
An Overview and Classi�cation of Mediated Query Systems

Ruxandra Domenig�, Klaus R. Dittrich

Department of Information Technology, University of Zurich

fdomenigjdittrichg@i�.unizh.ch

Abstract

Multimedia technology, global information infra-

structures and other developments allow users to ac-

cess more and more information sources of various

types. However, the \technical" availability alone (by

means of networks, WWW, mail systems, databases,

etc.) is not suÆcient for making meaningful and ad-

vanced use of all information available on-line. There-

fore, the problem of e�ectively and eÆciently access-

ing and querying heterogeneous and distributed data

sources is an important research direction. This pa-

per aims at classifying existing approaches which can

be used to query heterogeneous data sources. We

consider one of the approaches { the mediated query

approach { in more detail and provide a classi�cation

framework for it as well.

1 Introduction

Progress in both, persistent storage for all kinds of

data and computer network technology, is the main

reason for the explosive growth of data that are avail-

able on-line. New technologies, most notably the

World Wide Web (WWW), allow anybody to access

data very easily, independent of its physical loca-

tion. However, a uniform presentation interface to

distributed data is by far not enough; users need

means to make intelligible use of large amounts of

heterogeneous data:

� Users must be able to describe what informa-

tion they are looking for, i.e., what criteria it

should meet, irrespective of which source might

o�er it. When searching, information needs can

be very diverse. The search may range from an

\approximate" one, where no knowledge about

the structure and the characteristics of the un-

derlying data sources is available, to an exact

one, where the user knows the underlying data

�The work of R. Domenig is supported by Ubilab, the IT

Laboratory of UBS.

sources and their query capabilities as well as

the (kind of) information he can expect. We call

the �rst kind of search imprecise and the second

precise.

� Users must be able to correlate information of

di�erent types and from di�erent sources.

� Information meeting speci�ed search criteria

must be presented in a uniform way and may

eventually require further manipulation like or-

dering or grouping.

Summarizing, we consider heterogeneous data

sources which provide a query interface and we are

looking for systems which allow for retrieving these

data in a comprehensive and uni�ed way. There is a

multitude of such approaches. In this paper, we will

�rst give an overview of some of them. Our focus is

on querying, not on manipulation of the data. We as-

sume that information manipulation is in most cases

done on a system-by-system basis, working directly

with the participating component systems. Our sec-

ond aim is to present one approach in detail. Its real-

ization is based on mediators [Wie92], which were in-

troduced with the argumentation that they \simplify,

abstract, reduce, merge and explain data". In other

words, mediators add value to data and thus help to

exploit more of their information. As a consequence,

mediated query systems (MQS) were developed. An

MQS is a system

� build on top of heterogeneous data sources,

� implemented using mediators, and

� which allows for querying the content of these

data sources.

Users of MQS can express queries in a uni�ed way,

but data are still stored in the local systems. Inter-

nally, a query is decomposed into subqueries which

are sent to those data sources that may be able to

answer them, and �nally the results are combined

and presented in a uniform way.



The remainder of the paper is structured as fol-

lows: Section 2 classi�es the approaches for integrat-

ing heterogeneous data and Section 3 presents the

classi�cation features for mediated querying systems.

Section 4 concludes the paper.

2 A Taxonomy of Systems

for Querying Heterogeneous

Data

The huge amount of data available in electronic form

today has triggered the development of various ap-

proaches for heterogeneous data, retrieval and infor-

mation extraction which we classify as depicted in

Figure 1.

First, we distinguish between materialized and vir-

tual approaches. In a materialized approach, data

originating from local sources are integrated into one

single new database on which all queries can oper-

ate. In a virtual approach, data remains in the local

sources. Thus, queries operate directly on them and

data integration has to take place \on the 
y" during

query processing. On a lower level, the classi�ca-

tion further distinguishes approaches with respect to

the structural heterogeneity of the queried data1 and

their origin (i.e., whether the retrieved data is more

or less entirely stored in the underlying data sources

{ native { or whether it may also be derived from the

data stored in underlying sources). Other features

not directly visible from this �gure include the kind

of supported queries (precise and/or imprecise), and

the extensibility of the system, i.e. whether additional

data sources can be easily accommodated or not.

