Reminiscences on Influential Papers

Kenneth A. Ross, editor

I'm very happy to be able to present this issue’s seven reminiscences. They present compelling
cases to find and read the cited papers, as well as being fun to read themselves.

I continue to invite unsolicited contributions to this column. (I haven’t received any so far, but the
previous issue has only been out a month or so at the time of writing.)
See http://www.acm.org/sigmod/record/author.html for submission guidelines.

Christos Faloutsos, Carnegie Mellon University, christos@cs.cmu.edu.

[Manfred Schroeder. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W.H.
Freeman and Company, 1991.]

“What was the single most influential work for your research?” There is a handful of truly in-
fluential papers: the R-tree, RAID, the Association Rules, each started a revolution. However, I
find myself citing repeatedly this masterpiece book. Beyond George Kingsley Zipf and his famous
‘law’, and beyond the milestone book by Mandelbrot on fractals, Schroeder’s book explains how
self-similarity and power laws appear in countless phenomena, it shows how to measure the fractal
dimensions, and, it gives a gentle introduction to the necessary mathematical tools for their anal-
ysis. For example, our ‘80-20 law’ (80% of the queries go to 20% of the records) can be treated
mathematically, under the name of ‘multifractals’, with surprising connections to Shanon’s entropy
and thermodynamics!

Zipf distributions, self-similarities and related power laws appear in amazingly diverse settings.
They often make headlines, because they contradict head-on the traditional uniformity, inde-
pendence, Poisson, and Gaussian assumptions. For example: (a) LAN traffic was found to be
fractal/self-similar [Leland et al, SIGCOMMO3 - best paper award] — the paper brought a revo-
lution to queueing theory under the name of ‘heavy tailed distributions’; (b) The internet follows
power-laws [see the work by the CLEVER project, VLDB 99], [Barabasi et al, Nature 1999]; (c)
Hits on web sites also follow a Zipf-like distribution [Bernardo Huberman et al, Science 98].

Power laws and fractals have already had impact in any sub-area of databases that deals with
distributions, such as: (1) Query optimization, where we try to approximate the distribution of
records in address space; ditto for benchmarks [Gray et al, SIGMODY4]; (2) Data mining, where
we try to find patterns - sales patterns, customer arrival times etc. follow Zipf or 80-20 laws. (3)
Text databases, where Zipf first showed his law; the sizes of postings list in an inverted index
are heavily skewed, leading to clever compression and optimization methods (eg., [Tomasic et
al, SIGMOD94]); (4) Web databases: not only the text parts, but also their links follow power
laws, as mentioned; (5) Geographic databases, with fractal coastlines and border-lines, and skewed
distributions of island sizes; (6) Spatial databases, where fractal dimensions replace the uniformity
and independence assumptions (eg., [Papadopoulos et al, ICDT97]); (7) Performance analysis of
disk/query traffic, where the traffic is typically bursty. Schroeder’s book provides a fascinating and
accessible introduction to the necessary tools and concepts.




Alon Levy, University of Washington, alon@cs.washington.edu

[Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive Queries in
Relational Databases. Proceedings of STOC, 1977.]

Chandra and Merlin’s work greatly influenced my thinking and research direction long before I
ever actually read the paper. They were the first to consider the problem of query equivalence for
conjunctive queries (i.e., determining whether two queries return the same set of answers for any
state of the database). They aimed to contrast optimizations that considered the global structure
of the query with local optimization such as join ordering and access path selection. Their study
of query containment and equivalence problems for different classes of queries generated a long
and fruitful line of research. Until a few years ago query containment had been mostly a topic
of conversation that enhanced bonding among fellow PODS aficionados. More recently, insights
and results from query containment have helped solve many practical problems (e.g., semantic data
caching, maintenance of physical data independence, integrity constraint violation, data integration
and answering queries using views). As more and more applications require that we reason about
data and views, query containment and equivalence will play a even more significant role.

