A Brief Survey of Web Data Extraction Toolst?

Alberto H. F. Laender
Altigran S. da Silva*

Berthier A. Ribeiro-Neto

Juliana S. Teixeira

Department of Computer Science
Federal University of Minas Gerais

31270-901 Belo Horizonte MG Brazil
{laender,berthier,alti,julianay@dcc.ufmg.br

ABSTRACT

In the last few years, several works in the literature have
addressed the problem of data extraction from Web pages.
The importance of this problem derives from the fact that,
once extracted, the data can be handled in a way similar
to instances of a traditional database. The approaches pro-
posed in the literature to address the problem of Web data
extraction use techniques borrowed from areas such as natu-
ral language processing, languages and grammars, machine
learning, information retrieval, databases, and ontologies.
As a consequence, they present very distinct features and
capabilities which make a direct comparison difficult to be
done. In this paper, we propose a tazonomy for character-
izing Web data extraction tools, briefly survey major Web
data extraction tools described in the literature, and provide
a qualitative analysis of them. Hopefully, this work will stim-
ulate other studies aimed at a more comprehensive analysis
of data extraction approaches and tools for Web data.

1. INTRODUCTION

With the explosion of the World Wide Web, a wealth of
data on many different subjects has become available on-
line. This has opened the opportunity for users to ben-
efit from the available data in many interesting ways [7].
Usually, users retrieve Web data by browsing and keyword
searching, which are intuitive forms of accessing data on
the Web. However, these search strategies present several
limitations. Browsing is not suitable for locating particular
items of data, because following links is tedious and it is easy
to get lost. Keyword searching is sometimes more efficient
than browsing, but often returns vast amounts of data, far
beyond what the user can handle. As a result, in spite of
being publicly and readily available, Web data can hardly
be properly queried or manipulated as done, for instance, in
traditional databases.

tThis work was partially supported by Project SIAM
(MCT/CNPq/PRONEX grant number 00418.00/00) and by
the authors’ individual grants from CNPq and CAPES.

1On leave from the University of Amazonas, Brazil.

For handling Web data more effectively, some researchers
have resorted to ideas taken from the database area [13].
Databases, however, require structured data and, therefore,
traditional database techniques cannot be directly applied
to Web data. The advent of XML [6] as a standard for struc-
turing data available on the Web has brought some light to
this problem, but this technology per se does not provide
a trivial solution for properly manipulating existing Web
data. Indeed, the volume of unstructured or semistructured
data available on the Web is enormous and is still increas-
ing. Thus, to address this problem, a possible strategy is
to extract data from Web sources to populate databases for
further handling.

The traditional approach for extracting data from Web sour-
ces is to write specialized programs, called wrappers, that
identify data of interest and map them to some suitable for-
mat as, for instance, XML or relational tables. The most
challenging aspect of wrappers is that they must be able to
recognize the data of interest among many other uninterest-
ing pieces of text (e.g., markup tags, inline code, navigation
hints, etc.). These data might have a flat structure, but
might also be complex and present an implicit multi-level
hierarchical structure, that is often non-rigid. This means
that the data may exhibit structural variations that must
be tolerated and treated accordingly.

Developing wrappers manually has many well known short-
comings, mainly due to the difficulty in writing and main-
taining them. Recently, many tools have been proposed to
better address the issue of generating wrappers for Web data
extraction [3, 4, 8, 9, 10, 11, 14, 16, 18, 20, 23, 28, 30, 31].
Such tools are based on several distinct techniques such as
declarative languages [4, 9, 16], HTML structure analysis
[10, 23, 31], natural language processing [14, 28, 32], ma-
chine learning [8, 18, 20], data modeling [3, 30], and ontolo-
gies [11].

The problem of generating a wrapper for Web data extrac-
tion can be stated as follows. Given a Web page S con-
taining a set of implicit objects, determine a mapping W
that populates a data repository R with the objects in S.
The mapping W must also be capable of recognizing and ex-
tracting data from any other page S’ similar to S. We use
the term similar in a very empirical sense, meaning pages
provided by a same site or Web service, such as pages of a
same Web bookstore. In this context, a wrapper is a pro-
gram that executes the mapping W. A common goal of all

wrapper generation tools is to generate wrappers that are
highly accurate and robust, while demanding as little ef-
fort as possible from the wrapper developers. As we shall
see, in practice, this imposes an important trade-off between
the degree of automation of a tool and the flexibility of the
wrappers generated by it.

As more and more tools for Web data extraction continue
to appear, the need for the analysis of their capabilities and
features arises. In this paper we briefly survey some of the
tools described in the literature, also discussing how some
features that we regard as most important for Web data
extraction are supported by each tool.

A pioneer initiative for comparing tools and techniques for
Web data extraction is the RISE Web site [26]. In this
site, experimental results performed using STALKER [28],
WHISK [32], SRV [14], WIEN [20], and RAPIER [8], which
are tools based on either machine learning or natural lan-
guage processing, have been made available. These quan-
titative results were submitted by the authors of the tools
themselves. Unfortunately, only in some few cases results
generated by distinct tools are directly comparable. In [27],
Muslea compares and contrasts various types of extraction
patterns that are generated by different types of machine
learning algorithms. However, a more comprehensive anal-
ysis of data extraction approaches and tools for Web data
has not yet been carried out, mainly due to the difficulty to
establish a general framework for such a comparison. The
present paper is a first attempt in this direction.

The paper is organized as follows. In Section 2 we introduce
a taxonomy for characterizing Web data extraction tools.
Section 3 presents an overview of major data extraction tools
found in the literature. Following, in Section 4, we present a
qualitative analysis of these tools. Finally, Section 5 presents
our conclusions.

2. ATAXONOMY FORCHARACTERIZING
WEB DATA EXTRACTION TOOLS

This section presents a taxonomy for grouping the various
tools we have studied. This taxonomy is based on the main
technique used by each tool to generate a wrapper, what led
us to the following groups of tools: Languages for Wrapper
Development, HTML-aware Tools, NLP-based Tools, Wrap-
per Induction Tools, Modeling-based Tools, and Ontology-
based Tools.While such a taxonomy is useful for didactic
purposes, it must not be taken as the only possibility. In
fact, there are cases where a same tool could fit in two or
more of the identified groups. However, the proposed tax-
onomy is helpful as a guide for properly understanding the
existing approaches to Web data extraction and to assess
the suitability of the covered tools for specific applications.
In what follows, we describe the main characteristics of the
tools belonging to each group.

