ASCs incorporation of
the ASCs in the query plan will never change the answer set
regardless. If the ASC is in violation, the query plan may
just be sub-optimal. It would be interesting to see whether
there exist such classes and whether any are useful for the
optimizer. Maintenance could be much less expensive for
these.

When an ASC is violated, there are different maintenance
strategies. The simplest is to drop the ASC. Another pos-
sibility may be to attempt to “repair” the ASC. The repair
could either be done synchronously (at the time of the vio-
lation) or asynchronously (dropped from active, and queued
for repair).

While ASCs require some synchronous maintenance to as-
sure that the ASC remains consistent with respect to the
database (or is dropped), hybrid approaches of synchronous
and asynchronous repair are possible. A less expensive syn-
chronous repair that is suboptimal can be performed. Then
an asynchronous repair can return the ASCs to optimal char-
acterization. For example, consider join holes. Because the
ASC is inter-table, any absolute maintenance requires a join.
Consider an insert to table one which adds a new tuple with
a new value for A. Furthermore, consider that the new value
for A occurs in holes with respect to B. To see whether these
holes are now violated requires a join of the new tuple in
one with table two. However, one can just assume that
the new value for A does violate the holes without checking.
The holes can be dropped (or split). This is suboptimal
since there may have been no violation in fact. The hole
ASCs would be brought back to optimality the next time
the asynchronous join hole algorithm is run.

4.4 ASCs as ASTS

Both ASCs and SSCs are closely related to materialized
views, and thus the automated summary table (AST) facility
in DB2.

Just as it has been recognized that IC checking can be con-
sidered as sub-problem of materialized view maintenance,
any IC can be rethought of as a materialized view that must
always be empty. Thus materialized view maintenance can
be used for ASC checking is as well, and ASCs could be
maintained as materialized views (ASTs).

A way to handle ASCs may be as follows. An IC can be
considered as a (materialized) view that is always empty.
It may not be empty, in which case the materialized view
explicitly represents the exceptions to the ASC. This differs
still conceptually from a SSC since we are not keeping any
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aggregate or statistical information. Thus updates that vi-
olate the ASC are allowed. The exceptions are just stored.
The assumption is that for a reasonable ASC, the material-
ized view that represents it is always nearly empty.

Now any query plan that employs an ASC must also process
the exceptions. In cases that the ASC’s AST is empty, the
exception addendum to the query plan should be of triv-
ial cost. Consider a table purchase and the attributes
order_date and ship_date. We can have the SSCs available
as discussed above. For example, for 99% of tuples, the
ship_date is between the order_date and three weeks later.
But now we could support the business rule that products
are shipped within three weeks directly.

create summary table late_shipments * as
(select *
from purchase
where ship_date > order_date + 3 weeks);

The ASC representing the business rule states that there
should not be shipments later than three weeks. The AST
late_shipments above tracks the exceptions (about 1% of
the tuples).

Consider the query

select *
from purchase
where ship_date = '15 Dec 1999’;

Consider that there is an index on order_date, but not on
ship_date. We would like to introduce a predicate with or-
der_date then to allow a better access path. From the SSC
information, we know that 99% of the answers (on average)
would be captured by the query

select *
from purchase
where ship_date = '15 Dec 1999’ and
order_date > '15 Dec 1999’ — 3 weeks;

Since we have the AST late_shipments available, we can
capture the remaining 1%:

(select *

from purchase

where ship_date = "15 Dec 1999’ and

order_date > '15 Dec 1999" — 3 weeks)

union all
(select *

from late_shipments

where ship_date = '15 Dec 1999’);

If the second sub-query is reasonably inexpensive, this can
result in a better query plan. Note that we can use union
all regardless since we know that the two sub-queries must
return mutually distinct tuples anyway. This means that
the optimizer has more options when optimizing the query.

Consider again the AST late_shipments defined above. This
AST can be used to influence filter factor estimation. The
table late_shipments can be defined in DB2 v7. DB2’s



current AST facility allows one to define effectively a mate-
rialized view via a single table select statement without use
of aggregation.

Such ASTs are used already by the optimizer. Any AST
that matches over a query’s predicates is appended as a
choice-point in the query plan. This query plan is passed to
cost-based optimizer. The cost-based optimizer may decide
to route through the AST instead of the base tables (or not)
depending on cost estimates. In either case, the optimizer
uses the statistics from both the base tables and the ASTs
involved for filter factor estimation for a better estimate.
Thus the existence of the AST late_shipments could im-
prove filter factor estimation for queries over the base table
purchase.

