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Abstract

An eddy [2] is a highly adaptive query pro-
cessing operator that continuously reoptimizes
a query in response to changing runtime con-
ditions. It does this by treating query process-
ing as routing of tuples through operators and
making per-tuple routing decisions. The ben-
efits of such adaptivity can be significant, es-
pecially in highly dynamic environments such
as data streams, sensor query processing, web
querying, etc. Various parties have asserted that
the cost of making per-tuple routing decisions is
prohibitive. We have implemented eddies in the
PostgreSQL open source database system [1] in
the context of the TelegraphCQ project. In this
paper, we present an “apples-to-apples” com-
parison of PostgreSQL query processing over-
head with and without eddies. Our results show
that with some minor tuning, the overhead of
the eddy mechanism is negligible.

1 Introduction

Adaptive query processing has emerged as an attractive
solution in many scenarios with dynamically changing
runtime environments and unknown data distributions.
These scenarios often involve remote networked data
sources, including sensors, data streams, web sources.
Adaptive query processing has also been proposed for
single site database systems where often only unreliable
statistics are available. There has been a good deal of
work on this topic, much of it surveyed in [5].

Eddies [2, 11, 10, 12, 3] represent the most adaptive
technique proposed for such environments. The basic
idea behind eddies is to model query execution as rout-
ing of tuples among operators and to adapt to dynam-
ically changing runtime conditions by making indepen-
dent routing decisions per tuple (Figure 1). Eddies offer
tremendous flexibility in adapting to dynamic runtime
conditions at a very fine granularity. However, various
parties have raised performance concerns about the over-
head of making per-tuple routing decisions, raising ques-
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Figure 1: [2] An eddy in a pipeline. Data flows into
the eddy from input relations R, S, T and U. The eddy
routes tuples to operators, that in turn return tuples to the
eddy. The eddy sends a tuple to the output only when it
has been handled by all the operators. The eddy adap-
tively chooses an order to route each tuple through the
operators.

tions about the effectiveness of eddies.
In this paper, we describe an implementation of the

eddies architecture in the PostgreSQL 7.3 open-source
database system, and present an experimental study that
demonstrates how such an adaptive architecture can be
implemented with minimal overheads. This work was
done in the context of the TelegraphCQ project [7],
which is building a highly adaptive, sharing-oriented
query processor for continuous queries. TelegraphCQ
is designed to process multiple queries simultaneously
while exploiting sharing of work. In this paper, we focus
on single query execution (also the focus of the original
work on eddies [2]). A more complete discussion of the
TelegraphCQ query processor is given in [7, 6].

1.1 Rest of the Paper

We begin with describing how we implemented this ar-
chitecture in the PostgreSQL data management system,
and how we minimize the overhead of making routing
decisions (Section 2). In Section 3, we present an ini-
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tial experimental study that demonstrates the viability of
the eddies architecture in a real system. We conclude
with a discussion of work in progress in the TelegraphCQ
project (Section 4).

2 Implementation Details
In this section, we describe the changes that we made
to the PostgreSQL database system to implement eddy
support for a single query at a time. This is in con-
trast to TelegraphCQ, which focuses on multi-query eddy
sharing. In order to do an apples-to-apples comparison
of overheads, we wanted to focus strictly on the over-
head of eddies as compared to traditional query process-
ing schemes. Hence we ignore novel multi-query op-
timizations and continuous query scenarios that are not
supported by PostgreSQL. However we stress that the
eddy architecture we describe here also directly supports
(single-query) stream processing.

2.1 New Operators

We added four new operators to PostgreSQL, an eddy
operator, a selection operator, a symmetric hash join op-
erator and an eddy index join operator. The eddy uses
the latter three operators to execute a query, by routing
tuples through them. We begin with describing the im-
plementation of these operators (that can also be used in
traditional PostgreSQL plans) first, and then move on to
describing the eddy operator. Many of the implementa-
tion details are direct consequences of our design deci-
sion to follow the PostgreSQL query processing infras-
tructure as closely as possible. In particular, we decided
to keep the system single-threaded, and we implemented
the new operators to support the traditional iterator inter-
face [8] that is also used by PostgreSQL. This was done
in order to leverage the existing PostgreSQL operators
as much as possible, and to be able to use eddies in more
complex query plans.

