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ABSTRACT example,[9, 12, 15, 16]), by providing an approximateorderof-

magnitudeperformancemprovementfor simpledatabaseapplica-
tions,whencomparedo disk databasewith datafully residentin
mainmemory[2, 29].
Adaptingmain-memorydatabasalgorithmsto become‘cache-
conscious, that is, to performwell on multi-level main-memory
storagehierarchieshasrecentlyreceved attentionin the database
literature [5, 24, 25]. As mentionedout in thesepapersandin
relatedwork (see,for example,[6]), commonlyusedprocessors
cannow executedozensf instructionsin thetime takenfor aread
from mainmemory(a“cachemiss”). For instancememoryaccess
time on a450 MHz SunULTRA 60 is morethan50 timesslower
thanthe time to accesglataresidentin the on-chip cache. Fur-
ther, the disparity betweenprocessoispeedand memory lateny
is only expectedto gron since CPU speedsave beenincreasing
atamuchfasterate(60%peryear)thanmemoryspeed$10%per
year)[6, 24]. Consequentlymain-memoryndex structureshould
bedesignedo minimizecachemissegluringindex traversal while
keepingCPUcostsandspaceoverheadow. Intuitively, cache-miss
costsareminimizedwith smallnodesizesandhigh branchingfac-

The performancef main-memoryindex structuress increasingly
determinedby the numberof CPU cachemissesincurredwhen
traversingthe index. Whenkeys are storedindirectly, asis stan-
dardin main-memorydatabaseshe costof key retrieval in terms
of cachemissecandominatethecostof anindex traversal.Yetit is
inefficientin bothtime andspaceo storeevenmoderatesizedkeys
directly in index nodes. In this paper we investigatethe perfor
manceof treestructuresuitablefor OLTP workloadsin thefaceof
expensve cachemissesandnon-trivial key sizes.We proposewo
index structurespkT-treesand pkB-trees,which significantly re-
ducecachemissedy storingpartial-key informationin theindex.
We shav thatasmall,fixedamountof key informationallows most
cachemissesto be avoided, allowing for a simple nodestructure
and efficient implementation. Finally, we study the performance
and cachebehaior of partial-key treesby comparingthem with
othermain-memonytree structuredor a wide variety of key sizes
andkey valuedistributions.

Keywords tors. For example,[6] found that optimal nodesizesfor their B-
cachecoherenceB-tree, T-tree, key compressionmain-memory treeimplementatiorwasslightly largerthan1 cacheblock (sothat
indices the averagenumberof keys presentin a nodewould fill a cache

block). Low CPU costsfor index traversal are importantsince
cachemissescostno morethana few-dozeninstructions. In this

1. INTRODUCTION setting,key comparisorcostsareanimportantcomponenbf CPU
Following recentdramaticreductions randomaccessnemory cost, especiallyfor multi-part or variable-lengthkeys. Addition-
(RAM) is competitie in pricewith the disk storageof a few years ally, spaceoverheads importantsincethe costof RAM is approxi-
ago.With multi-gigabytemainmemoriesasilyaffordableandex- mately$1/MB, or about50 timesasexpensve asdisk storage. As
pandablgon 64-bit architectures)applicationsvith asmuchas1 aresult,theamountof mainmemoryavailableto theindex maybe
or 2 GB of datain mainmemorycanbe built with relatively inex- limited by costfactors,leadingto constraintson index size. The
pensve systemsandmoderategronth in spacerequirementsieed spaceusagedependon the spaceusedto represenkeys in index
not be a concern. For thesereasonsandspurredby the stringent nodes,the spaceusedfor pointers,andthe averageoccupang of
performancedemandsof advancedbusinessnetworking andin- nodesin thetree.
ternetapplicationsa numberof main-memorydatabasendmain- For main-memoryOLTP environmentswhich includea mix of
memorydatabaseacheproductshave appearedn the market [2, readand updateoperationsthe T-treé and the BT -tree are two
22, 29]. Theseproductsessentiallyfulfill the expectationsof re- index structureswhich have beenstudiedpreviously in the litera-
searchon main-memorydatabasesf thelastfifteenyears(see for ture[17, 24]. All main-memorydatabas@roductsof whichwe are

aware [2, 29], implementthe T-treeindex structureproposedby

LehmanandCare [17]. However, in [24], the authorsfound that

dueto the highercostof cachemisseson modernhardware, B+-
Permissionto male digital or hard copiesof all or part of this work for treesperformedbetterin experimentsonductedvith integerkeys.
personalbor classroomuseis grantedwithout fee provided that copiesare While the assumptiorof integer keys may be valid in an OLAP
not madeor distributedfor profit or commercialdwantageandthatcopies ervironmentassumingsuitablepre-processinga generalpurpose

bearthis noticeandthefull citationonthefirst page.To copy otherwisefo datab thand| e K ltiol t Il val
republishto poston senersor to redistrituteto lists, requiresprior specific atabasenusthandiecomple keys — multiple parts,null values,

permissiorand/orafee. 1 - . . . .
ACM SIGMOD2001May 21-24,SantaBarbaraCalifornia, USA The T-treeis similar to a binary treewith multiple keys (instead
Copyright 2001ACM 1-58113-332-4/01/05.$5.00. of one)storedin eachnode.
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variable-lengtHields,country-specifisortvalues etc. Further key

sizeandkey storagestratgy directly affectthebranchingactorfor

B- or BT -trees.Sincebranchingfactorsaresmall alreadyfor node
sizesbasedon cacheblocks, the heightof the tree canvary sub-
stantiallyaskey size changes.Thusan initial motivation for our

researchwas the further examinationof T-tree and B-tree perfor

mancein a main-memoryOLTP ervironment,in orderto consider
avarietyof key storageschemesindkey sizes.

In [9, 17], theauthorssuggestvoiding the key sizeproblemby
replacingthe key valuein the index with a pointerto the dataand
reconstructindghe key asneedediuringindex traversal. This indi-
rectkey-storageapproachasthe advantageof optimizingstorage
by eliminating duplicationof key valuesin the index, improving
the branchingfactor of nodesand simplifying searchby avoid-
ing the compleity of storinglong or variable-lengthkeys in in-
dex nodes. However, this approachmustbe re-examineddue to
the additionalcachemissescausedby retrieval of indirect keys.
A secondapproachto dealingwith large, complex keys is to use
key compressiorto allow morekeys to fit in cacheblocks. The
key-compressiorapproachasthe benefitthatthe entirekey value
canbeconstructedvithoutaccessinglatarecordsor dereferencing
pointers.However, typical compressioschemesuchasemplgred
in prefixB-treeqd4] havethedisadwantagehatthecompresselleys
arevariable-sizedleadingto undesirablespacemanagemerver-
headsn a small,main-memoryindex node.Further dependingn
thedistribution of key values,prefix-compressekieys may still be
fairly long resultingin low branchingfactorsanddeepetrees.

In this paper we proposethe partial-key approachwhich uses
fixed-sizepartsof keys andinformationaboutkey differencesto
minimize the numberof cachemissesandthe costof performing
comparesluringatreetraversal while keepingasimplenodestruc-
tureandincurringminimal spaceoverhead A key is representeth
apartial-key treeby a pointerto the datarecordcontainingthe key
valuefor the key, anda partialkey. For a givenkey in the index,
whichwereferto astheindex key for thepurpose®f discussionthe
partialkey consistof (1) theoffsetof thefirst bit atwhichtheindex
key differsfrom its basekey, and(2) I bits of theindex key value
following thatoffset(l is aninput parameter)Intuitively, the base
key for agivenindex key is themostrecentkey encountereduring
the searchprior to comparingwith theindex key. The partial-key
approachelieson beingableto resole mostcomparisonbetween
the searchkey andanindex key usingthe partial-key information
for theindex key. If thecomparisorcannotberesohed,thepointer
to thedatarecordis dereferencetb obtainthefull index key value.

