
Main-Memor y Index Structures with Fixed-Size Partial Keys

Philip Bohannon
Lucent Technologies

Bell Laboratories
Murray Hill, NJ

bohannon@bell-
labs.com

Peter McIlroy
Lucent Technologies

Murray Hill, NJ

pmcilroy@lucent.com

Rajeev Rastogi
Lucent Technologies

Bell Laboratories
Murray Hill, NJ

rastogi@bell-labs.com

ABSTRACT
Theperformanceof main-memoryindex structuresis increasingly
determinedby the numberof CPU cachemissesincurredwhen
traversingthe index. Whenkeys arestoredindirectly, as is stan-
dardin main-memorydatabases,thecostof key retrieval in terms
of cachemissescandominatethecostof anindex traversal.Yetit is
inefficient in bothtimeandspaceto storeevenmoderatesizedkeys
directly in index nodes. In this paper, we investigatethe perfor-
manceof treestructuressuitablefor OLTPworkloadsin thefaceof
expensive cachemissesandnon-trivial key sizes.We proposetwo
index structures,pkT-treesandpkB-trees,which significantly re-
ducecachemissesby storingpartial-key informationin theindex.
Weshow thatasmall,fixedamountof key informationallowsmost
cachemissesto be avoided,allowing for a simplenodestructure
andefficient implementation.Finally, we study the performance
and cachebehavior of partial-key treesby comparingthem with
othermain-memorytreestructuresfor a wide variety of key sizes
andkey valuedistributions.

Keywords
cachecoherence,B-tree,T-tree,key compression,main-memory
indices

1. INTRODUCTION
Following recentdramaticreductions,randomaccessmemory

(RAM) is competitive in pricewith thedisk storageof a few years
ago.With multi-gigabytemainmemorieseasilyaffordableandex-
pandable(on 64-bit architectures),applicationswith asmuchas1
or 2 GB of datain mainmemorycanbebuilt with relatively inex-
pensive systems,andmoderategrowth in spacerequirementsneed
not be a concern.For thesereasons,andspurredby the stringent
performancedemandsof advancedbusiness,networking and in-
ternetapplications,a numberof main-memorydatabaseandmain-
memorydatabasecacheproductshave appearedin the market [2,
22, 29]. Theseproductsessentiallyfulfill the expectationsof re-
searchonmain-memorydatabasesof thelastfifteenyears(see,for
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example,[9, 12, 15, 16]), by providing an approximateorder-of-
magnitudeperformanceimprovementfor simpledatabaseapplica-
tions,whencomparedto disk databaseswith datafully residentin
mainmemory[2, 29].

Adaptingmain-memorydatabasealgorithmsto become“cache-
conscious,” that is, to performwell on multi-level main-memory
storagehierarchies,hasrecentlyreceivedattentionin thedatabase
literature[5, 24, 25]. As mentionedout in thesepapersand in
relatedwork (see,for example,[6]), commonlyusedprocessors
cannow executedozensof instructionsin thetimetakenfor a read
from mainmemory(a “cachemiss”). For instance,memoryaccess
time on a 450MHz SunULTRA 60 is morethan50 timesslower
than the time to accessdataresidentin the on-chipcache. Fur-
ther, the disparity betweenprocessorspeedand memorylatency
is only expectedto grow sinceCPU speedshave beenincreasing
atamuchfasterrate(60%peryear)thanmemoryspeeds(10%per
year)[6, 24]. Consequently, main-memoryindex structuresshould
bedesignedto minimizecachemissesduringindex traversal,while
keepingCPUcostsandspaceoverheadlow. Intuitively, cache-miss
costsareminimizedwith smallnodesizesandhighbranchingfac-
tors. For example,[6] found that optimal nodesizesfor their B-
treeimplementationwasslightly largerthan1 cacheblock (sothat
the averagenumberof keys presentin a nodewould fill a cache
block). Low CPU costsfor index traversalare importantsince
cachemissescostno morethana few-dozeninstructions. In this
setting,key comparisoncostsareanimportantcomponentof CPU
cost,especiallyfor multi-part or variable-lengthkeys. Addition-
ally, spaceoverheadis importantsincethecostof RAM is approxi-
mately$1/MB, or about50 timesasexpensive asdiskstorage.As
aresult,theamountof mainmemoryavailableto theindex maybe
limited by cost factors,leadingto constraintson index size. The
spaceusagedependson thespaceusedto representkeys in index
nodes,the spaceusedfor pointers,andthe averageoccupancy of
nodesin thetree.

For main-memoryOLTP environmentswhich includea mix of
readand updateoperations,the T-tree1 and the B

�
-tree are two

index structureswhich have beenstudiedpreviously in the litera-
ture[17, 24]. All main-memorydatabaseproductsof whichweare
aware [2, 29], implementthe T-tree index structureproposedby
LehmanandCarey [17]. However, in [24], theauthorsfound that
dueto the highercostof cachemisseson modernhardware,B

�
-

treesperformedbetterin experimentsconductedwith integerkeys.
While the assumptionof integer keys may be valid in an OLAP
environmentassumingsuitablepre-processing,a generalpurpose
databasemusthandlecomplex keys – multiple parts,null values,�
The T-treeis similar to a binary treewith multiple keys (instead

of one)storedin eachnode.
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variable-lengthfields,country-specificsortvalues,etc.Further, key
sizeand� key storagestrategy directlyaffect thebranchingfactorfor
B- or B

�
-trees.Sincebranchingfactorsaresmallalreadyfor node

sizesbasedon cacheblocks, the heightof the treecanvary sub-
stantiallyaskey sizechanges.Thusan initial motivation for our
researchwasthe further examinationof T-treeandB-treeperfor-
mancein a main-memoryOLTP environment,in orderto consider
avarietyof key storageschemesandkey sizes.

In [9, 17], theauthorssuggestavoiding thekey sizeproblemby
replacingthekey valuein the index with a pointerto thedataand
reconstructingthekey asneededduringindex traversal.This indi-
rectkey-storageapproachhastheadvantageof optimizingstorage
by eliminatingduplicationof key valuesin the index, improving
the branchingfactor of nodesand simplifying searchby avoid-
ing the complexity of storing long or variable-lengthkeys in in-
dex nodes. However, this approachmustbe re-examineddue to
the additionalcachemissescausedby retrieval of indirect keys.
A secondapproachto dealingwith large, complex keys is to use
key compressionto allow morekeys to fit in cacheblocks. The
key-compressionapproachhasthebenefitthattheentirekey value
canbeconstructedwithoutaccessingdatarecordsor dereferencing
pointers.However, typicalcompressionschemessuchasemployed
in prefixB-trees[4] havethedisadvantagethatthecompressedkeys
arevariable-sized,leadingto undesirablespacemanagementover-
headsin asmall,main-memoryindex node.Further, dependingon
thedistributionof key values,prefix-compressedkeys maystill be
fairly long resultingin low branchingfactorsanddeepertrees.

In this paper, we proposethe partial-key approach,which uses
fixed-sizepartsof keys and informationaboutkey differencesto
minimize the numberof cachemissesandthe costof performing
comparesduringatreetraversal,whilekeepingasimplenodestruc-
tureandincurringminimalspaceoverhead.A key is representedin
a partial-key treeby apointerto thedatarecordcontainingthekey
valuefor the key, anda partial key. For a given key in the index,
whichwerefertoastheindex key for thepurposesof discussion,the
partialkey consistsof (1) theoffsetof thefirst bit atwhichtheindex
key differs from its basekey, and(2)

�
bits of the index key value

following thatoffset(
�

is aninput parameter).Intuitively, thebase
key for agivenindex key is themostrecentkey encounteredduring
thesearchprior to comparingwith the index key. Thepartial-key
approachreliesonbeingableto resolvemostcomparisonsbetween
thesearchkey andan index key usingthepartial-key information
for theindex key. If thecomparisoncannotberesolved,thepointer
to thedatarecordis dereferencedto obtainthefull index key value.

Using the ideaof partial keys, we develop the pkT-treeandthe
pkB-tree, variantsof the T-tree andB-tree, respectively. We de-
scribesearchalgorithmsfor thesepartial-key treesaswell asstrate-
giesfor maintainingthepartial-key informationin thepresenceof
updates.Finally, weconductanextensiveperformancestudyof the
pkT-tree andpkB-treestructures,comparingthemto standardT-
treesandB-treeswith bothdirectandindirectkey storageschemes.
In ourexperiments,weconsiderawiderangeof parametersettings
for key sizeandkey valuedistribution (entropy). We alsostudy
thesensitivity of ourpartial-key algorithmsto

�
, thenumberof key

valuebits storedin thepartialkey. Our performanceresults,given
in detailin Section5.3,indicatethat:

� Of theindexing schemesstudied,partial-key treesminimize
cachemissesfor all key sizes.

