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Abstract

This article identifies an interesting class of applications
where stream sessions may be organized in a hierarchical
fashion - i.e. sessions may contain sub-sessions. For ex-
ample, log streams from call centers belong to different call
sessions and call sessions consist of services’ sub-sessions.
We may want to monitor statistics and perform accounting
at any level on this hierarchy, relative to any other higher
level (e.g. monitoring the average service session per call
vs. the average service session for the entire system.) We
argue that data streams of this kind have rich procedural
semantics - i.e. behavior - and therefore a semantically rich
model should be used: a session may be defined by opening
and closing conditions, may have data and methods and
may consist of sub-sessions. We propose a simple conceptual
model based on the notion of “session” - similar to a class in
an object-oriented environment — having lifetime semantics.
Queries on top of this schema can be formulated via HSA
(hierarchical stream aggregate) expressions. We describe an
algorithm dictating how stream data flow down session hi-
erarchies and discuss potential evaluation and optimization
techniques for HSAs. Finally we introduce NESTREAM,
a prototype implementation for these ideas and give some
preliminary experimental results.

1 Introduction

The technological explosion in the web, mobile com-
munications, sensor/wireless technology, as well as the
need for security, personalization, fraud detection, real-
time billing, dynamic pricing, and others emphasize
the necessity of real-time analysis and stream systems.
The database research community has responded with
an abundance of ideas, prototypes and architectures to
address the new issues involved in data stream manage-
ment systems ([1, 4, 5, 7]).

Although these systems go into detail on architectural
and optimization issues, they do not address fully the
topic of complex stream semantics. In this article
we identify a class of common applications that re-
quire complex modeling of data streams. For example,

stream sessions may have complex defining conditions
(i.e. opening and closing conditions), depending not
only on the incoming stream data, but also on run-
ning aggregates, state variables and external function
applications (e.g. network flows, WAP sessions, stock
exhange “bursts” etc.) Furthermore, sessions may ezist
only within other sessions creating thus a hierarchy
(e.g. individual services within WAP sessions or stock
performance during bursts.) Finally, within each ses-
sion, “peculiar” (non-standard, that is) computations
may take place (e.g. apply a correlation function against
the category of a stock within the stock session during
a burst.)

We propose a session-oriented framework (section 2)
to model these applications. We also define the concept
of hierarchical stream aggregate (HSA) - aggregates of
session values at different levels, not necessarily suc-
cessive — to express queries on top of session-oriented
schemata. In section 3 we propose two algorithms to
flow down stream tuples in session hierarchies and eval-
uate HSAs. NESTREAM’s implementation is discussed
in section 4.

1.1 Motivation

Assume a customer-related portal that provides useful
information for one or more thematic areas. The user
calls a specific number and chooses the service that she
wants to access. For example, she may want to get
information for AT&T. Within AT&T she can choose to
listen to FAQ), find the nearest store, or find out details
for her account. A portion of the services tree is shown
in Figure 1.

The activity of all calls is typically recorded to a log
that contains the following information: the channel
number (the channel that handles the call, similar to
IP in networks) and the type, date and time of the
event. An event is something recorded by the system,
for example the start or end of a call, the “category
change” occasion, the caller’s ID, etc. A typical log
has the following schema (taken from a real computer-
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Figure 1: Part of a call center’s services tree
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21 2001302006 12:25:47 0 107 2126199903 CID Received 00