2.1.1 The Selection Operator

PostgreSQL does not have an explicit selection operator
for evaluating selection predicates. Instead, each opera-
tor in PostgreSQL has a list of attached predicates that
are evaluated in order. The PostgreSQL optimizer at-
taches the predicates as low in the query plan as it can,
with the lists on each operator ordered arbitrarily. By
adding explicit selection operators, we can allow an eddy
to consider reordering multiple, possibly expensive se-
lections, and even interleave them after joins.

2.1.2 The Symmetric Hash Join Operator

Eddies do best with operators that have frequent “mo-
ments of symmetry” [2]. We added a symmetric hash
join operator to PostgreSQL to exploit this; this join op-
erator can be used in traditional PostgreSQL query plans
as well.

The symmetric hash join operator maintains two hash
tables on the two relations involved in the join, and sup-
ports the traditional get next() interface by encapsulating
all the state inside the operator itself. When an operator
upstream performs a get next() operation on this opera-
tor, it takes following steps :
• If there is an outstanding probe tuple for which all

matches have not yet been returned, return the next
match for that probe tuple. To find this next match-
ing tuple, the operator remembers the last matching
tuple that was returned for this probe tuple.

• If there are no outstanding tuples, then the operator
“obtains” a new input tuple, inserts it into the ap-
propriate hash table, and probes into the other hash
table. Depending on the context in which this oper-
ator is being used, this new tuple may be “obtained”
in two different ways :

• If the operator is being used in a static (tra-
ditional) PostgreSQL plan, then it will obtain
the next input by calling get next() on either of
its two input operators.

• If eddies are being used, then the eddy oper-
ator will provide (route) the next input to the
operator (as we will see in Section 2.1.4). The
operator returns null in this case to signify that
it needs a new input tuple.

2.1.3 The Eddy Index Join Operator

The eddy index join operator is quite similar to the tra-
ditional index join operator in PostgreSQL and exports a
similar get next() interface, except that :

• It uses a different tuple format (Section 2.2).

• The next outer tuple (also called a probe tuple), is
provided by the eddy operator; in traditional Post-
greSQL, the index join operator will call get next()
on its child operator to obtain the next probe tuple.

2.1.4 The Eddy Operator

Each eddy operator handles a simple select-project-join
statement, consisting of arbitrary joins, selections and
projections, but no aggregations or group-bys or sub-
queries. These latter operations are executed by exist-
ing PostgreSQL operators, that can be used without any
modifications as the eddy operator supports the iterator
interface used by these operators. Figure 2 shows an ex-
ample of how an eddy is instantiated for a query involv-
ing aggregation. Treating eddy as just another operator
also allows simultaneous use of multiple eddy operators
in a single query execution plan, with each eddy operator
handling a part of the query that consists of only select,
project and join operators.
Creating a Plan with Eddys
The PostgreSQL plan creation routine starts by identify-
ing query blocks that consist of only selects, projects, and
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Count

Eddy
select count(*)
from R, S, T
where R.a = S.a and S.b = T.b

and pred(R.c)

Scan(R) Scan(S) Scan(T)

select *
from R, S, T
where R.a = S.a and S.b = T.b 
             and pred(R.c)

Figure 2: Using traditional operators along with an eddy

joins. It then calls the PostgreSQL cost-based optimizer
to choose and construct an execution plan for each such
block. It also instantiates operators for handling the rest
of the SQL constructs such as aggregates and group-bys,
that are then put together with the execution plans for the
query blocks to obtain an execution plan for the entire
query. To be able to use eddies, we modified the plan
creation routine so that, instead of calling the optimizer,
it creates an eddy operator directly for each query block
(as discussed above, such a query block is exactly what a
single eddy operator can handle as well). These eddy op-
erators are then put together with operators instantiated
for handling aggregations and group-bys as before, to get
an execution plan for the entire query.

In addition, to set up each select-project-join query
block with an eddy, the plan creation routine instantiates
a set of operators as follows :
• For each data source in the query block (these may

be base relations, streams or subqueries), a Scan op-
erator is instantiated. The eddy interacts with these
operators using the iterator interface, and as such,
the exact nature of these operators is not relevant.

• For each expensive predicate in the query, the parser
instantiates a selection operator. Predicates without
expensive methods are attached to operators as in
traditional PostgreSQL.