Languayesfor WrapperDevelopment.

One of the first initiatives for addressing the problem of
wrapper generation was the development of languages spe-
cially designed to assist users in constructing wrappers. Such
languages were proposed as alternatives to general purpose
languages such as Perl and Java, which were prevalent so far
for this task. Some of the best known tools that adopt this

approach are Minerva [9], TSIMMIS [17], and Web-OQL [4].
Other representative tools of this approach are FLORID [24]
and Jedi [19], but these tools are not covered in this paper.

HTML-aware Tools.

‘We group here tools that rely on inherent structural features
of HTML documents for accomplishing data extraction. Be-
fore performing the extraction process, these tools turn the
document into a parsing tree, a representation that reflects
its HTML tag hierarchy. Following, extraction rules are gen-
erated either semi-automatically or automatically and ap-
plied to the tree. Some representative tools based on such an
approach are W4F [31], XWRAP [23], and RoadRunner[10].
Another tool that can be regard as HTML-aware is Lixto [5],
but we will not discuss it in this paper.

NLP-basediools.

Natural language processing (NLP) techniques have been
used by several tools to learn extraction rules for extract-
ing relevant data existing in natural language documents.
These tools usually apply techniques such as filtering, part-
of-speech tagging, and lexical semantic tagging to build re-
lationship between phrases and sentences elements, so that
extraction rules can be derived. Such rules are based on
syntactic and semantic constraints that help to identify the
relevant information within a document. The NLP-based
tools are usually more suitable for Web pages consisting of
free text, possibly in telegraphic style, such as job listings,
apartment rental advertisements, seminar announcements,
etc. Representative tools based on such an approach are
RAPIER [8], SRV [14], and WHISK [32].

WrapperinductionTools.

The wrapper induction tools generate delimiter-based ex-
traction rules derived from a given set of training examples.
The main distinction between these tools and those based on
NLP is that they do not rely on linguistic constraints, but
rather in formatting features that implicitly delineate the
structure of the pieces of data found. This makes such tools
more suitable for HTML documents than the previous ones.
Tools such as WIEN [20], SoftMealy [18], and STALKER [28]
are representative of this approach.

Modeling-basedools.

This category includes tools that, given a target structure
for objects of interest, try to locate in Web pages portions of
data that implicitly conform to that structure. The struc-
ture is provided according to a set of modeling primitives
(e.g, tuples, lists, etc.) that conform to an underling data
model. Following, algorithms similar to those used by the
wrapper induction tools identify objects with the given struc-
ture in the target pages. Tools that adopt this approach are
NoDoSE [3] and DEByE [21, 30].

Ontolagy-basedrools.

All approaches described previously rely on the structure of
presentation features of the data within a document to gen-
erate rules or patterns to perform extraction. However, ex-
traction can be accomplished by relying directly on the data.
Given a specific domain application, an ontology can be used
to locate constants present in the page and to construct ob-
jects with them. The most representative ontology-based

tool is the one developed by the Brigham Young University
Data Extraction Group [11].

3. OVERVIEW OF WEB DATA EXTRAC-
TION TOOLS

In this section we overview the Web data extraction tools we
have studied. We notice that the list of tools covered here
must not be regarded as complete. Although we have tried
to cover the most representative tools that have appeared
in the recent literature, our study is not exhaustive. The
presentation of the tools follows the taxonomy introduced
in Section 2.

3.1 Languagesfor Wrapper Development
Minerva — An important component of the Araneus system
[25] is Minerva [9], a formalism for the development of wrap-
pers. Minerva combines a declarative grammar-based ap-
proach with features typical of procedural programming lan-
guages. The grammar used by Minerva is defined in the
EBNF style: for each document, a set of productions is
defined; each production defines the structure of a non-
terminal symbol of the grammar, in terms of terminal sym-
bols and other non-terminals. Minerva is complemented by
a language for searching and restructuring documents called
Editor, which provides basic operations found in text editors.
For dealing with irregularities commonly found in Web data,
Minerva provides an explicit procedural mechanism for han-
dling exceptions inside of the grammar parser. For each
production of the grammar, it is possible to add an ezcep-
tion clause, containing a piece of Editor code. Whenever the
parsing of that production fails, an exception is raised and
the corresponding exception code is executed.

TSIMMIS - Among other components for semistructured
data management, TSIMMIS [17] includes wrappers that
can be configured through specification files written by the
user [16]. Specification files are composed by a sequence of
commands that define extraction steps. Each command is
of the form [variables, source, pattern] where variables rep-
resents a set of variables that hold the extraction results,
source specifies the input document to be considered (e.g.,
a Web page), and pattern allows matching the data of inter-
est within the source. The data stored in the variables can
be used as input for subsequent commands. An extractor
based on a specification file parses an HTML page to locate
the interesting data and extract them. After the last com-
mand is executed, the set of variables holds the extracted
data. Although there is no language for wrapper develop-
ment formally defined for TSIMMIS, we included it in this
survey because of its historical importance and pioneering.

Web-OQL — Originally aimed at performing SQL-like queries
over the Web, Web-OQL [4] is a declarative query language
that is capable of locating selected pieces of data in HTML
pages. For this, a generic HTML wrapper parses a page
given as input and produces as result an abstract HTML
syntax tree, called a hypertree, representing the document.
Using the syntax of the language, it is possible to write
queries that locate data of interest in the hypertree and then
output these data in a suitable format (e.g., tables). This is
how Web data extraction can be accomplished using Web-
OQL. Navigation through hypertrees is also supported.