Usingthe ideaof partial keys, we develop the pkTtreeandthe
pkB-tree variantsof the T-tree and B-tree, respectiely. We de-
scribesearchalgorithmsfor thesepartial-key treesaswell asstrate-
giesfor maintainingthe partial-key informationin the presencef
updatesFinally, we conductanextensve performancetudyof the
pkT-tree and pkB-tree structures comparingthemto standardT-
treesandB-treeswith bothdirectandindirectkey storageschemes.
In our experimentswe considerawide rangeof parametesettings
for key sizeandkey value distribution (entropy). We also study
thesensitvity of our partial-key algorithmsto I, the numberof key
valuebits storedin the partialkey. Our performanceesults,given
in detailin Section5.3,indicatethat:

e Of theindexing schemestudied partial-key treesminimize
cachemissedor all key sizes.

e Dueto lower CPU costs,B-treeswith directkey storageare
fasterthan partial-key treesfor small key sizes,but slover
for largerkey sizes.
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o Partial-key schemesave goodspacautilization,only slightly
worsethanT-treeswith indirectkey storageandmuchbetter
thandirectkey storageschemes.

o A small,fixedvaluefor I (theamountof partialkey informa-
tion) avoidsmostindirectkey accessefor a wide variety of
key lengthsandentropies.

In summary partial-key treesincur few cachemisses,impose
minimal spaceoverheadsandreducethe costof key comparisons
without introducingvariable-lengthstructuresnto the node,thus
enablinglarger keys to be handledwith much of the efficiengy
of smallerkeys. Further we expectthe relative performanceof
partial-key treesto improve over time with the increasingcostof
cachemisses.

Theremaindeof thepaperis organizedasfollows. In Section2,
we discusgelatedwork. In sections3 and4, we introducepartial-
key comparisonsndapply themto searchin pkT- andpkB-trees.
In Section5, we presenthe resultsof our performancestudy Fi-
nally, in Section6, we presentour conclusionsand issuesto be
addresseth futurework.

2. RELATED WORK

An early study of index structuredor main-memorydatabases
wasundertaknin [17]. TheauthorgproposedheT-treeindex and,
in orderto optimize storagespace,adwcatedstoring pointersto
datarecordsinsteadof key valuesin theindex. However, this de-
signchoicecanresultin alargenumberof cachemissessinceeach
pointerdereferencéo accesghe key valueduringa key compari-
soncouldpotentiallyleadto a cachemiss. Sinceat thetime of this
earlywork on main-memorydatabasegherewaslittle difference
betweerthe costof a cache-hitandthatof a cache-missnot much
attentionwaspaidto minimizing cacheblock misses.While most
work on cache-conscioudatastructuresoutsideof the database
communityhasfocusedon optimizingscientificworkloads cache-
consciousbehaior was studiedin [6] for “pointerbased”struc-
turesincluding searchtrees. However, this work focusedon ac-
tions which canbe taken without programmeicooperationrather
thanexplicitly designediatastructures.

More recently Rao and Rossproposetwo nev main-memory
indexing techniquesCade-Sensitiv&each Trees(CSS-tree]24]
andCade-Sensitiv8*+-Treeq25]. Designedor aread-intensie
OLAP environment,the CSS-treas essentiallyavery compaciand
space-dicient BT -tree. CSS-treeodesarefully pacledwith keys
andlaid out contiguously level by level, in main memory Thus,
childrenof anodecanbeeasilylocatedby performingsimplearith-
metic, and explicit pointersto child nodesare no longerneeded.
Further in theabsencef updateskey valuescanbe mappedo in-
tegerssuchthat the mappingpreseres the orderingbetweenkey
values. Thus, eachkey value in a CSS-treeis a compactinte-
ger, which is storedin the nodeitself, eliminating pointer deref-
erencesln summarythe CSS-treancursvery little storagespace
overheadandexhibits extremelygoodcachebehaior. The CSB*-
treeadaptghesddeasto anindex structurewvhich supportsfficient
update(for the CSS-treethe authorsrecommendehuilding from
scratchafter a batchof updates). This structurestoresgroupsof
sibling nodesadjacentn memory reducingthe numberof pointers
storedin thepareninodewithoutincurringadditionalcachemisses.
However, this work continuesto assumentegerkeys. To this ex-
tent, the performancémprovementsof CSB*-treesor CSS-trees
and partial-key treesarelikely to be orthogonal,sincethe former
focuseson reducingpointeroverheadandimproving spaceutiliza-
tion while the latter focuseson reducingkey-size andcomparison
cost.



Ourpartial-key technique®orrown from earlierwork onkey com-
pressior[4, 11]. However, therearedifferenceswhichwe discuss
belon. Partial-key treesaremostsimilar to Bit Treesthatwerein-
troducedn [11]. Bit TreesextendB*-treesby storingpartial keys
insteadof full key valuesfor (only) thosekeys containedin leaf
nodes.The partialkey in a Bit Tree consistsof only the offset of
the differencebit relative to the previous key in the node. The au-
thorsdescribeseveral propertiesof searchesisingonly the offset
of differencebits, andin particularshav the somevhat surprising
resultthat the preciseposition of a searchkey in a leaf nodecan
be determinedy performingexactlyonepointerdereferenceéo re-
trieve anindirectkey. Otherthanafocuson main-memoryrather
thandisk, our partial-key treesdiffer from Bit Treesin the follow-
ing respects(1) partial keys arestoredin bothinternalnodesand
leaf nodes,(2) partial keys contain! bits of the key valuefollow-
ing the differencebit in additionto the differencebit offset, and
(3) searchingor a key in a nodein a partial-key treerequiresat
most one pointerto be dereferencedand frequentlyrequiresno
pointerdereferencesjueto the! bits of additionalinformationand
our novel searchalgorithms.

PrefixBT-trees proposedn [4], emplg key compressiomo im-
prove the storagespacecharacteristicandthe branchingfactorof
BT -trees. Suppose is the commonprefix for keys in the subtree
rootedat node N. Forakey k = p- s in node N, thecommon
prefix p can be computedduring tree traversaland only the suf-
fix s of the key valueis storedin N. Further whenkeys move
out of a leaf nodedueto a split, only the sepaator, or the short-
estportion of the key neededo distinguishvaluesin the splitting
nodes,is moved. Partial-key treesdiffer from prefix BT -treesin
thefollowing respects(1) while prefix treesfactorout the portion
commonto all keysin anode,partial-key treesfactoroutinforma-
tion in commonbetweenpairs of adjacentkeys within the node,
typically a longer prefix thanis commonto the whole node, (2)
while in prefix BT -trees the entiresuffix of the separatois stored,
in partial-key treesonly thefirst! bits of thesufix is stored-thus,
partial-key treesmay lose key value informationwhile the prefix
BT -treedoesnot, (3) in the prefix BT -treeno pointerdereferences
areneeded.In contrast,in a partial-key tree,pointerdereferences
mustbe performedwhenthe comparisorcannotbe resohed using
thepartial-key information,and(4) the partialkeys storedin a pre-
fix BT treearevariablesizedandthis complicatesmplementation.
Further in somecaseghe separatomay not evenfit in a 64-byte
cachéline, causingindex nodesto spanmultiple cacheblocksand
reducingthe branchingfactor Thuspartialkey treestradeoff the
guaranteeof no indirect key referencesf partial-key treesfor a
low probability of indirectkey dereferencesn exchangefor sim-
ple nodestructuresand more stronglyboundedree heights. This
is reasonablsincethe costof a cache-misgs ordersof magnitude
lowerthanthe costof arandomdisk access.

Ronstromin his thesis[28] describeshe HTTP-tree,a varia-
tion of prefix B* treesin which further compressioiis performed
within a nodeby storingkeys relative to the previous key, factor
ing outcommonsufiixes,etc. Nodesarealsoclusterecbn pageso
facilitatedistribution. However, during searcheshe full key is re-
constructedn orderto performcomparisonsandcompressettey
sizesarevariable. Otherlosslesscompressiorschemegprimarily
for numericattributeshave recentlybeenproposedn the database
literature[13, 23]. Goldstein,Ramakrishnarand Shaft[13] pro-
posea pagelevel algorithmfor compressindables. For eachnu-
meric attribute, its minimum valueoccurringin tuplesin the page
is storedseparatelyoncefor the entire page. Further insteadof
storingthe original valuefor the attributein atuple,the difference
betweerthe original valueandthe minimumis storedin thetuple.
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Figure 1: A Partial Key

Thus,sincestoringthedifferenceconsumegewer bits, the storage
spaceoverheadof thetableis reduced.Tuple Differential Coding
(TDC) [23] is a compressiomethodthatalsoachievesspacesar-
ings by storing differencesnsteadof actualvaluesfor attributes.
However, for eachattributevaluein atuple,thestoreddifferences
relative to theattributevaluein the precedinguple.

