The GenAlg Project: Developing a New Integrating Data Model, Language,
and Tool for Managing and Querying Genomic Information

Joachim Hammer and Markus Schneider

Department of Computer and Information Science and Engineering

University of Florida, Gainesville, FL, 32611-6120
{jhammer,mschneid}@cise.ufl_edu

1. Introduction

Life scientists are faced with a rapidly increasing
accumulation of data stored in large genomic reposito-
ries like EMBL, GenBank, SwissProt, and DDBJ, to
name a few. The flood of genomic data, their high va-
riety and heterogeneity in semantics, formats and ac-
cess methods, their semi-structured nature, and the
increasing complexity of biological applications and
methods mean that many and very important chal-
lenges in biology are now challenges in computing.

Biological data management has so far focused
mainly on integrating different repositories into feder-
ated databases or data warchouses. However, most of
these approaches ignore an important aspect: the dis-
crepancy between the low-level treatment of biological
data as alphanumerical values and their conceptual
high-level nature and usage in terms of genes, proteins,
and nucleotide sequences limit the ways biologists can
process this wealth of data effectively. A second but
equally important problem is the resolution of semantic
differences that exist among related or the same terms
across different or even within the same genomic re-
pository: Inconsistencies in naming, terminology, and
nomenclature lead to an ambiguous concept overload-
ing both at the structure level (e.g., different interpreta-
tions of terms such as gene or biological processes such
as splicing) and the instance level (e.g., different names
for the same gene). Before biological data integration
can be performed successfully, new techniques for
modeling, representing, and querying biological data
must be developed.

The ongoing GenAlg project focuses on overcom-
ing the enforced low-level treatment of biological data
imposed by genomic repositories, the lacking expres-
siveness and limited functionality of current query lan-
guages, and the frequent lack of structure and seman-
tics in biological data representations. Its concept dif-
fers substantially from other approaches in the litera-
ture and rests on the following two-step approach:

1. Genomics Ontology. Due to different goals and/or
shortcomings of existing ontologies, this effort
deals with the appropriate design of an ontology for
genomics in order to resolve terminological, syn-
tactic, and especially semantic differences, to dis-
ambiguate biological terms and processes, and to
create a consensual communication and interface

language between different research communities in
genomics. Although freely usable, it is especially
tailored to the needs of the Genomics Algebra.

2. Genomics Algebra. Based on the Genomics Ontol-
ogy, this effort incorporates the conceptual design,
implementation, and database integration of a new,
formal data model, query language, and software
tool for representing, storing, retrieving, querying,
and manipulating genomic information. This exten-
sible algebra provides a set of high-level genomic
data types (GDTs) (e.g., Genome, Gene, Nucleo-
tide) together with a comprehensive collection of
appropriate genomic operations (e.g., translate,
transcribe) for biological computation.

Section 2 discusses problems of genomic data
management. In Section 3 we give an overview of our
solution concepts and system architecture. Section 4
describes the Genomics Ontology. Section 5 introduces
our concept of Genomics Algebra. In Section 6 we
describe the integration of the Genomics Algebra with
a DBMS. Section 7 draws some conclusions.

2. Problem Statement

We now examine the two biological data man-
agement problems mentioned in the introduction in
detail. The first problem of low data representation
refers to the low-level treatment of data in biological
data sources, which is adopted in most integration ef-
forts and which includes the problems of low-level rep-
resentation and low-level querying of data. As an ex-
ample for low-level representation, consider a Gen-
Bank entry. The GenBank Web interface shows a large
amount of textual information introduced by keywords
like LOCUS, DEFINITION, ACCESSION, and
VERSION, etc. These textual representations often
have a complicated, semi-structured format at a very
low data level, and it is up to the biologists to parse
these data themselves. This situation does not change
even if the keywords become attributes in a relational
schema. Result data are mostly only available as text
files or are obtained through copy-and-paste, prevent-
ing the direct application of subsequent operations.

