
Wrapping Data into XML

Wei Han, David Buttler, Calton Pu

Georgia Institute of Technology

College of Computing

Atlanta, Georgia 30332-0280

USA

fweihan, buttler, calton g@cc.gatech.edu

Abstract

The vast majority of information that is available on-
line, and coming online in this near future is only avail-
able in HTML. In order to use this information for
more than human browsing, it must be converted into
a machine-readable format. Wrappers have been the
key tool to make the conversion from HTML into se-
mantically meaningful and well-structured XML data.
However, developing wrappers is slow and tedious
work with typically brittle results. This paper de-
scribes XWRAP Elite, a tool to automatically gen-
erate robust wrappers, which breaks down the conver-
sion process into three procedures: discovering where
the data is located in an HTML page and separating
the data into individual objects; decomposing objects
into data elements; marking objects and elements in
an output format. XWRAP Elite automates the �rst
two procedures and requires minimal human involve-
ment in marking output data. In addition, there is a
code generation component to package all of the pieces
into a stand-alone wrapper.

1 Introduction

There has been a lot of work on creating a new breed
of distributed web services, such as supply-chain man-
agement and E-commerce. XML is becoming a uni-
versal data exchange standard on the Web, o�ering
an easy method to integrate distributed applications
to provide these sophisticated services. These new
services are also a revolution from existing informa-
tion sources in that they are accessible via software
programs or agents. However, where does XML data
come from? Most valuable information on the Web is
still, and will be in the immediate future, in "human-

oriented" HTML.

A popular approach to solve the problem is to write
wrappers to encapsulate the access to sources and pro-
duce a more structured data, such as XML, to enable
other applications [3, 5, 6, 2]. However, developing and
maintaining wrappers by hand turned out to be labor
intensive and error-prone. Semi-automatic wrapper
generation systems improve the wrapper developing
process, but are still not scalable enough to catch up
with the explosion of Web pages, sites, and applica-
tions because of the inevitable cost of human involve-
ment.

In this paper, we propose a systematic approach to
build an automated system for wrapper construction
for Web information sources, called XWRAP Elite,
which is an improvement of our previous work in [4].
The goal of our work is to provide a methodology for
the easy transformation of human-orientated HTML
into machine-readable, semantically meaningful XML.
This transformation will enable numerous XML-based
applications, such as sophisticated query services,
mediator-based information systems, and agent-based
systems. A main challenge is to generate the trans-
formation automatically, requiring as little human in-
volvement as possible. Our main contribution here is
to provide a set of algorithms and heuristics that bal-
ance the requirement of semantic input with the need
to automate the information extraction and wrapper
generation process.

2 System Architecture

Figure 1 shows the overall architecture of XWRAP
Elite system. XWRAP Elite takes a sample docu-
ment as input, and generates a wrapper to convert
the HTML into meaningful XML data through four

A Sample Document

XWRAP Elite System

Human Input
Tagging Rules

Objects

Elements

XML Output

Real Documents

Objects

Elements

Output Tagging

XML Output

A Generated Wrapper

Analysis

Element Sep.

Object ExtractionSub−tree, Obj. Sep.

Alignment Rules

Tagging Rules

Analysis

Object Extraction
Analysis

Output Tagging

Element Extraction Element Extraction

Figure 1: XWRAP Elite System Architecture

steps. As a side e�ect, tagged XML data for the sam-
ple document is produced to help validate the process.

In the �rst step, XWRAP Elite parses the sample doc-
ument into an HTML tree, locates the sub-tree that
contains the data objects and discovers rules to split
the sub-tree into individual objects. It then generates
an Object Extraction component based on the sub-tree
and the object separator rules. XWRAP Elite also ex-
tracts objects from the sample document and passes
them into the next step.

Next, XWRAP Elite studies the extracted objects to
obtain a group of element separators and then decom-
poses the objects into elements. Element separators
include both HTML tags and plain-text strings. The
group of element separators determines an Element
Extraction component.

