
Reminiscences on In
uential Papers

Kenneth A. Ross, editor

I'm very happy to be able to present this issue's seven reminiscences. They present compelling

cases to �nd and read the cited papers, as well as being fun to read themselves.

I continue to invite unsolicited contributions to this column. (I haven't received any so far, but the

previous issue has only been out a month or so at the time of writing.)

See http://www.acm.org/sigmod/record/author.html for submission guidelines.

Christos Faloutsos, Carnegie Mellon University, christos@cs.cmu.edu.

[Manfred Schroeder. Fractals, Chaos, Power Laws: Minutes from an In�nite Paradise. W.H.

Freeman and Company, 1991.]

\What was the single most in
uential work for your research?" There is a handful of truly in-


uential papers: the R-tree, RAID, the Association Rules, each started a revolution. However, I

�nd myself citing repeatedly this masterpiece book. Beyond George Kingsley Zipf and his famous

`law', and beyond the milestone book by Mandelbrot on fractals, Schroeder's book explains how

self-similarity and power laws appear in countless phenomena, it shows how to measure the fractal

dimensions, and, it gives a gentle introduction to the necessary mathematical tools for their anal-

ysis. For example, our `80-20 law' (80% of the queries go to 20% of the records) can be treated

mathematically, under the name of `multifractals', with surprising connections to Shanon's entropy

and thermodynamics!

Zipf distributions, self-similarities and related power laws appear in amazingly diverse settings.

They often make headlines, because they contradict head-on the traditional uniformity, inde-

pendence, Poisson, and Gaussian assumptions. For example: (a) LAN traÆc was found to be

fractal/self-similar [Leland et al, SIGCOMM93 - best paper award] | the paper brought a revo-

lution to queueing theory under the name of `heavy tailed distributions'; (b) The internet follows

power-laws [see the work by the CLEVER project, VLDB 99], [Barabasi et al, Nature 1999]; (c)

Hits on web sites also follow a Zipf-like distribution [Bernardo Huberman et al, Science 98].

Power laws and fractals have already had impact in any sub-area of databases that deals with

distributions, such as: (1) Query optimization, where we try to approximate the distribution of

records in address space; ditto for benchmarks [Gray et al, SIGMOD94]; (2) Data mining, where

we try to �nd patterns - sales patterns, customer arrival times etc. follow Zipf or 80-20 laws. (3)

Text databases, where Zipf �rst showed his law; the sizes of postings list in an inverted index

are heavily skewed, leading to clever compression and optimization methods (eg., [Tomasic et

al, SIGMOD94]); (4) Web databases: not only the text parts, but also their links follow power

laws, as mentioned; (5) Geographic databases, with fractal coastlines and border-lines, and skewed

distributions of island sizes; (6) Spatial databases, where fractal dimensions replace the uniformity

and independence assumptions (eg., [Papadopoulos et al, ICDT97]); (7) Performance analysis of

disk/query traÆc, where the traÆc is typically bursty. Schroeder's book provides a fascinating and

accessible introduction to the necessary tools and concepts.



Alon Levy, University of Washington, alon@cs.washington.edu

[Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive Queries in

Relational Databases. Proceedings of STOC, 1977.]

Chandra and Merlin's work greatly in
uenced my thinking and research direction long before I

ever actually read the paper. They were the �rst to consider the problem of query equivalence for

conjunctive queries (i.e., determining whether two queries return the same set of answers for any

state of the database). They aimed to contrast optimizations that considered the global structure

of the query with local optimization such as join ordering and access path selection. Their study

of query containment and equivalence problems for di�erent classes of queries generated a long

and fruitful line of research. Until a few years ago query containment had been mostly a topic

of conversation that enhanced bonding among fellow PODS a�cionados. More recently, insights

and results from query containment have helped solve many practical problems (e.g., semantic data

caching, maintenance of physical data independence, integrity constraint violation, data integration

and answering queries using views). As more and more applications require that we reason about

data and views, query containment and equivalence will play a even more signi�cant role.