A consequence of the low-level representation of
data is their low-level querying and analytical proc-
essing. For example, large-scale Expressed Sequence

Tag (EST) sequencing projects output thousands of
uncharacterized DNA sequences. If the biologist
wanted to predict the protein secondary structure for a
subset of the EST sequences sharing a certain molecu-
lar function, they would need to perform four succes-
sive computational manipulations as illustrated in the
following scenario. Let us assume that the molecular
functions of the EST sequences have been obtained by
joining the initial BLAST output with the annotated
Swiss-Prot database. Let us further assume that the
annotated EST data is stored in a relational table called
SEQUENCE_FUNCTION where GO (Gene Ontology)
terms representing various molecular functions of the
gene products have been assigned to the EST se-
quences from the BLAST result. The relation
SEQUENCE_FUNCTION has the following structure
(primary key is underlined):
SEQUENCE_FUNCTION (

sequence-1D: integer,

sequence:varchar(255),

length:integer,

GO_ID:varchar(16));

* Step 1 requires the execution of an SQL query to
select the proper subset of nucleotide sequences on
which to perform the prediction analysis. The SQL
query below produces a set of nucleotide se-
quences representing genes having GO ID
‘G0:0003724°, which represents the molecular
function “RNA helicase”.

Select sequence_id, sequence

From SEQUENCE_FUNCTION
Where GO _ID = ‘G0:0003724~;

* Instep 2, each nucleotide sequence in the resulting
set of ESTs is examined by a coding sequence
(CDS) prediction algorithm to define the most
probable protein-coding segment.

* In step 3, using the genetic code, each predicted
CDS is translated into the corresponding amino
acid sequence.

* In step 4, each derived amino acid sequence is
input to an algorithm for secondary structure pre-
diction. The result of each structure prediction is
parsed and stored for viewing or further down-
stream analysis.

Since the intermediate results of the above steps are
typically large, most biologists store the inputs and
outputs of their analysis programs in a database, which
in our scenario requires the existence of three tables,
PREDICTED_CDS, TRANSLATION, and
PREDICTED_2D_ STRUCTURE for the storage of the
CDS, amino acid sequences, and 2-D secondary struc-
tures respectively.

Even this simple example illustrates the complex-
ity and the degree of database and computational ex-

pertise that is required of the biologist wishing to carry
out the analysis. As we show in Sec. 3, the same analy-
sis, when formulated using the Genomics Algebra, can
be carried out in a single expression nested inside a
simple SQL statement, involving only high-level bio-
logical terms and functions.

The second problem of data semantics and se-
mantic data integration includes the problems of con-
cept identification and resolution as well as concept
overloading. Concept identification and resolution re-
fers to the problem of identifying when data contained
in different data sources refer to the same object and to
subsequently reconcile such conflicting information.
Addressing these issues starts by identifying which
abstract concepts are represented in each source. Once
shared information has been identified, conflicting in-
formation can be easily located.

Consider the example of two sources having dif-
ferent values for an attribute that is supposed to be the
same. A pitfall that genomics adds to the reconciliation
process is that there may not be a correct answer. Con-
sider that a sequence representing the same gene
should be identical in two different data sources. How-
ever, there may be legitimate differences between two
sources and those two genes, and it is necessary to pre-
serve these differences in the integrated view. Concept
overloading addresses the problem that it is often diffi-
cult to determine whether or not two abstract concepts
really have the same meaning and to figure out what to
do if they do not. It arises at the structure level (e.g.,
different interpretations of the term gene) and the in-
stance level (e.g., different names for the same gene).
The number of distinct concepts used in genomics by
different research communities and the use of the same
name to refer to multiple variants makes overcoming
these conflicts challenging. Our Genomics Ontology is
aimed at resolving these semantic conflicts in order to
be able to design uniquely defined types and operations
for our Genomics Algebra.

Based on the above discussion, we have identified
the following eight computer science related problems
(C1-C8) which are addressed in this project:

Cl. Semantic ambiguity of genomics terms. A precise
definition of many biological terms is missing but in-
dispensable for a computational treatment. A special
problem is the use of the same term in different se-
mantic contexts.

C2. Missing standards for genomic data representa-
tion. There is no commonly accepted way for repre-
senting genomic data as is evident in the many differ-
ent formats and representations in use today.