Third, XWRAP Elite analyzes the elements from the
remaining objects to learn element patterns based on
regular expressions and element orders, and gener-
ate alignment rules to group similar elements into the
same location across objects. A wrapper developer
inputs tagging rules by assigning an element name to
each group. XWRAP Elite generates an Element Tag-
ging component according to the alignment rules and
the tagging rules.

Finally, XWRAP Elite packages a wrapper by inte-
grating the Object Extraction, Element Extraction
and Output Tagging component. The wrapper can
convert an HTML page similar with the sample doc-
ument into XML.

The rest of the paper is organized as follows. Section 3
describes the automated object extraction procedure.
Section 4 describes how elements are extracted for in-
dividual objects. Section 5 describes how elements are

semantically tagged. Section 6 concludes the paper.

3 Object Mining and Extrac-

tion

There are three steps to extracting data objects from
an HTML document: document preparation, primary
content location, and object separation. Once these
steps are completed, the data objects are still strings
of text containing HTML tags. They are not, as of
yet, semantically meaningful outside of human inter-
pretation. The semantic information is added in the
following steps.

The �rst step prepares the HTML for object extrac-
tion. It takes a raw HTML page and performs the
following two tasks:

First, the page is cleaned using a syntactic normaliza-
tion algorithm, which transforms the given page into
a well-formed document which follows rules similar to
well-formed XML documents [8].

Second, the document is converted into a tag tree rep-
resentation based on the nested structure of start and
end tags. There are many standard tools that can con-
vert plain HTML text into a well-formed document,
such as Tidy [7] from the W3C. Once the document
is well-formed, it is trivial to create a tree structure
from it. Figure 2 shows two data objects from a Barn-
sandnobles' Web page, and Figure 3 displays the tree
structure of the �rst object.

Figure 2: Two Data Objects on Barnsandnoble

As has been noted earlier, web pages are designed for
human browsing. In addition to the primary content
region, many web pages often contain other informa-
tion such as advertisements, navigation links, and so
on. Therefore, given a tree structure for a web docu-
ment, the task of identifying which part of the docu-
ment is the primary content region is reduced to the

b

a

font

td

br

input type=img

text11: More...
text10: 20%
text9: , You Save
text8: $34.40
text7: Our Price:
text6: November 1998
text5: Cay Horstmann, Gary Cornell / Paperback / Prentice Hall /
text4: In−Stock: Ships within 24 hours
text3: Fundametals
text2: Core Java 2, Volume 1:

text8

font

br

fonttext1: 1.

form

text4

text3

text2

text1

text7

text10

text9

text11

text5

tr

font

td

font

a

b

br

font

font

text6

br

font

Figure 3: The Tree Structure for The First Object in
Figure 2

problem of locating the smallest sub-tree of which con-
tains all the relevant data objects.

In XWRAP Elite, three individual sub-tree discovery
methods have been implemented, as well as a method
to combine them. The three methods are Largest Tag
Count, Highest Fanout, and Largest Size Increase.

� The Largest Tag Count method considers the
number of tags contained in each sub-tree. A
larger number of tags indicate that a particular
sub-tree is richer in content.

� The Highest Fanout method compares sub-trees
based on the number of immediate children each
has. The larger the fanout, the more likely the
sub-tree is the immediate parent of all of the data
objects.

� The Largest Size Increase method compares the
increase of the visible content between subtrees.
Subtrees with a larger increase are more likely to
contain usable content.

After the object-rich subtree extraction process, the
problem of extracting the object separator tag in a
web page is reduced to the problem of �nding the right
object separator tag in the chosen minimal subtree.
The problem can be addressed in two steps. First
we need to decide which tags in the chosen minimal

subtree should be considered as candidate object sep-
arator tags. Second, we need a method to identify the
right object separator tag from the set of candidate
tags, which will e�ectively separate all the objects.

There are several ways of choosing the object separa-
tor tags. One may consider every node in the chosen
subtree as a candidate tag or just the child nodes of
the chosen subtree as the candidate tags. Based on
the semantics of the minimal object-rich subtree, it is
suÆcient to consider only the child nodes in the chosen
subtree as the candidate separator tags.

