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Abstract

Digital archives are dedicated to the long-term
preservation of electronic information and have
the mandate to enable sustained access despite
rapid technology changes. Persistent archives
are confronted with heterogeneous data formats,
helper applications, and platforms being used over
the lifetime of the archive. This is not unlike the in-
teroperability challenges, for which mediators are
devised. To prevent technological obsolescence
over time and across platforms, a migration ap-
proach for persistent archives is proposed based
on an XML infrastructure.

We extend current archival approaches that
build upon standardized data formats and sim-
ple metadata mechanisms for collection manage-
ment, by involving high-level conceptual models
and knowledge representations as an integral part
of the archive and the ingestion/migration pro-
cesses. Infrastructure independence is maximized
by archiving generic, executable specifications of
(i) archival constraints (i.e., “model validators”),
and (ii) archival transformations that are part of
the ingestion process. The proposed architecture
facilitates construction of self-validating and self-
instantiating knowledge-based archives. We illus-
trate our overall approach and report on first expe-
riences using a sample collection from a collabo-
ration with the National Archives and Records Ad-
ministration (NARA).

1 Background and Overview

Digital archives have the mandate to capture and
preserve information in such a way that the infor-
mation can be (re-)discovered, accessed, and pre-
sented at any time in the future. An obvious chal-
lenge for archives of digital information is the lim-
ited storage lifetimes due to physical media decay.

�This research has been sponsored by a NARA supplement
to the National Science Foundation project ASC 96-19020.

However, since hardware and software technolo-
gies evolve rapidly and much faster than the me-
dia decay, the real challenge lies in the techno-
logical obsolescence of the infrastructure that is
used to access and present the archived informa-
tion. Among other findings, the Task Force on
Archiving Digital Information concluded that an
infrastructure is needed that supports distributed
systems of digital archives, and identified data mi-
gration as a crucial means for the sustained access
to digital information [5].

In a collaboration with the National Archives
and Records Administration (NARA), the San
Diego Supercomputer Center (SDSC) developed
an information management architecture and pro-
totype for digital archives, based on scalable
archival storage systems (HPSS), data handling
middleware (SRB/MCAT), and XML-based medi-
ation techniques (MIX) [9, 12, 1].1

To achieve the goal of reinstantiating archived
information on a future platform, it is not suffi-
cient to merely copy data at the bit level from ob-
solete to current media but to create “recoverable”
archival representations that are infrastructure in-
dependent (or generic) to the largest extent possi-
ble. Indeed the challenge is the forward-migration
in time of information and knowledge about the
archived data, i.e., of the various kinds of meta-
information that will allow recreation and interpre-
tation of structure and content of archived data.

In this paper, we describe an architecture
for infrastructure independent, knowledge-based
archival and collection management. Our ap-
proach is knowledge-based in the sense that the
ingestion process can employ both structural and
semantic models of the collection, including a
“flattened” relational representation, a “reassem-
bled” semistructured representation, and higher-
level “semantic” representation. The architecture
is modular since the ingestion process consists of
transformations that are put together and executed

1www.clearlake.ibm.com/hpss/, www.npaci.
edu/DICE/SRB, and www.npaci.edu/DICE/MIX/



in a pipelined fashion. Another novel feature of
our approach is that we allow archiving of the en-
tire ingestion pipeline, i.e., the different represen-
tations of the collection together with the transfor-
mation rules that were used to create those repre-
sentations.

The organization is as follows: In Section 2 we
introduce the basic approaches for managing tech-
nology evolution, in particular via migratable for-
mats. Section 3 presents the elements of a fully
XML-based archival infrastructure. In Section 4,
we show how this architecture can be extended to
further include conceptual-level information and
knowledge about the archived information. A uni-
fied perspective on XML-based “semantic exten-
sions” is provided by viewing them as constraint
languages. The notions of self-validating and self-
instantiating archives are given precise meanings
based on a formalization of the ingestion process.
We report on first experiences using a real-world
collection in Section 5 and conclude in Section 6.