Another reason this paper and line of work appealed to me is that they answered questions I felt

should have been available in the Arti�cial Intelligence literature. Query containment algorithms

are essentially inference algorithms over �nite models for speci�c forms of logical sentences. As such,

they are key to the �eld of Knowledge Representation, much of which strives to represent the world

in some form of logic. However, with the exception of work on Description Logics, AI researchers

have overlooked the opportunity to discover these classes of sentences for which sound and complete

reasoning is possible. Hence, I believe that query containment algorithms will also play a greater

role in AI applications, such as knowledge-base inference, planning and knowledge-base veri�cation.

Pat O'Neil, UMass/Boston, poneil@cs.umb.edu

[C. Mohan. Concurrency Control and Recovery Methods for B+-Tree Indexes: ARIES/KVL and

ARIES/IM. Performance of Concurrency Control Mechanisms in Centralized Database Systems,

Prentice-Hall 1996, ISBN 0-13-065442-6]

For a number of years I was uncomfortable about my understanding of how locking is used by

vendors to prevent transactional phantoms, especially since I knew that the \Predicate Locking"

approach mentioned in most texts had been dropped by System R many years ago (see: Astrahan

et al., TODS 1(2), 1976). When the KVL and IM locking approaches used at IBM were �rst

published by Mohan in VLDB-90 and SIGMOD-92, I was anxious to learn them thorougly, but I

found it diÆcult to fully grasp the concepts in a quick reading. It wasn't until a few years ago that I

began covering the combined KVL and IM paper above in detail, and presenting it to my database

internals class. I now believe that the ideas underlying these locking protocols are probably the

most subtle in the database �eld. Since they are not easily grasped, and since all the researchers I

know are extremely busy, I think they have received less attention than they deserve.

I have heard practitioners complain jokingly that Mohan's papers seem designed to provide the

detail necessary for experienced programmers to perform immediate implementation. There is a

certain amount of truth to this, and I for one �nd it a wonderful thing. I think an excellent database

internals text could be written by simply expanding on the ideas in this paper (latches, locking by



hashing, lock durations, logging, B-tree concurrency, etc.). The text would be particularly valuable

in an academic setting because the techniques covered, some of which were a revelation to me, are

ones that are ACTUALLY USED by IBM database programmers. I cannot help but think that

many university researchers (both faculty and students) could overcome perceived isolation from

industrial realities by studying this seminal work. Even practicing database system programmers,

inside and outside IBM, who have not already spent time on this paper, would be well advised to

expand their horizons by reading it carefully!

Eric Simon, INRIA, France, eric.simon@inria.fr.

[Robert Paige and Shaye Koenig. Finite di�erencing of computable expressions. ACM Transactions

on Programming Languages and Systems, Vol. 4, No. 3, July 1982, pages 402-454.]

This paper introduces a general method to optimize repetitive calculations of an expression of the

form E = f(x1; :::; xn) within a program. The method �rst analyzes the structure of the program

and isolates program regions in which expression E can be transformed without a�ecting the

semantics of the program. The transformation of E consists of: initializing a variable, say curr E,

that contains the �rst computed value ofE, adding instructions to maintain the value of curr E each

time a parameter xi is assigned a change dxi, and replacing all further occurences of E by curr E.

The method uses a library of di�erentiation rules that describe how to incrementally maintain

a primitive function f when one of its operand changes. Primitive functions include arithmetic

operations and operations on sets. Addititional composition rules enable to combine the use of

di�erentiation rules to di�erentiate a compound expression f . However, the most salient feature of

the method is to formalize heuristic rules to decide whether the transformation of an expression E

in a program region is pro�table or not. For instance, one of these rules called continuity stipulates

that a function f should be \easily" computable from its previous value and a \small" change

in one of its operand. Then, the authors provide many syntactic rules to characterize continuous

functions.

It took me some time to read and understand this article many years ago because the context

in which the problem was set and the language used to describe the solution were quite unusual

for a person with a database background. I suspect this is why this article is still unknown to

many database researchers. However, this article had a strong impact on my research. With Fran-

coise Fabret, we applied the �nite di�erencing method to the optimization of production rules in

databases. At that time, most e�orts focused on database implementations of RETE and TREAT

networks, and criteria to decide which of the two should be used to process a given set of production

rules. However, it was not recognized that a central issue was to decide which intermediate calcula-

tions were worth to cache and incrementally maintain. The �nite di�erencing method provided the

appropriate framework to study this issue. Later on, with Francois Llirbat, we re�ned the method

and applied it to the optimization of database triggers. Bob Paige and his colleagues continued to

improve their method over the years and applied it to a variety of problems (including database

integrity control). Even if the principles of �nite di�erencing seem now natural to us in light of the

many recent works on the choice of views that are worth materializing to optimize the repetitive

execution of a query, I think that the pioneering e�ort of Bob Paige deserves special recognition.