• For each join in the query, either a symmetric hash
join operator or an index join operator is instanti-
ated. For our experiments here, we let the Post-
greSQL optimizer choose the join algorithm, and
ensure that the algorithm choices are the same when
comparing static plans to eddies.

Figure 3 shows the operators instantiated by the query
for the example query.
Routing Arrays
The eddy executes a query by fetching tuples from the
source operators, and routing the tuples through the se-
lection and join operators. The eddy maintains a set of
routing arrays that help it in deciding how to route the
tuples. The routing arrays essentially maintain all the
possible operators that a tuple of a given signature may
be routed to, where the signature of a tuple is defined to

Scan(R) Scan(S) Scan(T)

Selection Operator

pred(R.c)

Hash
Table
on R.a

Hash
Table
on S.a

SHJ on R.a = S.a SHJ on S.b = T.b

Hash
Table
on S.b

Hash
Table
on T.b

Eddy

Figure 3: Eddy instantiated for the example query

be the sources it consists of and the operators it has al-
ready passed through. As suggested in [2], the signature
of a tuple is stored in the form of a bitmap along with the
tuple itself. We use these bitmaps to index the routing
arrays in order to quickly find all the operators a tuple
of a given signature can be routed to. The number of
such signatures (or bitmaps) is usually exponential, and
as such, this approach is not suitable for queries with a
large number of relations. We are currently exploring al-
ternative approaches for such queries.
Query Processing
To support the iterator model interface, the eddy needs
to remember the computational state it was in when it re-
turned the last tuple. The eddy does this by maintaining
a stack of active operators. The join operators are called
active if they have an outstanding probe tuple; as we will
discuss below, selection operators are treated differently
during query execution.

When an upstream operator performs a get next() op-
eration on the eddy, the eddy performs the following
steps :

1. If there are any active operators (if the stack is not
empty), call get next() on the operator on the top of
the stack.

• If the call returns a null, pop the operator off
the stack, and repeat Step 1.

• If the get next() call returns a tuple, proceed to
Step 3.

2. If there are no active operators, choose a source
from the list of input sources and use get next() to
fetch a new source tuple. If none of the sources have
any more data, finish processing by returning null.

3. When a new tuple is returned to the eddy (from ei-
ther a source or an operator), check if it is an output
tuple (signified by an empty routing array entry). If
it is an output tuple, return it to the caller. Other-
wise, (a) use the routing array in conjunction with
the routing policy (discussed below) to choose an
operator to route this tuple to, (b) route the tuple to
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the operator, and (c) push the operator on the top of
the stack (selection operators are applied directly to
the tuple to avoid unnecessary function calls). Re-
peat step 1.

Routing Policies
All the machinery that we have discussed up to this point
is quite general, and accommodates a wide variety of
routing policies. A routing policy takes a tuple, and
chooses a particular operator as the next routing desti-
nation for the tuple. The routing arrays maintained by
the eddy provide the policy with a quick way to find all
the next semantically valid operators for a tuple.

The lottery scheduling scheme proposed in the orig-
inal work on eddies [2] can be implemented by main-
taining ticket information with each operator, using the
routing array to find all the operators a tuple can go to,
and randomly choosing among those operators via ap-
propriate weights. Note that the backpressure technique
proposed in that work cannot be directly used in our sys-
tem because of the single-threaded nature of our system.
Instead, we explicitly instrument the processing costs of
operators at runtime, allowing us to capture the relative
processing rates without backpressure.

Even though the cost of a scheme like lottery schedul-
ing is not very high, we can reduce these overheads even
further, by amortizing the costs across a batch of tuples.
This is done by making routing decisions for all tuple sig-
natures (for all possible bitmaps) only periodically, and
adhering to those decisions for a period of time. As an
example, if the query contains a set of selections on a
single relation, instead of choosing the order of applying
the selections for each tuple, we choose a single order
and use it for a certain number of tuples.

The results of routing policy decisions are maintained
in the routing arrays themselves, by keeping the next op-
erator of choice for a signature at the beginning of the
signature’s list of operators. Making the routing decision
for a given tuple, in this case, simply involves choosing
the first operator in the routing array entry for the bitmap
of the tuple.