21 2001802806 12:25:47 0 102 1075 3 %00

21 2001802806 12:25:47 5 500 2126199903 Caller_1ID00

21 2001302806 12:25:55 7 501 QBRICK ServerNamel [

21 2001602306 12:26:03 41 500 ATT RecognizedCateglll

21 2001302606 12:26:03 378 500 Starting ATTCategl

21 2001302606 12:26:11 342 501 FAQ ATTCategl D

21 2001802806 12:26:15 380 501 FAQ Categ = 1 ATTCategll

21 2001602806 12:26:28 352 501 FAQ_Question = 2 ATTCategll

21 2001p02006 12:27:07 352 501 FAQ Question = # ATTCategll

21 2001802806 12:27:12 380 501 FAQ Categ = 2 ATTCategl

21 200102806 12:27:16 354 501 FAQ_Question = 3 ATTCategll

21 2001802806 12:27:41 342 501 FAQ ATTCategl [

21 2001802306 12:27:43 380 501 FAQ Categ = 3 ATTCategl D

21 200102806 12:27:46 356 501 FAQ_Question = 2 ATTCategll

21 2001802806 12:28:04 342 501 ACCOUNT ATTCategl [

21 200102806 12:28:36 342 501 Location ATTCateglll

21 20018-028D6 12:28:46 348 501 New York 0 RecognisedATTStatel 0
21 2001302806 12:28:53 381 500 ATTCenter0076.wav CUSTOMER CENTER ISO0
21 200102806 12:29:14 348 501 New Jersey RecognisedATTStatell
21 2001802806 12:29:38 348 501 # RecognisedATTStatell
2102001602606 12:29:42 342 501 # ATTCateg 00

21 2001802806 12:29:42 0 104 2 Disconnect breakll

0

Figure 2: Part of a call center’s log file

telephony platform [8]):

Log(channel, date, time, stepnum, event_type,
expression, descr)

where channel denotes the channel number of the
system handling the call, date and time contains the
date and time of the specific event, event_type is a
number describing the type of the event, expression
and descr contain values that either make sense for
system events (e.g. caller’s id) or values that we choose
to print out during user-defined events. A portion of
the log during a typical activity is shown in Figure 2
(only for a channel, in a real log records from multiple
channels will be multiplexed.) Apparently such a log
constitutes a data stream: data arrives in continuous,
rapid, multiple, time-varying and unbounded streams.

One can ask several interesting queries for monitor-
ing, billing or statistical purposes:

Q1. What is the running average call length? (mea-
sured from a specific starting point.) This could be
used to monitor fluctuations on call lengths.

Q2. What is the running average of the calls’ totals of
AT&T sessions? (measured from a specific starting

point.) This could be used to dispatch resources
to different services (AT&T in this case) appropri-
ately.

If a caller accesses more than four times the AT&T
service, disconnect the call.

Q3.

Q4. What is the running average of the total AT&T
sessions within each call, for the last 1000 calls?
AT&T pays for these sessions, so there must be a

way to monitor usage.

Q5.

What is the running average of FAQ sessions (for
the entire system)?

All of the above-mentioned queries are examples of
continuous queries. Query Q1 should compute the
average call length. To do so, the length of each call has
to be computed when the call terminates and averaged
in at the system level. Query Q2 is similar to Q1 but
requires some kind of nesting: sum all AT&T sessions
for a call and report back this total to the system level
to compute the average.

In principal, the processing of all these queries is more
or less the same. Given a tree T representing nested
session nodes as in figure 1, we “flow” down stream
data s from the root to some leaf in a specific fashion: at
each node we check whether a specific session instance is
already “open” and either instantiate, update or destroy
it. We then move recursively one level down. When
a session instance completes, aggregate computations
should propagate up.

One can find similar applications in finance, real-time
billing, dynamic pricing, the web, and elsewhere. The
(interesting) question is whether certain common tasks
of these applications can be factored out so we can have
a query language and an optimization framework.

1.2 Challenges

In a traditional programming environment, one would
have to write individual programs for each one of the
queries. For example, for query Q1, a program would
utilize an array of timestamps, indexed by the channel
number. On each log event, the program would check
whether to “initialize a call” or “disconnect a call”.
In case of initialization, the timestamp has to be kept
in the array, at channel number position. In case of
disconnect, the duration of the call on this channel
number is computed and used to update the average
length call. This simple example shows some of the
basic challenges in a stream environment:

Rich procedural semantics. Data streams can be
seen not only as data elements but also as a sequence
of operations. Our experience is that various stream
applications require a wide range of ad hoc prepro-
cessing of the streamed data, from simple string and
date manipulation to complex function application. For



example, financial applications may apply some peculiar
(and sometimes proprietary) mathematical function on
a set of records to determine the correlation of stocks.
We believe that data streams are about state and be-
havior and therefore richer semantics is required.
Complex definitions of sessions and sub-sessions.
All queries Q1 to Q5 have a common characteristic:
they require a particular kind of grouping and sub-
grouping. Each session is not based entirely on one
or more attributes (the channel number), but also on
certain conditions. Indeed, a call depends on channel
number, but one also has to check for the opening
event of the call (event_type==102.) Within a call,
you may have subsessions that are similarly defined
with opening and closing conditions and/or additional
attributes. Extending group definitions with such con-
ditions is useful in an optimization framework. We use
the term session and not group, since we consider it
more suitable in the stream world. One could argue that
session — sub-session relationship is not necessary, since
one could have different processing nodes for each (e.g.
Aurora, [4]). However, by making the structure between
session nodes explicit, conceptual modeling becomes
easier, optimization possible, and hierarchical stream
aggregates processing transparent.

Hierarchical stream aggregates (HSAs). One can
compute aggregated values for a particular session (e.g.
the duration of a specific call or the total length of a net
flow.) Many applications however, require to “roll-up”
these aggregated values to sessions at higher levels such
as in queries Q1 to Q5. In other words, whenever
a specific session closes out, it reports some of its
values to an aggregate existing at an “ancestor” session
not necessarily the “parent” session (e.g. query Q5.)
We should have an intuitive syntax to formulate these
nested aggregate expressions and a simple and optimiz-
able algorithm to compute them.

2 Conceptual Framework

A session is a conceptual entity having state (data
members), behavior (methods) and lifetime (ie. a
starting and an ending point). During its lifetime, its
state may change. We assume that we can check the
state of a session at any moment ¢. In that sense, a
session is more similar to a function invocation within
a program, rather than an object in an OO framework.
Furthermore, some sessions cannot exist independently
of other sessions.

Definition 2.1: (Events, Sources) An event e is an
ordered list of n values (v1,vs,...,v,) (some n-tuple),
where each value is either an element of a domain
A; or a special NULL value. A source of events S
is any medium, able to generate a sequence of events
er,€ei+1,... where [ > 1. O

In a stream application environment we assume that
we have a set of sources S1,S53,...,S5k, each one gen-
erating a sequence of discrete, distinguishable events.
We denote the source of event e, as Source(e). We
also assume that there is a total ordering relationship ¢
between events, i.e. for all events e;, e; in the system,
we have either (e;,e;) € t or (ej,e;) € t (we write
t(e;) < t(e;) or t(e;) < t(e;) respectively.) There is

a special system event denoted as e, for which for all
events e, t(e) < t(exo)-

Definition 2.2: (Session object, instance) A session s
(or session instance) is a conceptual entity described by
a set of attributes (the state of the session), a set of
methods (the behavior of the session) and a sequence
of events (e1,ea,...,¢ex), where e1 # e and t(ey) <
t(ea) < ... < t(ex) (the lifetime of the session.) A
session object (or session class) O is a set of sessions of
the same type. O

We denote the first and last events of the lifetime of a
session s as €;ni¢ and egerm, respectively. We denote the
lifetime of a session s as li fetime(s).

Example 2.1: A Call session in figure 2 corresponds
to the activity of channel 21 (ch = 21). Its lifetime
consists of all rows (events), except the first one (the
opening condition is event_type==102). The €;,; is
the second row and the etery, the last row of figure 2.
The set of all Call sessions comprises the Call class. O

Definition 2.3: (Sub-session property, Hierarchies)
Assume two session classes O and Oy. We say that Oq
is a sub-session class of O; (denoted as O2 C O1), iff,
for all possible event sequences and Vs € Oz,3s’ € O
such that lifetime(s) C lifetime(s’). We call s’ the
parent session of s, denoted as parent(s). O

Example 2.2: In our motivating example, a Call ses-
sion can only exist within a System session. We can
enforce this by passing to a Call session events that
have already been processed only by the System session.
Similarly, AT&T sessions can only exist within Call
sessions. We can enforce this by passing to an AT&T
session events that have already been processed by a
Call session. O

