
First-Class Views:
A Key to User-Centered Computing

Arnon Rosenthal
The MITRE Corporation

arnie@mitre.org

Edward Sciore
Boston College and MITRE

sciore@bc.edu

ABSTRACT

Large database systems (e.g., federations,
warehouses) are multi-layer – i.e., a combination
of base databases and (virtual or physical) view
databases1. Smaller systems use views for layers
that hide detailed physical and conceptual
structures. We argue that most databases would
be more effective if they were more user-centered
– i.e., if they allowed users, administrators, and
application developers to work mostly within their
native view. To do so, we need first class views –
views that support most of the metadata and
operations available on source tables.

First class views could also make multi-tier object
architectures (based on objects in multiple tiers of
servers) easier to build and maintain. The views
modularize code for data services (e.g., query,
security) and for coordinating changes with
neighboring tiers. When data in each tier is
derived declaratively, one can generate some of
these methods semi-automatically.

Much of the functionality required to support first
class views can be generated semi-automatically, if
the derivations between layers are declarative
(e.g., SQL, rather than Java). We present a
framework where propagation rules can be
defined, allowing the flexible and incremental
specification of view semantics, even by non-

1 The term “layer” was chosen for its naturalness in
these familiar architectures. However, in the general
case, derivation edges can form an arbitrary digraph.

programmers. Finally, we describe research areas
opened up by this approach.

1. WHAT NEEDS TO BE REMEDIED?

Views have enormous versatility, practicality, and
importance [Rous98], but also significant
limitations. Views give read access, but impose
severe limits on other operations, such as updates
and establishing change notification. Metadata
defined on source tables (such as data quality,
origin, and creation info) does not propagate up to
views, and cannot be read or modified. Error
messages from the system are presented to view
users in terms of source tables. Schema changes
to view tables (e.g., adding and deleting columns)
are not allowed. Finally, there is no external
mechanism for extending standard operations to
wider classes of views (e.g., to define view update
on views that include outerjoin or multiplication
by a constant), or for defining new operations.

These limitations cause problems for both
administrators and end-users. Administrators at a
view layer are forced to perform their work in terms
of tables belonging to other layers. Different
layers may have large structural and vocabulary
differences, making “schema-shifting” between
them difficult and cumbersome. End-users at a
view layer often cannot access their data directly,
and must use applications to interface with the
source layers. These applications can contain a lot
of code, as they must manage the semantics of
update operations, error handling, metadata
propagation, etc. Layers can become “fat” with all
of the code, which is costly to build and maintain.

In the remainder of this paper we try to give the
reader a feeling for the tremendous potential of
first-class views (Section 2), to outline a gradual
approach to their implementation (Section 3), and
show the numerous areas in which research is
needed (Section 4).

2. HOW WOULD SYSTEMS LOOK, IF
BUILT OVER FIRST CLASS VIEWS?

We say that a system supports first class views if:
• it offers view users (approximately) the same

metadata and operations as source tables;
and

• a view user who receives information from
another layer has the pleasant illusion that
the sender used the recipient’s schema.2

In such systems, computing is more user-centered
– users can work with tables natural to their
viewpoint, regardless of the physical structure.
Currently, views support this transparency for
some data operations (e.g. queries and some
updates), but rarely for other data operations,
metadata operations, and events.

 In this section we explore this idea further for two
areas: multi-layer database systems (Section 2.1)
and multi-tier distributed object architectures
(Section 2.2). Although both areas involve
metadata and application operations, section 2.1
focuses on the former and section 2.2 the latter.

2.1 Opportunity: Federations, Warehouses,
Conceptual Views

 Multi-layer databases, especially federations and
warehouses, are gaining prominence. Figure 1
(next page) gives an impressionistic picture of
military supply as a large, multi-layer federated
database. Information in this database is collected
from many sources, and transformed through
several layers of organizations. Parts of the
derivations will be simple (e.g., join on common
identifier, units transforms, totals). Many

2 Of course, the sender’s information may refer to
concepts outside the recipient’s domain; in this
case, the propagated result must reference the
sender’s schema. Negotiations between
autonomous systems are discussed in Section 4.

attributes are passed upward with little change.
But some derivations will also use complex
functions that remain opaque to the DBMS, e.g.,
to normalize address representation or resolve
conflicting values.

 With current technology, to communicate
information from sources to end users at the top,
one needs to involve contractors at each layer. To
enable this coordination, there is a strong effort to
capture requirements in advance. However, the
resulting systems tend to be too inflexible for our
rapidly changing world. Fortunately, first class
views have the potential to change this situation.