There are essentially two variants of materialized

systems:

� One possibility is to migrate the data from the

local systems to a \universal" DBMS, which is

able to handle all (or many) types of informa-

tion. Examples are object-relational DBMS or

object-oriented DBMS. Data from local systems

are extracted, integrated and stored in the cen-

tral database. Thereafter, the local systems are

not used any more, at least in principle.

The main drawback of this approach is that ex-

isting applications for the local systems have to

be rewritten for the new database. Moreover,

the process of data migration can be very ex-

pensive, since the old data has to be transformed

1Data may be structured, semistructured or unstructured;

Section 3 will give a de�nition of these notions. Until then, an

intuitive understanding is suÆcient.

and often semantically enriched for the new sys-

tem (the new database usually has a richer data

model). Another aspect is that the migrated

data can be accessed not only for reading, but

also for writing. For this reason, new access con-

trol policies have to be established. Nevertheless,

migration can be a good solution, for example,

if users or applications need the whole function-

ality of a DBMS (and not just the query func-

tionality) and the old systems' applications are

no longer needed, at least in their former form

[BGD97].

� In the second approach, data warehousing, data

from the local data sources are imported into

one DBMS, the data warehouse. The di�erence

to the previous case is that the underlying data

sources are still operational, so in fact the data

is replicated. The warehouse data is typically

not imported in the same form and volume as it

exists in the local data systems. It may be trans-

formed, cleaned and prepared for certain analysis

tasks, like data mining and OLAP (Online An-

alytical Processing). Data warehouses often do

not make the most recent data available, since a

data warehouse is usually not updated immedi-

ately after a local data source has changed. How-

ever, they store historical data, as required by

OLAP and data mining applications.

With respect to querying, both approaches have

the advantage that real DBMS functionality is avail-

able, so precise searching is supported. However, the

overhead for building such systems is signi�cant and

imprecise search is not supported.

In the virtual approach, data remain in their local

systems. A layer is built on top of them which takes

the query from the user, processes it, sends (parts of)

it to the appropriate sources and presents the results.

Three major approaches can be distinguished:

� Regarding querying of unstructured sources,

(meta)search engines have gained importance,

mainly due to the popularity of the Web.

Search engines on the Web allow to search data

which are physically stored at distributed sites

and thus provide a single access point for them.

Data is homogeneous, since it usually consists of

textual parts of HTML �les.

In order to increase retrieval e�ectivity,

metasearch engines have been introduced. Ex-

amples are SavvySearch [DH97], MetaCrawler

[SE97] and the current version of Informia

[BBMS98]. In a metasearch engine, queries are



where it is

Systems
Materialized

SystemsData Warehouse

Virtual
Integrated Systems

Mediated Query
Universal DBMS (Meta)search Engines Federated Databases

heterogeneous data (sources)

Systems for querying

let the data 

materialized

native data
unstructured

the data

native

structured data
native and derived

virtual

structured data
mostly structured

native data

move

structured native data
semistructured or
unstructured,

Figure 1: Classi�cation of Systems for Querying Heterogeneous Data

sent to di�erent search engines whose results

are collected and then presented to the user in

a uni�ed way. The main focus of metasearch

engines lies with the combination of results.

Summarizing, (meta)search engines are suitable

for unstructured data and support imprecise

search.

� The aim of federated databases is to give the user

the impression of working with one DBMS, but

in fact the data is managed by several individ-

ual DBMS. Since a federated database still pro-

vides typical DBMS functionality, queries sup-

port only precise search.

Federated database systems may also be re-

garded to follow the materialized approach (as

indicated in Figure 1 through the dotted line),

because they may store parts of the underly-

ing data in an internal repository (for exam-

ple, FRIEND [MJD97]). However, this mate-

rialization is only partial and/or temporary (to

enhance performance, for example). The data

is still managed in and for most cases retrieved

from the local systems, in contrast to the previ-

ously de�ned materialized approach.

