Cost Estimation of User-Defined M ethodsin Obj ect-
Relational Database Systems

Jihad Boulos', Kinji Ono
NACSIS (National Center for Science Information Systems)
Otsuka 3-29-1,
Bunkyo-Ku
Tokyo 112

{boulos,ono} @rd.nacsis.ac.jp

Abstract: In this paper we present a novel technique
for cost estimation of user-defined methods in
advanced database systems. This technique is based
on multi-dimensional histograms. We explain how the
system collects statistics on the method that a
database user defines and adds to the system. From
these statistics a multi-dimensional histogram is built.
Afterwards, this histogram can be used for estimating
the cost of the target method whenever this method is
referenced in a query. This cost estimation is needed
by the optimizer of the database system since this
cost estimation needs to know the cost of amethod in
order to place it at its optimal position in the Query
Execution Plan (QEP). We explain here how our
technique works and we provide an example to better
verify itsfunctionality.

Keywords. Advanced Database Systems, User-
defined Methods, Cost Estimation, Optimization.

1. Introduction

The extensions introduced in advanced Database
Management Systems (DBMSs) in the last few years
has made it possible for a user to add new types and
predicates —that may also be called user-defined
methods or functions— to the system and to reference
one or more of these predicatesin aquery. Thisisthe
case for both Object-Relational (OR) and Object-
Oriented (OO) database systems. The dynamic
process of System R in optimizing relational queriesis
being increasingly adopted in optimizing new types of
gueries in OR and OO systems. This optimization

process is mainly concerned with ordering joinsin a
query while using the heuristic of pushing selections
down in the query tree, i.e., applying selections as
soon as possible. As pointed out earlier in Hellerstein
and Stonebraker (1993) this heuristic is not valid any
more when referencing user-defined methods as
predicates. In addition, ordering expensive predicates
on arelation or collection becomes non-trivial.

Both Hellerstein and Stonebraker (1993) and
Hellerstein (1994) on one hand and Chaudhuri and
Shim (1997) on the other hand address the problem of
optimizing queries with expensive predicates.
However, both studies assume the cost of any user-
defined method is known a-priori; they assume that
the user who adds a method provides also its cost
according to its input data. This assumption is a
limiting factor for the applicability of the proposed
optimization schemes since estimating the cost of a
user-defined method requires a highly skilled user
that can analyze his method and estimate its cost
according to the metrics used by the database
system. Such expertise is not always available to
normal users. Moreover, the method that a user wants
to add may be a third party executable (.e., a black
box) that the user does not have access to its internal
mechanisms and cannot easily analyze and estimate
its execution cost. An automatic process for user-
defined method cost estimation is hence crucialy
needed in order to alleviate this limitation of the
applicability of optimization processes for queries
with user-defined methods. This paper is a first step
to address thisissue.

" Currently with The Boeing Company, M& CT - Phantom Works. Jihad.F.Boul os@boeing.com

We had already studied an approach for automatic
cost estimation of user-defined methods in Boulos,
Viémont, and Ono (1997). This approach is based on a
curve-fitting like mechanism and wuses neura
networks. Under that approach a neural network is
trained according to some measurements made on the
target user-defined method. The neural network is
feed with different values/sizes of the data entries of
the method and the execution time for each measured
value and size. In alater phase the network is used to
estimate the execution cost of the method with other
entries (i.e., other values/sizes). The main limitation of
this approach is its applicability: it is not trivia to
integrate neural networks in an already very complex
system like a DBMS. Since histograms have proven
their effectiveness in selectivity estimation (Poosala
et. a. (1996)) and are widely used in commercial
systems, we study here their effectiveness in
capturing the execution costs of user-defined
methods and estimating in a second phase these
costs.

The paper is organized as follows. Section 2
presents the motivation for our work. In Section 3 we
give a forma definition to the problem we are
addressing with some approaches we think may be
applicable to resolve it. In Section 4 we present our
solution that is based on multi-dimensional
histograms with an algorithm to build them. Section 5
presents an example where we applied our proposed
technique. In Section 6 we discuss some related
works and in Section 7 we present a conclusion and
some directions for future works.

