SQL/XML isMaking Good Progress

Andrew Eisenberg
IBM, Westford, MA 01886
andrew.cisenberg@us.ibm.com

Introduction

Not very long ago, we discussed the creation of a
new part of SQL, XML-Related Specifications
(SQL/XML), in this column [1]. At the time, we
referred to the work that had been done as
“Infrastructure”. We are pleased to be able to say that
significant progress has been made, and

SQL/XML [2] is now going out for the first formal
stage of processing, Final Committee Draft (FCD)
ballot, in ISO/IEC JTC1.

In our previous column, we described the
mapping of SQL <identifier>s to XML Names, SQL
data types to XML Schema data types, and SQL
values to XML values. There have been a few small
corrections and enhancements in these areas, but for
the most part the descriptions in our previous column
are still accurate.

The new work that we will discuss in this
column comes in three parts. The first part provides a
mapping from a single table, all tables in a schema,
or all tables in a catalog to an XML document. The
second of these parts includes the creation of an
XML data type in SQL and adds functions that create
values of this new type. These functions allow a user
to produce XML from existing SQL data. Finally, the
“infrastructure” work that we described in our
previous article included the mapping of SQL’s
predefined data types to XML Schema data types.
This mapping has been extended to include the
mapping of domains, distinct types, row types,
arrays, and multisets.

The FCD ballot that we mentioned began in
early April. This will allow the comments contained
in the ballot responses to be discussed at the Editing
Meeting in September or October of this year. We
expect the Editing Meeting to recommend
progression to Final Draft International Status (FDIS)
ballot, which suggests that an International Standard
will be published by the middle of 2003.

Mapping Tables to XML
Documents

SQL/XML defines a mapping from tables to XML
documents (proposed in [4]). The mapping may take

Jim Melton
Oracle Corp., Sandy, UT 84093
jim.melton@acm.org

as its source an individual table, all of the tables in a
schema, or all of the tables in a catalog. The mapping
takes place on behalf of a specific user, so only those
tables that contain a column for which the user has
SELECT privilege will be included in this mapping.
This mapping produces two XML
documents, one that contains the data in the table or
tables that were specified, and another that contains
an XML Schema that describes the first document.
This mapping builds on the “infrastructure”
that we discussed in our previous article. SQL
<identifier>s, SQL data types, and SQL values are
mapped to XML in the way that we described.

Mapping the Data

An EMPLOYEE table is mapped to an XML
document in the following way:
<EMPLOYEE>
<r ow>
<EMPNC>000010</ EMPNO>
<FI RSTNAME>CHRI STI NE</ FI RSTNAMVE>
<LASTNAME>HAAS</ LASTNAME>
<Bl RTHDATE>1933- 08- 24</ Bl RTHDATE>
<SALARY>52750. 00</ SALARY>
</ row>
<r ow>
<EMPNC>000020</ EMPNC>
<FI RSTNAME>M CHAEL</ FI RSTNAMVE>
<LASTNAME>THOVPSON</ LASTNAME>
<Bl RTHDATE>1948- 02- 02</ Bl RTHDATE>
<SALARY>41250. 00</ SALARY>
</ row>

</ EMPLOYEE>

The root element has been given the name of
the table. Each row is contained in a <r ow> element.
Each <r ow> element contains a sequence of column
elements, each with the name of the column. Each
column element contains a data value. The names of
the table and column elements are generated using
the fully escaped mapping from SQL <identifier>s to
XML Names. The data values are produced using the
mapping from SQL data values to XML.

The tables of a schema are mapped to an
XML document in the following way:

<ADM NI STRATOR>

<DEPARTMENT>
<r ow>
<DEPTNC>A00</ DEPTNC>
<DEPTNAME>Account i ng</ DEPTNAME>
<MGRNC>000010</ MGRNO>
<ADMRDEPT>A00</ ADVRDEPT>
</ row>

</ DEPARTNENT>

<ORG>

<r ow>
<DEPTNUMB>10</ DEPTNUVB>
<DEPTNAME>Head O fi ce</ DEPTNAME>
<MANAGER>160</ MANAGER>
<Dl VI SI ON>Cor por at e</ DI VI SI ON
<LOCATI ON>New Yor k</ LOCATI ON>

</ row>

</ RG>
</ ADM NI STRATOR>

This document reflects the DEPARTMENT
and ORG tables in the ADMINISTRATOR schema.