3. PARTIAL KEY SEARCH

In this section,we describethe partial key approachandalgo-
rithms for performingcomparesand searchesn the presenceof
partialkeys. We assumehat keys arerepresentedsfixed-length
bit strings(thoughthisis notrequiredin general).Further thebits
arenumberedn orderof deceasingsignificance baginning with
bit 0 (themostsignificantbit).

3.1 Partial Keys—An Overview

Considettheorderin whichindex keys arevisitedandcompared
with the searchkey during a traversalof a T-tree or B-treeindex.
We obsere that for both structuresthe key visited so far which
is closestin valueto the searchkey is eitherthe mostrecentkey
to comparelessthanthe searchkey or or the mostrecentkey to
comparegreater It is easyto seethatthe mostrecentkey to com-
parelessthanthe searctkey sharesnoreinitial bitsthanary other
key which comparedessthanthe searchkey during the search.
Similarly for themostrecentkey which comparedyreaterthusthe
obserationfollows. In fact,very few initial bitsmaybesharede-
tweenthe mostrecentwith the searchkey when,for example,the
keysareoneithersideof alarge power of two, but thiseventis rare.
In thefollowing discussionwe referto the currentkey beingvis-
ited astheindex key (asopposedo searctkey), andthe previous
key visitedasthebasekey. In our partial-key schemesgachkey is
representeth theindex by threeitems: (1) a pointerto therecord
containingthe key, (2) the offset of thefirst bit at which the index
key differs from the basekey, and(3) thefirst  bits of the index
key following this offset. We illustratethe constructiorof a partial
key in Figurel. In thisfigure,andin othersbelaw, theindex key or
searchkey is generallyreferredto ask; or k;, andthe basekey as
k.

Oneapproactto usingthis partialkey informationwould mirror
the useof prefixesin a prefix B-tree. In this approachthe search
codewould maintainthe known prefix of the index key asit tra-
versedthe tree,concatenatin@gppropriategportionsof partial keys
asthey areencounteredf theknown portionis sufiicientto resolhe
a comparisonwith the searchkey, thena cachemissis avoided.
However, it turnsout thatconstructinghis prefix is not necessary
andin factcomparisonganoften be resoled by noting the offset
atwhichthesearctkey differedfrom thebasekey, andcomparing



thatto theoffsetstoredin thepartialkey for theindex key. Thisob-
senationensureshatmostcomparisongreperformedwith small,
fixed-lengthportionsof the key. Preciselyhow thesecomparisons
areperformeds thetopic of thenext section.

3.2 Partial-K ey Comparisons

In this sectionwe discussthe propertiesof differencebits more
formally, andpresenttheorenthatbearsdirectly on comparisons
in partial-ley trees.

Let d(k;, k;) bethe offset of the mostsignificant(thuslowest)
bit of differencebetweenkeys k; andk;. Also, let ¢(k;, k;) be
theresult,LT, GT or EQ, of the comparisorbetweerkeys k; and
k; dependingon whetherk; is <, >, or = k;. The partial-key
approaclis basedon the obserationthatfor anindex key k; and
its basekey ks, notingd(k;, ky) in the partialkey for key &; will
frequentlyallow full comparisonf k; with a searchkey k; to
be avoidedduringindex retrieval. In particular if thetwo keys k;
andk; comparen thesameway (LT, for example)to the basekey,
ks, andif d(k;, ky) andd(k;, ks) areknown, thenit is possible
to determinehow k; comparedo k; aswell asd(k;, k;) without
additionalreferenceo thekeys unlessd(k;, k») = d(k;, ks).

THEOREM 3.1. Givenk;, k; and k, asabove if c(ks, ky) =
c(kj, kv) andd(k;, k») # d(k;, ks), then

d(ki, kj) = min(d(k;, kp), d(k;, kb))
and

sy = § ckoiki) i (ki k) > (ks k)
iy g ) — C(ki,kb) Ifd(k,,kb)<d(k],kb)

ProoF. Assumewithout loss of generalitythat k;, k; < ks.
Supposehatd(k;, kv) > d(k;, kb). Sincek; < kp, thenatthefirst
bit of differenced(k;, k), k;'s bit mustbe 0 andk,’s bit mustbe
1. It follows from d(k;i, k») > d(k;, ks) thatthe bits of k; agree
with thebits of &, for all bits upto andincludingd(k;, ks), sothe
correspondingit of k; is alsol. Thus,k; > k; andd(k;, k;) =
d(kj, kv). Ontheotherhand,supposehatd(k:, kv) < d(k;, k).
Thus,sincek; < ks, the bit at positiond(k;, k») mustbe 0 in &;
andlin k. Further sinced(k;, ky) < d(k;, ky), this bit mustbe
the samein both k; andks, thatis, 1. Further the bit sequences
precedingthis bit in both k; and k; mustbe identical. Thus, it
follows thatk; < k; andd(k:, k;) = d(ks,ks). Theothercases
for k;, k; > ks follow from symmetry [

Thekey ideasof TheorenB.1areillustratedin Figure2(a). Here,
keys k; andk; arebothlessthanthe basekey k;, andd(k;, ky) =
9 is greaterthand(k;,ks) = 5. Thus,asshawvn in the figure,
d(k;,k;) = 5 andk; > k; becausehefirst 5 bits of k;, k; andks
match,but onthe6® bit, k; andk;, areboth1 while k; isO.

Theorem3.1 canbe usedto compute for mostcasestheresult
of the comparisorbetweena searchkey k; andthe index key k;.
This is becausehe partial key for anindex key k; storesthe dif-
ferencebit offsetd(k;, ky») with respecto its basekey ks, thatwas
encounteregreviously in the search.Further sincean attemptis
madeby the searchalgorithmto comparek; with &;, it mustbethe
casethatc(k;, ky) = c(ks, ko). Also, d(ks, ky) andce(k;, ky) are
available dueto the previous comparisorbetweenthe searchkey
andthe basekey. Thus,for the casewhend(k;, ky) # d(k;, ks),
TheorenB.1canbeusedto infer d(k;, k;) andc(k;, k;), andthese
in turn canbe propagatedo the next index key comparison(for
which k; is thebasekey).

Theonly casenothandledby TheorenB.1occursvhend(k;, k»)
= d(kj, ks). In this casetheonly inferenceonecanmale is that
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k; andk; areidenticalon the first d(k;, k») + 1 bits. However,

onecannotdeterminehow keys k; andk; compare.An example
of this is illustratedin Figure 2(b). In both of the casesshavn

in the figure, k;, k; < kv andd(k;:, ky) = d(k;,ks). However,

in one,k; < k; andin theotherk; > k;. Whenthe difference
bits areequal,the bits of the key value storedfor the index key

arecomparedvith thecorrespondinditsin thesearctkey. If these
bitsareequal retrieval of theindirectly storedkey is required .Note
that,asshavn in Figure1, the differencebit itself in notincluded
in the! bits storedwith a partialkey. Sincebothk; andk; differ
from ky in thevalueof this bit, the correspondingitsin k; andk;

mustbeidentical.

procedure CoMPAREPARTKEY (searchKey, indKey, comp, offset)

begin

1. if (indKey.pkOffset < offset)

2. if (comp=LT)

3. comp :=GT

4. else

5. comp :=LT

6. offset := indKey.pkOffset

7. elseif (indKey.pkOffset = offset)

8. if (comp=LT)

9. partKey := searchKey[0:indKey.pkOffset-1]
-0-indKey.partKey;

10. else

11. partKey := searchKey[0:indKey.pkOffset-1]
-1-indKey.partKey;

12. comp, offset := comparegearchKey,

13. partKey);

14. if (offset > indKey.pkOffset + indKey.pkLength)

15. comp := EQ;

16. return [comp, offset];

end

Figure3: CoMPAREPARTKEY: Comparisonusing Partial Keys.