� Dueto lower CPUcosts,B-treeswith directkey storageare
fasterthanpartial-key treesfor small key sizes,but slower
for largerkey sizes.

� Partial-key schemeshavegoodspaceutilization,onlyslightly
worsethanT-treeswith indirectkey storage,andmuchbetter
thandirectkey storageschemes.

� A small,fixedvaluefor
�
(theamountof partialkey informa-

tion) avoidsmostindirectkey accessesfor a wide varietyof
key lengthsandentropies.

In summary, partial-key treesincur few cachemisses,impose
minimal spaceoverheadsandreducethe costof key comparisons
without introducingvariable-lengthstructuresinto the node,thus
enablinglarger keys to be handledwith much of the efficiency
of smallerkeys. Further, we expect the relative performanceof
partial-key treesto improve over time with the increasingcostof
cachemisses.

Theremainderof thepaperis organizedasfollows. In Section2,
we discussrelatedwork. In sections3 and4, we introducepartial-
key comparisonsandapply themto searchin pkT- andpkB-trees.
In Section5, we presentthe resultsof our performancestudy. Fi-
nally, in Section6, we presentour conclusionsand issuesto be
addressedin futurework.

2. RELATED WORK
An early studyof index structuresfor main-memorydatabases

wasundertakenin [17]. TheauthorsproposedtheT-treeindex and,
in order to optimizestoragespace,advocatedstoringpointersto
datarecordsinsteadof key valuesin the index. However, this de-
signchoicecanresultin a largenumberof cachemissessinceeach
pointerdereferenceto accessthekey valueduringa key compari-
soncouldpotentiallyleadto acachemiss.Sinceat thetimeof this
earlywork on main-memorydatabases,therewaslittle difference
betweenthecostof a cache-hitandthatof a cache-miss,not much
attentionwaspaidto minimizing cacheblock misses.While most
work on cache-consciousdatastructuresoutsideof the database
communityhasfocusedonoptimizingscientificworkloads,cache-
consciousbehavior was studiedin [6] for “pointer-based”struc-
turesincluding searchtrees. However, this work focusedon ac-
tions which canbe taken without programmercooperation,rather
thanexplicitly designeddatastructures.

More recently, Rao and Rossproposetwo new main-memory
indexing techniques,Cache-SensitiveSearch Trees(CSS-tree)[24]
andCache-SensitiveB

�
+-Trees[25]. Designedfor aread-intensive

OLAP environment,theCSS-treeis essentiallyaverycompactand
space-efficientB

�
-tree.CSS-treenodesarefully packedwith keys

andlaid out contiguously, level by level, in main memory. Thus,
childrenof anodecanbeeasilylocatedby performingsimplearith-
metic, andexplicit pointersto child nodesareno longerneeded.
Further, in theabsenceof updates,key valuescanbemappedto in-
tegerssuchthat the mappingpreserves the orderingbetweenkey
values. Thus, eachkey value in a CSS-treeis a compactinte-
ger, which is storedin the nodeitself, eliminatingpointerderef-
erences.In summary, theCSS-treeincursvery little storagespace
overheadandexhibitsextremelygoodcachebehavior. TheCSB

�
-

treeadaptstheseideasto anindex structurewhichsupportsefficient
update(for theCSS-tree,theauthorsrecommendrebuilding from
scratchafter a batchof updates).This structurestoresgroupsof
siblingnodesadjacentin memory, reducingthenumberof pointers
storedin theparentnodewithoutincurringadditionalcachemisses.
However, this work continuesto assumeintegerkeys. To this ex-
tent, the performanceimprovementsof CSB

�
-treesor CSS-trees

andpartial-key treesarelikely to be orthogonal,sincethe former
focuseson reducingpointeroverheadandimproving spaceutiliza-
tion while the latter focuseson reducingkey-sizeandcomparison
cost.
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Ourpartial-key techniquesborrow fromearlierworkonkey com-
pression[4, 11]. However, therearedifferences,whichwe discuss
below. Partial-key treesaremostsimilar to Bit Treesthatwerein-
troducedin [11]. Bit TreesextendB

�
-treesby storingpartialkeys

insteadof full key valuesfor (only) thosekeys containedin leaf
nodes.The partial key in a Bit Treeconsistsof only theoffset of
thedifferencebit relative to thepreviouskey in thenode.Theau-
thorsdescribesseveralpropertiesof searchesusingonly theoffset
of differencebits, andin particularshow thesomewhat surprising
result that the precisepositionof a searchkey in a leaf nodecan
bedeterminedby performingexactlyonepointerdereferenceto re-
trieve an indirectkey. Otherthana focuson main-memoryrather
thandisk,our partial-key treesdiffer from Bit Treesin thefollow-
ing respects:(1) partialkeys arestoredin both internalnodesand
leaf nodes,(2) partial keys contain

�
bits of the key valuefollow-

ing the differencebit in addition to the differencebit offset, and
(3) searchingfor a key in a nodein a partial-key treerequiresat
most one pointer to be dereferenced,and frequentlyrequiresno
pointerdereferences,dueto the

�
bitsof additionalinformationand

our novel searchalgorithms.
PrefixB

�
-trees,proposedin [4], employ key compressionto im-

prove thestoragespacecharacteristicsandthebranchingfactorof
B
�

-trees.Suppose� is thecommonprefix for keys in thesubtree
rootedat node � . For a key �	�
����
 in node � , the common
prefix � canbe computedduring tree traversalandonly the suf-
fix 
 of the key value is storedin � . Further, whenkeys move
out of a leaf nodedueto a split, only the separator, or the short-
estportionof the key neededto distinguishvaluesin thesplitting
nodes,is moved. Partial-key treesdiffer from prefix B

�
-treesin

thefollowing respects:(1) while prefix treesfactorout theportion
commonto all keys in a node,partial-key treesfactorout informa-
tion in commonbetweenpairsof adjacentkeys within the node,
typically a longer prefix than is commonto the whole node,(2)
while in prefixB

�
-trees,theentiresuffix of theseparatoris stored,

in partial-key trees,only thefirst
�
bitsof thesuffix is stored– thus,

partial-key treesmay losekey value informationwhile the prefix
B
�

-treedoesnot, (3) in theprefixB
�

-treeno pointerdereferences
areneeded.In contrast,in a partial-key tree,pointerdereferences
mustbeperformedwhenthecomparisoncannotberesolvedusing
thepartial-key information,and(4) thepartialkeys storedin apre-
fix B

�
treearevariablesizedandthis complicatesimplementation.

Further, in somecasestheseparatormaynot even fit in a 64-byte
cacheline, causingindex nodesto spanmultiple cacheblocksand
reducingthebranchingfactor. Thuspartial key treestradeoff the
guaranteeof no indirect key referencesof partial-key treesfor a
low probabilityof indirectkey dereferences,in exchangefor sim-
ple nodestructuresandmorestronglyboundedtreeheights.This
is reasonablesincethecostof a cache-missis ordersof magnitude
lower thanthecostof a randomdisk access.

Ronstromin his thesis[28] describesthe HTTP-tree,a varia-
tion of prefix B

�
treesin which furthercompressionis performed

within a nodeby storingkeys relative to the previous key, factor-
ing outcommonsuffixes,etc.Nodesarealsoclusteredon pagesto
facilitatedistribution. However, duringsearchesthefull key is re-
constructedin orderto performcomparisons,andcompressedkey
sizesarevariable. Other losslesscompressionschemesprimarily
for numericattributeshave recentlybeenproposedin thedatabase
literature[13, 23]. Goldstein,RamakrishnanandShaft [13] pro-
posea pagelevel algorithmfor compressingtables.For eachnu-
mericattribute, its minimumvalueoccurringin tuplesin thepage
is storedseparatelyoncefor the entirepage. Further, insteadof
storingtheoriginal valuefor theattributein a tuple,thedifference
betweentheoriginal valueandtheminimumis storedin thetuple.
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Figure1: A Partial Key

Thus,sincestoringthedifferenceconsumesfewerbits, thestorage
spaceoverheadof the tableis reduced.TupleDifferentialCoding
(TDC) [23] is a compressionmethodthatalsoachievesspacesav-
ings by storingdifferencesinsteadof actualvaluesfor attributes.
However, for eachattributevaluein a tuple,thestoreddifferenceis
relative to theattributevaluein theprecedingtuple.

3. PARTIAL KEY SEARCH
In this section,we describethe partial key approachandalgo-

rithms for performingcomparesand searchesin the presenceof
partial keys. We assumethat keys arerepresentedasfixed-length
bit strings(thoughthis is not requiredin general).Further, thebits
arenumberedin orderof decreasingsignificance,beginning with
bit � (themostsignificantbit).