The mapping of the tables contained in a
catalog will have as its root an element that
represents the catalog. This element will contain an
element for each of its schemas.

There are many ways to represent a table in
XML. The committees decided to use elements to
represent column values because the values of
columns that use SQL’s non-scalar data types could
not all be represented by attribute values. A column
could, for example, be defined using a row data type
with 3 fields of different data types, which doesn’t
map onto XML’s attributes.

The <r ow> element may seem a bit
artificial. The committees could have used the name
of the table as the name of the element that contains
the columns. Doing so would have required the
creation of an artificial name for the element that
contains all of the table’s rows. This might have
looked something like the following:
<t abl e>

<EMPLOYEE>
<EMPNO>000010</ EMPNC>
<FI RSTNAME>CHRI STI NE</ FI RSTNAMVE>
<LASTNAME>HAAS</ LASTNAME>
<Bl RTHDATE>1933- 08- 24</ Bl RTHDATE>

<SALARY>52750. 00</ SALARY>
</ EMPLOYEE>

</tabl e>

Null Values

In addition to specifying the source tables for this
mapping, a user must also specify how null values
are to be mapped. The two behaviors that are
provided are termed “nil” and absent”.

If a user chooses “nil”, then the attribute
xsi:nil ="true" isused to mark column elements
that represent null values. An employee with a null
value in her birthday column would appear as
follows:

<r ow>
<EMPNC>000010</ EMPNC>
<FI RSTNAMVE>CHRI STI NE</ FI RSTNAME>
<LASTNAME>HAAS</ LASTNAME>
<BI RTHDATE xsi:nil="true" />
<SALARY>52750. 00</ SALARY>

</ row>

This user could also have chosen “absent”,
which causes columns with null values be
represented by the absence of the corresponding
column element. With this choice, the row above
would appear as follows:

<r ow>
<EMPNC>000010</ EMPNC>
<FI RSTNAME>CHRI STI NE</ FI RSTNAMVE>
<LASTNAME>HAAS</ LASTNAMVE>
<SALARY>52750. 00</ SALARY>

</ row>

Generating an XML Schema

There are many XML schemas that could be written
to describe the mapped tables that we have shown. A
choice that the committees rejected was to create a
single, monolithic element definition with
anonymous types. This choice might have generated
the following schema for the employee table:

<xsd: schema>
<xsd: el ement name="EMPLOYEE" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el emrent nanme="r ow'
m nCccur s="0"
maxQccur s="unbounded" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="EMPNO' >
<xsd: si npl eType>
<xsd:restriction
base="xsd: string">
<xsd: | ength val ue="6"/>
</ xsd:restriction>
</ xsd: si nmpl eType>
</ xsd: el ement >
<xsd: el ement nanme="Fl RSTNAME" >

</ xsd: el ement >

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: schema>

The committees decided instead to create
globally-named XML Schema data types for every
type that is required to describe the table or tables
that are being mapped.

Naming all of the Types

Let’s look at the schema that is generated for the
EMPLOYEE table with “nil” chosen for the mapping
of null values.

<xsd: schema>

<xsd: si npl eType nanme="CHAR 6" >
<xsd:restriction base="xsd:string">
<xsd: |l ength val ue="6"/>
</xsd:restriction>
</ xsd: si npl eType>

<xsd: si npl eType nane="DECI MAL_9 2">
<xsd:restriction base="xsd: deci mal ">
<xsd:total Digits val ue="9"/>
<xsd:fractionDigits val ue="2"/>
</xsd:restriction>
</ xsd: si npl eType>

<xsd: conpl exType
name=" RowType. HR. ADM N. EMPLOYEE" >

<xsd: sequence>

<xsd: el enent
nane="EWMPNO' type="CHAR 6"/>

<xsd: el ement
name="SALARY" type="DECI MAL_9 2"
nillable="true"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType
nanme="Tabl eType. HR ADM N. EMPLOYEE" >
<xsd: sequence>
<xsd: el ement nanme="r ow'
type="RowType. HR. ADM N. EMPLOYEE"
m nCccur s="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: el emrent nanme="EMPLOYEE"
t ype="Tabl eType. HR. ADM N. EMPLOYEE"/ >