By batching in this manner, we can trade off the cost
of adaptivity against the time-granularity of adaptivity.
This not only allows us to hide the overhead of rout-
ing policies like lottery scheduling, it also allows us to
consider using more sophisticated reoptimization tech-
niques, whose costs would have been prohibitive if they
are invoked for every tuple. We will call the periodic-
ity at which these decisions are made the reoptimization
frequency.
Current Routing Policy
The routing policy that we use in this paper is based on
rank ordering [9]. For each tuple signature, and for each
operator it can be routed to, we estimate the selectivity,
i.e., the number of tuples that will be generated if the tu-
ple is routed to that operator. The eddy maintains statis-
tics in order to compute these estimates. These selectivi-

ties are then used to update the routing array by ordering
the operators for each tuple signature using them. The
number of tuple signatures is exponential in the number
of sources to be joined, and as such, this process can be
fairly expensive for some queries.

2.2 Tuple Format

The other major change to the PostgreSQL query en-
gine that we make pertains to the way tuples are stored,
and operated upon, during execution. Every tuple in
PostgreSQL has an associated tuple descriptor that ref-
erences the catalog information for attributes present in
the tuple. In the traditional PostgreSQL implementation,
the tuple descriptors for the inputs to an operator are all
statically determined at optimization time, and this fact
is used to dereference the attributes of tuples during the
operator’s execution. With eddies, the tuple descriptors
handled by an operator are likely to change during exe-
cution, since the signatures of input tuples are not fixed.
For example, some of the input tuples to an operator may
have already been joined with tuples from other tables,
while others may have not. As a result, the default tuple
format of PostgreSQL is not usable with eddies.

Rather than change all the code in PostgreSQL to use
a different format, we chose a hybrid approach. The
operators attached to an eddy use an indirection mech-
anism on top of the PostgreSQL tuple format. The eddy
and its attached operators represent each tuple as an ar-
ray of pointers to actual source tuples (that are in default
PostgreSQL format). The code that dereferences fields
in tuples is changed so that it knows how to use this in-
direction. This format is only used inside the operators
attached to the eddy; the tuples are converted into this
format when they are brought inside the eddy, and are
converted back to default PostgreSQL format when they
are sent outside the eddy.

3 Experimental Results
In this section, we will present an initial experimental
study that validates our claims that the overhead of the
eddy architecture is not very high. Our focus is on mea-
suring only the overhead of eddies, and as such we use
artificial queries for which every execution plan has iden-
tical cost. As a result, these experiments do not penal-
ize the traditional PostgreSQL system for its inability to
adapt. This provides a worst-case analysis of the over-
head of our eddy implementation, and separates our mea-
surements of overheads from any issues controlled by the
effectiveness of policies.

3.1 Setup

All the experiments were run on a lightly loaded 2GHz
Pentium 4 machine running Redhat Linux 8.3. We use
two sets of artificial tables for our experiments, tenk1-
5 and hundredk1-5 with 10,000 and 100,000 244-byte
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Selection Expt Queries Symmetric Hash Join Expt Queries Index Join Expt Queries

No-Delay
SELECT count(*)
FROM tenk1
WHERE two < 2
and four < 4
and ten < 10

Delay-X, X = 0, 10, 100
SELECT count(*)
FROM tenk1
WHERE delay(two, X) < 2
and delay(four, X) < 4
and delay(ten, X) < 10

Select-All-3
SELECT *
FROM tenk1, tenk2, tenk3
WHERE tenk1.unique2 = tenk2.unique2
and tenk1.unique2 = tenk3.unique2

Select-Count-3
SELECT count(*)
FROM tenk1, tenk2, tenk3
WHERE tenk1.unique2 = tenk2.unique2
and tenk1.unique2 = tenk3.unique2

Select-All-4, Select-All-5, Select-Count-4,
Select-Count-5: Variations of the above queries
with 4 and 5 relations in a star query graph shape.

3-X, X = 10, 1000
SELECT *
FROM hundredk1, hundredk2, hundredk3
WHERE hundredk1.unique2%X = 0 and
hundredk1.unique2 = hundredk2.unique2
and
hundredk1.unique2 = hundredk3.unique2

4-X, 5-X, X = 10, 1000
Variations of the above queries with 4 and 5
relations in a star query graph shape.