2 Managing Technology Evolution via
Migratable Formats

As long as digital objects “live” in their origi-
nal (non-archival) runtime environment, they are
permanently threatened by technological obsoles-
cence. Here, by digital object we mean a machine
readable representation of some data, an image of
reality, or otherwise relevant piece of information
in some recognizable data format (e.g., an elec-
tronic record of a Senator’s legislative activities
in the form of an RTF2 text file, a row of data in
a scientific data set3, or a MIME-encoded email
containing text and MPEG-7 encoded multimedia
objects). The data format in which the digital ob-
ject is encoded can contain metadata that either
explicitly or implicitly (e.g., via reference to stan-
dards) describe further information about the data
such as structure, semantics, context, provenance,
and display properties. Metadata can be embed-
ded via inlined markup tags and attributes or may
be packaged separately. Since metadata is also
data, its meaning, context, etc. could be described
via meta-metadata. In practice, however, this loop
is terminated by assuming the use of agreed-upon
metadata standards. In Section 4.2 a more self-
contained approach is presented that includes ex-
ecutable specifications of semantic constraints as
part of archival packages.

2Microsoft’s Rich Text Format
3www.faqs.org/faqs/sci-data-formats/

Digital objects are handled by helper appli-
cations (e.g., word processors, simulation tools,
databases, multimedia players, records manage-
ment software, etc.) that interpret the objects’
metadata to determine the appropriate processing
steps and display actions. Helper applications run
on an underlying operating system (OS) that ul-
timately executes presentation and interaction in-
structions. As time goes by, new versions of data
formats, their associated helper applications, or the
underlying OS increase the risk of technological
obsolescence and can cause the digital information
to perish. There are several approaches to avoid
such loss of accessibility to stored information:

(1) If a new version of the OS is not backward
compatible, patch it in such a way that the old
helper applications still runs. This is impos-
sible for proprietary operating systems, but
(at least in principle) feasible for open, non-
proprietary ones such as Linux.

(2) Put a wrapper around the new OS, effectively
emulating (parts of) the old OS such that the
unchanged helper application can still run.

(3) Migrate the helper application to a new OS;
also ensure backward compatibility of new
versions of the helper application.

(4) Migrate the digital objects to a new format
that is understood by the new versions of
helper applications and OS.

One can refine these basic approaches, e.g., by de-
coupling helper applications from the OS via an
intermediary virtual machine VM. Then helper ap-
plications can run on different platforms simply by
migrating the VM to those platforms. For exam-
ple, the Java VM is available for all major plat-
forms, so helper applications implemented on this
VM can be run anywhere (and anytime) where this
VM is implemented.4

Note that (4) assumes that the target format is
understood by the new helper application. By re-
quiring the migration target in (4) to be a stan-
dard format (such as XML), this will indeed of-
ten be the case. Moreover, standards change at
a lower rate than arbitrary formats, so conversion
frequency and thus migration cost is minimized.

The different ways to manage technology evo-
lution can be evaluated by comparing the tension

4VMs are not new – just check your archives! Examples
include the P-Code machine of UCSD Pascal and the Warren
Abstract Machine (WAM), the target of Prolog compilers.



induced by retaining the original presentation tech-
nology and the cost of performing conversion (Ta-
ble 1): information discovery and presentation ca-
pabilities are much more sophisticated in newer
technologies. When access and presentation of in-
formation is limited to old technologies, the more
efficient manipulation provided by new tools can-
not be used.5

Technology Tension Conversion Frequency

(1) old display format OS update
(2) old display format OS update
(3) old display format helper app. update
(4) new display tools new standard

Table 1. Tracking technology evolution

In the sequel, we focus on (4), a migration through
self-describing standards approach which aims at
minimizing the dependency on specific hardware,
software (OS, helper apps.), data formats, and ref-
erences to external, non-persistently archived re-
sources (relevant contextual or meta-information
that cannot be inlined should be indirectly in-
cluded via references to persistently archived in-
formation). Hence infrastructure independence
is maximized by relying on interoperability tech-
nologies. It is not coincidental that XML not only
provides a “good archival format” (minimizing mi-
gration cost), but also a good data exchange and in-
teroperability framework: a persistent archive has
to support evolving platforms and formats over
time. This is similar to supporting different plat-
forms at one time. In other words, a persistent
archive can be seen as an interoperability system.

3 XML-Based Digital Archives

In this section, we describe the basic processes and
functions of digital archives (using concepts and
terminology from the Open Archival Information
System (OAIS) reference model [11]), and show
how an infrastructure for digital archives can be
built around XML standards and technologies.

Functional Architecture. The primary goal of
digital archives is long-term preservation of infor-
mation in a form that guarantees sustained access
and dissemination in the future (Fig. 1): Initially,
the information producer and the archive need

5Restricting the presentation capabilities to the original
technology is analogous to reading a 16

th century book only
in flickering candlelight.