ProcedureCoMPAREPARTKEY in Figure3 utilizesTheoren3.1
to computetheresultof acomparisorbetweera searctkey andan
index key containingpartial-key information. The partial-key in-
formationconsist®f threefieldspkOffset, pkLength andpartKey
which aredescribedn Tablel1. Theinput parametergomp and
offset to COMPAREPARTKEY aretheresultof thecomparisorand
thedifferencebit locationof the searctkey with respecto thebase
key. Stepsl—6 of the procedureare a straightforvard application
of Theorem3.1. In casethe differencebit locationsfor the search
key andindex key are equal,the keys mustbe identicaluntil the
differencebit. Further thedifferencebit itself in bothkeys mustbe
eitherO or 1 dependingnwhetherthekeys arelessthanor greater
thanthe basekey. In Step12, function COMPARE is invoked to
computethe comparisorof the ! bits following the differencebit
in bothkeys. FunctionComPARE(k1, k2) returnsa pair of values
comp, offset with the following semantics. The value comp is
oneof EQ, LT or GT dependingon whetherthe bit sequence1
is equalto, lessthanor greaterthanthe bit sequencé&2 whenthe
two sequencearecomparedit by bit. Thereturnvalueoffset is
thelocationof the mostsignificantbit in which thetwo keys differ.
Thus,in steps13-14,sincepartKey may not representhe entire
index key, if all bitsin partKey agreewith thecorrespondinitsin
searchKey, thecomparisorbetweerthe searctkey andindex key
cannotbe resolhed andthe procedureeturnseQ. In this case the
semanticof the returnedoffsetis simply thatthe two keys agree
onthefirst offset—1 bits.

Notethat,in Step12,functionComPARE only needgo consider
bits startingfrom bit offset indKey.offset in the two keys (since
the correspondingdits precedingthis point areidentical for both
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Figure 2: Examplesof ComparisonsbetweenKeysk; and k; that Can and Cannot be Resohed

Table 1: Partial-K ey Notation

[ Symbol | Description
l Maximumnumberof bits from key valuestoredin partialkey
k; .pkOffset Offsetof differencebit of key k; andits basekey
k;.partkey Upto! bitsfollowing locationk;.pkOffset in key k;
k;.pkLength Numberof partial-key bits storedwith key k;
kil - m] Bit sequenceonsistingof bits betweeroffsetsl andm in key k;
ki - ko Concatenationf bit sequences; andk,
N.numKeys Numberof keysin nodeN
N keyl[d] " key in nodeN
N .ptr[4] i*" pointerin nodeN

keys). Further in mostcasesprocedureCoMPAREPARTKEY per
formsonly oneintegercomparisonnvolving differencebit offsets;
however, additionalexpensamaybeincurredsincethe bit of offset
mustbe computedn anticipationof the next comparison.While
a greatercostthan simpleinteger comparesjt compareswell to
comparison®f largerkeys, asshavn in Section5.

The partial-key schemecanbe adaptedo multi-segmentkeys,
evenif somesggmentsareof arbitrarylength. Theideais to treat
the pkOffset asatwo digit number wherethe first digit indicates
thekey sgmentandthe secondndicatesanoffsetwithin thatseg-
ment. The partKey field may be limited to bits from a singlesey-
ment,or atthe costof morecomplity, spansegments.

3.3 Partial-K ey Nodes

The CoMPAREPARTKEY proceduredescribedin the previous
sectionis thebasichuilding block for performingretrievalsin pkT-
treesandpkB-trees.Beforewe presenthe completealgorithmfor
searchingn atree,we presenbelav alinear encodingschemedor
computingthe partialkeys for anarrayof keysin anindex nodeN.
We alsopresenta linear searchalgorithmfor finding a searchkey
in thenodeif it is presentandif it is not, the pair of adjacenkeys
in thenodebetweernwhich the searctkey lies.

Linear Encoding of Partial Keys. The basekey for eachkey in
N is simply the key immediatelyprecedingt in V. For the first
key N.key[0], thebasekey is akey in anancestoof NV in thetree
thatis comparedvith thesearctkey duringthetreetraversalbefore
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nodeN is visited. Thus,the basekey for thefirst key dependn
thetreestructureandis differentfor the pkT-treeandpkB-tree.We
discusghisfurtherin thefollowing section).

Simple Linear Search Algorithm. Whensearchingor a key in
theindex, the node N is visited after the searchkey is compared
with the basekey for N.key[0]. Let comp andoffset denotethe
result of the comparisonand the offset of the differencebit be-
tweenthe searctkey andthebasekey. Then,in orderto locatethe
position of the searchkey in N, procedureCOMPAREPARTKEY
(seeFigure3) canbeusedto computethe comparisorandthe dif-
ferencebit offset betweenthe searchkey and N.key[0]. In case
the comparisorcannotbe resoled usingthe partial-key informa-
tion for N.key[0] (thatis, COMPAREPARTKEY returnsgQ), then
N.key[0] is dereferencedndthe searchkey is comparedwith the
full key correspondingo N.key[0]. Theresultof the comparison
anddifferencebit offsetis thenusedo comparahesearctkey with
N.key[1], andsoon. Theabove stepsof comparingwith thesearch
key arerepeatedor successie keysin IV with thecomparisorand
differencebit offsetfor the previouskey — until akey thatis greater
thanor equalto the searctkey is found.

However, this naive linearsearctstratgy mayperformunneces-
sarykey dereferencesThefollowing exampleillustratesthis.

ExAampPLE 3.2. Considerthe node N in Figure 4. Thediffer-
encebit for eadh key (with respecto thepreviouskey) is marked by
anarrow and! = 1 bits following the differencebit are storedin
the partial key for eat key. Letthe basekey for thefirstkey in N
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Figure4: Linear Searching for Keyin Node

be0010l1landlettheseach key be 10111.

After the seach key is compaed with the basekey, the compar
ison and differencebit offsetare GT and 0, respectively Invok-
ing CoMPAREPARTKEY with the seach key, N.key[0], GT and
0 returns[EQ, 2] since N.key[0].pkOffset = 0 and the seach
key matcheswith N.key[0] on the first two bits. Thus, N.key[0]
wouldbederefeenced andcomp and pkOffset afterthecompar
isonwith N.key[0] is GT and2, respectivelyNext thesearh key is
compaed with N.key[1] by invoking COMPAREPARTKEY. Since
N .key[1].pkOffset = 3 which is greaterthan 2, the differencebit
offsetfor the seach key and N.key[0], COMPAREPARTKEY re-
turns [GT, 2], and N.key[1] is not derefeenced. The next invo-
cationof COMPAREPARTKEY with N.key[2] returns[GT, 3] since
N key[2].pkOffset = 2 and the bit sequencel010 for the con-
structedkey for N.key[2] is smallerthan 1011, the correspond-
ing bits of the seach key. After returning [GT, 3] for N.key[3]
(sinceN.key[3].pkOffset = 4 is greaterthan 3), procedue Com-
PAREPARTKEY movesto key 4 andreturns[L T, 1] for N.key[4]
sinceit findsthat V.key[4].pkOffset = 1 is lessthan 3, the offset
returnedfor N.key[3]. Thus,the simplelinear seach algorithm
stopsat N.key[4] andthe positionof the seach key in IV is deter
minedusingonly onekey derefeence that of N.key|[0].

However, the positionof the search key canalso be determined
without derefeencingany keys, including N.key[0]. Thereason
for this is that COMPAREPARTKEY returns[EQ 2] whenit is in-
voledwith N.key[0]. Thus,at this point, we knowthat thefirsttwo
bits of IV.key[0] are 10 sincethe first two bits of V.key[0] agree
with thoseof the seach key. SinceN.key[1].pkOffset = 3, we
also can concludethat the first two bits of N.key[1] agree with
thoseof N.key[0] are thus10. SinceN.key[2].pkOffset = 2 and
N.key[2] > N.key[1], it mustbe the casethat the third bit of
N .key[2] is 1 (and the third bit of V.key[1] musthavebeenO).
Further, thefourth bit of V.key[2] canbe obtainedfromits partial
key and thuswe can concludethat the first four bits of N.key[2]
are 1010. Sincethe searh key is 10111,the comparisorbetween
the search key and N.key[2] canberesolvedandis [GT, 3]. Sub-
sequentcomparisonscan then be carried out as describedear-
lier to concludethat the seach key lies in betweenV.key[3] and
N.key[4]. Thus,the positionof the seach key can be determined
withoutderefeencinga singlekey. il

Linear Search Algorithm Requiring at most One Key Deref-
erence. ProceduréFINDNODE, shavn in Figure5, avoidsthe un-
necessargereferencemadeby thesimplelinearsearchalgorithm.
Whencomparingthe searchkey with anindex key in node N, in
caseprocedurecCOMPAREPARTKEY returnsgQ, thatis, the com-
parisonbetweena searchkey andindex key cannotbe resoled,
FINDNODE doesnot immediatelydereferencehe index key. In-
stead,it exploits the semanticof [EQ, offset] returnedby Com-

procedure FINDNODE(N, searchKey, offset)

begin

. high := N.numKeys;

low :=-1;

cur_off := offset;

cur_.cmp :=GT,

cur :=low +1;

while (cur < high){

cur_cmp, cur_off :=
CoMPAREPARTKEY (searchKey, N .key[cur],

cur_cmp, cur_off)

9. if (cur.cmp =LT)

10. high :=cur;

11. break

12. elseif (cur.cmp =GT)

13. low :=cur;

14. offset := cur_off;

15. cur++;

ONOOALWNE

17.if (high - low > 1)

18. low, high, offset := FINDBITTREE(NN, searchKey, low, high)
19. [* cachemiss*/

20. return [low, high, offset];

end

Figure 5: FINDNODE: Linear Searching for a Key in a Node
Using Partial Keys.