In the current version of XWRAP Elite, �ve separator
tag identi�cation heuristics are supported, covering a
wide range of possible mechanisms for discovering ob-
ject separators. Each of the �ve heuristics indepen-
dently ranks the candidate tags; after the individual
heuristics have completed their evaluation, the results
are combined to improve the accuracy.

See [1] for further detail.

4 Element Extraction

After individual objects have been extracted from a
page, the next step is to identify the elements inside
of the objects. This process is termed Element Ex-
traction. A data object typically consists of several
elements that are separated by a group of element
separators. An element separator could be either an
HTML tag, such as <td> in an HTML table, or a
plain-text delimiter, such as the slash sign in "Cay
Horstmann,Gary Cornell / Paperback / Prentice Hall
/".

We have found that data objects from the same con-
tent region in a Web page are often homogeneous,
meaning that they share the same structure and group
of element separators. This allows us to decompose all
of the data objects into elements once we locate the
common group of element separators. So in our ap-
proach, we look for tag-separators and text-separators
for each data object and then compile a group of sep-
arators that are suitable for all the objects.

4.1 Element Separation

The methodology used in Section 3 to discover an ob-
ject separator cannot be applied to searching for the
group of element separators. First, objects are simi-
lar to each other while elements in an object can vary
widely in format. Also, the assumption that there is

always a single HTML tag that marks the boundary
between objects is not valid when applied to elements.
As we pointed out earlier, an element separator can
also be a text delimiter.

We choose two di�erent approaches to discover tag-
separators and text-separators. First, we build HTML
tag-trees for objects and apply an initial heuristic on
the trees to obtain a basic group of tag-separators.
We then propose three complimentary heuristics to re-
vise the group of tag-separators. For text-separators,
we extract text strings from objects and then analyze
them with a string-based heuristic to get text separa-
tors.

4.1.1 Tag Separators

Given a data object that corresponds to an HTML
tag tree, tag-separators discompose the tree into sub-
trees that contain full elements of interest, i.e., tag-
separators don't break any element into pieces. For ex-
ample, Figure 3 shows that is a tag-separator
while is not since node b only contains a part of
the book title, "Core Java 2, Volume 1: Fundamen-
tals".

We search the appropriate combination incrementally.
We �rst look for all the commonly-used tag-separators
that are always separators in the object, such as

and <a>. Then we apply the following complemen-
tary heuristics to discover additional tag-separators.

The �rst is the Highest Count Tag Heuristic. The
higher the count of occurrences a tag has, the more
likely it is a tag-separator. This heuristic treats the
highest-count tag as a tag-separator.

The second heuristic is the Repeating Pattern Heuris-
tic. Some tags often appear in adjacent pairs, either
as a parent-child pair or as a sibling pair, multiple
times.If a tag is frequently in a repeating pattern when
it appears, it is very possibly a tag-separator. The fre-
quency of a tag being in a repeating pattern is implied
by the di�erence between the tag occurrences and the
repeating pattern occurrences. The smaller the di�er-
ence is, the more frequent it is, and the more likely
the tag is a tag-separator.

The third heuristic is the Standard Deviation Heuris-
tic. The standard deviation of the interval between tag
occurrences indicates a tag's regularity. The smaller
a tag interval's standard deviation is, the more reg-
ularly the tag occurs, and the more likely the tag is
tag-separator.

4.1.2 Text Separators

Elements in plain text strings are usually separated
by some symbols, such as " " and "/". We built a list
of commonly used text-separators based on the Web
documents we studied. The current list includes the
following symbols:

"/ ", ": ", " ", "; "

Surprisingly, we do not include line separators, such
as "nn", in our commonly used text-separator list.
HTML treats the line separators as a simple space,
so the line separator is often used even in the middle
of an element.

However, we have observed that these commonly used
text-separators sometimes also represent math signs
or time formatting marks. For example, a slash can
be used for the division operation (i.e. 15=3 = 5), and
a colon can separate time units (i.e. "15:30 p.m.").