Figure 1. Digital archive architecture

to agree on the submission or accessioning poli-
cies (e.g., acceptable submission formats, specifi-
cations on what is to be preserved, access func-
tions, and other legal requirements). Subsequently,
the producer can transfer submission information
packages (SIPs) to the archive, where they enter –
in our proposed system – an ingestion network (see
Definition 3). An initial quality assurance check
is performed on SIPs and corresponding feedback
returned to the producer. As the SIPs are trans-
formed within the ingestion network, archival in-
formation packages (AIPs) are produced and put
into archival storage.

Migration of AIPs is a normal “refreshing” op-
eration of archives to prevent the obsolescence of
AIPs in the presence of changes in technology or
the contextual information that is necessary to in-
terpret the AIPs. Indeed, failure to migrate AIPs
in a timely manner jeopardizes the creation of dis-
semination information packages (DIPs) at a later
time. Migration may be seen as a feedback of
the AIPs into an updated ingestion network that
produces AIPs for new technology from the pre-
vious AIP formats (in this sense, the initial inges-
tion can be viewed as the 0th migration round).
Creation of DIPs from AIPs is sometimes called
(re)-instantiation of the archived collection. Ob-
serve that “good” AIP formats aim to be maxi-
mally self-contained, self-describing, and easy to
process in order to minimize migration and dis-
semination cost.

The ingestion and migration transformations
can be of different nature and involve data refor-
matting (e.g., physical: from 6250 to 3480 tape, or
bit-level: from EBCDIC to ASCII), and data con-
version (e.g.“.rtf” to “.html”). Conversions have
to be content-preserving and should also preserve
as much structure as possible. However, some-



times content is “buried” in the structure and can
be lost accidentally during an apparently “content-
preserving” conversion (Section 5). For dissemi-
nation and high-level “intelligent access”, further
transformations can be applied, e.g., to derive a
topic map view [14] that allows the user to navi-
gate data based on high-level concepts and their re-
lationships. Documentation about the sequence of
transformations that have been applied to an AIP
is added to the provenance metadata.

Digital archives implementing the above func-
tions and processes can be built upon the follow-
ing system components: (i) archival storage sys-
tems (e.g., HPSS), (ii) data management systems
(e.g., XML-generating wrappers for data inges-
tion; databases and XML processors for querying
and transforming collections during migration),
and (iii) data presentation systems (e.g., based on
web services with style sheets, search interfaces
and navigational access for dissemination).

OAIS Information Packages. In order to un-
derstand the disseminated information, the con-
sumer (Fig. 1) needs some initial, internal knowl-
edge (e.g., of the English language). Beforehand,
the presentation system must be able to interpret
the AIP, i.e., it needs representation information
which is packed together with the actual content.
Intuitively, the more representation information is
added to a package, the more self-contained it be-
comes. According to the OAIS framework [11],
an information package IP contains packaging in-
formation PI (e.g., the ISO-9660 directory infor-
mation of a CD) that encapsulates the actual con-
tent information CI and additional preservation
description information PDI. The latter holds in-
formation about the associated CI’s provenance
PR (origin and processing history), context CON
(relation to information external to the IP), refer-
ence REF (for identifying the CI, say via ISBN or
URI), and fixity information FIX (e.g., a checksum
over CI). Finally, similar to a real tag on a physi-
cal object, the IP has descriptive information DI on
the “outside” that is used to discover which IP has
the CI of interest. Put together, the encapsulation
structure of an IP is as follows [11]:

� IP = [DI [PI [CI PDI[ PR CON REF FIX ] ] ] ] (*)

Information Hierarchy. Information contained
in an archive or IP can be classified as follows:
Above the bitstream, character, and word levels,
we can identify individual digital objects as tu-
ples, records, or similar object structures. We