 We look at three kinds of database usage: access
to metadata, data operations, and schema
administration.

 Metadata: A source table’s metadata covers many
topics of interest to view users. Business users
might define new metadata types, and provide
values. (If we know how view metadata is derived,
then an extension of view update theory guides
handling of metadata updates). Important types of
metadata include
• custodianship (ownership, points of contact)
• security specifications (e.g., access

permissions, audit requirements)
• pedigree (e.g., what process produced it? who

supplied the inputs? when?)
• data type
• quality (accuracy, completeness, precision)
• integrity constraint expressions
• descriptions of an integrity violation

 One warehouse consultant estimated that his
customers capture about eight such facts per
attribute; more would be captured if the process
were simpler. Metadata might also be captured at
other granularities, i.e., table, row, cell, or view.

 A user at a view layer must be able to manipulate
the relevant metadata on the view. This metadata
may have been specified explicitly at the view, or it
may be implied by metadata specified at lower
layers.

 For example, long-range planners may need to
access the uncertainty metadata for contractors’
delivery dates for F16 engines. Transport
planners may need quality and access-control
metadata for Albanian ports (How confident are
we about Tirana’s channel depth? Who may read
the harbormaster’s beeper number? Is it up to
date?) In each case, the requested metadata must
be translated by the system from its originating
schema to the view’s schema.

 Operations: A user should be able to perform
arbitrary operations (e.g. query, update, change
notification requests) on view data. For example in
Figure 1, transport planners may need to set up
event notifications, so they are aware within 30
minutes of a major change to cargo capacity for
any Airport, or to be informed when any
contractor’s supply of Tomahawks exceeds 20.

 In federations, it is routine to translate view
queries to source queries. For warehouses, queries
normally execute against the warehouse. [Hel99]
points out reasons to support querying through to
original sources. For such queries, one needs
declarative SQL view derivations. The same
arguments apply to supporting other operations.

 Today, when a federation user sees a need for an
update or notification, she normally needs to
express the update against a different schema. It
would be simpler if she could issue these requests
against their native schemas, perhaps extended by
attributes needed for disambiguation. For example,
federations often involve datatype and units
conversions. To support these, the set of
updatable views should be expanded, to allow
unary operations whose inverses are available.

 Schema Administration: Some schema
administration tasks (e.g., constraint specification,
adding and deleting columns) are best done by
business experts, in terms of their native schema.
Where possible, such administration should be
insulated from details of sources’ physical tables.

 In addition, one can consider metadata derivations
as an augmentation to views’ defining queries.
There is no uniform rule for metadata translation;
sometimes it depends only on metadata type,
sometimes also on the query operation, or the
application semantics of a particular table. (For
example, in some cases, “Select * from T where
Date>1995” may bias average accuracy, and in
other cases not. Administrators must have a way

Federated Logistical View
(partly materialized)

Contractors’
Spare Parts

Lockheed
info

Boeing
info

Air Force
Depots

Navy
Supplies

Transport
Planner View

Finance
View

Mission
Plan View

Long Range
Plan View

Transport
Nodes and

Routes

Roads Airports Ports

Cargo
transport

Commercial Allied
military

US
military

Figure 1: Military Supply (simplified)

to manage the enormous number of meta-attribute
translations easily.

 Fortunately, derivations of view metadata can
often be generated from general patterns (see
Section 3). When a view is defined, the system
generates metadata values automatically, wherever
possible. Where the inferred values are unreliable,
the system indicates the uncertainty or offers a
menu of choices. In this way, business users see a
relatively full set of metadata for the data in their
view. Also, this view metadata is regenerated
automatically upon changes to the source
metadata or the view query.

 These capabilities are extensible by user
organizations, not just by DBMS vendors. For
example, to handle unit conversions, power users
can describe how “multiplication by a constant”
affects access permissions (no change), error
bounds (multiply absolute bounds by the
constant), and view update (divide, as the inverse
of multiply).

 An added advantage of first class views is that
they promote decentralized administration.
Business experts can work more efficiently using
their native views, as they need no longer be
concerned with how their schema relates to others.
Foreign concepts, unnatural organization, and
irrelevant detail, all necessary at the lower layers,
are hidden.

2.3 Opportunity: Enterprise Object
Architectures

 First class views are also relevant to enterprise
architectures that consist of objects residing in
tiers of servers, e.g., desktops, web servers,
middleware, and databases. A tier can have
several layers of objects (each implemented above
the others), and each tier may implement over
lower tiers.