3.1 Partial Keys– An Overview
Considertheorderin whichindex keysarevisitedandcompared

with the searchkey during a traversalof a T-treeor B-treeindex.
We observe that for both structures,the key visited so far which
is closestin valueto the searchkey is eitherthe most recentkey
to comparelessthanthe searchkey or or the most recentkey to
comparegreater. It is easyto seethat themostrecentkey to com-
parelessthanthesearchkey sharesmoreinitial bits thanany other
key which comparedlessthan the searchkey during the search.
Similarly for themostrecentkey whichcomparedgreater, thusthe
observationfollows. In fact,very few initial bitsmaybesharedbe-
tweenthemostrecentwith thesearchkey when,for example,the
keysareoneithersideof alargepowerof two, but thiseventis rare.
In thefollowing discussion,we refer to thecurrentkey beingvis-
ited asthe index key (asopposedto searchkey), andtheprevious
key visitedasthebasekey. In our partial-key schemes,eachkey is
representedin theindex by threeitems: (1) a pointerto therecord
containingthekey, (2) theoffsetof thefirst bit at which the index
key differs from the basekey, and(3) the first

�
bits of the index

key following thisoffset.We illustratetheconstructionof a partial
key in Figure1. In thisfigure,andin othersbelow, theindex key or
searchkey is generallyreferredto as ��� or ��� , andthebasekey as��� .

Oneapproachto usingthispartialkey informationwouldmirror
theuseof prefixesin a prefix B-tree. In this approach,thesearch
codewould maintainthe known prefix of the index key as it tra-
versedthe tree,concatenatingappropriateportionsof partial keys
asthey areencountered.If theknown portionis sufficientto resolve
a comparisonwith the searchkey, thena cachemiss is avoided.
However, it turnsout thatconstructingthis prefix is not necessary,
andin factcomparisonscanoftenberesolvedby notingtheoffset
at which thesearchkey differedfrom thebasekey, andcomparing
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thatto theoffsetstoredin thepartialkey for theindex key. Thisob-
servation� ensuresthatmostcomparisonsareperformedwith small,
fixed-lengthportionsof thekey. Preciselyhow thesecomparisons
areperformedis thetopicof thenext section.

3.2 Partial-K eyComparisons
In this sectionwe discussthepropertiesof differencebits more

formally, andpresenta theoremthatbearsdirectlyoncomparisons
in partial-key trees.

Let ����� ��� � ��� be the offset of the mostsignificant(thuslowest)
bit of differencebetweenkeys ��� and ��� . Also, let ������� � ��� � be
the result,LT, GT or EQ, of the comparisonbetweenkeys � � and��� dependingon whether ��� is � ,  , or �
��� . The partial-key
approachis basedon theobservation that for an index key ��� and
its basekey � � , noting ������� � � � � in thepartial key for key ��� will
frequentlyallow full comparisonsof ��� with a searchkey ��� to
beavoidedduring index retrieval. In particular, if the two keys � �
and ��� comparein thesameway(LT, for example)to thebasekey,��� , and if ����� ��� ��� � and ����� �!� ��� � are known, then it is possible
to determinehow ��� comparesto ��� aswell as ������� � ��� � without
additionalreferenceto thekeys unless����� ��� ��� � �"����� ��� ��� � .

THEOREM 3.1. Given ��� � ��� and � � as above, if ������� � � � � �������� � � � � and ������� � � � �$#�%������� � � � � , then

������� � ��� � �"&('*)+�,������� � � � �-� ������� � � � �.�
and

����� �.� � ��� �
/ ������� � � �0� if ����� �.� ��� �  	����� ��� ��� �������� � � � � if ������� � � � � �	������� � � � �

PROOF. Assumewithout loss of generalitythat ��� � ���1�2� � .
Supposethat ������� � � � �  	������� � � � � . Since���3�4� � , thenatthefirst
bit of difference,����� �!� � � � , � � ’s bit mustbe0 and � � ’s bit mustbe
1. It follows from ������� � � � �  
������� � � � � that the bits of ��� agree
with thebits of ��� for all bits up to andincluding ����� ��� ��� � , sothe
correspondingbit of ��� is also1. Thus, ���5 6��� and ������� � ��� � ������ �!� ��� � . On theotherhand,supposethat ����� ��� ��� � �7����� �!� ��� � .
Thus,since ���$�8� � , thebit at position ������� � � � � mustbe 0 in ���
and1 in � � . Further, since ������� � � � � �1������� � � � � , this bit mustbe
the samein both � � and � � , that is, 1. Further, the bit sequences
precedingthis bit in both ��� and ��� must be identical. Thus, it
follows that � � �
� � and ����� ��� � �9� �:����� ��� � � � . The othercases
for ��� � ���3 4� � follow from symmetry.

Thekey ideasof Theorem3.1areillustratedin Figure2(a).Here,
keys ��� and ��� arebothlessthanthebasekey � � , and ������� � � � � �;

is greaterthan ����� ��� ��� � �=< . Thus, as shown in the figure,������� � ��� � �7< and ���> %��� becausethefirst 5 bitsof ��� , ��� and � �
match,but on the ?�@,A bit, ��� and � � areboth1 while ��� is 0.

Theorem3.1 canbeusedto compute,for mostcases, theresult
of the comparisonbetweena searchkey ��� andthe index key ��� .
This is becausethe partial key for an index key � � storesthe dif-
ferencebit offset ������� � � � � with respectto its basekey � � thatwas
encounteredpreviously in thesearch.Further, sincean attemptis
madeby thesearchalgorithmto compare��� with ��� , it mustbethe
casethat ������� � � � � �:������� � � � � . Also, ������� � � � � and ������� � � � � are
availabledueto the previous comparisonbetweenthe searchkey
andthebasekey. Thus,for thecasewhen ������� � � � �B#�C������� � � � � ,
Theorem3.1canbeusedto infer ����� ��� � ��� and ����� ��� � ��� , andthese
in turn canbe propagatedto the next index key comparison(for
which � � is thebasekey).

TheonlycasenothandledbyTheorem3.1occurswhen������� � � � ��8����� ��� ��� � . In this case,theonly inferenceonecanmake is that

��� and ��� are identicalon the first ������� � � � �>D8E bits. However,
onecannotdeterminehow keys � � and � � compare.An example
of this is illustratedin Figure 2(b). In both of the casesshown
in the figure, � ��� � � �F��� and ����� ��� ��� � �G����� �!� ��� � . However,
in one, ���(�H��� andin the other ���I J��� . Whenthe difference
bits areequal,the

�
bits of the key valuestoredfor the index key

arecomparedwith thecorrespondingbits in thesearchkey. If these
bitsareequal,retrieval of theindirectlystoredkey is required.Note
that,asshown in Figure1, thedifferencebit itself in not included
in the

�
bits storedwith a partial key. Sinceboth ��� and ��� differ

from ��� in thevalueof thisbit, thecorrespondingbits in � � and � �
mustbeidentical.

procedure COMPAREPARTKEY(searchKey, indKey, comp, offset)
begin
1. if (indKey.pkOffset K offset)
2. if (comp = LT)
3. comp := GT
4. else
5. comp := LT
6. offset := indKey.pkOffset
7. elseif (indKey.pkOffset L offset)
8. if (comp = LT)
9. partKey := searchKey[0:indKey.pkOffset-1]M N�M indKey.partKey;
10. else
11. partKey := searchKey[0:indKey.pkOffset-1]MPOQM indKey.partKey;
12. comp, offset := compare(searchKey,
13. partKey);
14. if (offset R indKey.pkOffset + indKey.pkLength)
15. comp := EQ;
16. return [comp, offset];
end

Figure3: COMPAREPARTKEY: ComparisonusingPartial Keys.

ProcedureCOMPAREPARTKEY in Figure3 utilizesTheorem3.1
to computetheresultof acomparisonbetweenasearchkey andan
index key containingpartial-key information. The partial-key in-
formationconsistsof threefieldspkOffset, pkLength andpartKey
which aredescribedin Table1. The input parameterscomp and
offset to COMPAREPARTKEY aretheresultof thecomparisonand
thedifferencebit locationof thesearchkey with respectto thebase
key. Steps1–6 of the procedurearea straightforward application
of Theorem3.1. In casethedifferencebit locationsfor thesearch
key andindex key areequal,the keys mustbe identicaluntil the
differencebit. Further, thedifferencebit itself in bothkeysmustbe
either0 or 1 dependingonwhetherthekeysarelessthanor greater
than the basekey. In Step12, function COMPARE is invoked to
computethe comparisonof the

�
bits following the differencebit

in bothkeys. FunctionCOMPARE(k1, k2) returnsa pair of values
comp, offset with the following semantics.The value comp is
oneof EQ, LT or GT dependingon whetherthe bit sequencek1
is equalto, lessthanor greaterthanthebit sequencek2 whenthe
two sequencesarecomparedbit by bit. Thereturnvalueoffset is
thelocationof themostsignificantbit in which thetwo keysdiffer.
Thus,in steps13–14,sincepartKey may not representthe entire
index key, if all bitsin partKey agreewith thecorrespondingbitsin
searchKey, thecomparisonbetweenthesearchkey andindex key
cannotberesolvedandtheprocedurereturnsEQ. In this case,the
semanticsof the returnedoffset is simply that the two keys agree
on thefirst offset S E bits.

