
The GenAlg Project: Developing a New Integrating Data Model, Language,

and Tool for Managing and Querying Genomic Information

Joachim Hammer and Markus Schneider

Department of Computer and Information Science and Engineering

University of Florida, Gainesville, FL, 32611-6120
{jhammer,mschneid}@cise.ufl.edu

1. Introduction

Life scientists are faced with a rapidly increasing

accumulation of data stored in large genomic reposito-

ries like EMBL, GenBank, SwissProt, and DDBJ, to

name a few. The flood of genomic data, their high va-

riety and heterogeneity in semantics, formats and ac-

cess methods, their semi-structured nature, and the

increasing complexity of biological applications and

methods mean that many and very important chal-

lenges in biology are now challenges in computing.

Biological data management has so far focused

mainly on integrating different repositories into feder-

ated databases or data warehouses. However, most of

these approaches ignore an important aspect: the dis-

crepancy between the low-level treatment of biological

data as alphanumerical values and their conceptual

high-level nature and usage in terms of genes, proteins,

and nucleotide sequences limit the ways biologists can

process this wealth of data effectively. A second but

equally important problem is the resolution of semantic

differences that exist among related or the same terms

across different or even within the same genomic re-

pository: Inconsistencies in naming, terminology, and

nomenclature lead to an ambiguous concept overload-

ing both at the structure level (e.g., different interpreta-

tions of terms such as gene or biological processes such

as splicing) and the instance level (e.g., different names

for the same gene). Before biological data integration

can be performed successfully, new techniques for

modeling, representing, and querying biological data

must be developed.

The ongoing GenAlg project focuses on overcom-

ing the enforced low-level treatment of biological data

imposed by genomic repositories, the lacking expres-

siveness and limited functionality of current query lan-

guages, and the frequent lack of structure and seman-

tics in biological data representations. Its concept dif-

fers substantially from other approaches in the litera-

ture and rests on the following two-step approach:

1. Genomics Ontology. Due to different goals and/or

shortcomings of existing ontologies, this effort

deals with the appropriate design of an ontology for

genomics in order to resolve terminological, syn-

tactic, and especially semantic differences, to dis-

ambiguate biological terms and processes, and to

create a consensual communication and interface

language between different research communities in

genomics. Although freely usable, it is especially

tailored to the needs of the Genomics Algebra.

2. Genomics Algebra. Based on the Genomics Ontol-

ogy, this effort incorporates the conceptual design,

implementation, and database integration of a new,

formal data model, query language, and software

tool for representing, storing, retrieving, querying,

and manipulating genomic information. This exten-

sible algebra provides a set of high-level genomic

data types (GDTs) (e.g., Genome, Gene, Nucleo-

tide) together with a comprehensive collection of

appropriate genomic operations (e.g., translate,

transcribe) for biological computation.

Section 2 discusses problems of genomic data

management. In Section 3 we give an overview of our

solution concepts and system architecture. Section 4

describes the Genomics Ontology. Section 5 introduces

our concept of Genomics Algebra. In Section 6 we

describe the integration of the Genomics Algebra with

a DBMS. Section 7 draws some conclusions.

2. Problem Statement

We now examine the two biological data man-

agement problems mentioned in the introduction in

detail. The first problem of low data representation

refers to the low-level treatment of data in biological

data sources, which is adopted in most integration ef-

forts and which includes the problems of low-level rep-

resentation and low-level querying of data. As an ex-

ample for low-level representation, consider a Gen-

Bank entry. The GenBank Web interface shows a large

amount of textual information introduced by keywords

like LOCUS, DEFINITION, ACCESSION, and

VERSION, etc. These textual representations often

have a complicated, semi-structured format at a very

low data level, and it is up to the biologists to parse

these data themselves. This situation does not change

even if the keywords become attributes in a relational

schema. Result data are mostly only available as text

files or are obtained through copy-and-paste, prevent-

ing the direct application of subsequent operations.