</ xsd: schema>

We have generated named XML Schema types for
each of the column data types. These are used in the
definition of the elements that represent each column.
The names used for the XML Schema data types that
correspond to SQL scalar data types are quite
straightforward. Some additional examples of these
type names are shown below:

SQL Data Type XML Schema Name

CHARACTER (5) CHAR 5
CHARACTER (5) CHAR 5
CHARACTER SET
LATI N1
| NTEGER | NTEGER
TI MESTAVP(6) TI MESTAMP_6
TI MESTAVP(0) TI NESTAMP_WIZ_0
W TH TI ME ZONE
| NTERVAL HOUR | NTERVAL_HOUR 2_SECOND 1

TO SECOND (1)

A single DECI MAL_9 2 data type will be
included in the XML Schema, regardless of how
many additional columns use the DECI MAL(9, 2)
data type. All columns that use CHAR(6) will share
a CHAR_6 XML Schema data type, no matter which
character sets or collations they use. This choice was
made because the XML Schema data type
xsd: stri ng consists of Unicode characters only.

A named XML Schema type is created for
the type of the rows in a table, and for the type of the
table as a whole. The name of the row type was
constructed by concatenating “RowType”, the
catalog name, the schema name, and the table name,
each separated by a “.”. To avoid ambiguities,
periods within names are escaped. For example, if the
catalog name had been "H. R. ", then the periods in
the catalog name would be represented by
“ x002E_”, producing the following XML Name:

RowType. H x002e_R x002e_. ADM N. EMPLOYEE

These naming rules have been chosen to
prevent any conflict among names that are generated
for an XML Schema document.

The example above showed the mapping of
a table with the choice for nulls of “nil”. You’ll see
this if you look at the definition of the SALARY
element. If “absent” had been chosen, then the
following element definition would have been
generated:
<xsd: el ement name=" SALARY"

t ype="DECI MAL_9 2"

m nCccur s="0"
/>

Table Mapping and XML Query

One very interesting use of the table mapping that has
been added to SQL/XML is the ability to generate a
virtual XML document that can be used by XML

Query [3]. We’ll hypothesize at abl e function that
returns an XML document produced by the mapping
of a single table in the following example:
<hi ghenps>
{ for $e in tabl e("Sanpl e_db",
"Andr ew',
"*passwor d*",
"HR. ADM N. EMPLOYEE"
) / EMPLOYEE/ r ow
where $e/ SALARY > 40000
return
<erT'p>
{ $e/ FIRSTNVE, $e/ LASTNAME }
</ enp>

}
</ hi ghenps>

XML Data Type

Today, a user might store an XML document as
either a VARCHAR or a CLOB value. XML
documents can also be decomposed on a client or a
middle-tier and stored in scalar columns in one or
several tables. The addition of an XML data type in
SQL/XML (proposed in [5]) provides the potential
for greater capability for users and for greater
performance as well.

The XML data type is identified simply as
XM_. Columns, variables, and parameters can be
defined using this new data type.

The legal values for this data type consist of
documents, elements, forests of elements, text nodes,
and mixed content. Attributes can exist within an
element, but they are not legal XML values
themselves. XML comments and processing
instructions are not currently allowed within the
XML data type.

Several operators have been provided that
produce XML values. These operators are
syntactically similar to functions, but they differ from
functions in some subtle ways. These operators,
XMLELEMENT, XMLFOREST, XMLGEN,
XMLCONCAT, and XMLAGG, are each discussed
in turn.

We will show SELECT statements returning
XML values throughout this section. We are taking a
bit of license here in two ways. The XML data type
does not yet have a mapping to host language data
types, so our SELECT statements are presumed to
retrieve values in a pure SQL context. Also, to make
these examples readable, we have shown the XML
results broken across several lines and indented. This
is something that a client tool might do, but SQL
would return the value “unformatted”.

XMLELEMENT

This operator creates an XML element. The first
argument to XMLELEMENT provides the name of

the element that is being constructed. This argument
is an SQL <identifier>, preceded by NAME. The
second argument, if it is specified, provides the
attributes for the element that is being constructed. It
has the form XMLATTRI BUTES(. . .). The
subsequent arguments provide the content for the
element that is being constructed. They may be of
any SQL data type.