Notethat,in Step12,functionCOMPARE only needsto consider
bits startingfrom bit offset indKey.offset in the two keys (since
the correspondingbits precedingthis point are identical for both

166



bd(k ,k  )=5j

ki
kj

kb

kj ki

d(k ,k )=5i b

0
1
1
0
1
0
1

1

0
1

0

0
1
1
0
1

0

0

0
1

1
0

0
1
1
0

1
0

1

0

1

1
1
0
1

0

0

0

1

1

0
1

>

bd(k ,k  )=5j

ki
kj

kb

kj ki

d(k ,k )=5i b

0
1
1
0
1
0

0
1

0

0
1
1
0
1

0

0

0
1

1

0
1
1
0

1

1

0

1

1
1
0
1

0

0

1

1

0
0
0

10

0

1<

k  < k
i       j

CASE 1:
i       j

k  > kCASE 2:

bd(k ,k  )=5j

kj

0
1
1
0
1
0
1
1
1
0
0
1
0
0

k >k 
d(k ,k )=5

ji

ji

Therefore:

d(k ,k )=9i b

ki

0
1
1
0
1

1
0

1
0

0

0
1

1
0

kb

0
1
1
0

1
0

1

0

1

1
1
0
1

0

(a) (b)

Figure2: Examplesof ComparisonsbetweenKeys ��� and ��� that Can and Cannot be Resolved

Table1: Partial-K eyNotation
Symbol Description�

Maximumnumberof bits from key valuestoredin partialkey� � .pkOffset Offsetof differencebit of key � � andits basekey��� .partKey Upto
�
bits following location ��� .pkOffset in key ������ .pkLength Numberof partial-key bitsstoredwith key ������UT �WV�XZY Bit sequenceconsistingof bitsbetweenoffsets

�
and

X
in key ���� � ����[ Concatenationof bit sequences� � and ��[� .numKeys Numberof keys in node�� .key[ \ ] \ @]A key in node�� .ptr[ \ ] \ @]A pointerin node�

keys). Further, in mostcases,procedureCOMPAREPARTKEY per-
formsonly oneintegercomparisoninvolving differencebit offsets;
however, additionalexpensemaybeincurredsincethebit of offset
mustbe computedin anticipationof the next comparison.While
a greatercost thansimple integer compares,it compareswell to
comparisonsof largerkeys,asshown in Section5.

The partial-key schemecanbe adaptedto multi-segmentkeys,
even if somesegmentsareof arbitrarylength. The ideais to treat
thepkOffset asa two digit number, wherethefirst digit indicates
thekey segmentandthesecondindicatesanoffsetwithin thatseg-
ment. ThepartKey field maybelimited to bits from a singleseg-
ment,or at thecostof morecomplexity, spansegments.

3.3 Partial-K eyNodes
The COMPAREPARTKEY proceduredescribedin the previous

sectionis thebasicbuilding blockfor performingretrievalsin pkT-
treesandpkB-trees.Beforewe presentthecompletealgorithmfor
searchingin a tree,wepresentbelow a linear encodingschemefor
computingthepartialkeys for anarrayof keys in anindex node� .
We alsopresenta linearsearchalgorithmfor finding a searchkey
in thenodeif it is present,andif it is not, thepairof adjacentkeys
in thenodebetweenwhich thesearchkey lies.

Linear Encoding of Partial Keys. The basekey for eachkey in� is simply the key immediatelyprecedingit in � . For the first
key �_^a`-b-cdT � Y , thebasekey is a key in anancestorof � in thetree
thatis comparedwith thesearchkey duringthetreetraversalbefore

node � is visited. Thus,thebasekey for thefirst key dependson
thetreestructureandis differentfor thepkT-treeandpkB-tree.We
discussthis furtherin thefollowing section).

Simple Linear Search Algorithm. Whensearchingfor a key in
the index, the node � is visited after the searchkey is compared
with the basekey for �_^a`-b-ceT � Y . Let comp andoffset denotethe
result of the comparisonand the offset of the differencebit be-
tweenthesearchkey andthebasekey. Then,in orderto locatethe
position of the searchkey in � , procedureCOMPAREPARTKEY

(seeFigure3) canbeusedto computethecomparisonandthedif-
ferencebit offset betweenthe searchkey and �_^*`-b-ceT � Y . In case
the comparisoncannotbe resolved usingthe partial-key informa-
tion for �_^a`-b-ceT � Y (that is, COMPAREPARTKEY returnsEQ), then�_^a`-b-cfT � Y is dereferencedandthesearchkey is comparedwith the
full key correspondingto �_^a`-b-cdT � Y . The resultof thecomparison
anddifferencebit offsetis thenusedto comparethesearchkey with�_^a`-b-cfT E Y , andsoon. Theabovestepsof comparingwith thesearch
key arerepeatedfor successive keys in � with thecomparisonand
differencebit offsetfor thepreviouskey – until akey thatis greater
thanor equalto thesearchkey is found.

However, thisnaive linearsearchstrategy mayperformunneces-
sarykey dereferences.Thefollowing exampleillustratesthis.

EXAMPLE 3.2. Considerthe node � in Figure 4. Thediffer-
encebit for each key (with respectto thepreviouskey) is markedby
an arrow and

� � E bits following the differencebit are stored in
thepartial key for each key. Let thebasekey for thefirst key in �
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Figure4: Linear Searching for Key in Node

be00101andlet thesearch key be10111.
After thesearch key is comparedwith thebasekey, thecompar-

ison and differencebit offset are GT and 0, respectively. Invok-
ing COMPAREPARTKEY with the search key, �_^a`-b-cdT � Y , GT and
0 returns[EQ, 2] since �_^a`gbhceT � Y ^ai�`Qjlknm.bhop�q� and the search
key matcheswith �_^a`-b-ceT � Y on the first two bits. Thus, �_^*`-b-ceT � Y
wouldbedereferenced,andcomp andpkOffset after thecompar-
isonwith �_^*`-b-cdT � Y is GTand2, respectively. Next thesearch key is
compared with �_^a`gbhceT E Y by invokingCOMPAREPARTKEY. Since�_^a`-b-ceT E Y ^ai�`�jrknm.b-o5�
s which is greaterthan2, thedifferencebit
offset for the search key and �_^a`gbhcfT � Y , COMPAREPARTKEY re-
turns [GT, 2], and �_^a`-b-ceT E Y is not dereferenced. Thenext invo-
cationof COMPAREPARTKEY with �_^a`-b-ceT t Y returns[GT, 3] since�_^a`-b-ceT t Y ^ai�`�jrknm.b-op�ut and the bit sequence1010 for the con-
structedkey for �_^a`-b-cfT t Y is smaller than 1011, the correspond-
ing bits of the search key. After returning [GT, 3] for �_^*`-b-ceT s Y
(since �_^a`gbhcfT s Y ^ai�`�jrknm.b-ov�xw is greaterthan3), procedure COM-
PAREPARTKEY movesto key 4 and returns[LT, 1] for �_^*`-b-ceT w Y
sinceit findsthat �_^a`-b-ceT w Y ^ai�`�jrknm.b-o5� E is lessthan3, theoffset
returnedfor �_^a`-b-ceT s Y . Thus,the simplelinear search algorithm
stopsat �_^a`gbhcfT w Y andthepositionof thesearch key in � is deter-
minedusingonlyonekey dereference, thatof �_^a`-b-cdT � Y .

However, thepositionof thesearch key canalsobedetermined
without dereferencingany keys, including �_^a`-b-cdT � Y . The reason
for this is that COMPAREPARTKEY returns[EQ 2] whenit is in-
vokedwith �_^*`-b-ceT � Y . Thus,at thispoint,weknowthat thefirst two
bits of �_^a`gbhceT � Y are 10 sincethe first two bits of �_^a`-b-cfT � Y agree
with thoseof the search key. Since �_^a`-b-ceT E Y ^*i�`Qjlknm�b-o��ys , we
also can concludethat the first two bits of �_^a`-b-cdT E Y agree with
thoseof �_^a`-b-ceT � Y are thus10. Since�_^a`-b-cfT t Y ^ai�`Qjlknm.bhoz�{t and�_^a`-b-ceT t Y  u�_^a`gbhcfT E Y , it mustbe the casethat the third bit of�_^a`-b-ceT t Y is 1 (and the third bit of �_^a`-b-cdT E Y musthavebeen0).
Further, thefourthbit of �_^a`-b-ceT t Y canbeobtainedfromits partial
key and thuswe can concludethat the first four bits of �_^*`-b-ceT t Y
are 1010. Sincethesearch key is 10111,thecomparisonbetween
thesearch key and �_^a`gbhcfT t Y canberesolvedand is [GT, 3]. Sub-
sequentcomparisonscan then be carried out as describedear-
lier to concludethat the search key lies in between�_^a`gbhceT s Y and�_^a`-b-ceT w Y . Thus,the positionof the search key canbe determined
withoutdereferencinga singlekey.