C3. Suitability of query languages. SQL is tailored to
answer questions about alphanumerical data but un-
suited for biologists asking biological questions.

C4. Limited functionality of genomic repositories.
The possible interactions of biologists with a genomic
repository are limited to the functions available in the
user interface of that repository. This implies a lack of
flexibility and in the ability to ask new types of queries.

CS. Inconsistency and incompatibility of data. The
existence of different genomic repositories with respect
to the same kind of biological data leads to the question
whether and where similar or overlapping repositories
agree and disagree with one another.

C6. Creation of new knowledge. The nature of stored
genomic data, e.g., in flat files, semi-structured records,
makes it difficult to discover and create new biological
knowledge. This is mainly the case because the extrac-
tion of relevant data from heterogeneous query results
and the subsequent analysis has to be performed manu-
ally without much computational support.

C7. Low-level treatment of data. Genomic data repre-
sentations and query results are more or less collections
of textual strings and numerical values and are not ex-
pressed in biological terms such as genes, proteins, and
nucleotide sequences. Operations on these high-level
entities do not exist.

C8. Integration of own evaluation functions. The
ability to evaluate data in genomic repositories with
external methods is insufficient. It must be possible to
create, integrate, and use user-defined functions with
genomics repositories in an efficient manner.

3. GenAlg Prototype System

Figure 1 depicts a conceptual overview of the
GenAlg prototype system consisting of Genomics Al-
gebra and underlying DBMS. The Genomics Algebra is
a self-contained, high-level, and extensible type system

for genomic data together with a comprehensive set of

operations. For example, in the EST sequencing sce-
nario described in Sec. 2, useful data types include
NUCLEOTIDE_SEQUENCE, PROTEIN_SEQUENCE,
and 2D_STRUCTURE with appropriate attributes and
methods. Furthermore, our genomics algebra may in-
clude biological operations on objects of these data
types such as

predictCDS:

NUCLEOT IDE_SEQUENCE — NUCLEOT IDE_SEQUENCE
translate:

NUCLEOT IDE_SEQUENCE — PROTEIN_SEQUENCE
2D_STRUCTURE:

PROTEIN_SEQUENCE — 2D_STRUCTURE

returning the possible coding sequence for a nucleotide
sequence, translating a nucleotide sequence into a pro-
tein sequence, and predicting the possible secondary
dimension (2D) structure for a protein sequence re-
spectively. In terms of the computer science challenges

outlined in Sec. 2, the Genomics Algebra represents a
solution to C2, C3, C4, C7, and C8.
U

@ @
Biologists KW\ /T

Query Interface

Genomics Algebra

Import
Extensible DBMS
Database of External

Genomics Data
user-generated or
. J'mporteoL S

Repositories

Figure 1: Conceptual architecture of the GenAlg system
depicting the integration of Genomics Algebra with a DBMS.

The Genomics Algebra is derived and developed
with the aid of a Genomics Ontology (not shown),
which is a “controlled vocabulary for the description of
the molecular functions, biological processes and cel-
lular components of gene products”. In the context of
GenAlg, the Genomics Ontology expresses the termi-
nological, syntactic, and semantic descriptions that are
needed to disambiguate the biological terms and op-
erations that make up the Genomics Algebra. Since one
could regard the Genomics Ontology as a conceptual
schema describing a subset of the genomics data, it
could also serve as an aid to integrating related terms
and concepts from different repositories. This will be
important when using the Genomics Algebra to man-
age data from multiple genomics repositories. The Ge-
nomics Ontology addresses problems C1 and CS.

Although the Genomics Algebra can be imple-
mented as a stand-alone, self-contained system for ma-
nipulating genomics data, it develops its full power
only when integrated with a database management
system (DBMS): by integrating the two, the Genomics
Algebra serves as a sophisticated query system for the
DBMS which in turn provides the persistent storage for
the inputs and outputs of the Genomics Algebra. The
underlying Database of Genomics Data may contain
user-generated data or data imported from external
repositories (shown on the lower right). Note that in
order to access external data, it must be imported and
merged with the existing data in the database. As men-
tioned above, an alternative approach would be to leave
the external data in its existing repository and establish
a separate connection using an adapter. Biologists ac-
cess the genomics data through GenAlg’s query inter-
face which is an extension of the underlying query lan-
guage of the DBMS enriched by the operations of the

Genomics Algebra. Details regarding the concepts de-
scribed above as well as the benefits of the Genomics
Algebra to the biological community are in [1, 2].