PAREPARTKEY (which is that the searchkey andthe index key
agreeonthefirst offset-1 bits) to try andresole comparisonsvith
subsequerkeys. Thiswasillustratedearlierin Example3.2,where
[EQ, 2], theresultof the comparisorwith N.key[0], wasusefulin
resolvingthecomparisoroperatiorwith key N.key[2]. In fact,pro-
cedureCOMPAREPARTKEY asalreadystatedcorrectlyhandleshe
valueof EQ asaninput parametewhencalledfrom FINDNODE, ,
andaninformal proof of this factcanbe foundin AppendixA.

Procedure=INDNODE acceptsasinput parametersode NV in
whichto performthelinearsearchandthe differencebit offsetbe-
tweenthesearctkey andthebasekey for N.key[0]. It assumethat
boththesearctkey andNV.key[0] aregreatetthanthe basekey with
respecto which N.key[0]'s partialkey is computed Similarto the
simple linear searchalgorithm describedearlier it compareghe
searchkey with successie index keysin thenodeuntil anindex key
largerthanthesearchkey is found. ProcedureCoMPAREPARTK EY
is usedto performevery comparisorandtheresultsof the previous
comparison(storedin variablescur_cmp and cur_off) are passed
asinput parameterso it. Unlike the simplelinearsearchscheme,
anindex key is notimmediatelydereferenced the preciseresult
of the comparisorbetweenthe key andthe searchkey cannotbe
computed.Instead variableslow andhigh areusedto keeptrack
of thepositionsof index keysin IV thatthe searctkey is definitely
known to be greatetthanandlessthan,respectiely.

At theendof asweepof keysin nodeN, if high - low is greater
thanl, thenit impliesthatthe precisepositionof the searctkey in
N is ambiguousln this case procedure=INDBITTREE is usedto
locatethe exact positionof the searchkey betweenow andhigh
— it returnsthe consecutie keys betweernwhich the searclkey lies
andthe differencebit offset of the searchkey with respecto the
lowerkey. Procedurd-INDBITTREE emplg/sthesearchalgorithm
for Bit Treesdescribedn [11] andrequiresexactly onekey to be
dereferenced.In a nutshell,the algorithm performsa sequential
scanof keys in N betweenoffsetslow andhigh. It maintainsa
variablepos, whichis initially setto low. For eachkey examined,
if for the differencebit offsetin its partial key, the bit valuein the
searchkey is 1, thenvariablepos is setto the positionof thekey in



N. Ontheotherhand,if the bit valuein the searchkey is 0, then
keys for which the differencebit offsetis greaterthanthe current
key’s, areskippedandthe next key examinedis the key whosedif-

ferencebit offsetis lessthanthatof the currentkey. Onceall the
keys have beenexamined,V.key[pos] is dereferencedndis com-
paredwith the searchkey. If comp, offset is the pair returnedby
comparegearchKey, N.key[pos]), thenFINDBITTREE takesone
of thefollowing actions:

1.
2.

comp = EQ: Return[pos, pos, offset].

comp = GT(LT): Supposehat high is the position of the
first key to theright(left) of pos for which the differencebit
offsetis lessthanthatof V.key[pos]. Return[high-1, high,
offset].

The correctnes®f FINDBITTREE for Case2 above is dueto the
following propertyof pos: Betweenpos anda key whosediffer-
encebit offsetis equalto that of pos, thereis a key whosediffer-
encebit offsetis lessthanpos’s. We referthe readerto [11] for
details.

Thevariableoffset returnedby FINDNODE is the differencebit
offset betweernthe searchkey and N .key[low - 1]. In caselow =
-1, thatis, the searchkey is lessthan N.key[0], thenoffset is the
differencebit offset betweenthe searchkey andthe basekey for
N .key[0]. Finally, if thesearctkey is containedn N, thenthepro-
cedurereturnsthe positionof the index key thatequalsthe search
key. Revisiting Example3.2, FINDNODE determineghe position
of thesearchkey in node N withoutrequiringary keysto bederef-
erencedSuccessieinvocationof proceduraCOMPAREPARTK EY
for thesequencef keysin N return[EQ, 2], [EQ, 2], [GT, 3], [GT,
3] and[LT, 1].

Maintaining Partial-K ey Information in the Presenceof Up-
dates. With the linear encodingstratgy, maintainingthe partial-
key informationis quite straightforvard. Insertionof anew key in
the noderequiresthe partial keys of the insertedkey andthe key
following it to berecomputedwhile deletionrequiresonly the par
tial key for thekey following the deletedkey to berecomputed.

4. PARTIAL-KEY TREES

Building onthe partial-key comparisorandsingle-nodepartial-
key searchalgorithmspresentedn the previous section,we now
discusshow partialkeys canimprove performancén main-memory
index structuresby reducingthe L2 cachemissrate. In particular
we presenpartial-key variantsof the T-tree[17] andB-tree[3] in-
dex structuresuitablefor usein main-memory The pkT-ttreeand
pkB-tree,aswe referto them,extendtheir main-memorycounter
partsby representingeys by their partial-key informationasde-
scribedin Section3. Thelinearencodingschemelescribedn the
previous sectionis usedto computepartialkeys for theindex keys
in anode.With linearencodingatthenodelevel, wethusonly need
to specifythe basekey with respecto which the first key in each
nodeis encodedsincethe basekey for every otherkey in the node
is simply thekey precedingt.

4.1 pkT-tree

The T-treeis a balancedbinary tree with multiple keys stored
in eachnode. The leftmostandthe rightmostkey valuein a node
definetherangeof key valuescontainedn the node. Balancingis
handledasfor AVL trees[1]. We referthereaderto [17] and[26]
for additionalinformationaboutT-treesncludingdetailsof update
strat@iesandconcurreng control. ThepkT-treeis similarto the T-
treeexceptthatin additionto apointerto thedatarecordcontaining
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thefull key value,eachindex key entryalsocontaingpartial-key in-
formation.In thefollowing, N.ptr[0] andN.ptr[1] denotepointers
to theleft andright childrenof nodeNV.

Storing Partial-K ey Information. For thefirst key in eachnode
N, thebasekey with respecto whichthepartialkey is computeds
thefirstkey in the pareninode.Thisis becauseasdescribedelaw,
theleftmostkey in theparentodeis thekey with whichthesearch
key is comparedbeforenode N is visited. Figure6(a) depictsan
examplepkT-tree— in the figure, the solid arrons denotethe base
keys for index keys while the dashecdarravs represenpointersto
child nodes.

procedure FINDTTREE(searchKey, T)

begin

1. N :=rootof treeT;

2. laN:=nil;

3. offset:=0;

4. comp:=GT,

5. while (V !=nil) {

6 comp, offset := COMPAREPARTKEY (searchKey,
N .key[0], comp, offset);

7. if (comp = EQ)

8. dereferenceV.key[0] /* cachemiss*/
9. comp, offset := comparegearchKey,N.key|[0]);
10. if (comp = EQ)

11. return [N, 0, 0, offset]

12. else(comp = LT)

13. N := N.ptr[0];

14. else

15. laN := N;

16. laNOffset := offset;

17. N := N.ptr[1];

18.}

19. return [laN, FINDNoODE(laN - laN[0], searchKey, laNOffset)];
end

Figure7: FINDTTREE: Searchingfor aKeyin T-treeUsingPar-
tial Keys.