A consequence of the low-level representation of

data is their low-level querying and analytical proc-

essing. For example, large-scale Expressed Sequence

Tag (EST) sequencing projects output thousands of

uncharacterized DNA sequences. If the biologist

wanted to predict the protein secondary structure for a

subset of the EST sequences sharing a certain molecu-

lar function, they would need to perform four succes-

sive computational manipulations as illustrated in the

following scenario. Let us assume that the molecular

functions of the EST sequences have been obtained by

joining the initial BLAST output with the annotated

Swiss-Prot database. Let us further assume that the

annotated EST data is stored in a relational table called

SEQUENCE_FUNCTION where GO (Gene Ontology)

terms representing various molecular functions of the

gene products have been assigned to the EST se-

quences from the BLAST result. The relation

SEQUENCE_FUNCTION has the following structure

(primary key is underlined):

SEQUENCE_FUNCTION (

sequence-ID:integer,

sequence:varchar(255),

length:integer,

GO_ID:varchar(16));

• Step 1 requires the execution of an SQL query to

select the proper subset of nucleotide sequences on

which to perform the prediction analysis. The SQL

query below produces a set of nucleotide se-

quences representing genes having GO ID

‘GO:0003724’, which represents the molecular

function “RNA helicase”.

Select sequence_id, sequence
From SEQUENCE_FUNCTION
Where GO_ID = ‘GO:0003724’;

• In step 2, each nucleotide sequence in the resulting

set of ESTs is examined by a coding sequence

(CDS) prediction algorithm to define the most

probable protein-coding segment.

• In step 3, using the genetic code, each predicted

CDS is translated into the corresponding amino

acid sequence.

• In step 4, each derived amino acid sequence is

input to an algorithm for secondary structure pre-

diction. The result of each structure prediction is

parsed and stored for viewing or further down-

stream analysis.

Since the intermediate results of the above steps are

typically large, most biologists store the inputs and

outputs of their analysis programs in a database, which

in our scenario requires the existence of three tables,

P R E D I C T E D _ C D S , T R A N S L A T I O N , and

PREDICTED_2D_STRUCTURE for the storage of the

CDS, amino acid sequences, and 2-D secondary struc-

tures respectively.

Even this simple example illustrates the complex-

ity and the degree of database and computational ex-

pertise that is required of the biologist wishing to carry

out the analysis. As we show in Sec. 3, the same analy-

sis, when formulated using the Genomics Algebra, can

be carried out in a single expression nested inside a

simple SQL statement, involving only high-level bio-

logical terms and functions.

The second problem of data semantics and se -

mantic data integration includes the problems of con-

cept identification and resolution as well as concept

overloading. Concept identification and resolution re-

fers to the problem of identifying when data contained

in different data sources refer to the same object and to

subsequently reconcile such conflicting information.

Addressing these issues starts by identifying which

abstract concepts are represented in each source. Once

shared information has been identified, conflicting in-

formation can be easily located.

Consider the example of two sources having dif-

ferent values for an attribute that is supposed to be the

same. A pitfall that genomics adds to the reconciliation

process is that there may not be a correct answer. Con-

sider that a sequence representing the same gene

should be identical in two different data sources. How-

ever, there may be legitimate differences between two

sources and those two genes, and it is necessary to pre-

serve these differences in the integrated view. Concept

overloading addresses the problem that it is often diffi-

cult to determine whether or not two abstract concepts

really have the same meaning and to figure out what to

do if they do not. It arises at the structure level (e.g.,

different interpretations of the term gene) and the in-

stance level (e.g., different names for the same gene).

The number of distinct concepts used in genomics by

different research communities and the use of the same

name to refer to multiple variants makes overcoming

these conflicts challenging. Our Genomics Ontology is

aimed at resolving these semantic conflicts in order to

be able to design uniquely defined types and operations

for our Genomics Algebra.

Based on the above discussion, we have identified

the following eight computer science related problems

(C1-C8) which are addressed in this project:

C1. Semantic ambiguity of genomics terms. A precise

definition of many biological terms is missing but in-

dispensable for a computational treatment. A special

problem is the use of the same term in different se-

mantic contexts.