The integration of the Genomics Algebra with a
DBMS is achieved via a DBMS-specific adapter,
which encapsulates the knowledge about the DBMS
interface and underlying (legacy) data schema and pro-
vides independence. As a result, in order to connect the
Genomics Algebra to another data source, only the
DBMS-specific adapter code must be changed and not
the implementation of the Genomics Algebra itself.

There are several ways to implement the adapter.
For example, the Genomics Algebra types and opera-
tions, which are represented as a collection of Abstract
Data Types (ADTs), can be implemented using the
type system and query language of the DBMS: in the
case of an extensible, object-relational DBMS, ADTs
can be represented using the user-defined data type
(UDT) mechanism, and the Genomics Algebra opera-
tions are linked as external functions (e.g., in C, c,
Java). Once implemented, the adapter is registered with
the database management system at which point the
UDTs and external functions become add-ons to the
type system of the underlying database and can be used
in SQL statements just like any of the built-in types
and functions. Besides the design and implementation
of the UDTs and external functions inside the adapter,
a interesting research challenge will be to investigate to
which degree it is possible to optimize their imple-
mentations, for example, by using as much as possible
the DBMS-specific atomic data types for the imple-
mentation of the UDTs in order to take advantage of
the query optimization techniques of the DBMS.

All major database vendors support UDTs and
external functions and provide mechanisms to package
them up for easy installation (e.g., cartridges, extend-
ers, datablades). Encapsulating the DBMS-specific
code in an adapter makes our Genomics Algebra com-
pletely independent of the software that is used to pro-
vide persistence; the Genomics Algebra can be tightly
integrated with any DBMS (relational, object-oriented),
as long as the DBMS is extensible.

The genomics data is stored using the containers
provided by the underlying DBMS (e.g., relations, ob-
jects). An interesting strategy in the case of a Rela-
tional DBMS is to store data as binary large objects
(BLOBsS). In this approach, each ADT is localized in-
side a single BLOB rather then spread across one or
more relations, which typically requires expensive
joins when loading an ADT into memory. The integra-
tion of GenAlg with a DBMS addresses problem C6
since it provides biologists with a unified repository for
their genomics data, which is accessible through a do-
main-specific interface language. Biologists are thus
saved from tedious workflow activities during which
they are forced to transform data from one format to

another using programming languages or general-
purpose query languages.

Using the sample data types and operations one
could rephrase the 4-step iterative discovery process
for the structure prediction example in Sec. 2 in a sin-
gle SOL expression:

Select
predict2DStructure(translate(predictCDS(n))
From
nucleotide_sequence n

Where
n.getMolecularFunction() = “RNA-helicase”’;

In this example we are tacitly assuming that our
Genomics Algebra has been integrated with an object-
relational database management system which supports
the creation of complex data types and functions which
are part of the Genomics Algebra and which can be
accessed using SQL-99, for example. However, the
implementation and storage of the biological functions
and the data types on which they operate is hidden to
the user and immaterial to the formulation of the query.

This example demonstrates two points: (1) The
entire structure prediction experiment, which had to be
carried out in three computational steps plus one SQL
query (not to mention the storing of intermediary re-
sults) can be achieved with one expression nested in-
side a simple SQL query. (2) Unlike current data repre-
sentations, which model genomics data using atomic
types such as string or integer and require knowledge
about this representation in order to express queries,
our approach provides biologists with a high-level rep-
resentation and query interface that preserve biological
concepts such as gene or nucleotide sequence
and hide the low-level storage details, which depend on
the implementation of the Genomics Algebra.

