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1 Introduction

An abundance of life sciences data sources contain
data about scientific entities such as genes and se-
quences. Scientists are interested in exploring re-
lationships between scientific objects, e.g., between
genes and bibliographic citations. A scientist may
choose the OMIM source, which contains informa-
tion related to human genetic diseases, as a start-
ing point for her exploration, and wish to eventu-
ally retrieve all related citations from the PUBMED
source. Starting with a keyword search on a certain
disease, she can explore all possible relationships be-
tween genes in OMIM and citations in PUBMED. This
corresponds to the following query: “Return all cita-
tions of PUBMED that are linked to an OMIM entry
that is related to some disease or condition.”

To answer such queries, biologists and query en-
gines alike must traverse both the links and the paths
(informally concatenations of links) through these
sources, given some start object in OMIM. Figure 1
illustrates a subset of data sources at the National
Center for Biotechnology Information (NCBI) that
may be explored to answer the above query. All four
data sources can be accessed at http://www.ncbi.
nlm.nih.gov.

There are five paths (without loops or self-
references among the sources) starting from OMIM
and terminating in PUBMED. These paths are listed
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Figure 1: A source graph for NCBI data sources (and
corresponding scientific entities)

in Fig. 2. The large number of inter-related data sour-
ces, with dissimilar but overlapping content, and the
large number of complex inter-relationships among
these sources, raise a number of challenges in effec-
tively and efficiently exploring life sciences sources.
In the BioFast project, we develop the infrastruc-
ture to support the biologist as she explores sources,
links and paths, and develop methodology for effec-
tive data management and efficient query evaluation.
Problems that are addressed include the following:

e Query language for scientific exploration:



(P1) OmmM — PUBMED
(P2) OMIM — NUCLEOTIDE — PUBMED
(P3) OmMIM — PROTEIN — PUBMED

(P4) OmMiM — NUCLEOTIDE — PROTEIN —
PubMed

(P5) OMIM — PROTEIN — NUCLEOTIDE —
PubMed

Figure 2: Five paths from OMIM to PUBMED through
the source graph of Figure 1

The challenge is the development of a high-level
workflow-style language with appropriate opera-
tors and semantics that allow domain scientists
to explore the contents and relationships cap-
tured in the sources. The operators and seman-
tics of this language must be at a level of the bi-
ologist’s procedures and experiments, which may
then be translated into lower-level data manip-
ulation operators. Evaluating the protocols ex-
pressed by the biologist will require both query
optimization and query evaluation.

e Semantics of links and paths: In life science
sources, links are implemented as physical ref-
erences between data entries. To support more
meaningful queries, these links must be enriched
to capture semantics. Enrichment includes se-
mantic labels and a more precise identification
of the link’s source and target elements within
the data entry. Combined with the properties of
links and paths, one can then perform a compar-
ison of paths that is meaningful to the biologist.

e Properties of links and paths: The metrics
(typically statistics) of links and paths may be
used to characterize query results, e.g., to pre-
dict the cardinalities of query results along some
path. These properties are useful to both biolo-
gists and data administrators as discussed later.
The challenge is to identify and model interest-
ing metrics and to efficiently measure them (e.g.,
sampling) or to correctly estimate them (e.g.,

statistical analysis). These properties can also
be used to develop a cost model to determine
the cost of evaluating a query plan.

e Optimization for query answering: Answers
to explorative queries typically require traversing
a multitude of paths among highly inter-linked
sources. Each path differs in cost and benefit (re-
sult cardinality), making it non-trivial to choose
the best path or set of paths. To compound the
problem, the results of different paths overlap
resulting in cost and benefit being considered
not individually but for combinations of paths.
The challenge is to evaluate queries efficiently
(optimization) while at the same time produc-
ing answers that are meaningful to the biologist.
Query planning and optimization of such queries
poses many of the challenges that are addressed
by database optimizers for mediation based ar-
chitectures [4, 6]. Special challenges of life sci-
ence queries are addressed in [1, 2, 3].

We present a simple model of life science data sour-
ces and then discuss our research in addressing the
challenges of developing models for the properties and
the semantics of links and paths.

2 Models for Life Science Data
Sources

Life science sources may be modeled at two levels:
the physical and logical level. The physical level cor-
responds to the actual data sources and the links that
exist between them. An example of data sources and
links is shown in Figure 1. The physical level is mod-
eled by a directed Source Graph, where nodes rep-
resent data sources and edges represent a physical
implementation of a link between two data sources.
A data object in one data source may have a link
to one or more data objects in another data source,
e.g., a gene in GeneCards links to multiple citations
in PUBMED. An Object Graph represents the data
objects of the sources and the object links between
the objects. Each link in the source graph then cor-
responds to a collection of object links of the object



graph, each going from a data object in one source
to another object, in the same or a different source.