C2. Missing standards for genomic data representa-

tion. There is no commonly accepted way for repre-

senting genomic data as is evident in the many differ-

ent formats and representations in use today.

C3. Suitability of query languages. SQL is tailored to

answer questions about alphanumerical data but un-

suited for biologists asking biological questions.

C4. Limited functionality of genomic repositories.

The possible interactions of biologists with a genomic

repository are limited to the functions available in the

user interface of that repository. This implies a lack of

flexibility and in the ability to ask new types of queries.

C5. Inconsistency and incompatibility of data. The

existence of different genomic repositories with respect

to the same kind of biological data leads to the question

whether and where similar or overlapping repositories

agree and disagree with one another.

C6. Creation of new knowledge. The nature of stored

genomic data, e.g., in flat files, semi-structured records,

makes it difficult to discover and create new biological

knowledge. This is mainly the case because the extrac-

tion of relevant data from heterogeneous query results

and the subsequent analysis has to be performed manu-

ally without much computational support.

C7. Low-level treatment of data. Genomic data repre-

sentations and query results are more or less collections

of textual strings and numerical values and are not ex-

pressed in biological terms such as genes, proteins, and

nucleotide sequences. Operations on these high-level

entities do not exist.

C8. Integration of own evaluation functions. The

ability to evaluate data in genomic repositories with

external methods is insufficient. It must be possible to

create, integrate, and use user-defined functions with

genomics repositories in an efficient manner.

3. GenAlg Prototype System

Figure 1 depicts a conceptual overview of the

GenAlg prototype system consisting of Genomics Al-

gebra and underlying DBMS. The Genomics Algebra is

a self-contained, high-level, and extensible type system

for genomic data together with a comprehensive set of

operations. For example, in the EST sequencing sce-

nario described in Sec. 2, useful data types include

NUCLEOTIDE_SEQUENCE, PROTEIN_SEQUENCE,

and 2D_STRUCTURE with appropriate attributes and

methods. Furthermore, our genomics algebra may in-

clude biological operations on objects of these data

types such as

predictCDS:

NUCLEOTIDE_SEQUENCE NUCLEOTIDE_SEQUENCE

translate:
NUCLEOTIDE_SEQUENCE PROTEIN_SEQUENCE

2D_STRUCTURE:
PROTEIN_SEQUENCE 2D_STRUCTURE

returning the possible coding sequence for a nucleotide

sequence, translating a nucleotide sequence into a pro-

tein sequence, and predicting the possible secondary

dimension (2D) structure for a protein sequence re-

spectively. In terms of the computer science challenges

outlined in Sec. 2, the Genomics Algebra represents a

solution to C2, C3, C4, C7, and C8.

Extensible DBMS

Database of

Genomics Data
user-generated or

imported

Genomics Algebra

DBMS-specific

Adapter

…Biologists

External

Repositories

Import

Query Interface

Figure 1: Conceptual architecture of the GenAlg system

depicting the integration of Genomics Algebra with a DBMS.

The Genomics Algebra is derived and developed

with the aid of a Genomics Ontology (not shown),

which is a “controlled vocabulary for the description of

the molecular functions, biological processes and cel-

lular components of gene products”. In the context of

GenAlg, the Genomics Ontology expresses the termi-

nological, syntactic, and semantic descriptions that are

needed to disambiguate the biological terms and op-

erations that make up the Genomics Algebra. Since one

could regard the Genomics Ontology as a conceptual

schema describing a subset of the genomics data, it

could also serve as an aid to integrating related terms

and concepts from different repositories. This will be

important when using the Genomics Algebra to man-

age data from multiple genomics repositories. The Ge-

nomics Ontology addresses problems C1 and C5.