4. Genomics Ontology

The term ontology can be defined as a description
of concepts and relationships that exist among the con-
cepts for a particular domain of knowledge. It provides
a consensual communication and interface language
between people seeking a shared understanding of
field-specific or interdisciplinary knowledge. For the
biological sciences community, the idea and the use of
the term ontology is relatively new. Some domain-
knowledge specific and context dependent ontologies
have been proposed like EcoCyc, RiboWeb, Gene On-
tology, Ontology for Molecular Biology (OMB), Ri-
boWeb, and TAMBIS Ontology (TaO). They all have
different goals (e.g., database schema definition, an-
notation, communication, ontology-based search and
query formulation), different formal frameworks (e.g.,
frame-based knowledge representation language, de-
scription logic), and different expressiveness. Without
going into detail, although all ontologies incorporate

features that we could use for our purposes, none of
them has them together. In particular, our Genomics
Ontology is much more domain-neutral and context
independent, and aims at covering a broader scope.

Our Genomics Ontology fulfills two important
goals. First, it identifies the essential object classes
(data types, kinds, data categories) in genomics and
the logical connections among them. Further, it char-
acterizes their properties by attributes. For that pur-
pose, we learn from OMB and TaO pursuing similar
goals. But as a specification method, we advocate an
Enhanced Entity-Relationship (EER) model. Entity-
relationship (ER) models are well known for the con-
ceptual design of databases and due to their graphical

The Gene Onion

==}

Ganame

Transcriptome

representation relatively easy to understand, also for
biologists. Figure 2 shows our current approach, which
we call Gene Onion due to its shape and the paths
(“onion skins”) that can be followed from the top ele-
ment to the bottom element. Object classes correspond
to entity sets (e.g., Gene, ORF, Intron) that are shown
without attributes here for space reasons. Logical con-
nections, which are indicated by straight and dashed
edges, refer to different variants of the two relationship
sets is composed of and is subtype of. The enhance-
ments of the ER model refer to special constructs, e.g.,
for representing sequences or alternatives (see legend).

Second, we will add biological transformations
operating on entity sets and producing entity sets.

LEGEND

Is Composed Of
Legend Tt kA
Organization Cardinalities
— And + 1 or Mare
—5 Or * 0 or More
~=t= Sequence 1 Exactly 1

. . . \
9 .
Chloroplast [_Cﬂmmosn'ﬂe][_r."i'.n.'nnﬂcrion] Plasmid |- - i
+

[--.;zN,x_][-TNA][g;r:;h][

h-{'——l:-““—— C—

nitiaticn IF angation
Codon !

!
Terminatian | : |
Codon |

Cadon

1 11 1; 1!

Figure 2: The Gene Onion.

In contrast to all aforementioned ontologies we attach
great importance to a formal definition of all entity
sets, relationship sets, and attributes. The central idea is
to use mathematics, and here especially set theory and
statistics, as a specification and modeling tool. This
assures a clear definition of all concepts and an unam-
biguous communication basis between biologists of the
same or different communities as well as between bi-
ologists and computer scientists for an adequate and
unique design of our Genomics Algebra.

5. Genomics Algebra

Our Genomics Algebra is a domain-specific,
many-sorted algebra incorporating a type system for
biological data and serves as a communication basis
and query interface for biologists. In particular, it in-
corporates a high-level biological terminology and is
not based on the low-level concepts provided by data-

base technology. To our knowledge, no such algebra
currently exists in the field of bioinformatics.

From an abstract, conceptual point of view, the
sorts of our algebra are derived from the entity sets of
our Genomics Ontology. We call them genomic data
types (GDTs). Genomic operations operate on GDTs
and produce a GDT as a result. The assignment of sets
to GDTs has already been performed when formally
defining the semantics of the genomic entity sets in our
ontology. For each operation, we need a function with
corresponding domains and a codomain. It has to be
formally defined how a function manipulates the do-
mains and produces the codomain. The collection of
sets for GDTs and functions for the genomic operations
forms our Genomics Algebra. To illustrate the concept,
we take some GDTs from Figure 2 and formulate a
possible part of our algebra:

sorts
Gene, PrimarymRNA, mRNA, Protein

ops
transcribe: Gene — PrimarymRNA
splice: PrimarymRNA ~ — mRNA
translate: mRNA — Protein

This “mini algebra” contains four GDTs for genes,
primary mRNA, messenger RNA, and protein as well
as three operators transcribe, which for a given gene
returns its primary transcript, splice, which for a given
primary transcript identifies its messenger RNA, and
translate, which for a given messenger RNA deter-
mines the corresponding protein. Hence, the high-level
nomenclature of our Genomics Ontology is directly
reflected in our algebra. The algebra allows us to (at
least) syntactically combine different operations by
(function) composition. For instance, given a gene g,
we can syntactically construct the term trans-
late(splice(transcribe(g))), which yields the protein
determined by g.