Let’s consider the following example (we’ll
use “—” to indicate possible output from a query):
SELECT e.id,

XMLELEMENT (NAME " Enp",

e. fname
| || e.lnane
) AS "result"
FROM enpl oyees e
VWHERE ;

—

ID result
1001 <Emp>John Sm t h</ Enp>
1206 <Enp>Bob Marti n</ Enp>

The content of the element is provided by a
VARCHAR expression that concatenates the
employee’s first and last name. SQL/XML already
contains the mapping from SQL values to XML
values that is used to construct this element.

The following example shows the
construction of an element with attribute values:

SELECT e.id,
XMLELEMENT (NAME " Enp",
XMLATTRI BUTES (
e.id,
e. |l name AS "nane"

)

) AS "result"
FROM enpl oyees e
VWHERE ;
-
ID result

1001 <Enmp ID="1001" nanme="Smth"/>
1206 <Enp | D="1206" nane="Martin"/>

Two attributes have been created in the
<Enp> element. The name of the first attribute is
taken from the name of the ID column. The name of
the second attribute is being provided explicitly with
AS "nanme". An attribute name that is taken from a
column name will use the fully-escaped mapping
from an SQL <identifier> to an XML Name. An
attribute name that is provided explicitly will use the
partially-escaped version of this mapping.

Nested elements can be created by using
nested XMLELEMENT operators. The following
example creates elements with mixed content:

SELECT e.id,
XMLELEMENT

(NAME "Enp",
' Enpl oyee ',
XMLELEMENT (NAME "nane",

e.lnanme),

" was hired on ',
XMLELEMENT (NAME "hiredate”,

e.hire)
) AS "result"
FROM enpl oyees e
WHERE ... ;
N
ID result
1001 <Enp>
Enpl oyee <nane>Smi t h</ nane>
was hired on
<hi r edat €>2000- 05- 24</ hi r edat e>
</ Enp>
1206 <Enp>

Enpl oyee <nane>Marti n</ name>

was hired on

<hi r edat €>1996- 02- 01</ hi r edat e>
</ Enp>

Null values must always be taken into
consideration in SQL. If the value of an attribute is
the null value, then that attribute does not appear in
the element. If a value that provides content for an
element is the null value, then that content is not
included in the element.

XML documents increasingly make use of
namespaces. An element with a particular namespace
would be created as follows:

XMLELEMENT
(NAME "hr:enp",
XMLATTRI BUTES (' http://ww. hr.cont hr'
AS "xm ns: hr")

XMLFOREST

XMLFOREST produces a forest of elements. Each of
its arguments is used to create a new element. Like
the XMLATTRIBUTES clause that we discussed
above, an explicit name for the element can be
provided, or the name of the column can be used
implicitly.

SELECT e.id,

XMLFOREST (e.hire,
e.dept AS "departnent"

) AS "result"
FROM enpl oyees e
VWHERE ... ;
N
ID result

1001 <HI RE>2000- 05- 24</ H RE>

<depar t ment >Account i ng</ depart nent >
1206 <H RE>1996- 02- 01</ H RE>

<depart ment >Shi ppi ng</ depart nent >

XMLGEN

XMLGEN is very similar to an XML Query element
constructor. The user provides as its first argument a
template that contains placeholders for values that
will be supplied later. The placeholders have the form
“{$nane} . The subsequent arguments provide
values with associated names that are used to
instantiate the template.
SELECT e.id,
XMLGEN (' <Enmp name="{$NAME}" >
<hi r e_dat e>{ $HI RE} </ hi r e_dat e>
<dept >{ $DEPT} </ dept >

</ Enp>',

| nane AS nane,

e.hire,

e. dept

) AS "result"
FROM enpl oyees e
WHERE ... ;
-
1D result

1001 <Enp nanme="Smth">
<hi re_dat e>2000- 05- 24</ hi r e_dat e>
<dept >Account i ng</ dept >
</ Emp>
1206 <Enp name="Martin">
<hi re_dat e>1996- 02- 01</ hi r e_dat e>
<dept >Shi ppi ng</ dept >
</ Enmp>

Placeholders can be used to specify element
content and attribute values, as we have just shown.
They can also be used to specify element names and
attribute names. This is something that cannot be
done with XMLELEMENT.