Searching for Key. Searchingor a key valuein the pkT-treeis
relatively straightforvard andis performedasdescribedn proce-
dure FINDTTREE (seeFigure7). Procedurd-INDTTREE includes
an optimizationfrom [17] which requiresthat at eachnode, the
searchkey be comparedo only the leftmostkey value the node
(Step6). Thevariablescomp andoffset keeptrack of the results
of the mostrecentcomparisorof the searchkey with the leftmost
key in the parentnode, and are passedas parameterdo Com-
PAREPARTKEY. In caseCOMPAREPARTKEY cannotresole the
comparisonthe leftmostkey in the currentnodeis dereferenced
(Step8). If the searchkey is found to be lessthanthis key, the
searchproceedswith the left subtree.If it is foundto be greater
the searchproceedswith the right subtree with the currentnode
notedin variablelaN (Step15). The significanceof laN is that
whenthe searchreacheghe bottomof the tree, the searchkey, if
presenin thetree,is in the nodestoredin laN andis greaterthan
laN[0]. ProcedureFINDNODE canthusbe emplg/ed in orderto
determinethe positionof the searchkey in nodelaN. SinceFIND-
NODE requirestheleftmostkey to be greaterthanthe basekey for
it, 1aN[0] is deletedrom laN beforepassingt asaninputparame-
terto FINDNODE.

Maintaining Partial-K ey Information in the Presenceof Up-
dates. Insertsanddeletesof keys into the pkT-tree cancausero-
tations,movementof keys betweemodesandinsertions/deletions
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of keys from nodes.The partial-key informationfor thesecaseds
updatedasfollows.

e In thecaseof arotation,the parentof anodeinvolvedin the
rotationmay change. Thus, the partial-key informationfor
the leftmostkey in the nodeis recomputedwith respectto
thenew parent.

o If the leftmostkey in a nodechangesthe partial-key infor-
mationis recomputedor the leftmostkeys in the nodeand
its two children.

e In casethekey to theleft of akey in anodechangegdueto
akey beinginsertedor deleted)the partial-key information
for thekey is recomputedelative to thenew precedingdkey.

4.2 pkB-Tree

The pkB-treeis identicalto a B-tree exceptfor the structureof
index keys. Eachindex key consistsof a pointerto the datarecord
for thekey andpartial-key information.Leafnodescontainonly in-
dex keys,while internalnodesalsocontainN.numKey+1 pointers
to index nodes- the subtreepointedto by N.ptr[:] containskeys
betweenV .key[i — 1] and N key/[i].

Storing Partial-K ey Information. The basekey for the leftmost
key in NV isthelargestkey containedn anancestoof N thatis less
thanthe leftmostkey. Thus,if V' is the nodesuchthat N’.ptr[4],
i # 0, pointsto N or oneof its parentsandfor all N” in the path
from N’ to N, N .ptr[0] pointsto IV or oneof its parentsthenthe
basekey relative to which NV.key[0] is encodeds N’ key[i — 1].
Thisis illustratedin Figure6(b), wherethe solid arrovs denotethe
basekeys for index keys of thepkB-treeandthedashedarrovsrep-
resentpointersto child nodes.

Searching for Key. Procedurd=INDBTREE, in Figure8, contains
the codefor searchingor akey in a pkB-tree.Beginningwith the
root node,for eachnode,procedureg=INDNODE is invoked to de-
terminethe child nodeto be visited next during the search. The
variableoffset storesthe offset of the differencebit betweenthe
searctkey andthebasekey for N.key[0] (thatis, thelargestkey in
anancestoof NV thatis alsolessthan N.key[0]). Thisis because
FINDNODE simplyreturnsthe offset inputto it if thesearctkey is
lessthanV.key[0].

Maintaining Partial-K ey Information in the Presenceof Up-
dates. An insertoperationcausesa key to be insertedin a leaf
nodeof the pkB-tree.If thekey is insertedat theleftmostposition
in the leaf, thenits partial key needsto computedrelative to the
largestkey thatis lessthanit in its ancestar On the otherhand,
if therearekeys to theleft of it in the node,thenits partialkey is
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procedure FINDBTREE(SearchKey, T)
begin
1. N :=rootof treeT;
pN :=nil;
offset :=0;
while (N !=nil) {
pN:= N;
low, high, offset := FINDNODE(XV, searchKey, offset);
if (low = high)
return [NV, low, high]
. N := N.ptr.[high]
10.}
11. return [pN, low, high];
end

©CONOOA~WN

Figure 8: FINDBTREE: Searching for a Key in B-tree Using
Partial Keys.

computeckasilyrelative to its precedingkey andthe partialkey of
thenext key is computedwith respectoit. In casenodeN is split,
the splitting key from N is insertednto its parent.Splits canthus
be handledby simply updatingthe partial-key informationin the
parentsimilarto thekey insertioncase.

Key deletionfrom a pkB-treeis somavhatmorecomplicatedIn
casethe leftmostkey in a leaf is deleted the partial-key informa-
tion for it needso berecomputedrom its basekey in its ancestar
Deletionof a non-leftmostkey in the leaf simply requiresthe par
tial key for thekey following it to berecomputedFinally, deletion
of akey N.key[i] from aninternalnodeN of the pkB-treecauses
it to bereplacedwith the smallestkey in the subtreepointedto by
N.ptr[i + 1]. SupposeV’ is thenodecontainingthis key. Thenfor
every nodeN"' betweenNV andN”', N"[0]'s partialkey is recom-
putedwith thissmalleskey (thatreplaceshedeletedkey N.key|:])
asthebasekey.

5. PERFORMANCE

The goal of our performancestudywasto comparethe lookup
performancef T-trees B-trees pkT-treesandpkB-treesn amain-
memorysetting. Our particulargoalswere asfollows: (1) Study
performanceover a wide rangeof key sizesandkey valuedistri-
butions. (2) Evaluatetheimpactof changingthe amountof partial
key informationusedfor pkT- and pkB-trees. (3) Evaluatespace
usageandthe space-timdradeof. In subsequergectionswe de-
scribeour hardware platforms,the designof our experimentsand
presenselectedesults.

5.1 The Memory Hierarchy

The latenciesobsered during memoryreferenceslependpri-
marily on whetherthe datais presenin cacheandwhetherthevir-



System CPU L1 (data) L2 (data) DRAM
CycleTime | Size | Block | Lateny | Size | Block | Lateny | L2 MissLateny

SunULTRA 30 3.7ns 16K 64 2M 64 33ns 266ns

SunULTRA 60 2.2ns 16K 64 4aM 64 22ns 208ns

Pentiumlll 1.7ns 16K 32 512K 32 40ns 142ns

PentiumlllE 1.4ns 16K 32 256K 32 10ns 113ns

Table 2: Latency of Cachevs. Memory.

tual addresss in the TranslationLookasideBuffer (TLB).2

A modernmain-memonyarchitectureypically includestwo lev-
elsof cacheasmall,fast,on-CPUL1 cacheandallarger, off-CPU 2
andthereforeslower L2 cache. Typical parametergor cacheand
memoryspeedareshavn in Table2 (seg[19, 20, 7]). Thelateny
informationis generatedvith version1.9 of Imbend [18] on lo-
cally availableprocessorsandis intendedto give thereadera feel
for currentcacheparametersyotasa comparisorof thesesystems.

Anothercomponenbf thememoryhierarchyis the TLB, which
cachedranslationsetweenvirtual andphysicaladdresseswhile
TLB-missesareshavn in [5] to have a significanteffect on perfor
mance,we do not focuson TLB issuesin this paper Onejusti-
fication for this approachis the factthatalmostall modernTLBs
arecapableof using“superpages[14], essentiallyallowing single
TLB entriesto point to muchlarger regions. While posingdiffi-
cultiesfor operatingsystemimplementorq27], this facility may
effectively remove the TLB mississuefor main-memorydatabases
by allowing theentiredatabasto effectively shareoneor two TLB
entries.While we do notfocuson TLB effects,they wereapparent
duringour experimentatiorin theform of betterperformancevhen
index nodesspanmultiple cachelines (theseresultsarenot shavn
dueto limited space) Determiningthe effect of superpageenthe
TLB costsof main-memorydatastructuresemainsfuturework.