Summarizing, federated databases are suitable

for structured data and support precise search.

Federated databases have been investigated in

the research community for a long time. In

the last years, commercial products have been

made available, for example DataJoiner from

IBM [Co.97], Cohera Data Federation System

from Cohera [COH], MIRACLE from ORACLE

[Hug96], EDI/S from Information Builders Inc.

[Inc97]. They implement many issues of a fed-

erated database, but do not o�er complete solu-

tions yet.

� The last approach presented in Figure 1 is the

mediated query approach, roughly characterized

in Section 1. Query processing in this case is very

similar to the metasearch case, with the di�er-

ence that data in the underlying sources may be

heterogeneous, i.e. structured, semistructured or

unstructured.

Since the approaches presented in Figure 1 often

have common aspects, their classi�cation does not

always render a sharp distinction for each and ev-

ery aspect. For example, there are data warehous-

ing systems which use the concept of mediation

for the task of data integration (SIRIUS [VGD99],

H2O [ZHKF95]). However, the classi�cation de�nes

at least some boundaries between the existing ap-

proaches and highlights their advantages and dis-

advantages. Table 1 summarizes the strengths and

shortcomings of the approaches classi�ed in Figure 1.

The explosive growth of data in the WWW also

led to the development of systems which apply the

database-style of querying and management to Web

data, for example WebSQL [MMM97], WebOQL

[AM98], Strudel [FFK+97], etc. These systems

use some techniques and mechanisms from the ap-

proaches presented above, but only for the Web.

[FLM98] presents a survey of existing systems for

managing data in the Web using database technol-

ogy.

Since we are interested in systems for both precise

and imprecise search, we focus on mediated query

systems in the remainder of the paper.



Universal DBMS + full DBMS functionality

+ suitable for precise search

� not suitable for imprecise search

� static

� migration of existing applications

� expensive migration

Data Warehouses + architected/optimized for special purposes

� not all data available

� mostly static

Federated DBMS + full DBMS functionality

+ suitable for precise search

� not suitable for imprecise search

� mostly static

(Meta)Search Engines + suitable for unstructured data

+ high e�ectivity of imprecise search

� not useful for precise search

Mediated Query Systems + support all sorts of possible data

+ support precise and imprecise search

+ support dynamic set of data sources

� only queries (no updates)

Table 1: Evaluation of Heterogeneous Data Systems with Regard to Querying.

3 Classi�cation Features for

MQS

This section provides a rough classi�cation of fea-

tures which characterize mediated query systems. A

considerable number of mediated query systems has

been proposed, including Garlic [Cea95] from IBM

Almaden Research Center, TSIMMIS [PGMW95]

from Stanford University, InfoSleuth [Bea97] from

Microelectronics and Computer Technology Corpo-

ration (MCC), DIOM [LP97] from the University of

Alberta and the Oregon Graduate Institute, Infor-

mation Manifold (IM) from AT&T Labs Research

[LRO96], MAGIC [KRR97] from the University of

Karlsruhe, SIMS [AKH96] from the University of

Southern California, DISCO [TRV96] from INRIA

and SINGAPORE [DD99] from the University of

Z�urich.

In our classi�cation we distinguish between func-

tional and implementation features. Functional fea-

tures characterize the way the MQS presents itself to

the outside, i.e., to the users or applications. The

internal, technical realization of systems is character-

ized by implementation features. Obviously, there is

a strong interconnection between both: the function-

ality exported to the outside depends on the techni-

cal realization of the system, and vice versa. Table 2

summarizes the implementation and functional fea-

tures we consider.

3.1 Functional Features

Functional features can be classi�ed according to var-

ious criteria, which are presented below.

3.1.1 Query Characteristics

The way users can access the system, i.e., the inter-

face through which they can express their informa-

tion needs and the means through which they can

understand the \information space" to be queried, is

obviously of utmost importance for the usability of

an MQS. Users must be able to do both, precise and

imprecise search. Therefore, database and informa-

tion retrieval techniques should be combined. The

following list includes aspects which can be used to

characterize queries:

� Query language. A query language is used to ex-

press the information needed by users. It can be

a database-like query language, where users can

retrieve information based on attribute names,

types and their operations. At the other end of

the spectrum are search engines, where a query

is expressed using combinations of keywords

(like boolean operators \and", \or", \not") or

sometimes even natural language (i.e. sentences).