Our text-separator discovery heuristic operates as fol-
lows.We scan an object; if any symbol on the list ap-
pears in the object without digits occurring on both
sides, we put the symbol into a group of candidate
text-separators. The pruned group contains all the
text-separators for the object.

4.2 Leveraging Separators

After we obtain tag-separators and text-separators for
each object, we leverage them to build a representative
separator group, which contain only separators that
appear in most groups. The current criteria include
separators appearing in at least two groups and more
than �ve percent of the total groups. Such a leverage
avoids a symbol being a text-separator when it is an
integral part of a text element, such as the colon in
Figure 2.

5 Output Tagging

After Element Extraction, we obtain data objects in
elements. In order to output them in XML, we must
mark objects and elements indicating their semantic
meaning. This process is called Output Tagging.
We assume data objects are homogenous, so we can
name all the objects in one name. However, it is more
diÆcult to mark elements because an object has mul-
tiple elements and some elements could be missing in
the object, so we have to identify elements before we
name them.

A common approach to identify data elements is using
string regular expression matching. However, accurate
regular expressions are always very diÆcult to obtain
automatically, especially when elements are similar.
An inaccurate regular expression will misidentify data
elements. Another approach to identify elements is
based on the order of appearance of elements in an
object. It works well for certain application domains,
such as laboratory-experiment logs, but it cannot be
applied to other areas. Furthermore, when an element
is missing, it causes the misidenti�cation of the rest of
the elements in an object.

Our approach is a hybrid that uses both regular ex-
pressions and the element appearance order. We ini-
tially assign an index number to each element accord-
ing to the order in which they appear. Then we au-
tomatically generate some regular-expression patterns
to help us align the index numbers in case an element
is missing. Elements with the same number will be
tagged in the same name.

Order Object1 Object2

1

2 Core Java2, Volume

1: Fundamentals

Java How To Program

3 In-Stock: Ships

with 24 hours

In-Stock: Ships

with 24 hours

4 Cay Horstmann,Gary

Cornell

Harvey M.

Deitel,Paul J.

Deitel

5 Paperback Paperback

6 Prentice Hall Prentice Hall

7 November 1998 August 1999

8 Our Price: Our Price:

9 $34.40 $64.75

10 You Save

11 20% more

12

13 more

14

Figure 4: Elements From Two Objects Before Align-
ment

Figure 4 shows elements separated from the two ob-
jects in Figure 2. Object1 has 14 elements, while two
elements are missing in Object2. The 10th element in
Object2 doesn't match the 10th element in Object1.
However, the 10th element in Object2 has the same
type (i.e. Hypertext link) as the 12th element in Ob-
ject1, and the 11th element (i.e. "more") in Object2
has the same value as the 13th element in Object2. So
we can align the 10th, 11th, 12th elements in Object2
to the 12th, 13th, 14th elements in Object1, which is
shown in Figure 5.

Order Object1 Object2

1

2 Core Java2, Volume

1: Fundamentals

Java How To Program

3 In-Stock: Ships

with 24 hours

In-Stock: Ships

with 24 hours

4 Cay Horstmann,Gary

Cornell

Harvey M.

Deitel,Paul J.

Deitel

5 Paperback Paperback

6 Prentice Hall Prentice Hall

7 November 1998 August 1999

8 Our Price: Our Price:

9 $34.40 $64.75

10 You Save

11 20%

12

13 more more

14

Figure 5: Elements From Two Objects After Align-
ment

5.1 Discovering Regular Expression

Pattern

Regular expression patterns can be strong-matching
and weak-matching. A strong-matching pattern nor-
mally implies a high possibility that two elements
should be aligned if they both match the pattern,
while a weak-matching pattern indicates that two el-
ements should not be aligned if only one of them
matches the pattern.

Constant-value elements, such as "Review" or "Our
price", are often strong-matching patterns. Some el-
ements contain constant strings with some variable
numbers, for example, "ends in 5 hours 10 minutes."
If we discard the variables, ("5" and "10" in this
case,) the element has a constant-value-like pattern.
Constant-value and constant-value-like elements ap-
pear in a substantial ratio of objects, so that we can
easily discover them from statistics by counting their
appearances.