In concurrent work, the idea of information ASTs is being
developed by the DB2 group. An information AST is not
materialized, but runstat information is maintained for it. So
it is not routable, but can be used for filter factor estimation.
So if we did not need to keep the AST late_shipments
materialized (say we are not using ASTs as ASCs for rewrite),
this could be kept as an information AST.

This offers an immediate means to convey certain types of
“SSC” information as well to the optimizer. These SSCs
can be represented as ASTs, which then are employed by
the optimizer effectively for filter factor estimation.

We are exploring ways that the optimizer can exploit AST
information. In the scenerio above, it really is only the run-
stats information about the AST which is pertinent. How-
ever, it seems more natural that the data of the AST itself
will represent statistical profiling information about other
tables, joint distributions for attributes, and join path pro-
files. Consider the types of histogram queries we are able
to write with scalar aggregate operators. Assume that we
were able to declare such queries as ASTs.> The runstats
information about these ASTs themselves is irrelevant. It is
the data itself (serving as meta-data) that is relevant. How
the optimizer can be told when extra profiling information is
available via an AST, and how the optimizer can efficiently
exploit the ASTs, is a good question to address.

5. STATISTICAL SOFT CONSTRAINTS

In this section, we discuss the application of SSCs in better
cardinality estimation.

The estimated cost of accessing the data at various stages in
a query plan is determined by a number of factors, such as
the disk data transfer rate, the processor speed, the mem-
ory or buffers available and the statistics associated with the
data. These are all part of a complex model used to generate
the final access plan. In order to determine the cost of the
various operations involved in gathering and processing the
data, one of the key factors is the number of rows, or the car-
dinality, of the intermediate results. This is used to compute
the cost of the subsequent operations. Commercial database
systems like DB2 keep various statistics of the data within
columns for use in cardinality estimation. These include the
number of distinct values, high and low values, frequency

3DB2 does not currently support scalar aggregates in ASTs.
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and histogram statistics. The optimizer uses these statistics
when considering the various predicates within the query to
estimate the selectivity that results when these predicates
are applied.

Exploitation of constraints for internal rewrites has been
suggested before [6]. An example of such exploitation in
the query rewrite engine is their use in a union all view,
where each branch of the union contains a range of values
pertaining to a given column. These ranges are the con-
straints associated with each branch of the union all view.
For example, the first branch contains data corresponding to
January; the second contains data corresponding to Febru-
ary and so on for 12 months. A query, with a predicate
asking for data from January to March against this union
all view, requires us to only look at the first three branches
of the union all view. The way this is done is to match
the query predicates against predicates in each branch that
are introduced according to the corresponding branch con-
straint. This matching can then be used to knock off the
branches of the union view that we know will not contain
any data that will satisfy the query. The key requirement
here is that the constraints are valid and if actually applied
as predicates, they do not change the results of the query.

5.1 Cost-Based Optimization

‘We extend this concept of introducing constraint-based pred-
icates further to help estimate cardinalities within the opti-
mizer. The main difference is that unlike with the exploita-
tion in the query rewrite engine, the generated predicates
are not actually applied. We mark these predicates as spe-
cial predicates for use in the optimizer only. This allows
us to make use of constraints that are not necessarily valid
for all the data. They belong to the class of SSCs. It is
sufficient that they are true for a certain percentage of the
data. Given this additional information of how many rows
satisfy the constraint, we could alter the estimated cardinal-
ities. There are two suggested mechanisms of specifying the
constraints. The first is to use the same infrastructure as
a regular constraint along with an additional number that
specifies the percentage of the number of rows that satisfies
the constraint. The second is to combine multiple SSCs in
virtual columns where the distribution statistics on the vir-
tual column can be broken down into the individual SSCs.
These statistics characterize the data in a way that they can
be made to appear like predicates in the query within the
optimizer. They are marked as such for use by the optimizer
for the purpose of cardinality estimation only.

A major issue when estimating cardinality is when one or
more predicates involve multiple columns in a table mak-
ing it difficult to estimate cardinality because of statistical
correlation between values in the columns. As an example,
consider a project table and a query to find the number of
projects active on a given day. The predicate that could be
used is:

start_date <= ‘1999-11-15’ and end_date >= ‘1999-11-15’.
It is difficult for the optimizer to estimate the cardinality for

the combined effect of these predicates without knowledge of
the statistics of the spread between start_date and end_date.