2. Motivation

Our work is motivated by a new generation of
applications that we think are going to extensively
use the new functionality in ORDBMSs. Multimedia
and web-based applications may be the most direct
targets that needs to use the capability in OR systems
of user-defined and expensive predicates. Algorithms
such as compression, text search, time-series
manipulation and analysis, similarity search (DNA
sequences, fingerprints, images, etc.), audio and
video manipulations are being aggressively
investigated and added as new functionality in
database systems. These algorithms {.e., methods)
are sometimes added by the commercial database
vendors (.g., DataBlades modules in Informix and

Cartridges in Oracle) but they can also be added by
application developers. An intelligent database
system must be able to automatically collect statistics
on these algorithms, estimate their costs and
selectivity, and place them at their optimal positions
in QEPs whenever they are referenced by SQL
queries. We are addressing here cost estimation only
and not selectivity estimation. Future complex queries
may contain several of these expensive methods,
interleaved with joins and simple predicates.

Examples of simple queries that contain expensive
and user-defined methods are given here. Such type
of queries may benefit from our proposed technique.

select * from Map
wher e Cont ai ned(shape,
Circl e(PO NT, RADIUS))
and shape. Area() > AREA;
/1 can al so be expressed as
/1 Greater(Area(shape), AREA);

sel ect Extract (Roads,
Satel litel mage)
from Map
where contained(Satellitel mage,
Circl e(PO NT, RADIUS))
and SnowCoverage(Satellitel mage)
< PERCENTAGE;

sel ect nane, |ocation
from document
where contains(text, STRI NG
and SimlarityDi stance(i nage,
SHAPE) < DI STANCE;

sel ect distinct point.nane,
poi nt. |l ocation
from point, polygon
wher e pol ygon. | anduse = LANDUSE
and overl aps(pol ygon. shape,
poi nt. | ocation);

sel ect *
from suspects
wher e addeddate > DATE
and zip like "75%
and (hasbarbe(face)
or simlar(face, | MAGE));

sel ect Conpany. Nane
from Conpany
wher e addeddate > DATE
and zip like "98%
and Simlarity(MvingAvg(Period,
St ockPrice), SHAPE)
< THREESHOLD;

3. Problem Formulation

We give here a better definition for the problem
we are addressing, so it would be easier for the reader
to understand our goals. An n-ary method is of the
form MethName(Argy, ..., Arg,). The execution cost of
this method depends upon its internal processing
complexity and the type and size of each of its
arguments Argy, ..., Arg,. Formdly

e o n

COStMe’(hName - InItCOStMethName +a i=1 COS[Argi
O n . - -

ta ! nfluencingSize Arg PEr bytecpu

+a i”:l(l nfluencirgVal 5.4~ perincval qou)

InitCosty,name 1S the cost to initiate the
execution of the method independent of any
argument. éin:1COStNgi is necessary because Arg;

may be by itself another user-defined method. An
example of this situation is when a query references
something like Similarity(MovingAvg(Period,
StockPrice), SHAPE). The third factor in the equation
is meant to compute the differential cost whenever the
size of an argument influences the cost of the method.
Similarly, the fourth factor is meant to compute the
differential cost whenever the value of an argument
influences the cost of the method. Other factors may
also play aroleinincreasing or decreasing the cost of
some methods; such factors may be the access cost
to some stored data in order for the method to
proceed. We do not discuss these factors here.

A user-defined method may be a stored procedure
within the DBMS written in a general-purpose
language (such as C) or in a fourth generation
language such as SQL or OQL; it may be also an
external executable called dynamically from the DBMS
whenever it is being referenced in aquery. We explain
in the next subsection different types of methods that

have different behavior in their costs in relevance to
their input arguments.