Functional Features Implementation Features

Query Characteristics Architecture

Query Language Centralized/Decentralized Architecture

Query Type (Exact/Vague) Functionality Source Layer

Schema Dependence Functionality Mediation Layer

Result Presentation Internal Data Representation

Ranked List Simple/Complex Model

Relevance Feedback

Structural Properties Query Processing

Unstructured Data Source Selection

Structured Data Query Splitting

Semistructured Data Query Optimization

Query Semantics

Extensibility Metadata

Global Model Extensibility Metadata Content

Wrapper Extensibility Metadata Acquisition

Mediator Extensibility

Metadata Extensibility

Table 2: Functional and Implementation Features for Mediated Query Systems

Since MQS should support the querying of all

kinds of information, a good solution would be

to combine both styles of querying.

� Query Type. Since the information needs of users

are very diverse, they can express this by dif-

ferent types of queries. They can send an ex-

act query to structured systems, provided they

know the sources and their query capabilities,

i.e., they execute a precise search. When sources

(their structure and query capabilities) are un-

known to users, they can send a vague query, i.e.,

they execute an imprecise search.

� Schema Dependence of Queries. The way users

query MQS is related to the existence or not of

a (global) schema and its use. Two main cases

can be distinguished.

In the �rst case, the MQS has a global schema

and the user has to use it for querying the sys-

tem.

In the second case, a schema is not necessar-

ily needed, but the schemas of the underlying

sources (if they have one) are still expressed in-

ternally in terms of the global model and the

user can refer to them or not in order to query

the system. Expressed di�erently, there is no

need for a global schema, but if there is one, the

user can (but need not) use it. For example, an

MQS may o�er the possibility to search for an

attribute value in a relational database, without

having to specify which attribute has this value.

The �rst case can be further split into two sub-

cases, depending on how the global schema was

de�ned for the MQS. First applications may have

been analyzed and then, based on the result, a

schema for the system was created (i.e. database

design as usual). This means the MQS has an

a priori de�ned schema and all integration and

translation steps { and also the queries { are per-

formed against this well-de�ned schema.

Alternatively, every source exposes its local

schema in terms of the global model. These ho-

mogenized local schemas are then integrated to

yield the global schema for the MQS. All queries

are performed against this global schema.

3.1.2 Result presentation

The way results are presented to the user or applica-

tion is strongly related to the way an MQS is queried.

DBMS support only precise search. In the case of a

search engine, on the other hand, the results are only

\related" to the user's query, they represent possi-

ble answers to the query. Thereby, two problems can

occur. First, too many results may be produced so

that the user is not able to go through all of them in

a meaningful way. Second, other information items

may exist in the system which were not returned, but

which would answer the query anyway. Two tech-

niques from information retrieval can be applied in

the case of MQS:



� Ranked List. The �rst technique to present the

results is to calculate a list of the retrieved infor-

mation items and present them in decreasing rel-

evance order. The relevance is calculated using

di�erent heuristics and intuitively represents the

probability that an information item answers the

given query. The main challenge is to combine

the concept of relevance (for imprecise search)

with the concept of structured information (for

precise search).

� Relevance Feedback. The main idea behind this

technique is to give users the possibility to im-

prove the computation of results by specifying

more facts about the information they are look-

ing for than just the query. Usually, relevance

feedback means that the MQS presents a list of

information items which can answer a query, and

the user marks them as relevant or not. The

system then calculates a new list, based on the

initial query and the relevant information items.

3.1.3 Structural Data Properties

As already mentioned, we assume that data are het-

erogeneous. One important kind of heterogeneity is

structural heterogeneity, i.e., data from the underly-

ing data sources may be structured, semistructured

or unstructured. In order to de�ne this \structured-

ness", we consider how data are stored physically and

also what kind of operations are available for them.