Although the Genomics Algebra can be imple-

mented as a stand-alone, self-contained system for ma-

nipulating genomics data, it develops its full power

only when integrated with a database management

system (DBMS): by integrating the two, the Genomics

Algebra serves as a sophisticated query system for the

DBMS which in turn provides the persistent storage for

the inputs and outputs of the Genomics Algebra. The

underlying Database of Genomics Data may contain

user-generated data or data imported from external

repositories (shown on the lower right). Note that in

order to access external data, it must be imported and

merged with the existing data in the database. As men-

tioned above, an alternative approach would be to leave

the external data in its existing repository and establish

a separate connection using an adapter. Biologists ac-

cess the genomics data through GenAlg’s query inter-

face which is an extension of the underlying query lan-

guage of the DBMS enriched by the operations of the

Genomics Algebra. Details regarding the concepts de-

scribed above as well as the benefits of the Genomics

Algebra to the biological community are in [1, 2].

The integration of the Genomics Algebra with a

DBMS is achieved via a DBMS-specific adapter,

which encapsulates the knowledge about the DBMS

interface and underlying (legacy) data schema and pro-

vides independence. As a result, in order to connect the

Genomics Algebra to another data source, only the

DBMS-specific adapter code must be changed and not

the implementation of the Genomics Algebra itself.

There are several ways to implement the adapter.

For example, the Genomics Algebra types and opera-

tions, which are represented as a collection of Abstract

Data Types (ADTs), can be implemented using the

type system and query language of the DBMS: in the

case of an extensible, object-relational DBMS, ADTs

can be represented using the user-defined data type

(UDT) mechanism, and the Genomics Algebra opera-

tions are linked as external functions (e.g., in C, C
++

,

Java). Once implemented, the adapter is registered with

the database management system at which point the

UDTs and external functions become add-ons to the

type system of the underlying database and can be used

in SQL statements just like any of the built-in types

and functions. Besides the design and implementation

of the UDTs and external functions inside the adapter,

a interesting research challenge will be to investigate to

which degree it is possible to optimize their imple-

mentations, for example, by using as much as possible

the DBMS-specific atomic data types for the imple-

mentation of the UDTs in order to take advantage of

the query optimization techniques of the DBMS.

All major database vendors support UDTs and

external functions and provide mechanisms to package

them up for easy installation (e.g., cartridges, extend-

ers, datablades). Encapsulating the DBMS-specific

code in an adapter makes our Genomics Algebra com-

pletely independent of the software that is used to pro-

vide persistence; the Genomics Algebra can be tightly

integrated with any DBMS (relational, object-oriented),

as long as the DBMS is extensible.

The genomics data is stored using the containers

provided by the underlying DBMS (e.g., relations, ob-

jects). An interesting strategy in the case of a Rela-

tional DBMS is to store data as binary large objects

(BLOBs). In this approach, each ADT is localized in-

side a single BLOB rather then spread across one or

more relations, which typically requires expensive

joins when loading an ADT into memory. The integra-

tion of GenAlg with a DBMS addresses problem C6

since it provides biologists with a unified repository for

their genomics data, which is accessible through a do-

main-specific interface language. Biologists are thus

saved from tedious workflow activities during which

they are forced to transform data from one format to

another using programming languages or general-

purpose query languages.

Using the sample data types and operations one

could rephrase the 4-step iterative discovery process

for the structure prediction example in Sec. 2 in a sin-

gle SQL expression:

Select

predict2DStructure(translate(predictCDS(n))
From

nucleotide_sequence n

Where

n.getMolecularFunction() = ‘RNA-helicase’;

In this example we are tacitly assuming that our

Genomics Algebra has been integrated with an object-

relational database management system which supports

the creation of complex data types and functions which

are part of the Genomics Algebra and which can be

accessed using SQL-99, for example. However, the

implementation and storage of the biological functions

and the data types on which they operate is hidden to

the user and immaterial to the formulation of the query.

This example demonstrates two points: (1) The

entire structure prediction experiment, which had to be

carried out in three computational steps plus one SQL

query (not to mention the storing of intermediary re-

sults) can be achieved with one expression nested in-

side a simple SQL query. (2) Unlike current data repre-

sentations, which model genomics data using atomic

types such as string or integer and require knowledge

about this representation in order to express queries,

our approach provides biologists with a high-level rep-

resentation and query interface that preserve biological

concepts such as gene or nucleotide sequence

and hide the low-level storage details, which depend on

the implementation of the Genomics Algebra.