Linear Search Algorithm Requiring at most One Key Deref-
erence.ProcedureFINDNODE, shown in Figure5, avoidstheun-
necessarydereferencesmadeby thesimplelinearsearchalgorithm.
Whencomparingthe searchkey with an index key in node � , in
caseprocedureCOMPAREPARTKEY returnsEQ, that is, thecom-
parisonbetweena searchkey and index key cannotbe resolved,
FINDNODE doesnot immediatelydereferencethe index key. In-
stead,it exploits thesemanticsof [EQ, offset] returnedby COM-

procedure FINDNODE( | , searchKey, offset)
begin
1. high := | .numKeys;
2. low := -1;
3. cur off := offset;
4. cur cmp := GT;
5. cur := low +1;
6. while (cur K high) }
7. cur cmp, cur off :=
8. COMPAREPARTKEY(searchKey, | .key[cur],

cur cmp, cur off)
9. if (cur cmp = LT)
10. high := cur;
11. break;
12. elseif (cur cmp = GT)
13. low := cur;
14. offset := cur off;
15. cur++;
16. ~
17. if (high - low R 1)
18. low, high, offset := FINDBI TTREE( | ,searchKey, low, high)
19. /* cachemiss*/
20. return [low, high, offset];
end

Figure 5: FINDNODE: Linear Searching for a Key in a Node
UsingPartial Keys.

PAREPARTKEY (which is that the searchkey and the index key
agreeonthefirst offset-1 bits) to try andresolvecomparisonswith
subsequentkeys. Thiswasillustratedearlierin Example3.2,where
[EQ, 2], theresultof thecomparisonwith �_^*`-b-cdT � Y , wasusefulin
resolvingthecomparisonoperationwith key �_^a`gbhceT t Y . In fact,pro-
cedureCOMPAREPARTKEY asalreadystatedcorrectlyhandlesthe
valueof EQ asaninputparameterwhencalledfrom FINDNODE, ,
andaninformalproofof this factcanbefoundin AppendixA.

ProcedureFINDNODE acceptsas input parametersnode � in
which to performthelinearsearchandthedifferencebit offsetbe-
tweenthesearchkey andthebasekey for �_^a`-b-cdT � Y . It assumesthat
boththesearchkey and �_^*`-b-ceT � Y aregreaterthanthebasekey with
respectto which �_^*`-b-ceT � Y ’s partialkey is computed.Similar to the
simple linear searchalgorithm describedearlier, it comparesthe
searchkey with successiveindex keysin thenodeuntil anindex key
largerthanthesearchkey is found.ProcedureCOMPAREPARTKEY

is usedto performeverycomparisonandtheresultsof theprevious
comparison(storedin variablescur cmp andcur off) arepassed
asinput parametersto it. Unlike thesimplelinearsearchscheme,
an index key is not immediatelydereferencedif the preciseresult
of the comparisonbetweenthe key andthe searchkey cannotbe
computed.Instead,variableslow andhigh areusedto keeptrack
of thepositionsof index keys in � thatthesearchkey is definitely
known to begreaterthanandlessthan,respectively.

At theendof asweepof keys in node� , if high - low is greater
than1, thenit impliesthattheprecisepositionof thesearchkey in� is ambiguous.In this case,procedureFINDBITTREE is usedto
locatethe exact positionof the searchkey betweenlow andhigh
– it returnstheconsecutive keys betweenwhich thesearchkey lies
andthe differencebit offset of the searchkey with respectto the
lowerkey. ProcedureFINDBITTREE employs thesearchalgorithm
for Bit Treesdescribedin [11] andrequiresexactly onekey to be
dereferenced.In a nutshell, the algorithm performsa sequential
scanof keys in � betweenoffsets low andhigh. It maintainsa
variablepos, which is initially setto low. For eachkey examined,
if for thedifferencebit offset in its partialkey, thebit valuein the
searchkey is 1, thenvariablepos is setto thepositionof thekey in
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� . On theotherhand,if thebit valuein thesearchkey is 0, then
keys for which the differencebit offset is greaterthanthe current
key’s,areskippedandthenext key examinedis thekey whosedif-
ferencebit offset is lessthanthatof the currentkey. Onceall the
keys have beenexamined,�_^a`-b-cdTai���m Y is dereferencedandis com-
paredwith thesearchkey. If comp, offset is thepair returnedby
compare(searchKey, �_^a`gbhceTPi���m Y ), thenFINDBITTREE takesone
of thefollowing actions:

1. comp = EQ:Return[pos, pos, offset].

2. comp = GT(LT): Supposethat high is the position of the
first key to theright(left) of pos for which thedifferencebit
offset is lessthanthatof �_^a`-b-cdTPi���m Y . Return[high-1, high,
offset].

The correctnessof FINDBITTREE for Case2 above is dueto the
following propertyof pos: Betweenpos anda key whosediffer-
encebit offset is equalto thatof pos, thereis a key whosediffer-
encebit offset is lessthanpos’s. We refer the readerto [11] for
details.

Thevariableoffset returnedby FINDNODE is thedifferencebit
offset betweenthesearchkey and � .key[low - 1]. In caselow =
-1, that is, the searchkey is lessthan �_^a`gbhcfT � Y , thenoffset is the
differencebit offset betweenthe searchkey andthe basekey for�_^a`-b-c [0]. Finally, if thesearchkey is containedin � , thenthepro-
cedurereturnsthepositionof the index key thatequalsthesearch
key. Revisiting Example3.2,FINDNODE determinestheposition
of thesearchkey in node� withoutrequiringany keys to bederef-
erenced.Successiveinvocationsof procedureCOMPAREPARTKEY

for thesequenceof keys in � return[EQ,2], [EQ,2], [GT, 3], [GT,
3] and[LT, 1].

Maintaining Partial-K ey Inf ormation in the Presenceof Up-
dates. With the linear encodingstrategy, maintainingthe partial-
key informationis quitestraightforward. Insertionof a new key in
the noderequiresthe partial keys of the insertedkey andthe key
following it to berecomputed,while deletionrequiresonly thepar-
tial key for thekey following thedeletedkey to berecomputed.

4. PARTIAL-KEY TREES
Building on thepartial-key comparisonandsingle-nodepartial-

key searchalgorithmspresentedin the previous section,we now
discusshow partialkeyscanimproveperformancein main-memory
index structures,by reducingtheL2 cachemissrate. In particular,
we presentpartial-key variantsof theT-tree[17] andB-tree[3] in-
dex structuressuitablefor usein main-memory. ThepkT-ttreeand
pkB-tree,aswe refer to them,extendtheir main-memorycounter-
partsby representingkeys by their partial-key informationasde-
scribedin Section3. Thelinearencodingschemedescribedin the
previoussectionis usedto computepartialkeys for theindex keys
in anode.With linearencodingatthenodelevel, wethusonly need
to specifythebasekey with respectto which thefirst key in each
nodeis encodedsincethebasekey for every otherkey in thenode
is simply thekey precedingit.

4.1 pkT-tr ee
The T-tree is a balancedbinary tree with multiple keys stored

in eachnode. The leftmostandthe rightmostkey valuein a node
definetherangeof key valuescontainedin thenode.Balancingis
handledasfor AVL trees[1]. We refer thereaderto [17] and[26]
for additionalinformationaboutT-trees,includingdetailsof update
strategiesandconcurrency control.ThepkT-treeis similarto theT-
treeexceptthatin additionto apointerto thedatarecordcontaining

thefull key value,eachindex key entryalsocontainspartial-key in-
formation.In thefollowing, �_^aiQog��T � Y and �_^aiQog��T E Y denotepointers
to theleft andright childrenof node� .