Observation 2.1: Definition 2.3 requires that a sub-
session instance should receive all of its input events
from the same parent session. This guarantees for
example that an AT&T session will only “inherit” events
from the same Call session. It does not say anything
however, on how the parent session “flows down” events
(to one or multiple children sessions, in what way, etc.)
In the context of NESTREAM we introduce a primary
key constraint to control the “instantiation” and “flow-
ing” of events. Note however that flowing of events can
be controlled by more generic conditions. For example,



one can think of a schema where a System session
passes events to multiple overlapping Time-period sub-
sessions. O

Definition 2.4: (Layered Stream Schema - LSS) We
create a graph in the following way. Each session object
is a node o in this graph. If session object o; is sub-
session of another session object 0;, then we add an edge
< 04,05 > to this graph. The resulting directed graph
(a tree or a forest) is called the layered stream schema
(LSS) of the application. By doing a topological sort
on this graph, we can assign to each node a layer level,
denoted as layer(o). O

Definition 2.5: (Hierarchical Stream Aggregates) As-
sume a set of aggregate functions {f1, f2,..., fn} and
a specific tree T of a LSS. Also assume a non-
empty sub-path < o0;,,0i,,...,0;, > of some path
from the root to a leaf of T. Any expression of the
form o;, . f}, (0iy- i, (.- (04, - fj, (Value))...)), where value
is either an attribute of the stream or an attribute
or a method of the session object o;, and f; €
{f1, f2, - fn}, for each 1=1,2,...k, is called a hierar-
chical stream aggregate. O

There is a special aggregate function, called any that
simply returns the value of its argument.

Example 2.3: We could define an HSA for query Q1
as: System.average(Call.duration(time)), where du-
ration is a special built-in method of Call object.

We could define an HSA for query Q2 as:
Call.average(ATT.duration(time)).O

Note that HSAs do not need to be defined at suc-
cessive layers of session objects. For example, Sys-
tem.average(ATT.duration(time)) computes the aver-
age AT&T sessions for the System session without going
through Calls sessions. The result is different than
System.average(Calls.average( ATT.duration( time)).
We propose below a list of properties for a ses-
sion class definition. We are currently implementing

session class definitions in a system prototype called
NESTREAM.

Definition 2.6: (Session class description) A session
class O is described by the following characteristics:
Name, denoted as N - A unique name to distinguish
it from other session classes.

Source of Events, denoted as S - A primary source
of events or the name of another session class from which
it receives an event.

Attributes and Methods, denoted as two sets,
A and M - Data and function members, similar to an
object-oriented framework. These can be used for ad
hoc computations, to keep temporary values, etc.
Primary Key, denoted as PK - A subset of at-
tributes that can be used as primary key for the session

class, to uniquely identify session instances. There are
cases where there is no primary key, i.e. the class has
only one session instance (e.g. System and AT&T sessions
in our example). In these cases, the system adds a
unique attribute with a single value.

Flowing Constraint, denoted as ©p¢ - There must
be a way to “control” the flowing of stream data from
parent to children sessions (i.e. to which children session
instance(s) the parent should flow the event.) In its sim-
plest form (and currently in NESTREAM system), this
is a foreign key constraint correlating event attribute(s)
and the primary key of the session class. This means
that a session may flow the event to only one child
session. However, there are applications that stream
data can flow to multiple children.

Opening Condition and Constructor, denoted as
O, and f, - ©, is a condition that has to be met
in order for a session to be instantiated (in addition
to primary key constraint checking). A constructor is
a special method, executed when a session instance is
created.

Closing Condition and Destructor, denoted as
O. and f. - A condition that has to be met in order
for a session to be destroyed. A destructor is a special
method executed when a session instance is destroyed.