call this the data- or instance-level. Such object-
level information is packaged into the CI. At
the schema- or class-level, structural and type
information is handled: this metadata describes
types of object attributes, aggregation informa-
tion (collections/subcollections), and further de-
scriptive collection-level metadata (e.g., SDSC’s
Storage Resource Broker (SRB/MCAT)6 provides
a state-of-the-art “collection-aware” archival in-
frastructure). Collection-level metadata can be
put into the PI and the DI. Finally, information
at the conceptual-level captures knowledge about
the archive and includes, e.g., associations be-
tween concepts and object classes, relationships
between concepts, and derived knowledge (ex-
pressed via logic rules). While some of this knowl-
edge fits into the CON package, we suggest to
provide a distinct knowledge package KP as part
of the PDI. Possible representations for expressing
such knowledge range from database-related for-
malisms like (E)ER diagrams, XML Schema, and
UML class diagrams, to AI/KR-related ones like
logic programs, semantic networks, formal ontolo-
gies, description logics, to recent web-centric vari-
ants like RDF(-Schema), DAML(+OIL) taken in
tow by the Semantic Web boat [2]. Some of these
formalisms have been standardized already or will
become in the near future, hence are candidate
archival formats (e.g., XMI which includes UML
model exchange and OMG’s Meta Object Facil-
ity MOF [15], RDF [13], the Conceptual Graph
Standard [3] and the Knowledge-Interchange For-
mat [6]). While the number of possible formalisms
(and the complexity of some of them) makes this
a daunting task for any archival system, there
is hope: most of them are based on predicate
logic or “classic” extensions (e.g., rule-based ex-
tensions of first-order predicate logic have been
extensively studied by the logic programming and
deductive databases communities). Based on a less
volatile “standard” logic framework, one can de-
vise generic, universal formalisms that can express
the features of other formalisms in a more robust
way using executable specifications (see below).

XML-Based Archival Infrastructure. It is de-
sirable that archival formats do not require special
access software and be standardized, open, and as
simple as possible. Ideally, they should be self-
contained, self-describing “time-capsules”. The
specifications of proprietary formats7 like Word,

6www.npaci.edu/DICE/SRB
7Proprietary formats like “.doc” tend to be complex, un-

documented, and “married” to a hardware or software envi-



Wordperfect, etc. may vary from version to ver-
sion, may not be available at all, or — even if
they are available (e.g., RTF) — may still re-
quire specialized helper applications (“viewers”)
to interpret and display the information contained
in a document. Similary, formats that use data
compression like PDF require that the specifica-
tion describes the compression method and that
this method is executable in the future. XML,
on the other hand, satisfies many desiderata of
archival: the language is standardized [16], and
easy to understand (by humans) and parse (by pro-
grams). Document structure and semantics can be
encoded via user-definable tags (markup), some-
times called semantic tags: unlike HTML, which
contains a fixed set of structural and presentational
tags, XML is a language for defining new lan-
guages, i.e., a metalanguage. Because of user-
defined tags, and the fact that documents explicitly
contain some schema information in the structure
of their parse tree (even if a DTD or XML Schema
is not given), XML can be seen as a generic, self-
describing data format.

Viewed as a data model, XML corresponds to
labeled, ordered trees, i.e., a semistructured data
model. Consequently, XML can easily express
the whole range from highly structured informa-
tion (records, database tables, object structures) to
very loosely structured information (HTML, free
text with some markup). In particular, the struc-
ture of an information package IP as indicated in
(*) above can be directly represented with XML
elements: IPs (and contained sub-IPs) are encap-
sulated via delimiting opening and closing tags;
descriptive (meta)-information DI about a pack-
age can be attached in XML attributes, etc.XML
elements can be nested and – since order of
subelements is preserved – ordered and unordered
collection types (list, bag, set) can be easily
encoded, thereby directly supporting collection-
based archives.

The core of our archival architecture is the in-
gestion network. Some distinguished nodes (or
stages) of the ingestion net produce AIPs, others
yield different “external views” (DIPs). As IPs
pass from one stage to the next, they are queried
and restructured like database instances. At the
syntactic level, one can maximize infrastructure
independence by representing the databases in
XML and employing standard tools for parsing,

ronment. Data formats whose specifications can be “grasped
easily” (both physically and intellectually) and for which tools-
support is available, are good candidate archival formats.

querying, transforming, and presenting XML.8 To
ensure modularity of the architecture, complex
XML transformations should be broken up into
smaller ones that can be expressed directly with
the available tools. For supporting huge data vol-
umes and continuous streams of IPs, the architec-
ture needs to be scalable. This can be achieved
with a pipelining execution model using stream-
based XML transformation languages (i.e., whose
memory requirements do not depend on the size of
the XML “sent over the wire”). As the XML IPs
are being transformed in the ingestion net, prove-
nance information PR is added. This includes the
usual identification of the organizational unit and
individuals who performed the migration, as well
as identification of the sequence of XML mappings
that was applied to the IP. By storing executable
specifications of these mappings, self-instantiating
archives can be built (Section 4.3).