4. Genomics Ontology

The term ontology can be defined as a description

of concepts and relationships that exist among the con-

cepts for a particular domain of knowledge. It provides

a consensual communication and interface language

between people seeking a shared understanding of

field-specific or interdisciplinary knowledge. For the

biological sciences community, the idea and the use of

the term ontology is relatively new. Some domain-

knowledge specific and context dependent ontologies

have been proposed like EcoCyc, RiboWeb, Gene On-

tology, Ontology for Molecular Biology (OMB), Ri-

boWeb, and TAMBIS Ontology (TaO). They all have

different goals (e.g., database schema definition, an-

notation, communication, ontology-based search and

query formulation), different formal frameworks (e.g.,

frame-based knowledge representation language, de-

scription logic), and different expressiveness. Without

going into detail, although all ontologies incorporate

features that we could use for our purposes, none of

them has them together. In particular, our Genomics

Ontology is much more domain-neutral and context

independent, and aims at covering a broader scope.

Our Genomics Ontology fulfills two important

goals. First, it identifies the essential object classes

(data types, kinds, data categories) in genomics and

the logical connections among them. Further, it char-

acterizes their properties by attributes. For that pur-

pose, we learn from OMB and TaO pursuing similar

goals. But as a specification method, we advocate an

Enhanced Entity-Relationship (EER) model. Entity-

relationship (ER) models are well known for the con-

ceptual design of databases and due to their graphical

representation relatively easy to understand, also for

biologists. Figure 2 shows our current approach, which

we call Gene Onion due to its shape and the paths

(“onion skins”) that can be followed from the top ele-

ment to the bottom element. Object classes correspond

to entity sets (e.g., Gene, ORF, Intron) that are shown

without attributes here for space reasons. Logical con-

nections, which are indicated by straight and dashed

edges, refer to different variants of the two relationship

sets is composed of and is subtype of. The enhance-

ments of the ER model refer to special constructs, e.g.,

for representing sequences or alternatives (see legend).

Second, we will add biological transformations

operating on entity sets and producing entity sets.

Figure 2: The Gene Onion.

In contrast to all aforementioned ontologies we attach

great importance to a formal definition of all entity

sets, relationship sets, and attributes. The central idea is

to use mathematics, and here especially set theory and

statistics, as a specification and modeling tool. This

assures a clear definition of all concepts and an unam-

biguous communication basis between biologists of the

same or different communities as well as between bi-

ologists and computer scientists for an adequate and

unique design of our Genomics Algebra.

5. Genomics Algebra

Our Genomics Algebra is a domain-specific,

many-sorted algebra incorporating a type system for

biological data and serves as a communication basis

and query interface for biologists. In particular, it in-

corporates a high-level biological terminology and is

not based on the low-level concepts provided by data-

base technology. To our knowledge, no such algebra

currently exists in the field of bioinformatics.

From an abstract, conceptual point of view, the

sorts of our algebra are derived from the entity sets of

our Genomics Ontology. We call them genomic data

types (GDTs). Genomic operations operate on GDTs

and produce a GDT as a result. The assignment of sets

to GDTs has already been performed when formally

defining the semantics of the genomic entity sets in our

ontology. For each operation, we need a function with

corresponding domains and a codomain. It has to be

formally defined how a function manipulates the do-

mains and produces the codomain. The collection of

sets for GDTs and functions for the genomic operations

forms our Genomics Algebra. To illustrate the concept,

we take some GDTs from Figure 2 and formulate a

possible part of our algebra:

sorts

Gene, PrimarymRNA, mRNA, Protein

ops

transcribe: Gene PrimarymRNA

splice: PrimarymRNA mRNA

translate: mRNA Protein

This “mini algebra” contains four GDTs for genes,

primary mRNA, messenger RNA, and protein as well

as three operators transcribe, which for a given gene

returns its primary transcript, splice, which for a given

primary transcript identifies its messenger RNA, and

translate, which for a given messenger RNA deter-

mines the corresponding protein. Hence, the high-level

nomenclature of our Genomics Ontology is directly

reflected in our algebra. The algebra allows us to (at

least) syntactically combine different operations by

(function) composition. For instance, given a gene g,

we can syntactically construct the term t rans -

late(splice(transcribe(g))), which yields the protein

determined by g.