We assume that all data is composed of data ele-

ments. Then, we distinguish between:

� Structured Data Element. A data element is

called structured if it

{ adheres to a well-de�ned schema that de-

�nes its (recursive) composition out of other

data elements, or

{ is an instance of a simple atomic data type

like integer, real, or character.

A schema has the following properties:

{ It is de�ned using a type system.

{ It is de�ned a priori, i.e., before the data

element is stored.

{ It is explicit, i.e., it is stored separately from

the data.

{ It is rigid, i.e., the data element always

must \obey" the structure.

{ It is exposed, i.e., it can be queried and can

be used when querying the data element.

Examples of structured data elements are data

stored in DBMS. A query against a structured

data element is a structured query and is used for

precise search. A structured query is based on

the structure of the data elements and the type

system.

� Unstructured Data Element. A data element is

unstructured if:

{ it is not of a simple atomic data type like

integer, real, character, or

{ does not adhere to any underlying schema,

or

{ its schema does not de�ne any composition

beyond simple bytes or character strings.

Examples of unstructured data elements are

text, video and audio, since they can only be

decomposed into characters or bytes. A query

against unstructured data consists of sequences

of characters or bytes and operations on them

(for example, for boolean text retrieval, one has

the operations \and", \or", \near", etc.). We

call this an unstructured query.

Querying unstructured data is comfortable for

the user, since he does not need to care about any

structure of the data or data types. However,

his information need may only be approximately

ful�lled, which is often undesired.

� Semistructured Data Element. A data element

is semistructured if

{ it has structure, but the structure is not

rigid, and/or

{ the structure de�nition or parts of it is

not necessarily separated from the data el-

ement, i.e. it may be implicit.

For the �rst aspect, consider as an example an

address which is usually composed of a street, a

number, a zip code, and a location. However, an

address can also comprise a name of a house, a

zip code, and a location. This means an address

has structure, but the structure is not rigid. In

this case, a possible schema for an address might

look like this (we use ODMG's ODL notation):



struct(string street, short number,

short zip-code, string location)

or

struct(string street, short number,

struct(string name,

short zip-code) location)

or

struct (string house name, short

zip-code, string location),

similar to variant types in programming lan-

guages [Coo80]. A concrete address value may

in this case match any one of the given type def-

initions.

The second issue is related to the way the schema

is de�ned. For DBMS, the schema is de�ned sep-

arately and a priori and the data is stored ac-

cordingly. For semistructured data, the schema

or parts of it might not (and cannot be) de�ned

in this way, but may be \hidden" in the data

themselves. In this case the possible schema of

an address could be just

(string address),

and one such string might be

(house name:"Casa della Neve",

zip-code:"6098", location:"Magadino").

Thus, the address is self-describing, and for this

reason its structure is implicit.

3.1.4 Extensibility

MQS should be extensible in the sense that new

sources can be registered and existing ones can be

disconnected. This may a�ect various components of

the system and the goal is to allow such extensions

with as little manual e�ort as possible, despite the

heterogeneity of sources.

3.2 Implementation Features

The realization of the functional features depends on

the design of the system, i.e., its implementation fea-

tures. We classify those as follows (Table 2):

3.2.1 Architecture

Mediated query systems have a three-tier architec-

ture ([Wie92]): the lowest layer includes the data

sources layer, the middle layer is the integration layer

and the upper layer is the user or application layer.

The data source layer contains the sources and com-

ponents coupling them to MQS. These are so-called

wrappers which export the functionality and the data

in a way that makes all sources \look alike" to the in-

tegration layer. The wrappers are implemented based

on the query capabilities of the sources. If a source

does not have any query capabilities, the wrapper

may even be able to retro�t those. The mediation

layer is concerned with the processing of queries, in-

tegration issues and result combination. The user

layer is the interface which provides the functional

features of an MQS. There are two issues related to

architecture:

� Centralized/Decentralized Architecture. The me-

diation layer can be designed with either a de-

centralized or a centralized architecture in mind.