4 Knowledge-Based Archives

In this section, we propose to extend the purely
structural approach of plain XML to include more
semantic information. By employing “executable”
knowledge representation formalisms, one can not
only capture more semantics of the archived col-
lection, but this additional information can also be
used to automatically validate archives at a higher,
conceptual level than before where it was limited
to low-level fixity information or simple structural
checks.

Intuitively, we speak of a knowledge-based (or
model-based) archival approach, if IPs can contain
conceptual-level information in knowledge pack-
ages (KPs). The most important reason to include
KPs is that they capture meta-information that may
otherwise be lost: For example, at ingestion time it
may be known that digital objects of one class in-
herit certain properties from a superclass, or that
functional or other dependencies exists between
attributes, etc.Unfortunately, more often than not,
such valuable information is not archived explic-
itly.

During the overall archival process, KPs also
provide additional opportunities and means for
quality assurance: At ingestion time, KPs can
be used to check that SIPs indeed conform to
the given accessioning policies and correspond-
ing feedback can be given to the producer. Dur-
ing archival management, i.e., at migration or dis-
semination time, KPs can be used to verify that

8e.g., SAX, XPath, XQuery, XSLT, ...



the CI satisfies the pre-specified integrity con-
straints implied by the KPs. Such value-added
functions are traditionally not considered part of
an archival organization’s responsibilities. On the
other hand, the detection of “higher-level inconsis-
tencies” clearly yields valuable meta-information
for the producers and consumers of the archived
information and could become an integral service
of future archives.

The current approach for “fixing the meaning”
of a data exchange/archival format is to provide
an XML DTD. For example, many organizations
and groups defined their “community language” in
this way. However, the fact that a document has
been validated say wrt. the Encoded Archival De-
scription DTD [4] does not imply that it satisfies
all constraints that are part of the EAD specifica-
tion. Indeed, only structural constraints can be au-
tomatically checked using a (DTD-based) validat-
ing parser – all other constraints are not checked at
all or require specialized software.

These and other shortcomings of DTDs for data
modeling and validation have been widely rec-
ognized and have led to a flood of extensions,
ranging from the heavyweight, W3C-supported
XML Schema proposal [17],9 to more grass-
roots efforts like RELAX (which may become a
standard) [10],10 and many others (RDF, RDF-
Schema, SOX, DSD, Schematron, XML-Data,
DCD, XSchema/DDML, ...). A unifying perspec-
tive on these languages can be achieved by view-
ing them as constraint languages that distinguish
“good documents” (those that are valid wrt. the
constraints) from “bad” (invalid) ones.

4.1 XML Extensions as Constraint Lan-
guages

Assume IPs are expressed in some archival lan-
guage A. In the sequel, let A � XML. A concrete
archive instance (short: archive) is a “word” a of
the archival language A, e.g., an XML document.

Definition 1 (Archival Constraint Languages)
We say that C is a constraint language for A, if
for all ' 2 C the set V' = fa 2 A j a j= 'g of
valid archives (wrt. ') is decidable. 2

For example, if C = DTD, a constraint ' is a con-
crete DTD: for any document a 2 XML, validity
of a wrt. the DTD ' is decidable (so-called “vali-
dating XML parsers” check whether a j= '). The

9� DTDs + datatypes + type extensions/restrictions + ...
10� DTDs + (datatypes, ancestor-sensitive content models,

local scoping, ...) – (entities, notations) ...

notion of constraint language provides a unifying
perspective and a basis for comparing formalisms
like DTD, XML-SCHEMA, RELAX, RDF-SCHEMA,
wrt. their expressiveness and complexity.

Definition 2 (Subsumption)
We say that C0 subsumes C wrt. A, denoted C0 � C,
if for all ' 2 C there is a enc(') 2 C0 s.t. for all
a 2 A: a j= ' iff a j= enc('). 2

As a constraint language, DTD can express
only certain structural constraints over XML, all
of which have equivalent encodings in XML-
SCHEMA. Hence XML-SCHEMA subsumes DTD.
On the other hand, XML-SCHEMA is a much more
complex formalism than DTD, so a more com-
plex validator is needed when reinstantiating the
archive, thereby actually increasing the infrastruc-
ture dependence (at least for archives where DTD

constraints are sufficient). To overcome this prob-
lem, we propose to use a generic, universal formal-
ism that allows one to specify and execute other
constraint languages:

4.2 Self-Validating Archives

Example 1 (Logic DTD Validator) Consider the
following F-LOGIC rules [7]:

%%% Rules for h!ELEMENT X (Y,Z) i
(1) false  P:X, not (P.1):Y.
(2) false  P:X, not (P.2):Z.
(3) false  P:X, not P[ ! ].
(4) false  P:X[N! ], not N=1, not N=2.