We automatically recognize four types of weak-
matching patterns, which corresponds to four di�erent
classes of elements: a hypertext link, an image, a dol-
lar value (any element starting with "$" and followed
with numbers, such as "$45.00"), and common strings
(the rest of the elements).

These patterns help us avoid mismatching elements.
For example, in Figure 4, the 10th element in Ob-
ject2, which is a hypertext link, should match the 12th
element in Object1 instead of the 10th element in Ob-

ject1.

5.2 Element Alignment

Element alignment matches elements to the elements
in the largest-element-count object. The basic idea is
to assign each element an index, which is the order
of its matching element in the largest-element-count
object. Elements with the same index share the same
element name.

We search a matching element for an element E as
follows.

� If E is constant-value-like and it has a strong-
matching element in the largest-element-count
object, assign the index of the matching element
to E. If there are multiple strong-matching ele-
ments, choose the one with a closer index loca-
tion. If there is no matching element or E is not
constant-value-like, go to the next step.

� If an element in the largest-element-count object,
whose index is larger than the index of the ele-
ment that is immediately before E, shares a weak-
matching pattern with E, we assume it is the
matching element. If there are multiple match-
ing elements, we choose the one with the smallest
index. If there is no matching element, go to the
next step.

� If an element in the largest-element-count object,
whose index is smaller than or equal to the in-
dex of the element that is immediately before E,
shares a weak-matching pattern with E, we as-
sume it is the matching element. If there are
multiple matching elements, we choose the one
with the largest index. If there is no matching
elements, E's matching element is marked "un-
known".

6 Conclusion

We have presented our approach for automatically
generating wrappers for Web information sources. We
automated the process to extract data at a �ne-
grained element level, while most of the existing ap-
proaches require the wrapper developers to write in-
formation extraction rules by hand using a domain-
speci�c language or to input their knowledge through
an interactive GUI.

The automation of data extraction o�ers a number of
advantages. It does not necessarily require a set of
sample documents, which allows other applications to
integrate a data extraction component at run time.
XWRAP Elite is a scalable solution in a sense that
creating a new wrapper costs much less time. The
user only needs to input object and element names.
It facilitates ease of wrapper maintenance. Incorpo-
rating other technology, such as micro-feedback, it is
possible to automatically revise wrappers when the
data source has some changes.

References

[1] D. Buttler, L. Liu, and C. Pu. A fully automated
object extraction system for the world wide web.
Proceedings of IEEE International Conference on
Distributed Computing Systems, April 2001.

[2] J. Hammer, M. Brennig, H. Garcia-Molina, S. Nes-
terov, V. Vassalos, and R. Yerneni. Template-
based wrappers in the tsimmis system. In Pro-
ceedings of ACM SIGMOD Conference, 1997.

[3] C. A. Knoblock, S. Minton, J. L. Ambite,
N. Ashish, P. J. Modi, I. Muslea, A. Philpot, and
S. Tejada. Modeling web sources for information
integration. In Proceedings of AAAI Conference,
1998.

[4] L. Liu, C. Pu, and W. Han. XWrap: An XML-
enabled Wrapper Construction System for Web
Information Sources. Proceedings of the Interna-
tional Conference on Data Engineering, 2000.

[5] L. Liu, C. Pu, and W. Tang. Continual queries
for internet-scale event-driven information deliv-
ery. IEEE Knowledge and Data Engineering, 1999.
Special Issue on Web Technology.

[6] L. Liu, C. Pu, W. Tang, J. Biggs, D. Buttler,
W. Han, P. Benningho�, and Fenghua. CQ: A
Personalized Update Monitoring Toolkit. In Pro-
ceedings of ACM SIGMOD Conference, 1998.

[7] D. Raggett.
Clean Up Your Web Pages with HTML TIDY.
http://www.w3.org/People/Raggett/tidy/, 1999.

[8] Extensible markup language (XML) 1.0. Technical
report, W3C, 1998.