In the decentralized approach, mediation is per-

formed by a network of components where each

one achieves some identi�able task (e.g. a query

planning component which de�nes plans for the

processing of a query). Obviously, components

can be added and replaced with rather small

e�ort. Components export their functionality

and communicate with other components using

a communication language (for example KQML

in InfoSleuth [Bea97]). In a centralized architec-

ture, the system cannot be easily extended, as

for the decentralized case. However, the over-

head for communication and management of the

components is not required in this case.

� Source/Mediation Layer Functionality. This is-

sue is concerned with the functionality of the

user and the mediation layer and how it should

be split between them. One possibility is to build

fat wrappers. A fat wrapper receives a query ex-

pressed in the global query language as its input

and outputs an information item expressed in the

global data model. Fat wrappers thus implement

the whole source-speci�c functionality and (se-

mantic) adaptations to the global system. The

advantage of a fat wrapper is the fast processing

of queries in the mediation layer. Query pro-

cessing here means just to �nd out those sources

which could answer the query, split the query

and produce subqueries expressed in the global

query language. Obviously, using a fat wrap-

per a�ects the extensibility of an MQS, because



whenever a new source is added, a lot of func-

tionality has to be implemented in the new wrap-

per. Better extensibility is provided if thin wrap-

pers are used. In this case, a fat mediator layer is

required. It must provide as much functionality

as possible and includes even parts of the syntac-

tic translations for the underlying sources. This

implies that a fat mediator layer has to cover a

large variety of models and languages and it may

also hamper query processing eÆciency.

3.2.2 Internal Data Representation

Data and queries need to be represented in the inte-

gration layer of the global data model. If the MQS is

designed to just select simple records of data and sim-

ple relationships between them, a simple data model

is suÆcient. If the system has to represent more

complex relationships and also behavioral elements,

then a more complex model has to be chosen (like

e.g. an object-oriented model). Obviously, complex

functionality of the components leads to a complex

data model.

3.2.3 Query processing

The steps between receiving a query at the user in-

terface and sending (parts of) it to the underlying

sources are implemented in the query processing com-

ponent of an MQS. The concrete query processing al-

gorithm to be used depends on many factors: what

is the global query language of MQS, what kinds of

queries are supported, which sources should be in-

volved in query processing, etc. The following fea-

tures are used to characterize query processing:

� Source Selection. The �rst step of query process-

ing is to �nd the sources that could contribute

to answer the query. Many heuristics are avail-

able for this task. Besides the sources speci�ed

in the query, the MQS can select other sources

based on their content description, provided it

is stored in the system. Next, the availability of

the sources and their performance can be con-

sidered .Sources can also be selected based on

structural information in the query. If, for exam-

ple, a query speci�es an attribute \Title", struc-

tured or semistructured sources containing this

attribute can be selected.

� Query Splitting/Optimization/Semantics. The

next step is to split the query. This process

takes source selection into account, but also the

semantics of the query, i.e., the meaning of at-

tributes and operations used in the query. Of-

ten, for an MQS the semantics must support

precise and imprecise search (for example by ex-

tending DBMS query languages with additional

features). Another important issue is query op-

timization during the process of query splitting.

One has to consider optimization at the under-

lying sources, but also global operations which

could a�ect the eÆciency of the global query.

3.2.4 Metadata

All query processing components rely on extensive

knowledge about available data sources and their

abilities. Most of this metainformation has to be col-

lected and stored in the so-called metadata reposi-

tory, where the following features are of interest:

� Metadata Content/Ontologies. The �rst issue is

the content of the metadata. It depends on the

requirements for the system (for example, if the

MQS is used for a certain application, data about

it has to be stored), but also on its internal real-

ization (if the MQS is, e.g., designed to have fat

wrappers, part of the metadata will be hidden

in the wrappers). The metadata repository may

also include ontological knowledge2.

� Metadata Acquisition. There are two ways to

store metadata in the repository. In one ap-

proach, wrappers are responsible for this job and

thus have to be programmed accordingly.3 An-

other possibility is to build a separate component

for metadata registration which provides an ap-

propriate speci�cation language. In this case,

the system administrator has to �nd out the rel-

evant information and specify it to the registra-

tion component. While this approach is not au-

tomated, it also allows for more 
exibility and

probably leads to a more complete description of

metadata. Metadata acquisition is also related

to the evolution of sources: e.g., when informa-

tion about a source changes (for example, the

schema), this information has to be forwarded

to the metadata repository.