%%% Rules for h!ELEMENT X (Y j Z) i
(5) false  P:X[1!A], not A:Y, not A:Z
(6) false  P:X, not P[ ! ].
(7) false  P:X[N! ], not N=1.

%%% Rule for h!ELEMENT X (Y)* i
(8) false  P:X[ !C], not C:Y.

The rule templates show how to generate for each
' 2 DTD a logic program enc(') in F-LOGIC,
which derives false iff a given document a 2 XML

is not valid wrt. ': e.g., if the first child is not Y
(1), or if there are more than two children (4). 2

The previous logical DTD specification does not
involve recursion and can be expressed in classical
first-order logic FO. However, for expressing tran-
sitive constraints (e.g., subclassing, value inheri-
tance, etc.) fixpoint extensions to FO (like DATA-
LOG or F-LOGIC) are necessary.

Proposition 1 (i) XML-SCHEMA � DTD,
(ii) F-LOGIC � DTD. 2



Note that there is a subtle but important differ-
ence between the two subsumptions: In order to
“recover” the original DTD constraint via (i), one
needs to understand the specific XML-SCHEMA

standard, and in order to execute (i.e., check) the
constraint, one needs a specific XML-SCHEMA val-
idator. In contrast, the subsumption of (ii) as
sketched above contains its own declarative, ex-
ecutable specification, hence is self-contained and
infrastructure independent. In this case, i.e., if an
AIP contains (in KP) an executable specification
of the constraint ', we speak of a self-validating
archive. This means that at dissemination time we
only need a single logic virtual machine (e.g., to
execute PROLOG or F-LOGIC) on which we can
run all logically defined constraints. The generic
engine for executing “foreign constraints” does not
have to be a logic one though: e.g., a RELAX val-
idator has been written in XSLT [18]. Then, at re-
instantiation time, one only needs a generic XSLT

engine for checking RELAX constraints.11

4.3 Self-Instantiating Archives

A self-validating archive captures one or more
snapshots of the archived collection at certain
stages during the ingestion process, together with
constraints ' for each snapshot. The notion of self-
instantiating archive goes a step further and aims
at archiving also the transformations of the inges-
tion network themselves. Thus, instead of adding
only descriptive metadata about a transformation
which is external to the archive, we include the
“transformation knowledge” thereby internalizing
complete parts of the ingestion process.

As before, we can maximize infrastructure in-
dependence by employing a universal formalism
whose specifications can be executed on a virtual
(logic or XML-based) engine – ideally the same
one as used for checking constraints. To do so, we
model an ingestion network as a graph of database
transformations. This is a natural assumption for
most real transformations (apart form very low
level reformatting and conversion steps).

Definition 3 (Ingestion Network) Let T be a set
of transformations t : A ! A, and S a set of
stages. An ingestion network IN is a finite set
of labeled edges s!t s

0, having associated precon-
ditions '(s) and postconditions '(s0), for s; s0 2
S; t 2 T ; '(s); '(s0) 2 C. 2

11However, in the archival context, instead of employing the
latest, rapidly changing formalisms, a “timeless” logical ap-
proach may be preferable.

We call the edges of IN pipes and say that an
archive a 2 A is acceptable for (“may pass
through”) the pipe s!t s

0, if a j= '(s) and
t(a) j= '(s0). Since IN can have loops, fix-
point or closure operations can be handled. If there
are multiple t-edges s!t s

0

i outgoing from s, then
one s0

0
is distinguished to identify the main pipe

s!t s
0

0
; the remaining s!t s

0

i are called contin-
gency pipes. The idea is that the postcondition
'(s0

0
) captures the normal, desired case for ap-

plying t at s, whereas the other '(s0i) handle ex-
ceptions and errors. In particular, for '(s0

1
) =

:'(s0
0
) we catch all archives that fail the main

pipe at s, so s0
1

can be used to abort the ingestion
and report the integrity violation:'(s0

0
). Alterna-

tively, s0
1

may have further outgoing contingency
pipes aimed at rectifying the problem.