The logical level consists of classes (entity classes,
concepts or ontology classes) that are implemented by
one or more physical data sources or possibly parts
of data sources. For example, the class C'itation may
be implemented by the data source PUBMED. Each
source typically provides a unique identifier for the
entities of a class and includes attribute values that
characterize them. The following table provides a
mapping from the logical classes to the physical data
sources. A more detailed description of his model is
in [5].

CLASS
Sequence (s)

DATA SOURCE
NCBI NUCLEOTIDE database
EMBL Nucleotide Sequence database
DDBJ
NCBI Protein database
Swiss-Prot
NCBI PubMed

Protein (p)

Citation (c)

Table 1: A Possible Mapping from Logical Classes to
Physical Data Sources

3 Properties of Links and

Paths

As seen in Figures 1 and 2, a query on the four sources
produces five potential paths that can be evaluated
to produce results. It is important to characterize the
properties of the links and thus obtain properties of
the paths. These properties can be used for multiple
purposes: One is for query planning and optimiza-
tion, to determine the cost of evaluating the results
of some path. Another is to estimate the size of the
result, and the overlap among the different paths so
that a user may choose to obtain answers from one
or more paths, depending on the domain specific se-
mantics of the paths.

A Result Graph (RG) represents the results to
some specific query protocol, e.g., the bibliographical
references (citations) from PUBMED that are linked
to genes relevant to a given disease or medical condi-
tion. To create such RG, we fully explore all links and

paths that exist between objects in the four sources,
given some start set of objects in OMIM. We sam-
ple data by focussing on medical conditions: cancer,
aging, and diabetes. A list of relevant keywords for
each condition was used to retrieve relevant genes
from OMIM. These genes constitute the starting set
of objects. Each RG contains a collection of 140 to
150 OMIM records. Figure 3 shows the results of one
such experiment for the condition aging, starting with
141 OMIM records along with the measured values for
different paths through the result graph. Each edge
label shows the link cardinality and each node label
shows the number of distinct objects found by follow-
ing those links (node cardinality). For example, the
direct link from OmimMto PUBMEDhas 7149 link in-
stances and reaches 7031 PuBMEDobjects, whereas
the path through PROTEINhas link 6667 instances
but only reaches 3275 PUBMEDobjects.

"aging"

Protein

PubMed
{1736} {1570} {7031} {1753} {3275}

Figure 3: The result graph from an experiment on
aging.

We describe a simple model to estimate the cardi-
nality of an RG. For each link in the path, consider
a start node (source) and target node (source) of a
link, and properties such as the average outdegree
of objects in the start source, the percentage par-
ticipation of objects in the start source, the image
cardinality of the target, etc. We develop a simple
model to estimate the number of link instances and
the the cardinality (the number of distinct objects of
the target source) of a path. A simple model will
make some assumptions such as uniform distribution



of links across all objects, and independence of links.
We estimate the result cardinality for a target source
of a path as follows: Consider a path p through sour-
ces S1,--- ,9,; let my be the number of starting ob-
jects of source S;. Assuming independence among
object links and that no two outgoing links from a
specific object reach the same target object (no over-
lap), we can calculate the number of objects reached
for each source in p. To consider the overlap of ob-
ject links, we must determine the likely number of
distinct objects found in S;, when randomly choos-
ing m objects from all C?%(S;) objects in S;. Note
that C99(S;) is the cardinality of source S;, or the
number of data objects. The probability to find ex-
actly z distinct objects when picking m times from
a set of C99(S;) in a source can be used to deter-
mine the expected number of distinct objects, i.e.,
the sum over all possible outcomes z multiplied by
its probability. This is the estimated result cardinal-
ity. We can further enhance this model by noting
that the image cardinality of source S; is a more ex-
act count of those objects in S; that actually have
an inlink along path p. Thus replacing C°%(S;) with
the image cardinality of S; provides a more precise
estimation.

The model described above assumed uniform dis-
tribution of the links across all objects. It also as-
sumes object independence. For example, we assume
that the probability that an object has an outlink, say
from Protein to PubMed, is independent of the prob-
ability that it has an inlink, say from OMIM to Pro-
tein. However, in discussion with curators at NCBI,
it is clear that such independence assumptions do not
hold and that data objects and links typically violate
such independence assumptions (Lash and Lipman
2003). For example, a curated object may be more
likely to have both an inlink and an outlink. We refine
our model to reflect the properties that we observe in
these samled datasets. We define a path dependence
factor (pdf) and a duplication factor (df) that reflect
the properties of the sampled results graphs.

Path dependence factor (pdf): Let p = S;, Sit1, Sito
be a path of length 2. The pdf is the ratio of the
number of objects that participate in links from S;41
to S;42 to the number of objects in the image of the
link from S; to S;11. Duplication factor (df): This is

the ratio of the number of objects in Si + 1 with an
inlink from S; to the link cardinality from S; to S;;1.