5.2 Experimental Design

We implementedr-treesandB-treesfor directandindirectstor
ageof keys. We alsoimplementedokT-treesand pkB-trees,and
variedthe size of the partial keys storedin the node. Our T-tree
algorithmsare essentiallythoseof Lehmanand Carey, with the
optimizationof performingonly a single key-comparisonat ary
givenlevel. In thedirectkey andpartial-key variantswe storeden-
tire/partialkey valuesonly for the leftmostkey in eachnode,used
duringtheinitial traversal.While the T-treecodewasadaptedrom
asystemwith additionalsupportor concurreng control[26], next-
key locking [21] anditeratorbasedscansthesefeatureswerenot
exercisedn ourtests.

For the partial-key trees,we implementedwo schemegor stor
ing offsets,bit-wiseandbyte-wise The bitwise schemewasused
for the descriptionin Section3, sincein this schemehe concepts
can be more clearly articulated. However, it may be more con-
venientin animplementatiorto storedifferenceinformationat a
larger granularity. In particular we considerthe byte granularity
Clearly all the resultsof Sections3 and4 hold whenbyte offsets
differ, sincethebit offsetwill alsodifferin thesamemanner How-
ever, whenbyte offsetsare equal,it may still be the casethatthe
bit offsetswould differ. In this case,onesimply storesall the bits
atwhichthedifferencecouldoccur in otherwords,theentirebyte.
Thus,if the offsetscompareequal,the keys will be disambiguated

2Thephysicalcharacteristicef thememorymodule especiallyre-
peatedaccesdo the samepage,may alsobe a factor but arenot
consideredn this paper

3In the PentiumllIE, the L2 cachethoughrelatively small,is on-
chip.
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by the first byte. Storingoffsetsat a larger granularitytradesoff
distinguishingpower for coding simplicity. With bit offsetsone
alwaysstoresthe precisel bits mostcapableof distinguishingthe
keys; otherwise pnly someof thosebits arestored.

Keys. We model keys as unique, fixed-lengthsequencesf un-
signedbytes.Key comparisonsireperformedoyte-wisein thecon-
text of aseparatdunctioncall. Indirectkeys arestoredin separate
L2 cachdinessincethey aretypically retrievedfrom datarecords.

It is intuitive that partial keys would be sensitve to the distri-
bution of keys, andin particularto the entiopy of the keys. Since
in our testswe generatebytesof the key independentlythe en-
tropy for eachbyte dependnly on the numberof symbolsfrom
whicheachbyteis selectedSpecificallywheneachbyteis selected
uniformly from analphabebf n symbols,eachbyte containslg n
bits of Shannorentropy[8]. Intuitively, keys with higherentropies
will be distinguisheckarlierduring the compareJeadingto lower
comparisorcosts. In termsof partial keys, lower entropy leadsto
largercommonprefixes,andalower chancehattwo keys will dif-
fer within thel bytesof acommonprefix.

While, asmentionedn Section3, partial-key treesmaybeused
with multi-part and variable-lengthkeys, we did not implement
theseoptionsin our tests.We notethatto somedegree,notimple-
mentingawider varietyof keys (andthusmoreexpensve key com-
parisons)works againstpartial-key schemessincetheseschemes
reducethe impactof key comparisorcostsin casesvhenthe par
tial key is sufficient. However, byte-wisecomparisonamay be
somavhat lessefficient than, for example,single-instructiorinte-
ger comparisons We selectedbyte-wisecomparisorasa reason-
ablemodelof key comparisorexpenseanddid notattemptto vary
this costasanadditionalparametem the currentstudy

Performance Metrics. We evaluatedthe variousindicesbasedon
thefollowing threeperformancemetrics:wall-time, numberof L2
cachemissesand storagespacerequirements.The numberof L2
missesvasmeasuredisingspecialregistersavailableonthe Ultra-
SRARC via the PerfMonsoftware[10].

Parameter Settings. Unlessotherwisestated,eachindex node
spannedhreelL2-cacheblocksfor atotal of 192bytes,eachindex

stored1M keys, and keys were chosenuniformly and at random,
but rejectedf they werenotunique.Threecacheblockswerecho-
senbecausehatsizecould handlelargerin-nodekey sizesand,in

our experimentgnot shavn) performedcomparablyor betterthan
smalleror larger nodesizesfor all of the studiedalgorithms. 1M

recordsrepresentethe largestsize our machinecould easilyhold
in memory— arelatively large numberof recordss requiredto see
the effect of L2 cachemisseson timing numbers.For mosttests,
we presentesultsfor two choicesfor thebyteentropy for thegen-
eratedkeys: 3.6 bits and7.8 bits, correspondindo alphabefsizes
of 12 and 220, respectiely, thoughin the actualexperimentswe
considerecdh wide variety of entropiesin-between.In mostof the
experimentskey sizewastheindependenparameterie fixedthe
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sizel of partial keys storedat 2 bytesand storedoffsetsin a byte
granularitysincewe found partial-key treesto performoptimally
or nearoptimally for thesechoices.

Hardware Environment. Our experimentswere conductecbn a
SunUltra 30workstatiorwith a296MHZ UltraSRARC I processor
and256Megabytef RAM. As shawn in Table2, thismachinehas
a 16K L1 datacachewith 32 byte block sizeanda 2M L2 direct-
mappedcachewith a 64 byte block size. The latenciesshavn by
Imbend [18] are6nsor 2 cyclesfor theL1 cache33nsor 11cycles
for L2, and266nsor 88 cyclesfor mainmemory Weimplemented
theindex structuresisingSuns C++ compilerversion4.2 andop-
timizationlevel -O3. In ourexperimentsye ensuredhatall virtual
memoryaccesseduringtherunswasresidenin RAM.

Experimental Runs. In mostcasesa run consistedof 100,000
lookupsfrom a (pregeneratedist of randomlyselecteckeys from
thetree. All searchesveresuccessful.Eachrun wasrepeatedlO
timesandaveraged We ensuredhatthe overall standardieviation
on time was very low (lessthan1%). All figuresshavn in this
documentarefor a treewith 1.5 million elementsthe maximum
thatfit into mainmemoryon theplatform.

5.3 SelectedResults

Index performancejn a main-memoryervironment,is domi-
natedby CPUcostsof performingkey comparisongndcachemiss
costs.Thus,it isreasonabléhatB-treeswith directkey storagewill
performbetterthanpartial-key treesfor smallkeys, sincespaceus-
ageis comparableto the spacerequiredfor the partial key, and
our partial-key comparisorcodeis somavhatmoreexpensve than
simplebyte-wisekey comparesHowever, askeys becomdonger
B-treeperformanceanbe expectedto becomewnorsethanpartial-
key treesdueto alower branchingfactorandhigherkey compar
ison costsat low byte-entropies.In all caseswe expectindirect
indexesto performpoorly in comparisorwith directindexesof the
samedatastructure becauséndirectindexeswill requirean extra
cachemissesto performeachcomparison.Theseexpectationsare
confirmedby our experiments.

Figure 9 summarizeghe experimentalresultsfor all indexing
schemespn datasetswith 1.5million elementsTheY-axisshavs
thenumberof L2 cachemissesthe X-axis shavs theaveragetime
of alookupin microsecondsPlotsareparametridn key size,with
key sizes8, 12, 20, 28, and 36 bytes;the high entrofy casehasan
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additionalpoint at key size4. Figure9(a) shavs behaior for low
entropy, with entrogy perbyteof 3.6. Figure9(b) shawvs the same
experimentrunwith entrogy 7.8. For agivenkey sizeandentroyy,
down andleft definesimproved performancePerformances thus
a partial ordering,whereonealgorithmoutperformsanotheiif for
all valuesof key sizeandentropy value,thealgorithmis fasterand
hasfewer cachemisses. Using the metricsof cachemissesand
lookuptime, we male thefollowing obsenrations.

o pkB-treesconsistentlyoutperforntheotheralgorithmsin L2

cachemisses.

Direct B-treesoutperformthe other algorithmsin time for
smallkey sizes,aswould hold for integerkeys.