Divesh Srivastava, AT&T Labs-Research, divesh@research.att.com

[Catriel Beeri, Raghu Ramakrishnan. On the Power of Magic. Journal of Logic Programming 10:

255-299 (1991). PODS 1987: 269-283.]

This is the paper that made me appreciate the beauty and the versatility of the Magic Sets approach

to query optimization. It is a paper that I have read many times{the �rst time for a graduate course

in databases, the second time because I was Raghu's student, but subsequently of my own free will{

and I have learned something new each time. The paper formally studied sideways information

passing strategies (SIPS), and established the fundamental nature of SIPS to a variety of query

evaluation methods in the literature. I have used the key ideas of Magic Sets many times over the

years, as have many other researchers, and I will always remember this paper as one that has had

a signi�cant impact on my own research.

Victor Vianu, University of California, San Diego, vianu@cs.ucsd.edu

[Ashok K. Chandra, David Harel. Computable Queries for Relational Data Bases. JCSS 21(2):

156-178 (1980).]

I have a vivid memory of meeting Ashok Chandra about �fteen years ago, while we were both

visiting Serge Abiteboul at INRIA. After the ritual co�ee, Serge, Ashok and I took a walk amid

the barracks that had once served as NATO headquarters. Ashok, who was a kind of guru to

us young ones, challenged us with a question that goes to the existential core of our �eld: what

makes databases di�erent? Does our area have a legitimate, well-motivated raison d'être, or does

it amount to no more than an ad-hoc collection of recipes from programming languages, data

structures, and algorithms? It is a question that he had tackled together with David Harel in this

elegant paper, which in some sense established the theory of query languages as a �eld of research.

Its de�nition of database query, using the notion of genericity, provided the foundation for much

of the work that followed. Personally, I was profoundly in
uenced by this paper and much of my

subsequent research with Serge on query languages was, at the bottom of it, an attempt to answer

Ashok's question.

Gerhard Weikum, University of the Saarland, Germany, weikum@cs.uni-sb.de

[George Copeland, William Alexander, Ellen Boughter, and Tom Keller. Data Placement in Bubba.

SIGMOD 1988, Chicago, Illinois, ACM, pp. 99-108, June, 1988]

This paper, which came out of the Bubba project at MCC, was the �rst to address the physical

database design problem for parallel database servers, with particular focus on the partitioning

and allocation of (relational) data across multiple disks or processing nodes. These issues are key

to good performance tuning. To this end, the paper introduced the fundamental notion of data

heat as a measure for the disk access load attributed to a data unit or collection of units, and the

notion of temperature to normalize heat by the consumed space. Based on these metrics, the paper

developed an elegant framework and heuristic algorithms for choosing which data should be placed

on which disk so as to balance the disk load, and which data should be cached in memory so as to

minimize the overall disk load.



I had the great opportunity of spending a postdoc year in the Bubba group at MCC where I could

learn about this subject directly from the paper's authors. Later, their work was my main inspira-

tion when I started working on dynamic data placement and migration in the early nineties. In this

research of mine the notions of heat and temperature proved to be extremely useful for reasoning

about load distribution and for developing algorithms that continuously adjust the allocation of

data based on online statistics about access patterns, for example, to \cool down" hot disks. I

have also seen fairly recent papers on the caching of query results in data warehouses to bene�t

greatly from the Bubba tuning framework. The paper by Copeland et al. is a true landmark

paper, especially when you consider that this work was done before the industrial advent of parallel

database systems. The problem of automating the physical database design for a cluster-based

parallel data server, in the spirit of a zero-admin, self-tuning solution, has still not been solved in

a truly comprehensive, industrial-strength manner, but this seminal paper is an excellent starting

point and absolutely mandatory reading for everybody working on this highly relevant problem.