2An ontology is \a speci�cation of a conceptualization"

([Gru93]). In particular it is related to the problem that simi-

lar information is represented using di�erent vocabularies (for

example a \lecture" or a \seminar" are similar concepts).
3When a new source is added to the system, a new wrapper

has to be implemented (speci�ed) as well.



4 Discussion

The aim of this paper was to present various aspects

of a new technology (MQS) which has emerged to

solve the problem of eÆcient and e�ective retrieval

of information from heterogeneous data sources. We

have �rst shown that some approaches exist in related

areas, which o�er partial solutions and are adequate

for special cases. We claim that for developing an

MQS, it is possible to build on these, by taking one

of them as a starting point and combining it with

features from others. For example, database con-

cepts (more speci�cally those of federated database

systems) can be extended with information retrieval

concepts (like those of metasearch engine). How this

combination is actually done, depends on the require-

ments to MQS which we presented and classi�ed in

the second part of the paper. Our classi�cation can

serve as a starting point for developing an MQS and

is a framework for comparing di�erent implementa-

tions.

Commercial products for accessing heterogeneous

data are available today (DataJoiner, Cohera, MIR-

ACLE, EDI/S). In our classi�cation in section 2, they

�t best the federated database approach, but none of

them o�ers full database functionality. They give an

integrated view over data (mostly stored in relational

databases) but do not allow the 
exible way to query

data as we are aiming at for MQS. [RH98] presents

and compares most of these approaches.

Lastly, we want to mention that in order to imple-

ment an MQS, one can make use of various existing

technologies, including e.g. APIs like ODBC, JDBC

[JDB], OLE DB [Bla96] which can be used for imple-

menting wrappers and which o�er generalized access

to a large class of data sources. For the mediation

layer, we mention the query service speci�cation of

CORBA [COR98] which provides mechanisms needed

for query processing in such an integrated environ-

ment.

Acknowledgments

We thank Dimitrios Tombros, Martin Sch�onho� and

Anca Vaduva for their help during the preparation of

this paper. We also thank Ubilab for supporting the

work of Ruxandra Domenig.

References

[AKH96] Y. Arens, C. A. Knoblock, and C. Hsu.

Query processing in the SIMS informa-

tion mediator. In Advanced Planning

Technology, AAAI Press Menlo Park

CA, 1996.

[AM98] G. Arocena and A. Mendelzon.

WebOQL: Restructuring Documents,

Databases and Webs. Proc. of 14th.

Intl. Conf. on Data Engineering (ICDE

98), Florida, 1998.

[BBMS98] M. L. Barja, T. Bratvold, J. Myl-

lymaki, and G. Sonnenberger. In-

formia: a mediator for integrated access

to heterogeneous information sources,

http://www.informia.com. Proceed-

ings of the Conference on Information

and Knowledge Management CIKM'98,

1998.

[Bea97] R. J. Bayardo and W. Bohrer et al. In-

foSleuth: Agent-based semantic integra-

tion of information in open and dynamic

environments. SIGMOD Record, 1997.

[BGD97] A. Behm, A. Geppert, and K. R. Dit-

trich. On the migration of relational

schemas and data to object-oriented

database. In Proc. 5th International

Conference on Re-Technologies for In-

formation Systems, Klagenfurt, Austria,

1997.

[Bla96] J. Blakeley. Data Access for the Masses

through OLE DB. Proc. of SIGMOD,

Montreal, 1996.

[Cea95] M. J. Carey and L. M. Haas et al. To-

wards heterogeneous multimedia infor-

mation systems: The Garlic approach.

In Research Issues in Data Engineering.

IEEE Computer Society Press, March

1995.

[Co.97] IBM Co. DB2 DataJoiner: Administra-

tion guide and application programming.

IBM Co., San Jose, 1997.

[COH] Cohera. http://www.cohera.com/.