When an archive a successfully passes through
the ingestion net, one or more of the transformed
versions a0 are archived. One benefit of archiv-
ing the transformations of the pipeline (SIP !t1

� � � !tn AIP) in an infrastructure independent way
is that knowledge, that was available at ingestion
time and is possibly hidden within the transforma-
tion, is preserved. Moreover, some of the transfor-
mations yield user-views (AIP !t1 � � � !tm DIP),
e.g., topic maps or HTML pages. By archiving
self-contained, executable specifications of these
mappings, the archival reinstantiation process can
be automated to a large extent using infrastructure
independent representations.

Properties of Transformations. By modeling
the ingestion net as a graph of database mappings,
we can formally study properties of the ingestion
process, e.g., the data complexity of a transforma-
tion. Based on the time complexity and resource
costs of transformations, we can decide whether a
collection should be recreated on demand via the
ingestion net, or whether it is preferable to materi-
alize and later retrieve snapshots of the collection.
This choice is common in computer science even
outside databases, e.g., for scientific computations
in virtual data grids, applications can choose to re-
trieve previously stored results from disk or recom-
pute the data product, possibly using stored partial
results [8]. Note that invertible transformations of
an ingestion net are content preserving. For trans-
formations t that are not specific to a collection, it
can be worthwhile to derive and implement the in-
verse mapping t�1 thereby guaranteeing that t is
content preserving.



Example 2 (Inverse Wrapper) Consider a docu-
ment collection fa1; a2; : : :g � XHTML for which
a common wrapper t has been provided s.t. t(ai) =
a0i 2 XML. The exact inverse mapping may be im-
practicable to construct, but a “reasonably equiva-
lent” t�1 (i.e., modulo whitespaces, irrelevant for-
matting details, etc.) may be easy to define as
an XSLT stylesheet. Thus, the output of the pipe
ai!t a

0

i!t�1 a
00

i 2 XHTML can be seen as a nor-
malized (X)HTML version of the input ai. By re-
stricting to normalized input, t becomes invertible,
and the XSLT script acts as an “inverse wrapper”
for presenting the collection. 2

5 Case Study: The Senate Collection

In a research collaboration with the National
Archives and Records Administration (NARA),
SDSC developed an information management ar-
chitecture and prototype for digital archives. Be-
low, we illustrate some of the aspects of our
archival architecture, using the Senate Legislative
Activities collection (SLA), one of the reference
collections that NARA provided for research pur-
poses.

Collection Submission and Initial Model. The
SLA collection contains an extract of the 106th
Congress database bills, amendments, and reso-
lutions (short: BARs). SLA was physically sub-
mitted on CD-ROM as 99 files in Microsoft’s Rich
Text Format (RTF), one per active senator, and or-
ganized to reflect a particular senator’s legislative
contribution over the course of the 106th Congress.
Based on a visual inspection of the files, an initial
conceptual model CM0 with the following struc-
ture was assumed:

� Header section: includes the senator name (e.g.,
“Paul S. Sarbanes”), state (“Maryland”), reporting
period (“January 06, 1999 to March 31, 2000”), and
reporting entity (“Senate Computer Center Office of
the Sergeant at Arms and Committee on Rules and
Administration”)

� Section I: Sponsored Measures, Section II:
Cosponsored Measures, Section III: Sponsored Mea-
sures Grouped by Committee Referral, Section IV:
Cosponsored Measures Organized by Committee Refer-
ral, Section V: Sponsored Amendments, Section VI:
Cosponsored Amendments,

� Section VII: Subject Index to Sponsored and
Cosponsored Measures and Amendments.

CM0 also modeled the fact that Sections III
and IV contain the same bills and amendments

as Sections I and II, but grouped by commit-
tee referral (e.g., “Senate Armed Services” and
“House Judiciary”), and that Section VII contains
a list of subjects with references to corresponding
BAR indentifiers: “Zoning and zoning law ! S.9,
S.Con.Res.10, S.Res.41, S.J.Res.39”. Measures
are bills and resolutions; the latter have three sub-
types: simple, joint, and concurrent.