Storing Partial-K ey Inf ormation. For the first key in eachnode� , thebasekey with respectto whichthepartialkey is computedis
thefirst key in theparentnode.Thisis because,asdescribedbelow,
theleftmostkey in theparentnodeis thekey with whichthesearch
key is comparedbeforenode � is visited. Figure6(a) depictsan
examplepkT-tree– in thefigure, thesolid arrows denotethebase
keys for index keys while thedashedarrows representpointersto
child nodes.

procedure FINDTTREE(searchKey, T)
begin
1. | := rootof treeT;
2. laN := nil;
3. offset := N ;
4. comp := GT;
5. while ( | != nil) }
6. comp, offset := COMPAREPARTKEY(searchKey,|�� ���U�!� Ng� , comp, offset);
7. if (comp = EQ)
8. dereference|3� �.�.��� Ng� /* cachemiss*/
9. comp, offset := compare(searchKey, |�� ���.�e� Ng� );
10. if (comp L EQ)
11. return � |�� N � N �����d�0�U� �
12. else(comp L LT)
13. |8� L�|3� �g����� Ng� ;
14. else
15. laN � L�| ;
16. laNOffset := offset;
17. |8� L�| .ptr[1];
18. ~
19. return [laN, FINDNODE(laN - laN[0], searchKey, laNOffset)];
end

Figure7: FINDTTREE: Searching for a Keyin T-tr eeUsingPar-
tial Keys.

Searching for Key. Searchingfor a key value in the pkT-tree is
relatively straightforward andis performedasdescribedin proce-
dureFINDTTREE (seeFigure7). ProcedureFINDTTREE includes
an optimizationfrom [17] which requiresthat at eachnode,the
searchkey be comparedto only the leftmostkey value the node
(Step6). Thevariablescomp andoffset keeptrackof the results
of themostrecentcomparisonof thesearchkey with the leftmost
key in the parentnode, and are passedas parametersto COM-
PAREPARTKEY. In caseCOMPAREPARTKEY cannotresolve the
comparison,the leftmostkey in the currentnodeis dereferenced
(Step8). If the searchkey is found to be lessthan this key, the
searchproceedswith the left subtree.If it is found to be greater,
the searchproceedswith the right subtree,with the currentnode
notedin variable laN (Step15). The significanceof laN is that
whenthe searchreachesthe bottomof the tree,the searchkey, if
presentin thetree,is in thenodestoredin laN andis greaterthan
laN[0]. ProcedureFINDNODE canthusbe employed in orderto
determinethepositionof thesearchkey in nodelaN. SinceFIND-
NODE requirestheleftmostkey to begreaterthanthebasekey for
it, laN[0] is deletedfrom laN beforepassingit asaninputparame-
ter to FINDNODE.

Maintaining Partial-K ey Inf ormation in the Presenceof Up-
dates. Insertsanddeletesof keys into the pkT-treecancausero-
tations,movementof keys betweennodesandinsertions/deletions
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Figure6: pkT-tr eesand pkB-tr ees

of keys from nodes.Thepartial-key informationfor thesecasesis
updatedasfollows.

� In thecaseof a rotation,theparentof a nodeinvolvedin the
rotationmay change.Thus,the partial-key informationfor
the leftmostkey in the nodeis recomputedwith respectto
thenew parent.

� If the leftmostkey in a nodechanges,the partial-key infor-
mationis recomputedfor the leftmostkeys in the nodeand
its two children.

� In casethekey to theleft of a key in a nodechanges(dueto
a key beinginsertedor deleted),thepartial-key information
for thekey is recomputedrelative to thenew precedingkey.

4.2 pkB-Tree
The pkB-treeis identicalto a B-treeexceptfor the structureof

index keys. Eachindex key consistsof a pointerto thedatarecord
for thekey andpartial-key information.Leafnodescontainonly in-
dex keys,while internalnodesalsocontain�_^a��������b-c DZE pointers
to index nodes– the subtreepointedto by �_^aiQog��T \ Y containskeys
between�_^a`gbhceT \�S E Y and �_^a`-b-cdT \ Y .
Storing Partial-K ey Inf ormation. The basekey for the leftmost
key in � is thelargestkey containedin anancestorof � thatis less
thanthe leftmostkey. Thus,if �Z� is thenodesuchthat �_�0^*iQo-��T \ Y ,\ #�1� , pointsto � or oneof its parents,andfor all � � � in thepath
from � � to � , � � � ^aiQog��T � Y pointsto � or oneof its parents,thenthe
basekey relative to which �_^*`-b-ceT � Y is encodedis �Z��^a`-b-cdT \�S E Y .
This is illustratedin Figure6(b),wherethesolidarrowsdenotethe
basekeys for index keysof thepkB-treeandthedashedarrowsrep-
resentpointersto child nodes.

Searching for Key. ProcedureFINDBTREE, in Figure8, contains
thecodefor searchingfor a key in a pkB-tree.Beginningwith the
root node,for eachnode,procedureFINDNODE is invoked to de-
terminethe child nodeto be visited next during the search.The
variableoffset storesthe offset of the differencebit betweenthe
searchkey andthebasekey for �_^a`-b-cdT � Y (thatis, thelargestkey in
anancestorof � that is alsolessthan �_^a`-b-cdT � Y ). This is because
FINDNODE simplyreturnstheoffset input to it if thesearchkey is
lessthan �_^a`gbhcfT � Y .
Maintaining Partial-K ey Inf ormation in the Presenceof Up-
dates. An insert operationcausesa key to be insertedin a leaf
nodeof thepkB-tree.If thekey is insertedat theleftmostposition
in the leaf, then its partial key needsto computedrelative to the
largestkey that is lessthanit in its ancestor. On the otherhand,
if therearekeys to the left of it in thenode,thenits partial key is

procedure FINDBTREE(searchKey, T)
begin
1. | := rootof treeT;
2. pN := nil;
3. offset := N ;
4. while ( | != nil) }
5. pN � L�| ;
6. low, high, offset := FINDNODE( | , searchKey, offset);
7. if (low = high)
8. return � |���� �-�l���Q  ¡�� �
9. |¢� L�|�� �-�����a� �Q  ¡�� �
10. ~
11. return [pN, low, high];
end

Figure 8: FINDBTREE: Searching for a Key in B-tr ee Using
Partial Keys.

computedeasilyrelative to its precedingkey andthepartialkey of
thenext key is computedwith respectto it. In casenode� is split,
thesplitting key from � is insertedinto its parent.Splitscanthus
be handledby simply updatingthe partial-key informationin the
parentsimilar to thekey insertioncase.

Key deletionfrom apkB-treeis somewhatmorecomplicated.In
casethe leftmostkey in a leaf is deleted,the partial-key informa-
tion for it needsto berecomputedfrom its basekey in its ancestor.
Deletionof a non-leftmostkey in the leaf simply requiresthepar-
tial key for thekey following it to berecomputed.Finally, deletion
of a key �_^*`-b-cdT \ Y from aninternalnode � of thepkB-treecauses
it to bereplacedwith thesmallestkey in thesubtreepointedto by�_^aiQog��T \ D�E Y . Suppose� � is thenodecontainingthiskey. Thenfor
every node �Z� � between� and �_� � , �Z� ��T � Y ’s partialkey is recom-
putedwith thissmallestkey (thatreplacesthedeletedkey �_^a`gbhcfT \ Y )
asthebasekey.

5. PERFORMANCE
The goal of our performancestudywasto comparethe lookup

performanceof T-trees,B-trees,pkT-treesandpkB-treesin amain-
memorysetting. Our particulargoalswereasfollows: (1) Study
performanceover a wide rangeof key sizesandkey valuedistri-
butions.(2) Evaluatetheimpactof changingtheamountof partial
key informationusedfor pkT- andpkB-trees. (3) Evaluatespace
usageandthe space-timetradeoff. In subsequentsectionswe de-
scribeour hardwareplatforms,the designof our experimentsand
presentselectedresults.

5.1 The Memory Hierar chy
The latenciesobserved during memoryreferencesdependpri-

marily on whetherthedatais presentin cacheandwhetherthevir-

170



System CPU L1 (data) L2 (data) DRAM
CycleTime Size Block Latency Size Block Latency L2 MissLatency

SunULTRA 30 3.7ns 16K 64 6ns 2M 64 33ns 266ns
SunULTRA 60 2.2ns 16K 64 4ns 4M 64 22ns 208ns
PentiumIII 1.7ns 16K 32 5ns 512K 32 40ns 142ns
PentiumIIIE 1.4ns 16K 32 4ns 256K 32 10ns 113ns

Table2: Latency of Cachevs. Memory.

tualaddressis in theTranslationLookasideBuffer (TLB).2

A modernmain-memoryarchitecturetypically includestwo lev-
elsof cache,asmall,fast,on-CPUL1 cacheandalarger, off-CPU,3

andthereforeslower L2 cache.Typical parametersfor cacheand
memoryspeedareshown in Table2 (see[19, 20, 7]). Thelatency
informationis generatedwith version1.9 of lmbench [18] on lo-
cally availableprocessors,andis intendedto give thereadera feel
for currentcacheparameters,notasacomparisonof thesesystems.