XMLCONCAT

XMLCONCAT produces a forest of elements by
concatenating its XML arguments.

SELECT e.id,
XM_CONCAT
(XMLELEMENT (NAME “first",
e. fnane),
XMLELEMENT (NAME "l ast",
e. | nane)
) AS "result"
FROM enpl oyees e ;

—

ID result

1001 <first>John</first>
<l ast >Sm t h</| ast >

1206 <first>Mary</first>
<l ast>Martin</|ast>

An argument that is the null value is
dropped from the result. If all of the arguments are
the null value, then the result is the null value.

XMLAGG

XMLAGG is an aggregate function that produces a
forest of elements from a collection of elements.

SELECT XMLELEMENT
(NAME "Departnment",
XMLATTRI BUTES
(e.dept AS "nane"),
XMLAGG
(XMLELEMENT
(NAME "enp", e.lnanme)

)
) AS "dept_list"
FROM enpl oyees e
GROUP BY dept ;

—

dept_list

<Depart ment name="Accounting">
<enp>Yat es</ enp>
<enp>Sm t h</ enp>

</ Depart nent >

<Depart ment nanme=" Shi ppi ng">
<enp>Qppenhei mer </ enp>
<enp>Marti n</ enp>

</ Depart nent >

This query produces a <Depar t nent >
element with the department’s employees contained
inside it. Each group of employee rows is evaluated
by XMLAGG, producing a collection of XML
values. These values are then concatenated to
produce a forest of XML values.

The values can also be sorted before
concatenation takes place. To sort the employees of
each department by their last name, we would write
the following:

XMLAGG (XMLELEMENT (NAME "enp", e.lnane)
ORDER BY e. | nane
)

Mapping non-Predefined Data
Types

In our previous paper on SQL/XML, we described
the mapping of SQL’s predefined data types to XML
Schema data types. Since then, a proposal was
accepted [6] that added the mapping of some of
SQL’s non-predefined data types, specifically
DOMAIN, Distinct UDT (User-defined Data Type),
ROW, ARRAY, and MULTISET.

We will show the XML Schema type
definition that is generated for each of these types
and the elements that are generated.

Annotations are defined to reflect the SQL
metadata that caused the XML Schema type to be

generated. The xsd: annot at i on elements that we
show may be generated by an implementation or they
may be omitted.

Domain

Let us consider the definition of a JOBCLASS
domain and a column that uses this definition:

CREATE DOMAI N j obcl ass AS | NTEGER
DEFAULT 1
CHECK VALUE BETWEEN 0 AND 14

CREATE TABLE enpl oyee (
i é;/él j obcl ass,
)

The XML Schema that is generated for this
column includes the following:

<xsd: si npl eType
nanme=" DOVAI N. ADM N. HR. JOBCLASS' >

<xsd: annot ati on>
<xsd: appi nf 0>
<sgl xm : sqgl type ki nd=" DOVAI N
cat al ogNane=" ADM N
schemaNane=" HR
t ypeNane=" JOBCLASS'
mappedType=' | NTEGER
final = true'/>
</ xsd: appi nf 0>
</ xsd: annot ati on>

<xsd:restriction base='|NTEGER />
</ si npl eType>

The domain’s underlying data type is used
to create the <LEVEL> element.

<EMPLOYEE>
<r ow>

<LEVEL>12</ LEVEL>
</ row>

</ EMPLOYEE>

Distinct UDT

Stronger typing could be achieved if the creator of
the employee table used a Distinct UDT instead of a
domain:

CREATE TYPE j obcl ass AS | NTEGER FI NAL

The following XML Schema type definition
is generated:

<xsd: si npl eType
name=' UDT. ADM N. HR. JOBCLASS' >

<xsd: annot ati on>
<xsd: appi nf 0>
<sql xm : sql t ype ki nd=" DI STI NCT'
cat al ogName=' ADM N
schemaNanme="' HR
t ypeName="' JOBCLASS'
mappedType=' | NTEGER
final="true'/>
</ xsd: appi nf 0>
</ xsd: annot ati on>

<xsd:restriction base='|NTEGER />
</ si npl eType>

The element that is created for a column of
this type is the same as it was for a domain.