Finding a “complete” set of GDTs and genomic
operations (what does “completeness” mean in this
context?) is impossible, since new biological applica-
tions can induce new data types or new operations for
already existing data types. Therefore, we pursue an
extensible approach, i.e., if necessary, the Genomics
Ontology and Genomics Algebra can be extended by
new types and operations. The idea is to identify new,
powerful, and fundamental genomic operations that
nobody has considered so far.

From an implementation perspective, the Genom-
ics Algebra is an extensible, self-contained software
package providing an implementation for a set of ge-
nomic data types and operations for biological compu-
tation. This requires sophisticated data structures for
the GDTs and efficient algorithms for the genomic
operations. The algebra is principally independent of a
database system and can be used as a software library
by a stand-alone application program. However, the
algebra develops its full expressiveness and usability
only if it is designed as a collection of ADTs and inte-
grated into the query language of a DBMS (Figure 1).
ADTs encapsulate their implementation so that it is
hidden from the user or another software component
like the DBMS. From a modeling perspective, the
DBMS data model and the application-specific algebra
or type system are separated. This enables the devel-
oper to focus on the application-specific aspects em-
bedded in the algebra.

Data structure and algorithm design have to satisfy
some constraints. A first aspect is that algorithms for
different operations processing the same kind of data
usually prefer different internal data representations in
order to be as efficient as possible. In contrast to tradi-
tional work on algorithms, the focus is here not on
finding the most efficient algorithm for each single
problem (operation) together with a corresponding so-
phisticated data structure, but rather on considering the

Genomics Algebra as a whole and on reconciling the
various requirements posed by different algorithms
within a single data structure for each genomic data
type. Otherwise, the consequence would be enormous
conversion costs between different data structures in
main memory for the same data type. A second aspect
is that the implementation is intended for use in a data-
base system. Consequently, representations for ge-
nomic data types should not employ pointer data
structures in main memory but should be embedded
into compact storage areas which can be efficiently
transferred between main memory and disk. This
avoids unnecessary and high costs for packing main
memory data and unpacking external data.

6. Conclusions

We have described the GenAlg project developing
the Genomics Algebra as a new data model, language,
and tool for representing, storing, retrieving, querying,
and manipulating genomic information. Our integrated
Genomics Algebra in conjunction with a DBMS will
cause a fundamental change in the way biologists ana-
lyze genomics data and will allow them to pose ques-
tions using biological terms instead of low-level pro-
grams. Biologists should, and indeed want to invest
their time being biologists, not computer scientists.
Biologists are freed of the responsibility of managing
their data and can concentrate on what they can do
best, namely analyze the data. Due to the integration of
genomic data types as abstract data types into data-
bases and query languages, the Genomics Algebra can
be embedded, for example, in a relational, object-
relational, or object-oriented DBMS equipped with
appropriate extensibility mechanisms throughout the
whole system architecture. For example, in the case of
a relational DBMS, our GDTs and their operations can
be implemented as user-defined data types (UDTs) and
functions (UDFs) inside a DBMS-specific adapter.

We have defined an initial set of genomics data
types and are in the process of identifying the corre-
sponding operations and their semantics so that we can
design suitable algorithms for their implementation.
Our next goal is the implementation of the Genomics
Algebra and its integration into a relational DBMS.

References

[1] J. Hammer and M. Schneider, "Genomics algebra:
A new, integrating data model, language, and tool
for processing and querying genomic information,"
First Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, 2003.

[2] J. Hammer and M. Schneider, "Going back to our
database roots for managing genomic data,"
OMICS-A Journal of Integrative Biology, Mary
Ann Liebert, Inc., vol. 7, pp. 117-119, 2003.