Using multiple training datasets (RGs), we can es-
timate the values for pdf and df for each of the links
and paths. We note that it is often difficult to ob-
tain such measures through random sampling in large
graphs. We may utilize more sophisticated sampling
techniques, e.g., comparing outdegree distributions
for curated versus non-curated entries. Note that
we may also determine that the values for pdf and
df vary (are statistically significant) among different
diseases and conditions, which would require addi-
tional sampling and tuning of the training data to
obtain reasonably accurate estimated for pdf and df.
We can extend the simple model (uniform distribu-
tion and independence), to recursively apply the mea-
sured values of pdf and df, along links and paths,
to determine the number of objects reached on each
path. Details of this model and experimental results
are in [5].

To efficiently compute these metrics, we can define
views corresponding to all paths of length greater
than 1, e.g., all paths from OMIM to PubMed, or
from OMIM to Protein, etc. and we can define
queries to compute link and path cardinality. We
must then address the problem of determining which
views (paths) to materialize, and which views to use
to compute each metric of interest. The problem is
similar in nature to determining which views to ma-
terialize in a data warehouse environment, and opti-
mization using views, given some query workload. In
our example, the query workload corresponds to the
paths of interest. Future work in the BioFast project
concentrates both on the extension and generaliza-
tion of the set of properties and on the usage of the
presented properties for different scenarios, such as
query optimization and data curation.

4 Enriching the Semantics of
Links and Paths

As outlined before, data entries in different life sci-
ences data sources have relationships that are ex-
pressed as links among them. However, these links



are syntactically and semantically poor. The links are
syntactically poor, because they exist only at a high
granular level: the data entry. The links are seman-
tically poor, because they carry no explicit meaning
other than the fact that the data entries are somehow
“related”.

Links are added to data entries for many different
reasons: Biologists insert them when discovering a
certain relationship, data curators insert them to re-
flect structural relationships, algorithms insert them
automatically when discovering similarities among
two data items, etc. To represent such subtle and
diverse relationships, simple links are not enough:
Consider a Swiss-Prot entry with a link to an OMIM
entry with a certain ID. In the flat structure of the
Swiss-Prot entry this logical link is represented as a
top-level attribute in the form of an OMiM ID, some-
times together with an HTML hyperlink to a data
source storing that particular OMIM entry. A link
in that form neither represents thepart of the Swiss-
Prot entry the link refers to, nor the part of OMIM the
link points to, nor does it represent the reason why
the link was inserted. Biologists regarding the Swiss-
Prot entry rely on their experience and can some-
times infer these link properties by closely and often
time-consumingly examining both entries. Machines
and algorithms cannot perform such analysis at the
necessary level of detail and precision.

In the BioFast project, we are developing a general
data model that allows the storage of links at a finer
level of granularity, which allows users and machines
to enrich the links. In the previous example, the link
in question should not originate from the Swiss-Prot
entry itself, but rather from a certain CC-DISEASE
attribute within that entry. The link should also not
represent a mere “relationship”, it should rather be
labeled as a “causal” relationship, telling humans and
machines that the protein in question is known to
cause the disease pointed to by the link.

A semantically enhanced link will comprise the fol-
lowing:

o A link identifier.

e A set of navigational paths to specify the origin
of the link with respect to the parent data entry.

e A set of navigational paths to specify the target
of the link with respect to the parent data entry
containing this target.

e A link label or category and a link descriptor,
possibly using some ontology.

Clearly, a data model alone is not enough, in par-
ticular because there already exist huge amounts of
links that are not syntactically and semantically en-
riched. Hence, a next step is to explore methods to
automatically or semi-automatically perform this en-
richment by analyzing the linked data entries and
by soliciting information from biologists in a user-
friendly tool. For example, we may attempt to learn
rules as follows: A link from SwissProt to Nucleotide
should go from the SwissProt element type A to the
Nucleotide element type B given some particular an-
notation of the SwissProt entry.

The benefits of this structural and semantic enrich-
ment are numerous. Structural enrichment allows
for a better and finer analysis of link structures as
outlined in Section 3. It also spares biologists from
having to infer or even guess the meaningful source
and target of the link. Semantic enrichment is not
only useful for humans reading data entries, but also
allows semantically composing of multiple links to
generate meaningful paths through life sciences data
sources.

Next steps in the BioFast project include an inven-
tory of link semantics that will list a set of possible
semantic labels for links together with their respec-
tive domains for link-source and link-target. Next,
we will explore techniques for automated and semi-
automated link-enrichment, and finally investigate
the composition of such semantics.

5 Conclusions

The issues that we present represents a starting point
of understanding and exploiting Web life sciences
sources and their relationships with one another.
Each challenge represents a formidable task requir-
ing further research. The success of this research will
also require close cooperation with domain experts.



Our research has benefited from domain experts from
IBM Life Sciences, NCBI and Humboldt-Universitét.
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