Recent proposals for enterprise architectures use
data management merely as a back-end store at the
lowest tier. We advocate taking a greatly
expanded role [Ros99a]. Data used only by one
object at one tier requires no special coordination.
But for shared data, our goal is: Support the

illusion that there is a giant shared database, of
which each object’s data constitutes a first class
view.

 Currently, applications face problems similar to the
multi-layer database systems described in Section
1. The programmer must think in terms of multiple
schemas – her own layer, the supporting one, and
ones to which she provides a customized
interface.

 As in multi-layer databases, little metadata is
available outside the layer where it is provided.
However, a more pressing problem is that method
code is often “fat” – costly to build and change. A
main cause is that generic data management tasks
like change notification and attribute “set”
methods must be explicitly coded (and
maintained). The resulting code entwines business
tasks and mapping tasks.

 Today, a designer cannot afford to give every
community a set of objects to work with. There is
excessive cost in program maintenance (too much
method code is needed for coordinating the data)
and also in execution time. To see the latter, note
that a method is implemented by requests to the
next layer down, and it by requests to the next
layer down, and so forth. This imposes a
substantial performance penalty. For data
manipulations over virtual data, the compiler
composes the multiple layers of view definitions
and determines an efficient strategy against the
sources.

 In a software system based on first class views,
each layer sees the data it needs as attributes local
to its objects, instead of as data to be obtained
from or coordinated with other layers’ objects.
This locality simplifies methods at that layer. The
task of coordinating between layers shifts from
ordinary application developers to view definers.

 The proposed future scenario is as follows: With
the assistance of tools, modelers specify:
• the query that derives the view’s data

(declaratively, e.g., in SQL, so mappings other
than query can be inferred).

• process requirements from the application
domain (e.g., for persistence, for freshness of
data values, for timely callbacks for
interesting events, and for transaction
consistency between layers).

• functions that derive view metadata and
operations from the corresponding source
information, and functions that infer source
metadata from view metadata.

Next, implementation techniques (e.g., caching) are
chosen by humans or automated wizards. At this
point, the necessary code for coordinating across
layers is generated, preferably automatically.
([Goy96] applied this elegant approach for GUI
programming. We anticipate that it can scale up.)

 With this regime, application methods are simpler.
Their developers no longer require skill in data
modeling and management. Caching and
persistence strategies can be built largely from
reusable generic code. Their implementation can
change without affecting applications, and will
eventually be chosen automatically based on
usage profiles.

3. IMPLEMENTING FIRST-CLASS
VIEWS

 When modelers define an ordinary view, they
provide only an SQL query that derives the
contents of a view table. A first class view
involves considerably more knowledge, i.e., a
derivation mapping for each kind of metadata or
propagatable operation, on each attribute (or
other database granule), upward and downward,
through each query operator [Ros99c]. The
approach is feasible only with extensive code
reuse and automated generation.

 This section discusses an approach to:
• Semi-automatically generating mappings for

metadata and common operations.
• Supporting incremental extensions, by

administrators and tool vendors.

3.1. Why the Problem Is (Mostly) Tractable

 The semantic difficulties of propagating view
operations to source tables are well known, and
we expect no silver bullet. But programmers can

often determine candidate metadata for a view
table, given metadata on the input data. And since
some metadata types (e.g., owner, access control
list) recur on almost every attribute or table,
mapping functions can be reused extensively.
Finally, even “impossible” general problems like
view update can be handled by augmenting each
view with stored procedures (or Instead triggers)
that accept additional inputs to resolve
ambiguities.

Thus, instead of seeking a complete solution, we
reframe the problem as “Provide automated
assistance to the humans who solve the
individual cases.” We would consider the
automated assistance successful if we could
provide a substantial fraction of the first class
view functionality with little administrative effort.
To do so, we hope to:
• Handle the easy cases automatically. Since

many attributes in views are pulled with little
or no change from a source table, many kinds
of metadata require little mapping.

• Disambiguate by point-and-click decisions,
not by coding. Tools already do this for
updating a (vendor-determined) set of select-
project-join views. It should be provided for
other operations and metadata.

• Focus human attention only on the difficult
operations within view expressions. For
example, in Median(Project(Select(T))), only
Median might need special handling.