Anothercomponentof thememoryhierarchyis theTLB, which
cachestranslationsbetweenvirtual andphysicaladdresses.While
TLB-missesareshown in [5] to haveasignificanteffecton perfor-
mance,we do not focuson TLB issuesin this paper. One justi-
fication for this approachis the fact that almostall modernTLBs
arecapableof using“superpages”[14], essentiallyallowing single
TLB entriesto point to muchlarger regions. While posingdiffi-
culties for operatingsystemimplementors[27], this facility may
effectively removetheTLB mississuefor main-memorydatabases
by allowing theentiredatabaseto effectively shareoneor two TLB
entries.While wedonot focuson TLB effects,they wereapparent
duringourexperimentationin theform of betterperformancewhen
index nodesspanmultiple cachelines(theseresultsarenot shown
dueto limited space).Determiningtheeffect of superpageson the
TLB costsof main-memorydatastructuresremainsfuturework.

5.2 Experimental Design
WeimplementedT-treesandB-treesfor directandindirectstor-

ageof keys. We also implementedpkT-treesandpkB-trees,and
varied the sizeof the partial keys storedin the node. Our T-tree
algorithmsare essentiallythoseof Lehmanand Carey, with the
optimizationof performingonly a single key-comparisonat any
givenlevel. In thedirectkey andpartial-key variants,westoreden-
tire/partialkey valuesonly for the leftmostkey in eachnode,used
duringtheinitial traversal.While theT-treecodewasadaptedfrom
asystemwith additionalsupportfor concurrency control[26], next-
key locking [21] anditerator-basedscans,thesefeatureswerenot
exercisedin our tests.

For thepartial-key trees,we implementedtwo schemesfor stor-
ing offsets,bit-wiseandbyte-wise. The bitwiseschemewasused
for thedescriptionin Section3, sincein this schemetheconcepts
can be more clearly articulated. However, it may be more con-
venientin an implementationto storedifferenceinformationat a
largergranularity. In particular, we considerthebytegranularity.
Clearly, all the resultsof Sections3 and4 hold whenbyteoffsets
differ, sincethebit offsetwill alsodiffer in thesamemanner. How-
ever, whenbyte offsetsareequal,it may still be the casethat the
bit offsetswould differ. In this case,onesimply storesall thebits
atwhichthedifferencecouldoccur, in otherwords,theentirebyte.
Thus,if theoffsetscompareequal,thekeys will bedisambiguated

[ Thephysicalcharacteristicsof thememorymodule,especiallyre-
peatedaccessto the samepage,may alsobe a factor, but arenot
consideredin thispaper.£
In thePentiumIIIE, theL2 cache,thoughrelatively small, is on-

chip.

by the first byte. Storingoffsetsat a larger granularitytradesoff
distinguishingpower for codingsimplicity. With bit offsetsone
alwaysstorestheprecise

�
bits mostcapableof distinguishingthe

keys; otherwise,only someof thosebitsarestored.

Keys. We model keys as unique,fixed-lengthsequencesof un-
signedbytes.Key comparisonsareperformedbyte-wisein thecon-
text of a separatefunctioncall. Indirectkeys arestoredin separate
L2 cachelinessincethey aretypically retrievedfrom datarecords.

It is intuitive that partial keys would be sensitive to the distri-
bution of keys, andin particularto theentropyof thekeys. Since
in our testswe generatebytesof the key independently, the en-
tropy for eachbytedependsonly on thenumberof symbolsfrom
whicheachbyteisselected.Specifically, wheneachbyteisselected
uniformly from analphabetof ¤ symbols,eachbytecontains¥a¦�¤
bitsof Shannonentropy[8]. Intuitively, keys with higherentropies
will be distinguishedearlierduring thecompare,leadingto lower
comparisoncosts.In termsof partialkeys, lower entropy leadsto
largercommonprefixes,anda lowerchancethattwo keys will dif-
fer within the

�
bytesof acommonprefix.

While, asmentionedin Section3, partial-key treesmaybeused
with multi-part and variable-lengthkeys, we did not implement
theseoptionsin our tests.We notethatto somedegree,not imple-
mentingawidervarietyof keys(andthusmoreexpensivekey com-
parisons)works againstpartial-key schemes,sincetheseschemes
reducethe impactof key comparisoncostsin caseswhenthepar-
tial key is sufficient. However, byte-wisecomparisonsmay be
somewhat lessefficient than,for example,single-instructioninte-
ger comparisons.We selectedbyte-wisecomparisonasa reason-
ablemodelof key comparisonexpense,anddid notattemptto vary
thiscostasanadditionalparameterin thecurrentstudy.

PerformanceMetrics. We evaluatedthevariousindicesbasedon
thefollowing threeperformancemetrics:wall-time,numberof L2
cachemissesandstoragespacerequirements.The numberof L2
misseswasmeasuredusingspecialregistersavailableontheUltra-
SPARC via thePerfMonsoftware[10].

Parameter Settings. Unlessotherwisestated,eachindex node
spannedthreeL2-cacheblocksfor a total of 192bytes,eachindex
stored1M keys, andkeys werechosenuniformly andat random,
but rejectedif they werenotunique.Threecacheblockswerecho-
senbecausethatsizecouldhandlelargerin-nodekey sizesand,in
our experiments(not shown) performedcomparablyor betterthan
smalleror larger nodesizesfor all of the studiedalgorithms.1M
recordsrepresentedthe largestsizeour machinecouldeasilyhold
in memory– a relatively largenumberof recordsis requiredto see
the effect of L2 cachemisseson timing numbers.For mosttests,
wepresentresultsfor two choicesfor thebyteentropy for thegen-
eratedkeys: 3.6 bits and7.8 bits, correspondingto alphabetsizes
of 12 and220, respectively, thoughin the actualexperimentswe
considereda wide varietyof entropiesin-between.In mostof the
experiments,key sizewastheindependentparameter. Wefixedthe
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Figure9: Time and L2 CachePerformanceof Various KeyStrategies,High and Low Entr opy

size
�

of partial keys storedat 2 bytesandstoredoffsetsin a byte
granularitysincewe found partial-key treesto performoptimally
or near-optimally for thesechoices.

Hardware Envir onment. Our experimentswereconductedon a
SunUltra 30workstationwith a296MHZUltraSPARCII processor
and256Megabytesof RAM. As shown in Table2, thismachinehas
a 16K L1 datacachewith 32 byteblock sizeanda 2M L2 direct-
mappedcachewith a 64 byteblock size. The latenciesshown by
lmbench [18] are6nsor 2 cyclesfor theL1 cache,33nsor 11cycles
for L2, and266nsor 88cyclesfor mainmemory. Weimplemented
theindex structuresusingSun’s C++ compilerversion4.2andop-
timizationlevel -O3. In ourexperiments,weensuredthatall virtual
memoryaccessedduringtherunswasresidentin RAM.

Experimental Runs. In most cases,a run consistedof 100,000
lookupsfrom a (pregenerated)list of randomlyselectedkeys from
the tree. All searchesweresuccessful.Eachrun wasrepeated10
timesandaveraged.Weensuredthattheoverall standarddeviation
on time was very low (lessthan 1%). All figuresshown in this
documentare for a treewith 1.5 million elements,the maximum
thatfit into mainmemoryon theplatform.

5.3 SelectedResults
Index performance,in a main-memoryenvironment, is domi-

natedby CPUcostsof performingkey comparisonsandcachemiss
costs.Thus,it is reasonablethatB-treeswith directkey storagewill
performbetterthanpartial-key treesfor smallkeys,sincespaceus-
age is comparableto the spacerequiredfor the partial key, and
our partial-key comparisoncodeis somewhatmoreexpensive than
simplebyte-wisekey compares.However, askeys becomelonger,
B-treeperformancecanbeexpectedto becomeworsethanpartial-
key treesdueto a lower branchingfactorandhigherkey compar-
ison costsat low byte-entropies.In all cases,we expect indirect
indexesto performpoorly in comparisonwith directindexesof the
samedatastructure,becauseindirect indexeswill requireanextra
cachemissesto performeachcomparison.Theseexpectationsare
confirmedby our experiments.

Figure 9 summarizesthe experimentalresultsfor all indexing
schemes,ondatasetswith 1.5million elements.TheY-axisshows
thenumberof L2 cachemisses;theX-axisshows theaveragetime
of a lookupin microseconds.Plotsareparametricin key size,with
key sizes8, 12, 20, 28,and36 bytes;thehigh entropy casehasan

additionalpoint at key size4. Figure9(a)shows behavior for low
entropy, with entropy perbyteof 3.6. Figure9(b) shows thesame
experiment,runwith entropy 7.8.For agivenkey sizeandentropy,
down andleft definesimprovedperformance.Performanceis thus
a partialordering,whereonealgorithmoutperformsanotherif for
all valuesof key sizeandentropy value,thealgorithmis fasterand
hasfewer cachemisses. Using the metricsof cachemissesand
lookuptime,wemake thefollowing observations.

� pkB-treesconsistentlyoutperformtheotheralgorithmsin L2
cachemisses.