Another reason this paper and line of work appealed to me is that they answered questions I felt
should have been available in the Artificial Intelligence literature. Query containment algorithms
are essentially inference algorithms over finite models for specific forms of logical sentences. As such,
they are key to the field of Knowledge Representation, much of which strives to represent the world
in some form of logic. However, with the exception of work on Description Logics, Al researchers
have overlooked the opportunity to discover these classes of sentences for which sound and complete
reasoning is possible. Hence, I believe that query containment algorithms will also play a greater
role in Al applications, such as knowledge-base inference, planning and knowledge-base verification.

Pat O’Neil, UMass/Boston, poneil@cs.umb.edu

[C. Mohan. Concurrency Control and Recovery Methods for B4+-Tree Indexes: ARIES/KVL and
ARIES/IM. Performance of Concurrency Control Mechanisms in Centralized Database Systems,
Prentice-Hall 1996, ISBN 0-13-065442-6]

For a number of years I was uncomfortable about my understanding of how locking is used by
vendors to prevent transactional phantoms, especially since I knew that the “Predicate Locking”
approach mentioned in most texts had been dropped by System R many years ago (see: Astrahan
et al., TODS 1(2), 1976). When the KVL and IM locking approaches used at IBM were first
published by Mohan in VLDB-90 and SIGMOD-92, I was anxious to learn them thorougly, but I
found it difficult to fully grasp the concepts in a quick reading. It wasn’t until a few years ago that I
began covering the combined KVL and IM paper above in detail, and presenting it to my database
internals class. I now believe that the ideas underlying these locking protocols are probably the
most subtle in the database field. Since they are not easily grasped, and since all the researchers [
know are extremely busy, I think they have received less attention than they deserve.

I have heard practitioners complain jokingly that Mohan’s papers seem designed to provide the
detail necessary for experienced programmers to perform immediate implementation. There is a
certain amount of truth to this, and I for one find it a wonderful thing. I think an excellent database
internals text could be written by simply expanding on the ideas in this paper (latches, locking by



hashing, lock durations, logging, B-tree concurrency, etc.). The text would be particularly valuable
in an academic setting because the techniques covered, some of which were a revelation to me, are
ones that are ACTUALLY USED by IBM database programmers. I cannot help but think that
many university researchers (both faculty and students) could overcome perceived isolation from
industrial realities by studying this seminal work. Even practicing database system programmers,
inside and outside IBM, who have not already spent time on this paper, would be well advised to
expand their horizons by reading it carefully!

Eric Simon, INRIA, France, eric.simon@inria.fr.

[Robert Paige and Shaye Koenig. Finite differencing of computable expressions. ACM Transactions
on Programming Languages and Systems, Vol. 4, No. 3, July 1982, pages 402-454.]

This paper introduces a general method to optimize repetitive calculations of an expression of the
form E = f(x1,...,2,) within a program. The method first analyzes the structure of the program
and isolates program regions in which expression E can be transformed without affecting the
semantics of the program. The transformation of F consists of: initializing a variable, say curr_E,
that contains the first computed value of F, adding instructions to maintain the value of curr_FE each
time a parameter z; is assigned a change dx;, and replacing all further occurences of E by curr_E.
The method uses a library of differentiation rules that describe how to incrementally maintain
a primitive function f when one of its operand changes. Primitive functions include arithmetic
operations and operations on sets. Addititional composition rules enable to combine the use of
differentiation rules to differentiate a compound expression f. However, the most salient feature of
the method is to formalize heuristic rules to decide whether the transformation of an expression E
in a program region is profitable or not. For instance, one of these rules called continuity stipulates
that a function f should be “easily” computable from its previous value and a “small” change
in one of its operand. Then, the authors provide many syntactic rules to characterize continuous
functions.

It took me some time to read and understand this article many years ago because the context
in which the problem was set and the language used to describe the solution were quite unusual
for a person with a database background. I suspect this is why this article is still unknown to
many database researchers. However, this article had a strong impact on my research. With Fran-
coise Fabret, we applied the finite differencing method to the optimization of production rules in
databases. At that time, most efforts focused on database implementations of RETE and TREAT
networks, and criteria to decide which of the two should be used to process a given set of production
rules. However, it was not recognized that a central issue was to decide which intermediate calcula-
tions were worth to cache and incrementally maintain. The finite differencing method provided the
appropriate framework to study this issue. Later on, with Francois Llirbat, we refined the method
and applied it to the optimization of database triggers. Bob Paige and his colleagues continued to
improve their method over the years and applied it to a variety of problems (including database
integrity control). Even if the principles of finite differencing seem now natural to us in light of the
many recent works on the choice of views that are worth materializing to optimize the repetitive
execution of a query, I think that the pioneering effort of Bob Paige deserves special recognition.