Figure 4: Queries

tuples respectively. The schema of the tables is mod-
eled after the Wisconsin Benchmark schema [4]. We use
the following four integer-valued attributes in our exper-
iments: unique2, the primary key attribute, and two,
four, and ten, attributes that take values 0 to 1, 0 to 3
and 0 to 9 respectively.

3.2 Eddies with Selections

As we mentioned before, selection reordering only
makes sense if the query has expensive predicates. To
model such expensive predicates, we use a user-defined
function called delay, that takes two integer arguments,
arg1 and delay value. This function repeatedly exe-
cutes an expensive system function (getimeofday()), and
after time delay value microseconds, returns the first ar-
gument (arg1) to the caller unmodified.

Query No-Delay Query Delay-0 Query Delay-10 Query Delay-100
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Figure 5: Cost of Adaptivity: Eddies with Selections.
The execution times are normalized using the time taken
by base PostgreSQL.

For this experiment, we use four queries on the tenk1

relation as shown in Figure 4. All these queries return
identical answers (every tuple passes all predicates), and
as per our philosophy in this study, all selection order-
ings have identical costs. Figure 5 shows the result of
running these queries for base PostgreSQL, and for ed-
dies with selection operators instantiated for each predi-
cate for different reoptimization frequencies. As we can
see, even when we are not using the delay function, the
cost of eddies is only about twice the cost of base sys-
tem as long as the reoptimization frequency is less than
once every 10 tuples. This is quite remarkable consider-
ing how inexpensive these predicates are, and consider-
ing that eddies, unlike PostgreSQL, use explicit selection
operators to evaluate the predicates. This demonstrates
that the extra overhead of routing tuples among the se-
lection operators is not very high. As we can see, if the
selection operations are even slightly expensive, this per-
centage overhead is very small. The overhead also de-
pends on the rate at which reordering is done, but it can
be amortized over very few tuples.

3.3 Eddies with Symmetric Hash Joins

For this experiment, we use the six queries shown in Fig-
ure 4 that have identical execution cost irrespective of
the plan chosen, as a result of the symmetry. Figure 6
shows the result of running these queries for (1) base
PostgreSQL, (2) eddies with symmetric hash join opera-
tors, and (3) “SHJ”s, a static plan that uses symmetric
hash join operators instead of the normal PostgreSQL
hash join. Once again, we show results for varying re-
optimization frequencies. As we can see, the overhead
of using eddies is quite minimal, and in fact, compar-
ing the eddies with “SHJ”s, we see that the overhead
is pretty much entirely attributable to use of symmetric
hash join operators. A symmetric hash join operator is
more expensive than a normal hash join operator because
it builds hash tables on both sides of the join. As ex-
pected, the overhead is quite high if we try to reoptimize
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Figure 6: Cost of Adaptivity: Eddies with Symmetric
Hash Joins. E(X) denotes eddies with reoptimization fre-
quency X.

for every tuple, but the reoptimization overhead can be
hidden by amortizing over very few tuples.

3.4 Eddies with Index Joins

For this experiment, we created indexes on the relations
hundredk2-5 on the attribute unique2, and forced both
eddies and the PostgreSQL optimizer to choose index-
only plans for all the queries (Figure 4), even though such
plans are suboptimal when X is 10. Figure 7 shows the
results of running these queries for (1) base PostgreSQL,
and (2) eddies with index join operators with varying re-
optimization frequencies. Once again, we see that the
overhead is quite minimal, and can be amortized over
very few tuples.

4 Conclusions and Future Work

An eddy is a highly adaptive technique that continuously
reoptimizes a query in response to changing runtime con-
ditions. Concern has been expressed about potentially
high overhead of this technique. As we demonstrate
in this paper, it is possible to implement this technique
with modest modification to a traditional database sys-
tem, providing most of the eddy’s proposed flexibility
with negligible overhead.

Our focus in this paper was on the overhead of ed-
dies only, for the kind of simple routing policy originally
proposed [2]. We are currently studying routing poli-
cies in more detail. Our group is also working on build-
ing a sharing-oriented continuous query processor over
streaming data using the same codebase, and demonstrat-
ing that eddies is a viable approach in those kinds of sce-
narios as well.
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Figure 7: Cost of adaptivity: Eddies with Index Joins
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