� Direct B-treesoutperformthe other algorithmsin time for
smallkey sizes,aswouldhold for integerkeys.

� Direct T-treesoutperformthe other algorithmsin time for
largekey sizes,veryslightly outperformingpkB-trees.

� Direct T-treesandindirectB-treeshave essentiallythesame
cacheperformance.ThisoccursbecauseT-treessuffer about¥*¦ [ � cachemissesdueto tree levels, while B-treessuffer
aboutthethesamedueto key dereferencing.

� IndirectT-trees,performpoorlycomparedto all otherstrate-
gies,primarily dueto cachemissesfrom bothtreelevelsand
key dereferencing.

� For all key sizes,thecache-missbehavior of partial-key trees
is as good as that of the correspondingtree structurewith
directstorageof 4 bytekeys.

Oneof thereasonsthatthesuperiorcache-misscharacteristicsof
partial-key treesdoesnot alwaystranslateinto bettertiming num-
bers(especiallyfor smallerkey sizes)is thatotherfactorslikeCPU
costsfor performingkey comparisons,etc.areasignificantcompo-
nentof theoverallperformance.However, basedonthecache-miss
statistics,we expectthat the performanceof partial-key treeswill
improve relative to treeswith directkey storageaslong asproces-
sorspeedsimprovemorequickly thanmain-memorylatency.
Choiceof

�
. Largervaluesof

�
arenecessarywhenentropy is low,

becausesufficiententropy mustbepresentin thepartialkey to have
a high probability that it will differ from the correspondingbytes
of the searchkey. (In general,randomkeys shouldhave length��¨ t©¥a¦ [ �«ª�¬ to ensurethatno two keys collide; mostkeys will
be disambiguousat length ¥a¦ [ �­ª�¬ [8].) Onecanseethat key-
wisedifferenceinformationadaptsto low entropy keys: whenkeys
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Figure10: Varying Partial-k eySizeand Time-SpaceTradeoffs

have low entropy, adjacentkeys arelikely to have largercommon
prefixes. Further, increasing

�
adverselyaffectsthebranchingfac-

tor in nodes,thusthereis a tradeoff betweenreducingcachemisses
by avoiding referencesto indirectkeys andreducingcachemisses
with bushier, andthusshallower, trees. We investigatedtheseis-
suesby runningexperimentswith a wide variety of key entropies
andvaluesfor

�
. In this experiment,thekeys have relatively low

entropy (3.6 bits perbyte),but the resultsaresimilar over a wide
rangeof entropy values,and from this we expectpartial keys to
performwell over a wide varietyof key distributions. In fact,per-
formanceis almostalwaysoptimalwith smallvaluesof

�
– 2 or 4

bytes– dueto theefficacy of storingdifferenceoffsets.
Storingzerobytesof key informationis aspecialcasewhichre-

ducesto analgorithmsimilar to theBit Tree[11], but generalized
to handleinternallevelsof the treeandincur fewer cachemisses.
While thisoptiondid notperformaswell as

�  4� , ourexperiments
confirmthefollowing intuition – storingdifferencesat thebit level
is importantfor

� �x� in orderto increasedistinguishingpower.

SpaceUsage. Spaceoverheadis a critical attribute of a main-
memoryindex, In Figure10(b),we show thespace-timetrade-off
of differentalgorithmsfor a varietyof key sizes.In thisgraph,the¯

-axisis spaceandthe ° -axisis lookuptime (thelower left-hand
corneris optimal). The key sizeparametervariesbetween0 to 8
bytes.Thespacenumbersareobtainedfrom thetreebuilt by ran-
dom insertionsof 1M keys. We seefrom this graphthat indirect
key storage,while a poor time performer, excels in space.How-
ever, schemeswith direct key storagetradespacefor time, with
storageoverheadsthat increasesignificantlywith key size.Again,
pkT- andpkB-treesprovide a nice tradeoff, taking approximately
twice thespaceof indirectstoragefor all key sizes,but lessspace
thandirect-storageB-treesfor all key sizesgreaterthan4.

6. CONCLUSIONS AND FUTURE WORK
In thispaper, wehave introducedtwo new index structures,pkT-

andpkB-trees,designedto optimizethespace,timeandcache-miss
performanceof indicesin main-memory, OLTP databases.These
index structuresarebasedon partial keys, small fixed-sizerepre-
sentationsof keyswhichallow index nodesto retainasimplestruc-
ture,improvetheirbranchingfactorandspeedupkey comparisons,
yet resolve mostkey comparisonswithout referenceto indirectly
storedkeys. In our performancestudy, we found that partial-key
treesperformbetterthenB-Trees(in whichkeysarestoreddirectly
in the node)for keys larger than12-20bytes,dependingon key

distribution. Further, thepartial-key treesincur fewercachemisses
thanB-Treeswith all but thesmallestkey sizes,leadingto anex-
pectationthattheperformanceof pkB-Treesrelativeto B-treeswill
improveover timeasthegapbetweenprocessorandmainmemory
speedswidencausingthepenaltyfor acachemissto besevere.Fi-
nally, pkB-Treestake upmuchlessspacethanstandardB-treesfor
all but thesmallesttrees.

While pkT-trees,anddirectT-treesperformwell, pkB-treesper-
form betterandareonly slightly larger. However, we expectthat
over time T-treeswill be replacedwith variationsof the B-treein
main-memorydatabases,becauseof their dramaticallybetterL2
cachecoherence.Foroptimalperformanceonall key sizes,ourper-
formanceresultsleadoneto considera hybrid approachin which
direct storageis usedfor small, fixed-lengthkeys andpartial-key
representationsareusedfor largerandvariable-lengthkeys.

In future work, we intend to explore other ways in which ar-
chitecturaltrendsaffectperformance-criticalmain-memoryDBMS
code. Onesuchtrendis the increasingavailability of instruction-
level parallelism,andarelatedtrendis theincreasingcostof branch
mispredictionandother“pipeline bubbles”. A secondtrendis the
availability of “superpages”for TLBs which maysignificantlyre-
ducetheTLB costof in-memoryalgorithms.
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APPENDIX

A. CORRECTNESSOF COMPAREPARTKEY FOR
EQ

WhenprocedureCOMPAREPARTKEY is invoked with comp =
EQ, the following conditionshold: (1) indexKey is greaterthan
the basekey, and (2) searchKey and the basekey agreeon the
first offset -1 bits. We canshow that COMPAREPARTKEY asde-
scribedin Figure3 performsthe comparisonbetweenindexKey
andsearchKey correctlywheninvokedwith comp = EQ.In order
to show this,weneedto considerthefollowing threecases:

1. indexKey.pkOffset  offset. In this case,all we cancon-
cludeis thatthefirst offset - 1 bits of indexKey matchthose
of thesearchkey. However, thereis no way to determinethe
valuesfor bits offset, ^Q^�^ , indexKey.pkOffset - 1 of the in-
dexKey or their relationshipto thecorrespondingbits of the
searchkey. Theprimaryreasonfor thisis thatwedonotknow
whetherthe searchkey is greaterthan,lessthanor equalto
the basekey. Thus,the bestCOMPAREPARTKEY cando is
to return [EQ, offset - 1]. An instanceof this scenarioin
Example3.2 is when COMPAREPARTKEY is invoked with�_^a`-b-ceT E Y and[EQ, 2], the resultof the previouscomparison
with �_^a`gbhcfT � Y . Thereturnvalueis [EQ, 2].

2. indexKey.pkOffset � offset. In this case,sincethe search
key agreeswith the basekey on the first offset - 1 bits, the
first indexKey.pkOffset bits of theindex key andsearchkey
mustmatch,while the bit following thesebits mustbe 0 in
the searchkey and1 in the index key (sincewe know that
the index key is greaterthanthebasekey). Thus,thesearch
key mustbe lessthantheindex key andtheoffsetof thedif-
ferencebit betweenthe searchkey and index key must be
indexKey.pkOffset.

3. indexKey.pkOffset � offset. In this case,onecanconclude
thatthesearchkey andtheindex key matchonthefirst offset
- 1 bits, andthe bit at positionoffset is 1 in the indexKey
(sincethe index key is greaterthan the basekey). Thus,a
comparisoncanbecarriedoutbetweenthebitsstartingatpo-
sitionoffset in thesearchkey andthecorrespondingsequence
of bits in the index key, that is, 1 followedby thebits in the
partial key for indexKey. Thus, in Example3.2, invoking
procedureCOMPAREPARTKEY with �_^*`-b-cdT t Y and [EQ, 2],
the resultof the previous comparisonwith �_^a`-b-cfT E Y , results
in a returnvalueof [GT, 3]. As a result,thecomparisonwith
key �_^a`-b-cdT t Y canbecomputedeven thoughtheresultof the
comparisonwith �_^a`-b-ceT E Y wasambiguous.
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