Row

A ROWtype might be used to define the location of
an employee’s birth. SQL’s ROWtypes are
anonymous. This makes constructing a unique name
using only the row’s definition impossible. Instead,
“ROW ” is followed by a unique identifier that is
chosen by an implementation. Two columns that use
exactly the same ROWtype could share an XML
Schema definition of the row type, or they could use
two separate definitions.

CREATE TABLE enpl oyee (

birth ROV (city VARCHAR(30),
state CHAR(2))

The XML Schema that is generated for this
table includes the following:

<xsd: conpl exType nanme=' RON 001' >
<xsd: annot ati on>

<xsd: appi nf 0>
<sgl xm : sqgl type ki nd=" ROWN >
<sglxm :field name='"CI TY'
mappedType=' VARCHAR 30' />
<sqgl xm : field name=" STATE'
mappedType=' CHAR 2' / >
</ sqgl xm : sql t ype>
</ xsd: appi nf 0>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement nanme='CI TY'
nillable="true' type='VARCHAR 30'/>
<xsd: el ement nanme=' STATE'
nillable='true' type='CHAR 2'/>
</ xsd: sequence>

</ xsd: conpl exType>

An element that might be generated for a
column of this type is:

<Bl RTH>
<Cl TY>Long Beach</Cl TY>
<STATE>NY</ STATE>

</ Bl RTH>

Array

An employee might have several phone numbers at
which he or she can be reached. A user might choose
to use an ARRAY to represent this information.

CREATE TABLE enpl oyee (
phone CHAR(10) ARRAY] 4] ,

)

The XML Schema data type that is
generated for this SQL data type is:

<xsd: conpl exType name=' ARRAY_4. CHAR_10' >

<xsd: annot ati on>
<xsd: appi nf o>
<sqgl xm : sql type
ki nd=" ARRAY'
maxEl ement s=' 4'
mappedEl ement Type=' CHAR_10' / >
</ xsd: appi nf 0>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nane='el enent’
m nCccurs='0" maxQccurs='4'
nillable='true' type='CHAR 10'/>
</ xsd: el ement >
</ xsd: sequence>

</ xsd: conpl exType>

An element that might be generated for a
column of this type is:

<PHONE>
<el enent >1- 333- 555- 1212</ el enent >
<el ement xsi:nil="true"/>

<el enent >1- 444-555-1212</ el enent >
</ PHONE>

Xsi:nil ="true" isused to represent an
element of the array whose value is the null value.
This use of xsi : ni | ="true" is independent of the

user’s choice for the mapping nulls in the table or
tables that he or she has chosen.

Multiset

The employee’s phones might be defined using a
MULTI SET instead of an ARRAY:

CREATE TABLE enpl oyee (
.p.h;)’ne CHAR(10) MULTI SET,
)

The XML Schema data type that is
generated for this SQL data type is:

<xsd: conpl exType nanme=' MULTI SET. CHAR _10' >

<xsd: annot at i on>
<xsd: appi nf o>
<sql xm : sql t ype ki nd=" MULTI SET'
mappedEl enent Type=' CHAR _10' / >
</ xsd: appi nf 0>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el enent nanme='el enent
m nCccurs='0" nmaxQOccur s=' unbounded
nillable='true' type='CHAR 10'/>
</ xsd: el enent >
</ xsd: sequence>

</ xsd: conpl exType>

An element that might be generated for a
column of this type is:

<PHONE>
<el enent >1- 333-555-1212</ el enent >
<el enent xsi:nil="true"/>

<el enent >1- 444-555-1212</ el enent >
</ PHONE>

Future Work

Additional features will likely be introduced before
the document progresses from FCD to DIS (Draft
Information Standard). These features might include
some of the following:

= An operator to create an XML document

= An operator to parse an XML document
contained in a CHAR or CLOB (Character Large
Object) value, producing an XML value

= An operator to serialize an XML value,
producing a CHAR or CLOB value

= An operator that produces a table with scalar
columns from an XML value

= CAST to and from the XML data type

= Define the mapping of Structured UDT’s to
XML

= Predicates to test XML values (is this an
element, is this a document, does this contain
mixed content, etc.)