3.1 Method Costs Classification

It should be noted that several types of variability
in cost exist depending upon the values and sizes of
the input arguments to a method. This is mainly
related to the sensitivity of the method’s cost to its
input arguments. Some arguments may have a great
influence on the method’ s cost while others may not
have any effect. The variability in method’s cost is
also related to the complexity of the method’ s internal
processing. We divided the types of methods
depending upon their cost variability in relevance to
their input argumentsinto three classes.

Constant Costs: each method falling into this class
has a constant execution cost that is independent of
the values and sizes of its input arguments. The
costs of such methods are hence dependent only
upon their internal processing complexity. Some
simple examples of such methods are Add(Arg,, Argy),
ComputeAge(DateOfBirth), MultipleMatrix(10x10,
10x10).

Monotone Variable Costs: methods falling into this
class have variable costs dependent upon the values
and sizes of at least one of their input arguments.
Typically, the cost of a method here goes up with the
values and sizes of its input —but this is not
necessarily the case always. Examples from this class
are. Search(Text, STRING), MovingAvg(Period,
StockPrice).

Non-monotone Variable Costs: methods from this
class have a higher level of complexity in their internal
processing in relevance to their input arguments and
hence have ups and downs in their costs depending
upon complex relations between their input
arguments. Examples of this class are: Overlaps(Land,
Road) (for this method, an execution may immediately
reveal that an input land and an input road do not
overlap when comparing their bounding rectangles
from an R-tree index. However, if the bounding
rectangles overlap, the execution must proceed to
compare pixels of the two spatial objects, which is a
much expensive operation. In addition, the cost of
this method is highly sensitive to the size of the input
arguments). Another example from this class would be
Greater SnowCoverage(Satlmage, PERCENTAGE).

Estimating the costs of methods from the first
class is a simple task. It is sufficient to execute a
method from this class once, record its execution cost,
and use this execution cost whenever needed. The
second class of methods has a higher complexity to
estimate its cost. However, we think the estimation
approach we are proposing in the next section is quite
suitable for this class and will have an acceptable
estimation error rate most of the time. The third class
is even harder to estimate the costs of its methods;
our proposed technique may apply to this class but
for some methods, it may have a high estimation error
rate. Further investigations must be carried on this
class.

3.2 Possible Cost Estimation Appr oaches

We believe that there is a high similarity in
estimating the costs of user-defined methods and the
(eternal) selectivity estimation problem in database
systems. Therefore we think that the same
approaches that have been investigated and applied
to selectivity estimation may apply to method cost
estimation. These different approaches may be
divided into four categories. 1) parametric functions,
2) histograms, 3) sampling and 4) curve fitting. As we
mentioned earlier in this paper, we have aready
investigated the appropriateness of neural networks
for method cost estimation. This was a curve fitting
approach. A histogram approach for method cost
estimation may be easier to be integrated in database
systems, since histograms are the only approach that
is effectively used in commercial systems.

There is however a major difference between
selectivity estimation and method cost estimation.
The former has only one argument for its input and
hence is only two-dimensional (one dimension for the
values of the target attribute —i.e., the argument— and
the second dimension for the selectivity). The later
has multiple dimensions, these are the input
arguments to the method in addition to the cost
dimension. Hence, each n-ary method must have n+1
dimensions in its histogram to capture its input
arguments and provide a cost estimation. We explain
in the next section how to build a multi-dimensional
histogram from statistics collected while executing a
user-defined method.

4. Histogram Approach

To build a multi-dimensional histogram for
estimating the cost of a user-defined method, the
system must first execute the method several times
with different values of its input arguments, collect
these values and the different costs, and then build
the histogram. To do so, a measurement campaign
must be carried. The user in this regard may help the
system in providing what he thinks might be the
upper and lower values for each of the input
arguments. The system then carries the measurement
campaign, varying the values of each argument
between its upper and lower values. A pseudo-
algorithm to carry the measurement phase is given in
Figure 1.

Procedur e CollectStats(MethName,

n,
Pointer to Argy,..., Arg,) {
If (n==1)do{
Perform a measurement campaign varying the value
of Arg,
return;
}

for Arg;in Args,..., Arg,do{
Select different values for Arg, to be measured
Foreach value of Arg, do
CollectStats(MethName,
n-1,
Pointer to Argy,..., Arg,);

Figure 1: Algorithm for the measurement phase and
statistics collection.