3.2 Propagation Rules and Frameworks

To make views first class, we want a framework for
specifying and applying broadly applicable
propagation rules. To keep human effort low, the
rules are general patterns that provide derivation
mappings for many situations. This subsection
gives a quick overview. The system has not been
implemented, but an interface demonstration (pure
html) is available at [Ros98]. Theory details can be
found in [Ros99c].
For simplicity, we only consider here upward
propagation (from source to view) of a meta-
attribute, such as ErrorBound on Port.Capacity
or ErrorBound in general. Similar techniques seem
appropriate for metadata at other granularities

(e.g., on tables and cells), for operations and
events, and for downward propagation.

A propagation rule specifies a scope, a strength,
and a translation function. The scope of a rule
identifies the meta-attributes it applies to; it does
so via a predicate that depends on the meta-
attribute being mapped, the attributes involved,
and the query operator. For example, a rule might
apply to the Credibility meta-attribute on all
attributes in tables Sue owns, for propagation
through any invertable unary function.

The translation function takes value(s) for the
sender’s meta-attributes and produces a
suggested value for the recipient’s. The rule’s
strength describes its reliability; the framework
uses it to determine priority of applicable rules and
to estimate reliability of the value (e.g., to guide
whether the result requires human confirmation).

By defining a taxonomy on each aspect of scope,
we enable the framework to suggest ways an
administrator might make a rule more general. For
example, a rule that applied to multiplyByConstant
might generalize to the parent category,
{invertable operators}.

The rules are part of an extensible framework,
which makes it possible to add rules and query
operators incrementally. The framework provides a
rule-execution environment; traces data flows
between source and view granules (sometimes
called lineage or pedigree); and defines “well
known” types of metadata for use by all layers.

Tool vendors and power users can write rules for
propagating through individual query operators,
e.g., Select. The framework determines
propagation through query expressions, by
composing the functions for the individual
operators. Sometimes a view can be derived from
alternative sets of inputs, e.g., from sources or
data marts. In such cases, the framework is
responsible for inferring metadata values along
each path, and combining (where possible).

4. RESEARCH ISSUES

The development of a facility for first-class views
is a large, multi-faceted problem, involving both
engineering issues and more formal questions.

4.1 Engineering Issues

The challenges here are to specify the framework,
to provide good tools for administrators, and to
coordinate with metadata managed by
administration tools and DBMSs. One hopes to
incrementally provide interfaces and wizards that
simplify administrators’ tasks, e.g., to identify
overlaps and select rule strengths.

Much of our work assumes that metadata is
(logically) attached to the various granules [Sci94].
There are many other situations where one needs
to attach additional data to a granule, so a very
general “annotation” facility would seem
appropriate. Issues include crafting an interface
for manipulating and displaying the attachment,
and providing for a range of efficient
implementations (with both eager and lazy
evaluation of virtual fields).

Surveys of practice are also needed. We require a
declarative description of the mapping from source
to view. For a data warehouse’s
extract/scrub/integrate process, can such
derivations be described using SQL plus
embedded functions? Do such descriptions make
it easy to determine the right propagation rule?

4.2 Formal Issues

The framework makes each bit of propagation
knowledge valuable. This opens opportunities for
small contributions (e.g., how to pass update
permissions through outerjoin), perhaps from
novice researchers and practitioners.

View queries that involve multiple operators
require composing rules over the operators in an
algebraic expression. But how does composition
work, especially if multiple rules apply, or if user
interaction is included? And how should we
handle expressions where some operators have
applicable rules, but others do not?

Better facilities for tracing lineage are needed.
Current research aims largely at explaining data in
the view, or at guiding a change notification
strategy. Administration of first class views
requires more. First, we want a uniform treatment
that works at different granularities (e.g., column,
cell, row). Second, to avoid prohibitive
implementation costs, lineage-tracing should be a
small change to algorithms that vendors already
implement, e.g., query rewrite. Finally, when the
lineage is complex, one needs to decompose in a
way that matches administrators’ concerns. (For
example, for security officers, the lineage could
indicate that a view depends on a join predicate’s
results, but not on actual joinfield values
[Ros99b].)

There are special cases where rule inference can
be formalized. For example, we have been working
on a theory of metadata where all values represent
lower bounds; this allows combining values
inferred from different derivations [Ros99b]. One
might also exploit invertability and monotonicity in
propagating metadata. For example, suppose a
view attribute’s value is f(source attribute), and f–1

is known (e.g., constant multiplication and
division). Since no information is lost, this mini-
view can be added as a solvable case of both view
update (using f –1) and security (the view and
source attributes are equally sensitive). Similarly,
some metadata (e.g., maximum error) increases
monotonically with the set of rows in a table. This
knowledge admits conservative functions for
propagating across Select or Union.