A technique used today is to simply treat the columns inde-
pendently and multiply the filter factors of individual pred-
icates. If ‘1995-11-15’ is somewhere in the middle of the
column values that spanned 10 years of data, each predicate
would have a selectivity estimate of about 50%. This would
work out to a combined estimate of 256% of all the projects
done in 10 years! One can see that, if projects rarely went
over one month, we should on average have rows correspond-
ing to projects that were done in, say, November 1995 give
or take a few that started in October and some that ended
in December.

5.2 Twinning

Consider the case when we keep a SSC in the form end_date
— start_date <= 30 (assume that this holds for 90% of the
rows). We also keep this ‘90%’ number associated with the
constraint. For the purpose of cardinality estimation, even if
we assume the most likely maximum end_date = start_date +
30, we could add a new predicate that replaces the end_date
in the original predicate with one using start_date + 30. Now
we have a new predicate start_date + 30 >= ‘1999-11-15’
that we twin to our original predicate end_date >= ‘1999-
11-15’. The twinning mechanism simply tells the optimizer
that it could use either the original predicate or the new
predicate for the purpose of cardinality estimation. Today,
DB2 does use a twinning mechanism to allow the optimizer
to choose between alternate forms of predicates. For ex-
ample, an IN predicate could be written as a set of OR
predicates. The main difference with the proposed twinning
mechanism is that the twinned predicates are for cardinal-
ity estimation only. We now have two predicates on the
start_date column, the original predicate on start_date and
the newly added predicate on start_date that is twinned to
the end_date predicate. We can conveniently use these to
get better cardinality estimates. This is essentially reduc-
ing the range predicates on two columns to a pair of range
predicates (or a between predicate) on a single column. The
90% statistic gives us a confidence factor that we may use
to adjust the estimate. This may be done to apply upper
and lower bounds on our estimates. Assume we calculated
a filter factor of F' and we have a 90% confidence factor. We
should be able to apply a statistical adjustment based on
this confidence factor in order to arrive at a better bound
than we get using the independence assumption.

In another example, consider finding the number of projects
completed in 5 days. The predicate used in the query could
be end_date — start_date <= 5. In the previous example, we
had the SSC:

end_date — start_date <= 30 [90%)].

This is not particularly useful for the cardinality estimation
of <= b days predicate. It would be desirable to keep this
SSC as well, although it does not apply to as many rows as
the <=30 day predicate. In this case, say, we have 20% of
the rows satisfying the constraint end_date — start_date <=
5. We now have a good estimate for the predicate within
the query. Given a number of these SSCs varying the con-
stants (number of days in our example) and the associated
percentages with each of the SSCs, the question becomes
how to decide which constraint to use. It would seem that
a suitable method for numeric data is to use interpolation.
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This is not very different from the use of histogram statistics
within databases today.

5.3 Virtual Columns

The technique suggested is to combine all similar SSCs and
group them together as a single entity that provides informa-
tion for several predicates involving start_date and end_date.
For situations similar to the example above, the expressions
involved in the SSCs are normalized so that we have an ex-
pression on the left-hand side and a constant on the right
hand side. In other words, if the constraint was expressed
as end_date = start_date + 10, we normalize it to end_date
— start_date = 10. This becomes our virtual column ex-
pression. The statistics for the set of SSCs or the virtual
column are gathered either as part of the mining process or
explicitly using SQL statements that run through the data
(possibly sampled). Alternatively, actually materializing the
expressions into a column in a table and using the traditional
method to collect statistics is a brute force approach. The
results are compiled in a similar way that the statistics col-
lection routine does for a single column. The advantage of
the virtual column is that we do not have the overhead of
storing and maintain the materialized data. Exploiting an
actual generated or derived columns statistics could be done
using similar techniques described here.

Using the virtual column VC (end_date — start_date), we
collect frequency and histogram statistics. By looking at
the 2 most frequent values of 20 and 30, for example, we
would be able to infer that end_date — start_-date = 30 for
30% of the rows, end_date — start_date = 20 for 15% of the
rows and so on. Histogram statistics might look like:

VC Value X | rows satisfying VC <= X
5 days 1000
10 days 3000
20 days 20000
30 days 80000
50 days 95000

This provides us with condensed information that would
otherwise require us to store several SSCs in the traditional
form along with associated confidence factors. The following
SSC can be generated internally (assuming 100,000 rows):

end_date — start_date <=5 [1%]
end_date — start_date <= 10 [3%]
end_date — start_date <= 20 [10%]
end_date — start_date <= 30 [80%)]
end_date — start_date <= 50 [95%)]

We can now use these to generate suitable twinned pred-
icates that allow us to provide bounds to the filter factor
estimates used for cardinality estimation.