When the first phase of statistics collection is
finished, the system will have a multi-dimensional
array of all the collected measurements. This array
may be very large if the target method has several
arguments in its input and for each argument the
measurement campaign tested several values. The
number of cells in this array is
NbTestedVal UeSarg, " NbTestedVal UESprg, ETTN

NbTestedValuesy,g.

Hence, it becomes non-practical to store this large
array in the database system. Two size reduction
techniques may be applied to alleviate this burden.

The first technique to reduce the size of the large
array isto replace it by a multi-dimensional histogram
where several measured values for an argument are
replaced by only one value. This value is equivalent
to one bucket in histograms for selectivity estimation.
Hence, a multi-dimensional histogram is built to
reduce the size of the array to amuch smaller size.

The second technique is meant to further reduce
the number of buckets on some dimensions. This is
because the number of buckets grows exponentially
with the number of argumentsin a defined method.

min, £Arg; <maxg

min, £ Arg; <max,

min, £Arg; <max,

M AN A

min, £Arg, <max;

maxs £Arg, <max,

min, £Arg, <max; max, £Arg, <max,

l

AvgCost

l

AvgCost

Figure 3: The multi-dimensional histogram is stored like atree and is traversed top-down to get the estimated cost for
the target method for a specific set of values of the method arguments.

That is, the number of buckets is B". In order to
alleviate this burden the number of buckets for each
argument may be adapted to the influence this
argument has on the cost of the method. In this way,
ahigh influencing argument will have a higher number
of buckets than alow influencing argument. We only
give in Figure 2 a pseudo-algorithm to construct the
multi-dimensional histogram. Reduction in the number
of buckets for some dimensions is left for further
discussionsin future works.

Procedure ConstHisto(n,
Pointer to ArrayOfMeasurement) {
Sum = Sum of all valuesin ArrayOfMeasurement;
ForFirst dimension in ArrayOfMeasurement do {
Divide the dimension into B buckets such that each
bucket has approximately Sum/B summing value;
If (n==1) return;
Foreach bucket from the previous division do
ConstHisto(n — 1, bucket);
}
}

Figure 2: Algorithm for constructing the multi-
dimensional histogram.

The constructed multi-dimensional histogram for a
method will practically be stored as a tree in a
database system. This tree is traversed like an index
whenever needed to get the estimated cost for a
method with a specific set of values for the method’s

input arguments. Figure 3 gives a better visualization
for this concept.

5. Experimental Results

In order to experimentally validate our proposed
technique we built a program in C to construct both
equi-width and equi-height multi-dimensional
histograms. We run a manual measurement campaign
on atext search engine in which we varied the sizes of
both the text in which the search is performed and the
pattern we are searching for. The search had the form
Search(Text, String) where Text pointed to a file and
String pointed to a string in memory. We varied the
size of the Text file from 5 to 50 MB by astep of 5 MB
and the size of the string from 4 words to 28 words by
astep of 4 words.

The measurement campaign generated a two-
dimensional array with 70 cells that contained each
the measured execution cost for two specific values of
Text and String. To store this array, the system needs
to store 140 numbers (the different values need 70
numbers to be stored and there are 70 other numbers
for the cost).

We applied the program we coded to construct
the multi-dimensional histograms on the measured
data. The program generated an equi-height and
another equi-width histograms. The reduction in
needed number of points from the measurement array

to the histogram went from 140 numbers needed to be
stored to 34 numbers -.e., a reduction of factor 4.
Figure 4 visualizes the three graphs that were
constructed from all the measurement numbers and

Real Execution Time

/

160—

140

120

100

80~

Real Processing Time (sec.]

Sear ched
Pattern (Words)

Text Size (MB)

/ Equi-Width Histogram
160—

1404

120

Estimated Execution Time (sec.)