3.2 HTML-awar e Tools

W4F (World Wide Web Wrapper Factory) — W4F [31] is
a toolkit for building wrappers. W4F divides the wrap-
per development process in three phases: first, the user de-
scribes how to access the document, second, he describes
what pieces of data to extract, and third, he declares what
target structure to use for storing the data extracted. A
document is first retrieved from the Web according to one
or more retrieval rules. Once retrieved, it is fed to an HTML
parser that constructs a parsing tree following the Document
Object Model (DOM) [34]. Following, the user can write ex-
traction rules for locating data into the parsing tree. The ex-
tracted data is stored using the WA4F internal format, called
NSL (Nested String List). Finally, NSL structures can be
exported to upper-level applications, according to specific
mapping rules. The language used by WA4F to define ex-
traction rules is called HEL (HTML Extraction Language).
An extraction rule is an assignment between a variable name
and a path expression. W4F offers a wizard to assist the user
in writing extraction rules that are applied to tree nodes to
extract data. For a given Web document, the user is pre-
sented with the same document annotated with additional
information. The user clicks on the pieces of information of
interest and the wizard returns a corresponding extraction
rule. The wizard cannot deal with collection of items, so if
the user is interested in various items of the same type of
that one clicked on, conditions must be attached to the path
expression to write robust extraction rules.

XWRAP — Another important HTML-aware tool for semi-
automatic construction of wrappers is XWRAP [23]'. The
tool features a component library that provides basic build-
ing blocks for wrappers, and a user-friendly interface to ease
the task of wrapper development. Before accomplishing the
extraction process, the tool “cleans up” bad HTML tags
and syntactical errors and turns the document into a pars-
ing tree. The tool operates by leading the user through a
number of steps, selecting in each step proper components of
its library. At the end, XWRAP outputs a wrapper (coded
in Java) for a specific source. In the object extraction step,
the tool deploys a pre-defined set of data extraction heuris-
tics tailored for HTML pages. The user may try one of six
heuristics available to locate data objects of interest. If the
user is satisfied with the extraction results, the extraction
process may go on. The user can also refine the extraction
by restricting or relaxing the number of components per ob-
ject or by specifying data types for the elements. When the
extraction result is satisfactory, the user may enter a tag
name for each of the elements extracted and proceed to the
wrapper code generation step.

RoadRunner — A recent tool that further explores the in-
herent features of HTML documents to automatically gen-
erate wrappers is RoadRunner [10]. It works by comparing
the HTML structure of two (or more) given sample pages
belonging to a same “page class”, generating as a result
a schema for the data contained in the pages. From this
schema, a grammar is inferred which is capable of recog-
nizing instances of the attributes identified for this schema

In this paper, we cover only the XWRAP Elite
version, which 1is available for wuse at the URL
http://www.cc.gatech.edu/projects/disl/ XWRAPElite/

in the sample pages (or in pages of the same “class”). To
accurately capture all possible structural variations occur-
ring on pages of a same page class, it is possible to provide
more than two sample pages. All the extraction process is
based on an algorithm that compares the tag structure of the
sample pages and generates regular expressions that handle
structural mismatches found between the two structures. In
this way, the algorithm discovers structural features such as
tuples, lists, and variations. It should be noted that the pro-
cess is fully automatic and no user intervention is requested,
a feature that is unique to RoadRunner.

3.3 NLP-basedTools

RAPIER (Robust Automated Production of Information Ex-
traction Rules) — RAPIER is a tool aimed at extracting data
from free text. It takes as input a document and a filled
template indicating the data to be extracted. This tem-
plate is used to learn data extraction patterns to extract
data for populating its slots. The learning algorithm in-
corporates techniques from several inductive logic program-
ming tools and learns unbounded patterns that include con-
straints on the words and part-of-speech tags surrounding
the filler data. These patterns consist of three distinct slots:
the Pre-, Post-, and Filler. The formers play the role of left
and right delimiters, while the later describes the structure
of the data to be extracted. RAPIER extracts a single record
from each document taken as input, and is therefore termed
to be “single-slot” [32].

SRV — Based on a given set of training examples, SRV [14]
is a tool for learning extraction rules for text documents. It
relies on a set of token-oriented features that can be either
simple or relational. A simple feature is a function mapping
a token to some discrete value, for example, word, punc-
tuation, or numeric. A relational feature maps a token to
another token, for instance, prev-token or next-token. The
learning of rules comnsists in identifying and generalizing the
features found in the training examples. The existence of a
number of HTML-specific features (such as in-title or after-
p) in its default feature set, makes SRV able to extract data
from HTML documents. SRV is also a “single-slot” tool.

WHISK — Another tool for data extraction from text docu-
ments is WHISK [32]. In this tool, a set of extraction rules
is induced from a given set of training example documents.
Beginning with an empty set of rules, at each iteration it
selects and presents to the user a batch of instances to be
tagged. The user uses a graphical interface to add a tag for
each attribute of interest to be extracted from the instance.
Then, WHISK uses the tagged instances to create rules and
also to test the accuracy of the proposed rules. These rules
are based on a form of regular expression patterns that iden-
tify the context of relevant phrases and the exact delimiters
of those phrases. WHISK is “multi-slot”, i.e., it is capable
of extracting several records from a document.

3.4 Wrapper Induction Tools

WIEN — A pioneer wrapper induction tool is WIEN [20],
which takes as input a set of pages where data of inter-
est is labeled to serve as examples, and returns, as a result,
a wrapper that is consistent with each labeled page. The

pages are assumed to have a pre-defined structure and spe-
cific induction heuristics are used to generate specific wrap-
pers. For instance, if the pages have an HLRT structure (i.e.,
pages have a head, a body containing flat tuples of data de-
lineated by a left and a right component to be extracted,
and then a tail), an HLRT wrapper is generated. Wrappers
generated by WIEN do not deal with nested structures or
with variations typical of semistructured data.

SoftMealy — Similar to WIEN, SoftMealy [18] is a wrapper
induction tool that generates extraction rules expressed us-
ing a special kind of automata called finite-state transducers
(FST). An FST consists of input/output alphabets, states,
and edges. To deal with structural variations, each state of
the FST may have multiple outgoing edges. Before extract-
ing data from a document, the wrapper segments an input
HTML string into tokens, then the algorithm tries to induce
extraction rules based on the context formed by the separa-
tors (tokens) of adjacent attributes present in given training
examples. The resulting FST takes a sequence of tokens as
input and matches the context separators with contextual
rules to determine state transitions. An FST is constructed
for one tuple type. If there can be many types of tuples in
a document, an FST can be built for each type.