So far our examples describe techniques more suitable for
predicates involving numeric or date predicates involving
arithmetic operations.

A simple application of using virtual column or generated
column statistics that does not necessarily involve multi-
ple columns might be to get better cardinality estimates for
columns that are wrapped by functions. A predicate such as



uppercase(name) = SMITH would make it impossible to es-
timate if we do not know what the function uppercase does.
An SSC that told us that uppercase(name) = SMITH is valid
for 15% of the rows would be invaluable. If we had various
such SSCs compiled into a virtual column that hinted at the
estimate for uppercase(name) = SMITH, uppercase(name)
<= AAA, uppercase(name) <= BBB, etc., we would be
able to do a much better job when similar predicates ap-
peared in a query. For example, selectivity estimates for the
predicates uppercase(name) = SMITH or uppercase(name)
like A% would be fairly straightforward. Note that the like
predicate in this situation can be split into range predicates
using the high and low collating sequence characters to spec-
ify the bounds. Note also that range predicates on character
columns can use suitable conversion to floating point num-
bers to do interpolation. Another thing to note is, that in
some situations, after breaking up the virtual columns statis-
tics into potential predicates, we may be able to directly set
the selectivity of the original predicate without twinning any
additional predicates. This can be done for simple situations
where there is a one to one mapping of the original predicate
and the predicate based on the virtual column or generated
column.

5.4 Complex Conditions

Often, correlation between values in more than one column
is not very straightforward. An example of a simple CASE
based or conditional constraint is provided here to illustrate
how we could fail to detect correlation with the indepen-
dence assumption. Later on, we will provide a possible
solution using one or more virtual columns. Consider the
constraint:

CASE
WHEN ¢l = A THEN
f1(c2) between 1 and 100
ELSE
WHEN cl1 = B THEN
f2(c2) >= 1000
ELSE
c2=0
END.

Here f1 and f2 are functions to illustrate the more com-
plex case instead of simple columns. The assumption here
is that the conditions used within the CASE expression do
not overlap. For simple column op constant, maintaining
multi-column statistics as some databases do might allow
us to exploit similar techniques to use for cardinality esti-
mation. Let us assume that the cardinality estimate is 50%
for all the rows with ¢1 = A. Without knowledge of the cor-
relation information extracted from the CASE expression,
we would not be able to give a good cardinality estimate for
a predicate like ¢1 = A and f1(c2) between 1 and 80. With-
out analyzing the check constraint information, we would
treat the columns independently. The filter of the c1 = A
predicate would be 0.5 factor (using probabilities instead of
a percentage). That of f1(c2) between 1 and 80 might not
be so easily obtained since f1 may not be easily interpreted
by the optimizer. Typically a default filter factor is used
today. Even if we did get it correct (say 0.4 with uniform
distribution of f1(c2)), our combined filter factor estima-
tion based on independence would be 0.5 * 0.4 = 0.2. One
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can see that, assuming uniform distribution of the values of
f1(c2) between 1 and 100, the filter factor should be closer
to 0.4.

Extending this further, if the query contained the predicates
cl = A and f1(T'1.c2) = T2.c2, we might be able to get a
better estimate on the cardinality of the join predicate if
we could twin a predicate f1(T'1.c2) between 1 and 80. If
this were an IC, we could actually introduce and use this
predicate to our advantage. For the purpose of cardinal-
ity estimation, this could make a very significant difference
since data is often very skewed. Knowing that there is a
functional dependency alone is not enough. The relation of
the values is important for cardinality estimation. In many
data warehouse applications, a common design is to have
application dimension keys tied to surrogate keys that are
compact and used to link a fact table with the dimension
table. The queries themselves have the filtering predicates
on the application keys. It is extremely useful to apply the
technique above and add a predicate 72.c2 between 1 and
80 through transitivity on the fact table. This information
would allow us to better estimate the cardinality accounting
for the skew in the fact table.

While the set of conditions in the constraint could be ar-
bitrarily complex, we could keep statistics for the simpler
situations that the optimizer could exploit. In the exam-
ple above, we might want to keep the statistics for the two
branches of the CASE statement as separate virtual col-
umn entities using the expressions cl || f1(c2) and cl||f2(c2)
with appropriate values of c1(A or B). Note that || is not
true type compatible concatenation that we require in SQL
but a pseudo-concatenation. This is more a representation
of the values of the two columns placed side by side when
gathering statistics similar to the way we would do when
collecting statistics in a multi-column index. With the con-
ditional predicates split into separate virtual column expres-
sions based on the WHEN clause conditions in the CASE ex-
pression, it is less complex to analyze during query rewrite.