Research is needed on propagating constraints
and error messages between layers. The theory of
logical inference must be adapted in several ways:
to handle differences in systems’ abilities to
enforce constraints; to express results in a form
users will understand (e.g., “Emp# must be
unique” rather than the corresponding predicate
calculus); and to split constraint (or security)
enforcement among a DBMS, middleware, and
GUIs.

Security in multi-layer databases raises many good
research issues: How do autonomous

administrators at different layers negotiate and
agree on appropriate access privileges, and ensure
consistent enforcement? Should one protect
information independent of location? A
discussion of the issues appears in [Ros99b].

Where layers are administered independently,
there is need for negotiation support. Upper layer
administrators may wish to obtain certain data
qualities and privileges for their users, i.e., to
describe requests; they also describe
enforcements performed at their layers. Data
sources describe provisions, i.e., what they
currently have, and perhaps could have.
Propagation rules can translate requests and
provisions so they are expressed in terms of a
single schema, and hence are comparable. But
there will be need to control proposals,
counterproposals, hypothetical explorations,
commands, and other forms of interaction.

Finally, multi-layer databases rely on replication.
Multi-tier object systems rely on caching, often
with imperfect consistency. The fundamental tasks
of replication and caching products are the same –
maintaining data consistency. A facility that
unified these capabilities would be more generally
useful, and avoid a great deal of redundant theory,
specification language, and perhaps
implementation.

5. SUMMARY

Our community has debated expanding its scope
to additional data by “expanding the box” versus
“getting out of the box”. We believe there is
another major opportunity that seems more easily
grasped: to provide full database functionality to
derived data that already resides in databases.

Views are one of the jewels in relational theory,
and have wide applicability. This paper has argued
that first-class views would make multi-layer
databases more convenient for application
builders. Even partial success would provide real
help, so difficult cases can be solved later. Much
of the time, the necessary specifications can be
created semi-automatically.

We also described how such views simplify the
methodology and implementation of multi-layer
object architectures. Most software architects give
DBMSs a limited role, providing just persistent
storage at the bottom layer. Our proposed
direction gives the database community a wider
role in creating tomorrow’s enterprise software
systems.

In software, as in circuitry, the cost of active
components may eventually be exceeded by the
cost of maintaining the interconnections. First
class views help slim and coordinate the layers. A
suitable framework can greatly simplify the
management of the inter-layer connections.

6. REFERENCES

[Goyal96] N. Goyal, C. Hoch, R. Krishnamurthy, B.
Meckler, M. Suckow, “Is GUI Programming a
Database Research Problem?”. Proc. ACM
SIGMOD Conference, June 1996.

[Hel99] J. Hellerstein, M. Stonebraker, R. Caccia,
“Independent, Open Enterprise Data Integration”,
IEEE Data Engineering Bulletin, March, 1999.

[Kel86] A. Keller, “The Role of Semantics in
Translating View Updates”. IEEE Computer (19:1),
January 1986, pp. 63-74.

[Ros98] A. Rosenthal and G. Gengo, “An HTML
Demo of a Multi-Tier Administration Tool”.
www.cs.bc.edu/~sciore/papers/demo.zip

[Ros99a] A. Rosenthal, E. Hughes, “Coordinating
All the Data: A Big Role for Data Management in
Enterprise Architectures”.
www.mitre.org/technology/managing_risk/pubs/
oomtier_doa.ps

[Ros99b] A. Rosenthal, V. Doshi E. Sciore,
“Security Administration for Federations,
Warehouses, and other Derived Data”, IFIP 11.3
Working Conference on Database Security, 1999.
www.cs.bc.edu/~sciore/papers/secadmin.doc

[Ros99c] A. Rosenthal, E. Sciore, “Metadata
Propagation in Large, Multi-tier Database
Systems” Submitted to ICDE 2000.
www.cs.bc.edu/~sciore/papers/ metadataProp.doc

[Rous98] N. Roussopoulos, “Materialized Views
and Data Warehouses”. SIGMOD Record, March
1998, pp. 21-26.

[Sci94] E. Sciore, M. Siegel, and A. Rosenthal,
“Using Semantic Values to Facilitate
Interoperability Among Heterogeneous
Information Systems”. ACM Transactions on
Database Systems (19:2), June 1994, pp. 254-290.
file://rombutan.mit.edu/pub/papers/TODS94.ps

Acknowledgement: The authors thank Sandra
Heiler, Frank Manola, and Scott Renner for their
insightful suggestions.