Direct T-treesoutperformthe other algorithmsin time for
large key sizes very slightly outperformingpkB-trees.

Direct T-treesandindirect B-treeshave essentiallythe same
cacheperformanceThis occursbecausd-treessuffer about
lg, N cachemissesdueto treelevels, while B-treessufer
aboutthethesamedueto key dereferencing.

IndirectT-trees performpoorly comparedo all otherstrate-
gies,primarily dueto cachemissedrom bothtreelevelsand
key dereferencing.

For all key sizesthecache-miskehaior of partial-key trees
is as good as that of the correspondingdree structurewith
directstorageof 4 bytekeys.

Oneof thereasonshatthesuperiorcache-missharacteristicef
partial-key treesdoesnot alwaystranslateinto bettertiming num-
bers(especiallyfor smallerkey sizes)is thatotherfactordike CPU
costsfor performingkey comparisonsetc. areasignificantcompo-
nentof the overall performanceHowever, basednthecache-miss
statistics we expectthat the performanceof partial-key treeswill
improve relative to treeswith directkey storageaslong asproces-
sorspeedsmprove morequickly thanmain-memonjateng.
Choiceof . Largervaluesof [ arenecessarywhenentroy is low,
becausesuficiententroy mustbepresentn thepartialkey to have
a high probability thatit will differ from the correspondindytes
of the searchkey. (In general,randomkeys should have length
l = 2lg, N/H to ensurethatno two keys collide; mostkeys will
be disambiguoust lengthlg, N/H [8].) Onecanseethatkey-
wisedifferenceinformationadaptdo low entrogy keys: whenkeys
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Figure 10: Varying Partial-k ey Sizeand Time-SpaceTradeoffs

have low entropy, adjacentkeys arelikely to have largercommon
prefixes. Further increasing adwerselyaffectsthe branchingfac-
tor in nodesthusthereis atradeof betweerreducingcachemisses
by avoiding referenceso indirectkeys andreducingcachemisses
with bushier andthus shallaver, trees. We investigatedheseis-
suesby runningexperimentswith a wide variety of key entropies
andvaluesfor I. In this experimentthe keys have relatively low
entropy (3.6 bits perbyte), but the resultsare similar over a wide
rangeof entrofy values,andfrom this we expectpartial keys to
performwell over awide variety of key distributions. In fact, per
formanceis almostalwaysoptimal with smallvaluesof I — 2 or 4
bytes— dueto the efficacy of storingdifferenceoffsets.
Storingzerobytesof key informationis a specialcasewhichre-
ducesto analgorithmsimilar to the Bit Tree[11], but generalized
to handleinternallevels of the treeandincur fewer cachemisses.
While thisoptiondid notperformaswell as! > 0, ourexperiments
confirmthefollowing intuition — storingdifferencesat the bit level
isimportantfor [ = 0 in orderto increaselistinguishingpower.

SpaceUsage. Spaceoverheadis a critical attribute of a main-

memoryindex, In Figure10(b), we shav the space-timdrade-of

of differentalgorithmsfor a variety of key sizes.In thisgraph,the

X-axisis spaceandtheY -axisis lookuptime (the lower left-hand
corneris optimal). The key size parameterariesbetweer0 to 8

bytes. The spacenumbersare obtainedfrom the treebuilt by ran-

dominsertionsof 1M keys. We seefrom this graphthatindirect
key storagewhile a poortime performer excelsin space.How-

ever, schemewwith directkey storagetrade spacefor time, with

storageoverheadshatincreasesignificantlywith key size. Again,

pkT- and pkB-treesprovide a nice tradeof, taking approximately
twice the spaceof indirectstoragefor all key sizes,but lessspace
thandirect-storag®-treesfor all key sizesgreaterthan4.

6. CONCLUSIONS AND FUTURE WORK

In this paperwe have introducedwo new index structurespkT-
andpkB-treesdesignedo optimizethespacetime andcache-miss
performanceof indicesin main-memoryOLTP databasesThese
index structuresare basedon partial keys, small fixed-sizerepre-
sentation®f keyswhichallow index nodego retainasimplestruc-
ture,improve theirbranchingactorandspeedip key comparisons,
yet resolve mostkey comparisonsithout referenceto indirectly
storedkeys. In our performancestudy we found that partial-key
treesperformbetterthenB-Trees(in whichkeys arestoreddirectly
in the node)for keys larger than 12-20 bytes, dependingon key

distribution. Further the partial-key treesincur fewer cachemisses
thanB-Treeswith all but the smallestkey sizes,leadingto an ex-
pectatiorthattheperformancef pkB-Treesrelative to B-treeswill
improve over time asthe gapbetweerprocessoandmainmemory
speedsvidencausingthe penaltyfor a cachemissto be severe. Fi-
nally, pkB-Treestake up muchlessspacehanstandard3-treesfor
all but thesmallestrees.

While pkT-trees anddirect T-treesperformwell, pkB-treesper
form betterandareonly slightly larger However, we expectthat
over time T-treeswill be replacedwith variationsof the B-treein
main-memorydatabaseshecauseof their dramaticallybetterL2
cachecoherenceFor optimalperformancenall key sizesourper
formanceresultslead oneto considera hybrid approacthin which
direct storageis usedfor small, fixed-lengthkeys and partial-key
representationareusedfor largerandvariable-lengttkeys.

In future work, we intend to explore otherwaysin which ar
chitecturatrendsaffectperformance-criticaihain-memoryDBMS
code. Onesuchtrendis the increasingavailability of instruction-
level parallelismandarelatedrendis theincreasingostof branch
mispredictionandother“pipeline bubbles”. A secondrendis the
availability of “superpagesfor TLBs which may significantlyre-
ducetheTLB costof in-memoryalgorithms.
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APPENDIX
A. CORRECTNESSOF comparerartKey FOR

EQ

WhenprocedureCOMPAREPARTKEY is invoked with comp =

EQ, the following conditionshold: (1) indexKey is greaterthan
the basekey, and (2) searchKey andthe basekey agreeon the
first offset -1 bits. We canshav that COMPAREPARTKEY asde-
scribedin Figure 3 performsthe comparisorbetweenindexKey
andsearchKey correctlywheninvokedwith comp = EQ.In order
to shaw this, we needto considerthefollowing threecases:

1. indexKey.pkOffset > offset. In this case,all we cancon-
cludeis thatthefirst offset - 1 bits of indexKey matchthose
of thesearchkey. However, thereis no way to determinehe
valuesfor bits offset, . . ., indexKey.pkOffset - 1 of thein-
dexKey or their relationshipto the correspondingpits of the
searchtkey. Theprimaryreasorfor thisis thatwe donotknow
whetherthe searchkey is greaterthan,lessthanor equalto
the basekey. Thus,the bestCoMPAREPARTKEY candois
to return[EQ, offset - 1]. An instanceof this scenarioin
Example3.2 is when COMPAREPARTKEY is invoked with
N.key[1] and[EQ, 2], theresultof the previous comparison
with N.key[0]. Thereturnvalueis [EQ, 2].

2. indexKey.pkOffset < offset. In this case,sincethe search
key agreeswith the basekey on the first offset - 1 bits, the
first indexKey.pkOffset bits of theindex key andsearchkey
mustmatch,while the bit following thesebits mustbe 0 in
the searchkey and1 in the index key (sincewe know that
theindex key is greaterthanthe basekey). Thus,the search
key mustbe lessthantheindex key andthe offsetof the dif-
ferencebit betweenthe searchkey andindex key mustbe
indexKey.pkOffset.

3. indexKey.pkOffset = offset. In this case onecanconclude
thatthesearctkey andtheindex key matchonthefirst offset
- 1 bits, andthe bit at positionoffset is 1 in the indexKey
(sincethe index key is greaterthanthe basekey). Thus,a
comparisorcanbe carriedout betweerthe bits startingat po-
sitionoffset in thesearchkey andthecorrespondingequence
of bits in theindex key, thatis, 1 followed by the bits in the
partial key for indexKey. Thus,in Example3.2, invoking
procedureCOMPAREPARTKEY with N.key[2] and[EQ, 2],
the resultof the previous comparisorwith N.key[1], results
in areturnvalueof [GT, 3]. As aresult,the comparisorwith
key N.key[2] canbe computedeven thoughtheresultof the
comparisorwith N.key[1] wasambiguous.