STALKER - The wrapper induction techniques used in WIEN
and SoftMealy are further developed in STALKER [28], a tool
that can deal with hierarchical data extraction. The inputs
to STALKER are: (1) a set of training examples in the form
of a sequence of tokens representing the surrounding of the
data to be extracted; (2) a description of the pages structure,
called an Embedded Catalog Tree (ECT). STALKER gener-
ates an extraction rule that covers as many as possible of the
given examples. While uncovered examples exist, it gener-
ates a new disjunctive rule. When all positive examples are
covered, STALKER returns the solution, that consists of a
set of disjunctive rules. Using the ECT, STALKER can deal
with nesting hierarchical objects.

3.5 Modeling-basedTools

NoDoSE (Northwestern Document Structure Extractor) —
NoDoSE [3] is an interactive tool for semi-automatically de-
termining the structure of documents that contain semistruc-
tured information and then extracting their data. Using a
graphical user interface, the user hierarchically decomposes
the document, outlining its interesting regions and describ-
ing their semantics. The decomposition process of a docu-
ment occurs in levels. For each level of decomposition, the
user builds an object with a complex structure, and then de-
composes it in other objects with a more simple structure.
After the user has “taught” the tool how to construct some
objects, he can let NoDoSE to learn how to identify other
objects in the document. This is accomplished by a mining
component that attempts to infer the grammar of the doc-
ument from objects constructed by the user. In its current
version, NoDoSE features mining components for plain text
and for HTML pages.

DEByE (Data Extraction By Example) — DEByE [21, 30] is
an interactive tool that receives as input a set of example
objects taken from a sample Web page and generates extrac-

tion patterns that allow extracting new objects from other
similar pages (e.g., pages from a same Web Site). DEByE
features a GUI that allows the user to assemble nested ta-
bles (with possible variations in structure) using pieces of
data taken from the sample page. The tables assembled
are examples of the objects to be identified on the target
pages. From these examples, DEByE generates object ez-
traction patterns (OEP) that indicate the structure and the
textual surroundings of the objects to be extracted. These
OEP are then fed to a bottom-up extraction algorithm that
takes a target page as input, identifies atomic values in this
page, and assembles complex objects using the structure of
the OEP as a guide.

3.6 Ontology-basedTools

This approach is mainly represented by the work of the Data
Extraction Group [11] at Brigham Young University (BYU).
In their tool, ontologies are previously constructed to de-
scribe the data of interest, including relationships, lexical
appearance, and context keywords. By parsing this ontol-
ogy, the tool can automatically produce a database by rec-
ognizing and extracting data present in documents or pages
given as input. Prior to the application of the ontology, the
tool requires the application of an automatic procedure to
extract chunks of text containing data “items” (or records)
of interest [12].

To work properly, this tool requires a careful construction
of an ontology, a task that must be done manually by an
expert in the domain of the ontology. On the positive side,
if the ontology is representative enough, the extraction is
fully automated. Furthermore, wrappers generated accord-
ing to such an approach are inherently resilient (i.e., they
continue to work properly even if the formatting features of
the source pages change) and adaptable (i.e., they work for
pages from many distinct sources belonging to a same ap-
plication domain). Indeed, these features are unique to this
approach. For convenience, in the remainder of the paper
we will refer to this tool as the BYU tool.

As another example of an ontology-based tool for data ex-
traction, we could cite X-tract [1], a tool for extracting data
from botanical textual descriptions. However, as this tool
applies only to a very specific domain, we will not discuss it
further in this paper.

4. QUALIT ATIVE ANALYSIS

In this section, we analyze how the studied tools support
some features that we regard as most important for data
extraction. We address the following features: degree of au-
tomation, support for complex objects, page contents, ease
of use, XML output, support for non-HTML sources, and
resilience and adaptiveness.

4.1 Degreeof Automation

A very important feature of any data extraction tool is its
degree of automation. This is related to the amount of work
left to the user during the process of generating a wrapper
for extracting Web data.

Regarding the degree of automation, the approaches based
on languages for wrapper generation still require the writing
of code, but provide some features, not available in general

purpose languages, that ease this task. In tools such as
Minerva, TSIMMIS, and Web-OQL, the user must examine
the document and find the HTML tags that separate the
objects of interest, and then write a program to separate
the object regions. In other words, the process of discovering
object boundaries is carried out manually.

HTML-aware tools usually provide a higher degree of au-
tomation. However, for this automation to be really effec-
tive, there must be a very consistent use of HTML tags in
the target page. Unfortunately, this is not true for a great
portion of Web pages available. In XWRAP, for example, the
component library has a number of predefined heuristics to
deal with several types of structuring HTML markups (e.g.,
tables, lists, etc.). By applying such heuristics and asking
for feedback from the user, the tool can extract data very
efficiently from certain type of pages. W4F uses the HTML
Extraction Language (HEL) to define extraction rules. It
features an extraction-wizard which can return a canonical
path expression for a piece of information selected by the
user. As the wizard cannot deal with collection of items, the
user who is interested in various items of the same type must
manually write extraction rules that generalize the path ex-
pressions provided by the wizard. That is, the extraction
process is semi-automatic. RoadRunner, as previously dis-
cussed, is fully automatic. In particular, the extraction pro-
cedure assumes that the target pages were generated from
some data source (e.g., a database). Then, several heuristics
are used to “reconstruct” the schema of such a data source
from the HTML tag hierarchy of the sample pages. This
exempts users from supplying a target schema as well as
examples of the data to be extracted.

The tools based on NLP, wrapper induction, and modeling
are said to be semi-automatic because, although the wrapper
generation process is fully automatic, the user has to provide
examples to guide it.

As already discussed, the BYU tool requires the construc-
tion of an ontology to work properly, what should be done
manually by an expert in the corresponding domain. After
this, if the ontology is representative enough, the extraction
is fully automated and can be used for other data sources
in the same domain. Indeed, this feature is unique of such
an approach. However, the ontology construction usually
requires substantial effort for being validated.

4.2 Support for Complex Objects

Most of the data available on the Web implicitly presents
a complex structure. Typically, this structure is loose, pre-
senting degrees of variation typical of semistructured data [2].
Further, in many situations, Web data is organized in hier-
archies with multiple nesting levels. Thus, wrapper gener-
ation tools are expected to deal with such complex objects
properly.