= An operator to check the validity of an element
or document according to an XML Schema

= An operator that executes an XPath or XQuery
expression using one or more XML values

References

[17 SQL/XML and the SQLX Informal Group of
Companies, Andrew Eisenberg and Jim Melton,
ACM SIGMOD Record, Vol. 30 No. 3, Sept.
2001,
http://www.acm.org/sigmod/record/issues/0109/s
tandards.pdf.

[2] Database Languages—SQL - Part 14: XML-
Related Soecifications (SQL/XML) — Final
Committee Draft, H2-2002-063, WG3:ICN-011,
Jim Melton (Editor), March 2002,
ftp://sqlstandards.org/SC32/WG3/Progression_D
ocuments/FCD/4FCD1-14-XMIL-2002-03.pdf.

[3] XQuery 1.0: An XML Query Language, Don
Chamberlin, James Clark, Daniela Florescu,
Jonathan Robie, Jérdme Siméon, Mugur
Stefanescu, Dec. 20, 2001,
http://www.w3.org/TR/xquery/.

[4] Mapping Tablesto XML Documents,
H2-2001-373r1, WG3:YYJ-038r1, Andrew
Eisenberg, Fred Zemke, Murali Krishnaprasad,
Oct. 11, 2001,
ftp://sqlstandards.org/SC32/National Bodies/US
A NCITS H2/2001docs/H2-2001-373r1.pdf.

[5] The XML Data Type, H2-2002-020r2,
WG3:VIE-018r1, Amelia Carlson, et al, Feb. 14,
2002,
ftp://sqlstandards.org/SC32/National Bodies/US
A _NCITS H2/2002docs/H2-2002-020r2.pdf.

[6] Mapping non-predefined SQL typesto XML,
H2-2002-018, WG3:VIE-017, Fred Zemke,

Jan. 4, 2002,
ftp://sqlstandards.org/SC32/National_Bodies/US
A _NCITS H2/2002docs/H2-2002-018.pdf.

Web References

International Committee for Information Technology
Standards (INCITS)
http://www.incits.org/

NCITS H2 — Database Committee
http://www.incits.org/tc_home/h2.htm

ISO/IEC JTC 1/SC32
http://www.jtc1sc32.org

SQLX http://www.sqlx.org

W3C http:// www.w3.org

http://www.acm.org/sigmod/record/issues/0109/standards.pdf
http://www.acm.org/sigmod/record/issues/0109/standards.pdf
ftp://sqlstandards.org/SC32/WG3/Progression_Documents/FCD/4FCD1-14-XML-2002-03.pdf
ftp://sqlstandards.org/SC32/WG3/Progression_Documents/FCD/4FCD1-14-XML-2002-03.pdf
http://www.w3.org/TR/xquery/
ftp://sqlstandards.org/SC32/National_Bodies/USA_NCITS_H2/2001docs/H2-2001-373r1.pdf
ftp://sqlstandards.org/SC32/National_Bodies/USA_NCITS_H2/2001docs/H2-2001-373r1.pdf
ftp://sqlstandards.org/SC32/National_Bodies/USA_NCITS_H2/2002docs/H2-2002-020r2.pdf
ftp://sqlstandards.org/SC32/National_Bodies/USA_NCITS_H2/2002docs/H2-2002-020r2.pdf
ftp://sqlstandards.org/SC32/National_Bodies/USA_NCITS_H2/2002docs/H2-2002-018.pdf
ftp://sqlstandards.org/SC32/National_Bodies/USA_NCITS_H2/2002docs/H2-2002-018.pdf
http://www.incits.org/
http://www.incits.org/tc_home/h2.htm
http://www.jtc1sc32.org/
http://www.sqlx.org/
http://www.w3.org/

	SQL/XML is Making Good Progress
	Introduction
	Mapping Tables to XML Documents
	Mapping the Data
	Null Values
	Generating an XML Schema
	Naming all of the Types

	Table Mapping and XML Query

	XML Data Type
	XMLELEMENT
	XMLFOREST
	XMLGEN
	XMLCONCAT
	XMLAGG

	Mapping non-Predefined Data Types
	Domain
	Distinct UDT
	Row
	Array
	Multiset

	Future Work
	References
	Web References