Finally, CM0 identified 14 initial data fields
DF0 (=attributes) that needed to be extracted.12

Ingestion Process. Figure 2 depicts the inges-
tion network as it eventually evolved: The (pre-
sumed) conversion from (MS Word) DOC to RTF
happened outside of the ingestion net, since the ac-
cessioning policy prescribed SIPs in RTF format.
� S1 ! S2:13 A first, supposedly content

preserving, conversion to HTML using MS Word
turned out to be lossy when checked against CM0:
the groupings in Sections III and IV were no longer
part of the HTML files,14 so it was impossible to
associate a measure with a committee!
� S1 ! S3: the conversion from RTF to an in-

formation preserving XML representation was ac-
complished using an rtf2xml module15 for Omni-
Mark, a stream-oriented rule-based data extraction
and programming language.
� S3 ! S4: this main wrapping step was

used to extract data according to the initial data
fields DF0. In order to simplify the (Perl) wrap-
per module and make it more generic, we used a
flat, occurrence-based representation for data ex-
traction: each data field (attribute) was recorded in
OAV form, i.e.,
� (occurrence, attribute, value)

The occurrence has to be fine-grained enough for
the transformation to be information preserving (in
our case occurrence = (filename, line-number)).
The scope of an occurrence is that part of the lin-
earized document which defines the extent of the
occurrence. For example, in case of an occur-
rence based on line numbers, the scope is from
the first character of the line to the last charac-
ter of the line. In case of XML, the scope of
an occurrence may often be associated with el-
ement boundaries (but finer occurrence granules

12abstract, bar id, committee, congressional record,
cosponsors, date introduced, digest, latest status, official title,
sponsor, statement of purpose, status actions, submitted by,
submitted for

13this dead end is only an example for existing pitfalls;
S1!S2 is not archived.

14this crucial information was part of the RTF page header
but left no trace whatsoever in the HTML

15from Rick Geimer at xmeta.com



Figure 2. Ingestion Network: Senate Collection

may be defined for XML as well). By employ-
ing the “deconstructing” OAV model, the wrapper
program could be designed simpler, more modu-
lar and thus easier to reuse: e.g., date introduced
could show up in the file of Senator Paul Sarbanes
(senator id=106) at line 25 with value 01/19/1999
and also in line 106 at line 55 with value
03/15/2000. This information is recorded with two
tuples: ((106,25), ’date introduced’, ’01/19/1999’)
and ((106,55), ’date introduced’, ’03/15/2000’).
� S4 ! S4: some candidate attributes from

DF0 had to be decomposed further, which is mod-
eled by a recursive closure step S4 ! S4, corre-
sponding to a sequence DF1, : : :, DFn of refine-
ments of the data-fields, e.g., DF1: list of sponsors
! [sponsor], and DF2: sponsor! (name, date).
� S4 ! S5: this “reconstructing” step builds

the desired archival information packages AIP in
XML. Content and structure of the original SIPs
is preserved by reassembling larger objects from
subobjects using their occurrence values. From the
created XML AIPs, DTDs like the following can
be inferred (and included as a constraint ' in KP):

<!ELEMENT SLA collection
(senate file*)>

<!ELEMENT senate file
(file name, header page?,
section*, subject index?)>

<!ELEMENT section
(sec number, sec name, bar*)>

<!ELEMENT bar
(bill j amendment j resolution)>

...

� S4 ! S6: this conceptual-level transforma-
tion creates a consolidated version from the col-
lection. For example, SLA contains 44,145 oc-
currences of BARs, however there are only 5,632
distinct BAR objects. (Alternatively, this version

could have been derived from S5.) This step can
be seen as a reverse-engineering of the original
database content, of which SLA is only a view
(group BARs by senator, for each senator group
by measures, committee, etc.)

As part of the consolidation transformation,
it is natural to perform conceptual-level integrity
checks: e.g., at this level it is easy to define a
constraint ' that checks for completeness of the
collection (i.e., if each senator occurring some-
where in the collection also has a corresponding
senator file – a simple declarative query reveals
the answer: no!). Note that a consolidated ver-
sion provides an additional archival service; but it
is mandatory to also preserve a non-consolidated
“raw version” (e.g., as derived from the OAV
model).
� S4; S6 ! S7: these transformations create

a topic map version and thus provide additional
conceptual-level “hooks” into the consolidated and
OAV version.

6 Conclusions

We have presented a framework for the preser-
vation of digital data, based on a forward migra-
tion approach using XML as the common archival
format and generic XML tools (XML wrappers,
query and transformation engines). The ap-
proach has been extended towards self-validating
knowledge-based archives: self-validating means
that declarative constraints about the collection
are included in executable form (as logic rules).
Most parts of the ingestion network (apart from
S7 which is under development) have been im-
plemented for a concrete collection. Note that
all transformations following the OAV format can
be very naturally expressed in a high-level object-
oriented logic language (e.g., F-LOGIC). By in-
cluding the corresponding rules as part of the
archive, a self-instantiating, self-validating archive
can be constructed.
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