The exception mechanism and the Editor language featured
in Minerva make it suitable to deal with the variations nor-
mally found on Web data. They are used to properly re-
structure the data of interest, whenever a production of
the grammar fails. To represent complex objects, TSIM-
MIS adopts the Object Exchange Model (OEM) [29]. OEM
is a flexible model very suitable for representing semistruc-
tured data. Data represented in OEM counstitute a graph,

with a unique root object at the top and zero or more nested
sub-objects. Web-OQL is capable of querying pages with ir-
regular structure. The language, as well as the object model
based on hypertrees (ordered arc-labeled trees) adopted by
it, allows the representation of objects with structural vari-
ations and nested levels.

The language used by W4F to define extraction rules, HEL,
provides some operators that allow constructing objects with
complex structures. For instance, by using the fork opera-
tor [31], the user can group together in a single structure
data that appear in several places. This operator can be
used in cascade making it possible to build complex and
irregular structures. In all of these cases, it is possible to
handle complex objects by writing extraction code to deal
with them. XWRAP, on the other hand, can only deal with
nesting and variation if they are explicitly defined in the
HTML formatting of the source page. It is able to deter-
mine the nesting hierarchy of the source page, by identifying
top-level HTML structures (e.g., sections, tables) that form
the page and internal structures (e.g., columns, rows, sub-
sections). A similar approach is adopted by RoadRunner,
that is based on the notion of nested types, which allows
representing arbitrarily nested structures composed of lists
and tuples.

In SoftMealy, the wrapper is represented as a FST where
each state may have multiple outgoing edges. This allows
the representation of structural variations in the code of the
generated wrapper, making it capable of handling structural
variations. SoftMealy, however, does not deal with nested
structures. STALKER is more expressive than SoftMealy in
this regard, since it uses an Embedded Catalog Tree formal-
ism to describe the structure of the data contained in Web
pages. This formalism represents the structure of the tar-
get page as a tree, where the internal nodes represent com-
plex objects that can be decomposed and the external nodes
(leaves) represent atomic data items to be extracted. This
makes it able of dealing with nested structures. Structural
variations are handled by generating disjunctive rules from
the training examples provided by the user.

NoDoSE maintains a tree that maps the structural elements
of the document to the text of the file. Each node of the tree
represents one of the structural components of the document
such as an element of a list or a field in a record. In DEByE,
the underlying data model [21, 22] extends the usual notion
of nested tables by allowing the representation of variations
inside inner levels. Although such a model is not as powerful
as XML or OEM, it is expressive enough to represent data
presenting a hierarchical structure and structural variations.

RAPIER, SRV, WHISK, and WIEN support neither nesting
objects nor objects with structural variations.

4.3 PageContents

With respect to page contents, there are basically two kinds
of pages which wrapper generation tools apply to: those con-
taining semistructured data and those containing semistruc-
tured text. To illustrate, consider the pages presented in
Figures 1 and 2, which are examples of pages containing

semistructured data and semistructured text, respectively?.
‘While pages of the first type feature data items (e.g., names
of authors, titles of papers, etc.) implicitly formatted to be
recognized individually, pages of the second type bring free
text from which data items can only be inferred.

Languages for wrapper development (Minerva and Web-OQL),
HTML-aware tools (W4F, XWRAP, and RoadRunner), wrap-
per induction tools (WIEN, SoftMealy, and STALKER), and
modeling-based tools (NoDoSE and DEByE) usually rely on
delimiters surrounding data of interest to generate extrac-
tion rules. Thus they work better with pages of the first

type.

Tools based on natural language processing techniques, such
as RAPIER, SRV, and WHISK, are generally more suitable to
pages of the second type (e.g., job listings, apartment rental
advertisements, etc.), but require that pages containing free
text to be annotated by a syntactic analyzer and semantic
tagger.

As the BYU tool relies on the presence of recognizable con-
stants and keywords in the target page, it can be applied to
both types of pages. Indeed, the authors of this tool present
experimental results that corroborate this [11]. Notice, how-
ever, that the accuracy of the wrapper generated, for both
types of page, depends on how representative is the ontology
for the domain to which the pages belong.

4.4 Easeof Use

The main motivation behind data extraction tools is to ease
the task of wrapper development, which is traditionally ac-
complished by code writing using general purpose languages
such as Perl or Java.

Thus, to help the user develop wrappers for Web data,
some tools present a graphical user interface (GUI) aim-
ing at making this task easier. HTML-aware tools, NLP-
based tools, wrapper induction tools, and modeling-based
tools usually present a GUIL On the other hand, languages
for wrapper development require the user to execute all the
process manually. In the BYU tool, the ontology creation
process must also be done manually by the user.

All NLP-based tools as well as the wrapper induction ones
feature a GUI for the user to specify examples. In general,
they allow the user to select pieces of data and to label these
pieces of data properly to compose the examples.

In the case of the modeling-based tools, their GUI consti-
tute a crucial component in the whole extraction process.
In NoDoSE, the user interacts with the GUI to select and
decompose regions of interest in a page and also to associate
with each region a proper structure (e.g,. tuples, lists, etc.).
The GUI also allows the user to test the generated wrapper
against other pages and revise the previously generated ex-
traction rule when needed. In DEByE, the user provides ex-
amples by assembling nested tables in such a way that each
row of the outermost table corresponds to a distinct exam-

2These pages were taken respectively from the follow-
ing sites: DB&LP (http://www.informatik.uni-trier.
de/~ley/db/journals/tods/), Free Catalog of DB Tools
ftp://ftp.idiom.com./pub/free-databases), and RISE
http://www.isi.edu/"muslea/RISE/).

Volume 19, Number 1, March 1994

® Won Kim: Charter and Scope. 1-2
® Martin 8. Oliver, Sebastiaan H. von Solms:
A Taxonomy for Secure Object—Oriented Databases. 346,
Electronic Edition (link)
Parick Tendick. N $. Matloff:
A Modified Random Perturbation Method for Database Security. 4763,
Electronic Edition (link)
® James Clifford, Albert Crocker:
On Completeness of Historical Relational Query Languages. 64-116,
Electronic Edition (link)
® Kenneth Salem, Hector Garcia—Molina, Jeannie Shands:
Altruistic Locking. 117-165.
Electronic Edition (link)

(a)

name :
version:
interfaces:

Postgre2QL
6.1.1

SQL, C API, C++ API, Tcl API, PerlS5 API, Python API,

WWW Gateway, JDBC driver, X11

access methods:
multiuser:
transactions:
distributed:
query language:
limits:
robustness:
description:
status:

bugs:

ports:

contact:

how to get:
updated:

Heap plus secondary indezes: B-tree, R—tree, Hash.
yes

yes

no

SQL

?