- 28

12 Searched Pattern
(Words)

Text Size (MB)

/ W
160—

1404

120

60—

40

Estimated Execution Time (sec.)

20+
- 28

20

Sear ched
Pattern (Words)

Text Size (MB)

Figure 4: A comparison between graphs for the real, equi-width, and equi-height histograms for the text search
method that has been experimented.

the two generated histograms. The graphs give a
much better idea of the purpose of our approach. Any
method with a higher number of arguments cannot be
visualized because it would need more than 3
dimensions.

The error rates for both the equi-height and the
equi-width are reported in Table 1. These error rates
may seem high but the reader can see from Figure 4
that these error rates are still acceptable for the
benefit they yield in reducing the number of points
that must be stored. In this text search example the
equi-width histogram seems to have a dlight
advantage over the equi-height histograms; however,
this may be due to the approximately perfect increases
in the method's execution costs in relevance to the
input sizes. These increases have a logarithmic shape
for the Text sizes and an exponential shape with the
String size. Further experiment are necessary to elect
the most suitable multi-dimensional histograms for
most types of methods.

Avg. Absolute | Avg. Relative
Error Error
Equi-Height 14.7 78.4%
Histogram
Equi-Width 139 54.9%
Histogram

Table 1: Comparison of average error rates for both
multi-dimensional histograms.

6. Related Work

To the best of our knowledge, there has been little
work on estimating the cost of expensive predicates.
Most research works in this area concentrated on
sequencing several expensive predicates and/or
interleaving them with joins. As we have said,
Hellerstein and Stonebraker (1993) and Hellerstein
(1994) address these two issues and provide some
heuristics to sequencing and interleaving expensive
predicates in QEPs. Chaudhuri and Shim (1997) aso
address the problem of ordering and interleaving
expensive methods with joins. Both studies assume
the cost of any expensive predicate knowna-priori.

Recently, Shivakumar, Chekuri, and GarciaMoalina
(1998) considered selecting and applying approximate
predicates to be applied on data before the real
expensive predicates. In this manner less expensive

approximate predicates filter out non-qualified input
before applying the expensive predicates. Here also,
the cost of any approximate or full expensive
predicate is assumed to be known in advance.

7. Conclusion

We presented in this paper a novel technique for
estimating the costs of user-defined methods. This
technique is based on multi-dimensional histograms.
The cost estimation of user-defined methods is
needed by the optimizer of an OR or OO database
system in order to correctly place the methods at their
optimal positionsin a QEPs. Several issues remain to
be resolved before a beneficial integration of this
technique into a DBMS. These are mainly the
selectivity estimation of expensive predicates and the
cost of methods with values of arguments given
outside the measurements and histogram boundaries.
This paper presented a step toward a better
understanding and optimization of user-defined
methods in advanced database systems.

References

Boulos, J., Viemont, Y., and Ono, K. 1997. A Neural
Networks Approach for Query Cost
Evaluation. Transaction of Information
Processing Society of Japan. Val. 38, No. 12,
(1997) 2566- 2575.

Chaudhuri, S, and Shim, K. 1997. Optimization of
Queries with User-defined Predicates.
Proceedings of the 22" VLDB Conference,
Mumbai, India.

Hellerstein, J., and Stonebraker, M. 1993. Predicate
Migration: Optimizing Queries with Expensive
Predicates. Proceedings of the 1993 ACM-
SIGMOD Int. Conference on Management of
Data, Washington, DC.

Hellerstein, J. 1994. Practica Predicate Placement.
Proceedings of the 1994 ACM-SIGMOD Int.
Conference on Management of Data,
Minneapolis, Minnesota.

Poosala, V., loannidis, Y., Haas, P., and Shekita, E.
1996. Improved Histograms for Selectivity
Estimation of Range Predicates. Proceedings
of the 1996 ACM-SIGMOD Int. Conference on
Management of Data. Montreal, Canada.

Shivakumar, N., Chekuri, C., and GarciaMolina,
H.1998. Filtering Expensive Predicates.
Stanford Report.