The histogram statistics for the virtual column containing
cl = A will look like :

cl||f1 | Number of rows
Al 10 100
Al 20 200
A || 100 1000

Given a predicate c1 = A and f1(c2) betweeen 1 and 75
which is rewritten internally as where c1 = A and f1(c2) >=
1 and f1(c2) <= 75, we could look for the virtual column
containing c1 = A and then twin the predicate cl1||f1(c2) >=
Al||1 and cl||f1(c2) <= A]||75 to the combined original pred-
icates.

The twinning mechanism needs to suitably tag the twinned
predicate or predicate set with the original predicate or pred-
icate set. In the current version of DB2, there is a mecha-
nism to adjust for correlation based on information within
the indexes. This mechanism makes use of a correlation
adjustment vector that contains sets of predicates and cor-
responding adjustment factors. When all the predicates ap-



pear together for the first time in an access plan, we apply
the adjustment for the set making sure that we roll out ad-
justments that might have been applied for any subset. This
same mechanism might be exploited to adjust for correlation
when adjustments are made to original predicates based on
the information using the twinned predicates on the virtual
columns. The original predicate set would be entered into
the correlation adjustment vector and the adjustment factor
would be computed based on the selectivity estimates of the
twinned set and the original set.

To start with, the set of statistics similar to that obtained
by explicitly collecting statistics on the materialized values
of the column could be used. The suggested method is to
use an extensible approach amenable to adding new statis-
tics if desirable. To make this extensible, these statistics are
packaged in a form that can be suitably stored in the cata-
logs. One method is to compose an XML structure that has
the relevant statistical information. When the query is com-
piled, the information is interpreted (converted from XML
to internally recognizable formats) and attached to the table
as a virtual column statistical attachment in a manner sim-
ilar to the way indexes are associated with the table. Note
that we could also identify the constraint attachments if they
were real integrity constraints. In the above examples, given
a generated column it may be possible to exploit the gener-
ated predicates during execution and derive the benefits of
better index usage either on the underlying column or on the
generated column if either the original predicate or that on
the generated column were used. The cardinality estimate
would still be governed by the predicate on the generated
column.

To summarize, given integrity constraints, some databases
like DB2 have the ability to do some semantic query op-
timization during the query rewrite phase. An additional
task during this phase involves further analyzing predicates
within the query with each of the statistical constraints de-
rived from the virtual column statistical attachment. Since
these may not be valid integrity constraints, we cannot do
semantic query optimization. We can exploit this informa-
tion in the optimizer to better estimate cardinalities. In
simple situations, if we find an exact expression match be-
tween the predicate in the query and that of the partial con-
straint, we simply mark the original query predicate with
the selectivity for the optimizer to use. In more complex
situations, with multiple predicates involved in the query
and the query predicates do not match the partial statisti-
cal constraint predicates exactly (other than involving the
same columns), we are be able to add twin predicates to the
original query predicates based on equivalence. In general
twinning predicates is a technique to provide alternate pred-
icate forms where either predicate could be used at execution
time. In the case of SSCs, however, the generated predicates
are for cardinality estimation only and are not to be evalu-
ated during execution of the plan. The twin predicate could
be used by itself for cardinality estimation of the original
predicate or, alternatively, a combination of the twin predi-
cates (and possibly original predicates) in the query may be
more amenable to account for correlation between values in
the columns.

6. CONCLUSIONS
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Informational constraints and their variants are not a new
idea, and they have now been implemented by several com-
mercial systems. Such techniques have been recognized as
critical in order to allow for reduced cost of constraint pro-
cessing. Soft constraints are new, to the best of our knowl-
edge. They offer an additional mechanism to provide use-
ful constraint-like information to the optimizer while not
improperly overloading the notion of integrity constraints.
Statistical soft constraints offer a way to capture complex
statistical information about the database in a declarative
manner similar to integrity constraints in a succinct form.
Statistical characterizations that would be impossible to rep-
resent by traditional statistical profiling (such as with run-
stats) can be captured this way. Furthermore, basic statis-
tics handling in database systems are “hardwired”. An op-
timizer equipped to handle SSCs can be trained for better
cost estimation with the addition of SSCs.
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