Finding a “complete” set of GDTs and genomic

operations (what does “completeness” mean in this

context?) is impossible, since new biological applica-

tions can induce new data types or new operations for

already existing data types. Therefore, we pursue an

extensible approach, i.e., if necessary, the Genomics

Ontology and Genomics Algebra can be extended by

new types and operations. The idea is to identify new,

powerful, and fundamental genomic operations that

nobody has considered so far.

From an implementation perspective, the Genom-

ics Algebra is an extensible, self-contained software

package providing an implementation for a set of ge-

nomic data types and operations for biological compu-

tation. This requires sophisticated data structures for

the GDTs and efficient algorithms for the genomic

operations. The algebra is principally independent of a

database system and can be used as a software library

by a stand-alone application program. However, the

algebra develops its full expressiveness and usability

only if it is designed as a collection of ADTs and inte-

grated into the query language of a DBMS (Figure 1).

ADTs encapsulate their implementation so that it is

hidden from the user or another software component

like the DBMS. From a modeling perspective, the

DBMS data model and the application-specific algebra

or type system are separated. This enables the devel-

oper to focus on the application-specific aspects em-

bedded in the algebra.

Data structure and algorithm design have to satisfy

some constraints. A first aspect is that algorithms for

different operations processing the same kind of data

usually prefer different internal data representations in

order to be as efficient as possible. In contrast to tradi-

tional work on algorithms, the focus is here not on

finding the most efficient algorithm for each single

problem (operation) together with a corresponding so-

phisticated data structure, but rather on considering the

Genomics Algebra as a whole and on reconciling the

various requirements posed by different algorithms

within a single data structure for each genomic data

type. Otherwise, the consequence would be enormous

conversion costs between different data structures in

main memory for the same data type. A second aspect

is that the implementation is intended for use in a data-

base system. Consequently, representations for ge-

nomic data types should not employ pointer data

structures in main memory but should be embedded

into compact storage areas which can be efficiently

transferred between main memory and disk. This

avoids unnecessary and high costs for packing main

memory data and unpacking external data.

6. Conclusions

We have described the GenAlg project developing

the Genomics Algebra as a new data model, language,

and tool for representing, storing, retrieving, querying,

and manipulating genomic information. Our integrated

Genomics Algebra in conjunction with a DBMS will

cause a fundamental change in the way biologists ana-

lyze genomics data and will allow them to pose ques-

tions using biological terms instead of low-level pro-

grams. Biologists should, and indeed want to invest

their time being biologists, not computer scientists.

Biologists are freed of the responsibility of managing

their data and can concentrate on what they can do

best, namely analyze the data. Due to the integration of

genomic data types as abstract data types into data-

bases and query languages, the Genomics Algebra can

be embedded, for example, in a relational, object-

relational, or object-oriented DBMS equipped with

appropriate extensibility mechanisms throughout the

whole system architecture. For example, in the case of

a relational DBMS, our GDTs and their operations can

be implemented as user-defined data types (UDTs) and

functions (UDFs) inside a DBMS-specific adapter.

We have defined an initial set of genomics data

types and are in the process of identifying the corre-

sponding operations and their semantics so that we can

design suitable algorithms for their implementation.

Our next goal is the implementation of the Genomics

Algebra and its integration into a relational DBMS.

References

[1] J. Hammer and M. Schneider, "Genomics algebra:

A new, integrating data model, language, and tool

for processing and querying genomic information,"

First Biennial Conference on Innovative Data

Systems Research, Asilomar, CA, 2003.

[2] J. Hammer and M. Schneider, "Going back to our

database roots for managing genomic data,"

OMICS-A Journal of Integrative Biology, Mary

Ann Liebert, Inc., vol. 7, pp. 117-119, 2003.