?

PostgresQL is ...

actively develope

mailing list: pgsgl-bugs@postgresqgl.org
Linux, $Solaris, Digital Unix, *BSD and more
mailing list: pgsgl-questions@postgresgl.org
http://www.postgresql.org

1997/07/31

(b)

Figure 1: Pages Containing Semistructured Data

Rentals:
In-City/West/East Seattle: Houses | Condos | Apartments
5. Snohomish County/Northend: Houses | Condos | Apartments

In-City/West/East Seattle

Ballard 2 BF/2 ba, wyd. 1500 sf, Penthse, d/sv, 24th Av NW, §1195 987 -654-3210
#371

Belltown CONCEPT ONE, 1 BDRM, §775-$855, Lake Union & Sound Views, Fple,
WD, Gar Prkg Available 287 -654-3210

BALLARD AT LOCES Charming, security bldg, on bus-line, pool. Studio/1 BR
§535-$625. 987 —854-3210. NV Market St.

Ballard/Fremont — Modern tri—plez. 2 br. 745, 987 -654-3210.

You have reached the end of the list.

«0.2.595.11.00.22.cd0 1 +@andrew.cmu.edu.0>

Type: cmu.andrew academic.sds seminars

Topic: SKVORETZ Seminar

Dates: 4-May-95

Time: 4:00 - 5:30

PostedBy: Carole Deaunovich on 2-May-95 at 11:00 from andrew.cmu.edu
Abstract:

Professor John Skvoretz, U. of South Carolina, Columbia, will present
a seminar entitled "Embedded Commitment,” on Thursday, May 4th from
4-5:30in PH 223D]

(a)

(b)

Figure 2: Pages Containing Semistructured Text

ple. For this, the GUI provides several operations to build
nested tables (e.g., column insertion and deletion, nesting
and unnesting, etc.). The GUI also features an extraction
feedback mechanism that allows users to select objects im-
perfectly extracted and build new examples from them, thus
improving the extraction performance.

WA4F offers some “wizards” to assist the user in the task of
wrapper generation. For helping in the writing of extraction
rules for a target page, the user can select pieces of data of
interest and the eztraction wizard returns a corresponding
extraction rule in HEL. This rule can them be edited and
modified to cover pieces of data similar to the ones initially
selected. In the case of XWRAP, the whole extraction pro-
cess is guided by a GUI. It leads the user through a number
of steps, implicitly selecting in each step a proper compo-
nent of the library. At the end, XWRAP outputs a wrapper
(coded in Java) for a specific source.

A graphical tool (ONTOS) is also provided by the BYU tool
for helping the user in the process of editing an ontology.

The extraction process as performed by RoadRunner is fully
automated, since it does not require any user intervention,
besides selecting sample pages. Thus, from this point of
view, it can be considered easier for wrapper developers than
tools that require user intervention.

45 XML Output

XML [6] is becoming the most important standard for data
representation and exchange on the Web. Due to this fact,
we consider an important feature of a data extraction tool
whether it provides output in XML. In this section, we de-
scribe how some of the analyzed tools provide output in
XML.

In Minerva, the user has to explicitly write code to generate
an output in XML. To perform this task, the user must
refine the format of the extracted objects with appropriate
language statements. In W4F, there is a “mapping wizard”
that helps the user to create mapping rules to output the
extract data in XML. XWRAP and DEByYE natively provide
output in XML. NoDoSE supports a variety of formats to
output the data extracted from a document, among them
XML and OEM.

As for the other tools studied, at the best of our knowledge,
none of them provides XML output.

4.6 Support for Non-HTML Sources

A vast quantity of semistructured data stored in electronic
form is not present in HTML pages, but in text files, such as
e-mail messages, program code and documentation, configu-
ration files, system logs, etc. Therefore it is very important
that the data extraction tools might be able to handle such
data sources.

The NLP-based tools and the BYU tool are specially suitable
for non-HTML sources, since they do not depend on any
kind of markup to work.

The wrapper induction tools and the modeling-based tools
can also be used to extract data from non-HTML sources.
These tools do not rely uniquely on HTML tags, so they are
able to perform data extraction from other kinds of docu-
ments presenting some form of markup. The same can be
said about Minerva and TSIMMIS, where a skilled user can
code extraction rules based on any existing markup. On the
other hand, as Web-OQL, W4F, XWRAP, and RoadRunner
rely on the HTML tagging structure of the target page, they
cannot deal with non-HTML data sources.

It is interesting to notice that tools that do not rely uniquely
on HTML tags can be easily deployed for extracting data
from documents that use explicit markup formats such as
XML. This is useful, since it allows a uniform treatment of
less structured Web sources (e.g., HTML pages) and more
structured Web sources (e.g., XML documents) within a sin-
gle framework.

Another interesting advantage of tools capable of dealing
with non-HTML sources is that they can be used to ex-
tract from files generated by popular tools, such as Excel,
in some standard export format (e.g., comma delimited).
Additionally, this also opens the opportunity for interfacing
with standard data access API such as ODBC and JDBC,
that deal with such formats natively.

4.7 Resilienceand Adaptiveness

As the structural and presentation features of Web pages
are prone to frequent changes, a most needed property of
wrappers is resilience, i.e., the capacity of continuing to work
properly in the occurrence of changes in the pages to which
they are targeted. It is also desirable that a wrapper built
for pages of a specific Web source on a given application
domain could work properly with pages from another source
in the same application domain. Such a property is called
adaptiveness.

From all of the tools covered in this paper, only the BYU
tool features such properties. If an ontology for a given
application domain can be constructed for capturing enough
page-independent features of the data to be extracted, the
wrappers generated by the tool are inherently resilient and
adaptive.

In [15], the authors discuss how example-based data extrac-
tion tools such as DEByE can be extended to provide adap-
tiveness and, as a consequence, resilience. The general idea
is, given a repository R containing data extracted by a pre-
existing wrapper W generated for a source S, automatically
finding in R objects that can be used as examples for gener-
ating a new wrapper W’ for another source S’ in the same
domain of S. This same general strategy could be used,
in theory, with other tools such as WIEN, SoftMealy, and
STALKER, which are also based on examples given by the
user.