Divesh Srivastava, AT&T Labs-Research, divesh@research.att.com

[Catriel Beeri, Raghu Ramakrishnan. On the Power of Magic. Journal of Logic Programming 10:
255-299 (1991). PODS 1987: 269-283.]

This is the paper that made me appreciate the beauty and the versatility of the Magic Sets approach
to query optimization. It is a paper that I have read many times—the first time for a graduate course
in databases, the second time because I was Raghu’s student, but subsequently of my own free will-
and I have learned something new each time. The paper formally studied sideways information
passing strategies (SIPS), and established the fundamental nature of SIPS to a variety of query
evaluation methods in the literature. I have used the key ideas of Magic Sets many times over the
years, as have many other researchers, and I will always remember this paper as one that has had
a significant impact on my own research.

Victor Vianu, University of California, San Diego, vianu@cs.ucsd.edu

[Ashok K. Chandra, David Harel. Computable Queries for Relational Data Bases. JCSS 21(2):
156-178 (1980).]

I have a vivid memory of meeting Ashok Chandra about fifteen years ago, while we were both
visiting Serge Abiteboul at INRIA. After the ritual coffee, Serge, Ashok and I took a walk amid
the barracks that had once served as NATO headquarters. Ashok, who was a kind of guru to
us young ones, challenged us with a question that goes to the existential core of our field: what
makes databases different? Does our area have a legitimate, well-motivated raison d’étre, or does
it amount to no more than an ad-hoc collection of recipes from programming languages, data
structures, and algorithms? It is a question that he had tackled together with David Harel in this
elegant paper, which in some sense established the theory of query languages as a field of research.
Its definition of database query, using the notion of genericity, provided the foundation for much
of the work that followed. Personally, I was profoundly influenced by this paper and much of my
subsequent research with Serge on query languages was, at the bottom of it, an attempt to answer
Ashok’s question.

Gerhard Weikum, University of the Saarland, Germany, weikum@cs.uni-sb.de

[George Copeland, William Alexander, Ellen Boughter, and Tom Keller. Data Placement in Bubba.
SIGMOD 1988, Chicago, Illinois, ACM, pp. 99-108, June, 1988]

This paper, which came out of the Bubba project at MCC, was the first to address the physical
database design problem for parallel database servers, with particular focus on the partitioning
and allocation of (relational) data across multiple disks or processing nodes. These issues are key
to good performance tuning. To this end, the paper introduced the fundamental notion of data
heat as a measure for the disk access load attributed to a data unit or collection of units, and the
notion of temperature to normalize heat by the consumed space. Based on these metrics, the paper
developed an elegant framework and heuristic algorithms for choosing which data should be placed
on which disk so as to balance the disk load, and which data should be cached in memory so as to
minimize the overall disk load.



I had the great opportunity of spending a postdoc year in the Bubba group at MCC where I could
learn about this subject directly from the paper’s authors. Later, their work was my main inspira-
tion when I started working on dynamic data placement and migration in the early nineties. In this
research of mine the notions of heat and temperature proved to be extremely useful for reasoning
about load distribution and for developing algorithms that continuously adjust the allocation of
data based on online statistics about access patterns, for example, to “cool down” hot disks. I
have also seen fairly recent papers on the caching of query results in data warehouses to benefit
greatly from the Bubba tuning framework. The paper by Copeland et al. is a true landmark
paper, especially when you consider that this work was done before the industrial advent of parallel
database systems. The problem of automating the physical database design for a cluster-based
parallel data server, in the spirit of a zero-admin, self-tuning solution, has still not been solved in
a truly comprehensive, industrial-strength manner, but this seminal paper is an excellent starting
point and absolutely mandatory reading for everybody working on this highly relevant problem.