[Coo80] S. Cook. Some more on variant records.

Technical report, Queen Mary College,

Department of Computer Science, 1980.

[COR98] CORBA Services Book.

http://www.omg.org/corba/sectran1.html,

1998.



[DD99] K. R. Dittrich and R. Domenig. To-

wards exploitation of the data universe:

Database technology for comprehensive

query services. Third international con-

ference on Business Information Sys-

tems, April 1999.

[DH97] D. Dreilinger and A. E. Howe. Experi-

ences with selecting search engines using

metasearch. ACM Transactions on In-

formation Systems, 15(3):195{222, July

1997.

[FFK+97] M. Fernandez, D. Florescu, J. Kang,

A. Levy, and D. Suciu. STRUDEL: A

Web site management system. SIGMOD

Record (ACM Special Interest Group on

Management of Data), 26(2), 1997.

[FLM98] D. Florescu, A. Levy, and A. Mendel-

son. Database techniques for the World

Wide Web: A Survey. SIGMOD Record,

September 1998.

[Gru93] T. R. Gruber. A translation approach to

portable ontologies. Knowledge Acquisi-

tion, 5(2), 1993.

[Hug96] K. Hughes. ORACLE Transport Gate-

way - Installation and User's Guide for

IBM DRDA fro RS/6000. ORACLE Co.,

1996.

[Inc97] Information Builders Inc. EDA/SQL

Manuals. Information Builders Inc.,

1997.

[JDB] The JDBC Database Access API.

http://java.sun.com/products/jdbc.

[KRR97] B. K�onig-Ries and C. Reck. An architec-

ture for transparent access to semanti-

cally heterogeneous information sources.

In Proceedings ot the First International

Workshop on Cooperative Information

Agents, Berlin, February 1997.

[LP97] L. Liu and C. Pu. An adaptive

object-oriented approach to integration

and access of heterogeneous informa-

tion sources. Distributed and Parallel

Databases, April 1997.

[LRO96] A. Levy, A. Rajaraman, and J. Or-

dille. Querying heterogeneous informa-

tion sources using source descriptions. In

Proceedings of the twenty-second inter-

national Conference on Very Large Data

Bases, India, 1996.

[MJD97] T. Meyer, D. Jonscher, and K. R. Dit-

trich. Middleware zur Integration ge-

ographischer Daten. INFORMATIK 4:5,

October 1997.

[MMM97] A. Mendelzon, G. Mihaila, and T. Milo.

Querying the World Wide Web. Journal

of Digital Libraries, 1(1), 1997.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina,

and J. Widom. Object exchange across

heterogeneous information sources. In

P. S. Yu and A. L. P. Chen, editors,

Proceedings of the 11th International

Conference on Data Engineering, March

1995.

[RH98] F. Rezende and K. Hergula. The Hetero-

geneity Problem and Middleware Tech-

nology: Experiences with and Perfor-

mance of Database Gateways. Proc. of

the 24th anual international conference

on Very Large Databases, 1998.

[SE97] E. Selberg and O. Etzioni. The

MetaCrawler architecture for resource

aggregation on the Web. IEEE Expert,

pages 11{14, January{February 1997.

[TRV96] A. Tomasic, L. Raschid, and P. Val-

duriez. Scaling heterogeneous databases

and the design of Disco. In ICDCS

'96; Proceedings of the 16th Interna-

tional Conference on Distributed Com-

puting Systems; May 27-30, 1996, Hong

Kong, May 1996.

[VGD99] A. Vavouras, S. Gatziu, and K.R. Dit-

trich. The SIRIUS Approach for Re-

freshing Data Warehouses Incremen-

tally. In Proceedings of BTW'99, March

1999.

[Wie92] G. Wiederhold. Mediators in the ar-

chitecture of future information systems.

Computer, 25(3), March 1992.

[ZHKF95] G. Zhou, R. Hull, R. King, and Jean-

Claude Franchitti. Supporting data in-

tegration and warehousing using H2O.

IEEE Data Engineering Bulletin, Special

Issue on Data Warehousing, 1995.