5. CONCLUSIONS

In this paper we presented a short survey of existing tools
for the generation of wrappers to extract data from Web

sources. In all of these tools, the main goal is to ease the
task of wrapper development, which is traditionally accom-
plished by code writing using languages such as Perl and
Java. We introduce a taxonomy for classifying the stud-
ied tools according to the type of technique they deploy for
generating wrappers. However, there are cases where this
simple criterion is not enough to characterize a tool. For
instance, the two tools that we classified as being modeling-
based, NoDoSE and DEByE, in fact use induction techniques
close to the ones used by the wrapper induction tools.

We also analyze qualitatively the tools studied, by examin-
ing how they support some features that we regard as most
important to accomplish the generation of wrappers and the
data extraction process performed by them. Table 1 presents
a summary of this analysis. In the column Ease of Use, the
number of “4” expresses the easiness of using the corre-
sponding tool. In the last column of this table, SD stands
for “Semistructured Data” and ST stands for “Semistruc-
tured Text”. Note that in this table we omit information on
resilience and adaptiveness, since among all tools studied
only the BYU tool provides this feature natively.

In Figure 3 we provide a distinct perspective of the summary
in Table 1. In this figure, we dispose the groups of data ex-
traction tools identified in Section 2 into a bi-dimensional
space where the horizontal axis represents the degree of au-
tomation of the tools belonging to a group and the vertical
axis represents the degree of flexibility of the tools.

Observing Figure 3, it can be seen that, at least in the
present state of the art of Web data extraction, there is
an inherent trade-off between the degree of automation and
the degree of flexibility of current data extraction tools pre-
sented in the literature. This is explained by the fact that
tools presenting a higher degree of automation implement
heuristics based on hypotheses (sometimes too strong ones)
about the features of the target pages (e.g., type of con-
tent, formatting, etc.). This alleviates users from providing
additional information on these features, but requires the
tuning of these tools for dealing with them, compromising
their generality. On the other hand, relying on the user
to provide specific information on the features of the data
to be extracted results in tools that require less predefined
heuristics to be used, so leading to flexibility.

To exemplify such a trade-off, consider that HTML-aware
tools use a number of heuristics to infer a plausible schema
from the HTML tag hierarchy of a target page. Thus, some
hypotheses on the use of HTML constructs to structure data
must be assumed. On the contrary, modeling-based tools
require the user to provide a schema for the data to be ex-
tracted according to his own perception of how the data is
organized. This reduces the dependency of such tools on the
HTML features of the target pages.

The classification and qualitative analysis presented in this
paper is part of a more comprehensive work we are carrying
out for comparing existing approaches and tools for Web
data extraction. In particular, of great interest is a quanti-
tative analysis of experimental results obtained with some
of the tools here mentioned, which is the main emphasis of
our current work and whose preliminary results are reported
in [33].

Support for Ease Support for Type of
XML
Tools pocgree of Complex of | Guput | Non-HTML Page
v Objects Use Sources Contents
Minerva Manual Coding + Yes Partial SD
Languages TSIMMIS Manual Coding + No Partial SD
Web-OQL Manual Coding + No None SD
WA4F Semi-Automatic Coding ++ Yes None SD
HTML-aware XWRAP Automatic Yes ++++ Yes None SD
RoadRunner Automatic Yes ++++ No None SD
WHISK Semi-Automatic No ++ No Full ST
NLP-based RAPIER Semi-Automatic No ++ No Full ST
SRV Semi-Automatic No ++ No Full ST
WIEN Semi-Automatic No ++ No Partial SD
Induction SoftMealy Semi-Automatic Partial ++ No Partial SD
STALKER Semi-Automatic Yes ++ No Partial SD
. NoDoSE Semi-Automatic Yes +++ Yes Partial SD
Modeling-based DEByE Semi-Automatic Yes +++ Yes Partial SD
Ontology-based BYU Manual Coding ++ No Full ST/SD
Table 1: Summary of the Qualitative Analysis
Degree of
Flexibility
Resilience/
Adaptiveness Ontology-based
Tools
Text NLP-based
Tools
Languages for Wrapper|
non-HTML Development Wrapper Induction | Modeling-based
Tools Tools
HTML-aware
HTML
Tools Degree of
Automatior
Manual Semi-automatic Automatic

Figure 3: Graphical Perspective of the Qualitative Analysis

6. REFERENCES

[1] ABAscCAL, R., AND SANCHEZ, J. A. X-tract:

[2

3

[4

—

—_

[llum)

Structure extraction from botanical textual
descriptions. In Proceeding of the String Processing &
Information Retrieval Symposium and International
Workshop on Groupware, SPIRE/CRIWG (Cancin,
Mexico, 1999), pp. 2-7.

ABITEBOUL, S. Querying semi-structured data. In
Database Theory - ICDT’97, 6th International
Conference, Delphi, Greece, January 8-10, 1997,
Proceedings (1997), F. N. Afrati and P. Kolaitis, Eds.,
vol. 1186 of Lecture Notes in Computer Science,
Springer, pp. 1-18.

ADELBERG, B. NoDoSE — A tool for
semi-automatically extracting structured and
semistructured data from text documents. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data (Seattle, WA,
1998), pp. 283-294.

AROCENA, G. O., AND MENDELZON, A. O. WebOQL:

Restructuring documents, databases, and webs. In

[6]

[7]

(8]

[9]

Proceedings of the 14th International Conference on
Data Engineering (Orlando, FL, 1998), pp. 24-33.

BAUMGARTNER, R., FLESCA, S., AND GOTTLOB, G.
Visual Web information extraction with Lixto. In
Proceedings of the 26th International Conference on
Very Large Data Bases (Rome, Italy, 2001),

pp. 119-128.

BrAy, T., PaoLl, J., AND SPERBERG-MCQUEEN, M.
Extensible markup language (XML) 1.0.
http://www.w3.org/TR/REC-xml.

BRIN, S., MOTWANI, R., PAGE, L., AND WINOGRAD,
T. What can you do with a Web in your pocket? Data
Engineering Bulletin 21, 2 (1998), 37-47.

CALIFF, M. E., AND MOONEY, R. J. Relational
Learning of Pattern-Match Rules for Information
Extraction. In Proceedings of the Sizteenth National
Conference on Artificial Intelligence and Eleventh
Conference on Innovative Applications of Artificial
Intelligence (Orlando, FL, 1999), pp. 328-334.

CRESCENZI, V., AND MEccA, G. Grammars have

[10]

[13]

[14]

[15]

exceptions. Information Systems 23, 8 (1998),
539-565.

CRESCENZI, V., MECCA, G., AND MERIALDO, P.
RoadRunner: Towards automatic data extraction
from large Web sites. In Proceedings of the 26th
International Conference on Very Large Data Bases
(Rome, Italy, 2001), pp. 109-118.

EmMBLEY, D. W., CaAMPBELL, D. M., JIANG, Y. S.,
LiDDLE, S. W., KAI NG, Y., Quass, D., AND SMITH,
R. D. Conceptual-model-based data extraction from
multiple-record Web pages. Data and Knowledge
Engineering 81, 3 (1999), 227-251.

EMBLEY, D. W., JIANG, Y. S., AND Ng, Y.-K.
Record-boundary discovery in Web documents. In
Proceedings ACM SIGMOD International Conference
of Management of Data (Philadelphia, PA, 1999),
pp. 467-478.

FLoRrEscu, D., LEvy, A. Y., AND MENDELZON,
A. O. Database techniques for the World-Wide Web:
A survey. SIGMOD Record 27, 3 (1998), 59-74.

FREITAG, D. Machine Learning for Information
Extraction in Informal Domains. Machine Learning
39, 2/3 (2000), 169-202.

GOLGHER, P. B., DA SiwvA, A. S., LAENDER, A.

H. F., AND RIBEIRO-NETO, B. A. Bootstrapping for
Example-Based Data Extraction. In Proceedings of the
2001 ACM CIKM International Conference on
Information and Knowledge Management (Atlanta,
GA, 2001), pp. 371-378.

HAMMER, J., GARCIA-MOLINA, H., NESTOROV, S.,
YERNENI, R., BREUNIG, M., AND VASSALOS, V.
Template-based wrappers in the TSIMMIS system. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data (Tucson, AZ,
1997), pp. 532-535.

HAMMER, J., MCHUGH, J., AND GARCIA-MOLINA, H.
Semistructured data: The TSIMMIS experience. In
Proceedings of the First East-European Symposium on
Advances in Databases and Information Systems (St.
Petersburg, Russia, 1997), pp. 1-8.

Hsu, C.-N., AND DuUNG, M.-T. Generating finite-state
transducers for semi-structured data extraction from
the Web. Information Systems 23, 8 (1998), 521-538.

Huck, G., FANKHAUSER, P., ABERER, K., AND
NEUHOLD, E. J. Jedi: Extracting and synthesizing
information from the Web. In Proceedings of the 3rd
IFCIS International Conference on Cooperative
Information Systems (New York City, NY, 1998),
pp- 32-43.

KUusHMERICK, N. Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence Journal 118, 1-2
(2000), 15-68.

LAENDER, A. H. F., RIBEIRO-NETO, B., AND
DA SILVA., A. S. DEByE — Data Extraction By
Example. Data and Knowledge Engineering 40, 2
(2002), 121-154.

[22]

23]

[24]

25]

[26]

27]

28]

[29]

(30]

[31]

32]

[33]

[34]

LAENDER, A. H. F., RIBEIRO-NETO, B., DA SILva,
A. S., AND SILVA, E. S. Representing Web Data as
Complex Objects. In Electronic Commerce and Web
Technologies, K. Bauknecht, S. K. Mandria, and

G. Pernul, Eds. Springer, Berlin, 2000, pp. 216-228.

Liu, L., Pu, C., AND HAN, W. XWRAP: An
XML-enabled wrapper construction system for Web
information sources. In Proceedings of the 16th
International Conference on Data Engineering (San
Diego, CA, 2000), pp. 611-621.

LUDASCHER, B., HIMMERODER, R., LAUSEN, G.,
MAY, W., AND SCHLEPPHORST, C. Managing
semistructured data with FLORID: A deductive
object-oriented perspective. Information Systems 23, 8
(1998), 589-613.

MEccaA, G., ATzEN1, P., Masci, A., MERIALDO, P.,
AND SINDONI, G. The Araneus Web-Base
Management System. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data (Seattle, WA, 1998), pp. 544-546.

MusLEA, I. RISE: Repository of online information
sources used in information extraction tasks.
http://www.isi.edu/ muslea/RISE/.

MUsLEA, I. Extraction Patterns for Information
Extraction Tasks: A Survey. In Proceedings of the
AAAI-99 Workshop on Machine Learning for
Information Extraction (Orlando, FL, 1999), pp. 1-6.

MUusLEA, 1., MINTON, S., AND KNOBLOCK, C.
Hierarchical wrapper induction for semistructured
information sources. Autonomous Agents and
Multi-Agent Systemns 4, 1/2 (2001), 93-114.

PAPAKONSTANTINOU, Y., GARCIA-MOLINA, H., AND
WibowMm, J. Object Exchange Across Heterogenous
Information Sources. In Proceedings of 11th
International Conference on Data Engineering
(Taipei, Taiwan, 1995), pp. 251-260.

RIBEIRO-NETO, B., LAENDER, A. H. F., AND

DA SiLvA, A. S. Extracting semi-structured data
through examples. In Proceedings of the 1999 ACM
CIKM International Conference on Information and
Knowledge Management (Kansas City, MO, 1999),
pp. 94-101.

SAHUGUET, A., AND AZAVANT, F. Building intelligent
Web applications using lightweight wrappers. Data
and Knowledge Engineering 36, 3 (2001), 283-316.

SODERLAND, S. Learning information extraction rules
for semi-structured and free text. Machine Learning
34, 1-3 (1999), 233-272.

TEIXEIRA, J. S. A Comparative Study of Approaches
for Semistructured Data Extraction. Master’s thesis,

Department of Computer Science, Federal University
of Minas Gerais, Brazil, 2001. In Portuguese.

‘WoRLD WIDE WEB CONSORTIUM. W3C. The
Document Object Model. http://www.w8.org/DOM.