We denote this session object as
O = {N7S7A7MaPKa @FC7Ea @va07967f6}~ u

3 Evaluation Algorithms

In this section we describe the algorithms to flow down
stream data in a layered stream schema and evaluate
HSAs. In NESTREAM implementation we designed a
top level object, the Data Manager Interface (called
DMI), which acts as an interface between the data
stream sources (database tables, flat files, network sock-
ets, etc.) and the session objects of the LSS. It may
handle several data sources. There is one such session
instance for each tree in the LSS, which is always open.
We use this instance as the starting point for a recursive
algorithm (called the Flow-Downward algorithm) to
flow down a stream tuple. The driver routine for a
specific tree T of an LSS is given below. The specific
DMI instance is denoted as DMI si.

DMI.InitDataSources(T);

DMI_si = CreateDMIInstance(T);

while (! DMI.EndOfData(T)) {
e = DMI.ReadNext(T);
FDA(DMI_si, e);

}

DMI.CleanUp(T);



3.1 The Flow-Downward Algorithm

This algorithm “flows down” an event (i.e. a stream
tuple) in a specific LSS and updates appropriately the
session instances. It starts at a session instance s with
an input event e. The function 0bjectOf (s) returns
the session class of session s.

Algorithm 3.1: The Flow-Downward Algorithm:

FDA (session s, event e) {
Update(s,e);
foreach subsession obj 0 of Object0f(s) {
s’ = FindMatchingInstance(s,0.0Fpc,e);
if ((s'==NULL) and (s'.0,(e)) {
s’.constructor();
make s’ child of s;
}
if (s’!'=NULL) FDA(s',e);
}
if (5.0.(e)) Close(s);
}
Close (session s) {
foreach subsession obj 0 in ObjectOf(s)
for each child s’ of s in O
Close(s’);
s.destructor();

10

The algorithm proceeds as follows: Given a session in-
stance s and a read event e, it first updates s’s attributes
by executing its methods and updating its attributes.
Then, for each subsession class of s’s class, it finds (if
exists) the child session instance s’ of s that matches
the event e by invoking the FindMatchingInstance ()
system function.! If there is no matching child session
s' of s (FindMatchingInstance() returns NULL), it
creates one, if the opening condition for s’ with respect
to e is satisfied. It then calls recursively itself on
session s’ with event e. Once all the recursive calls to
s’s children have been completed, it checks whether s
should close out. If yes, it calls the system function
Close(), which closes recursively all descendents of s
in bottom-up fashion.

3.2 Evaluating Hierarchical Stream Ag-
gregates

Once we have a collection H = {hq, ha, ..., hy} of HSAs
declared in our system, we must have a consistent and
efficient way to evaluate them. We propose a basic
algorithm that propagates changes up to the root of a

IFindMatchingInstance() in current NESTREAM implemen-
tation returns one or none matched instances of each subsession
class because © p¢ searches for a match between the primary key
of the subclass and the corresponding event attribute(s). In future
versions however, when © po will allow more general expressions,
it will return a list of matched instances of the subsession object.

Figure 3: A LSS and an instance tree at a specific
moment

LSS. There is a number of fundamental questions that
greatly affects performance, such as how often we prop-
agate changes up, up to what level, etc. These questions
are closely related to optimization, approximation, data
shedding and QOS issues in data stream management
systems [2].

Definition 3.1: Assume a well-defined HSA h, h =
0iy - fi1 (0iy- £, (.. (04 - fj, (value))...)). The ordered list
(041505, ... ,0;,) is called the session aggregation path
of h and is denoted as SAP(h). The first 0;;, and last
0;, session objects in this list are denoted as first(h)
and last(h) respectively. Given any session object
o in SAP(h), next(o) denotes the object following o
in the SAP list and previous(o) the object preceding
o in SAP(h). Note that any suffix of h beginning
with an object name Oj is also an HSA. This is
called the partial stream aggregate of h with respect
to O,, and is denoted as HSA(h,O;,). The partial
stream aggregate HSA(h,last(h)) (i.e. 05, .f;, (value))
is called the stream handler of h and is denoted as
StreamHandler(h). Each object’s O definition in
SAP(h) is extended with an attribute of the appropriate
type, called the O’s value with respect to h, to keep
the intermediate result of the aggregation for h. This
attribute is named as O. < HSA.name > _value (e.g.
Oi,.hvalue). O

Example 3.1: Consider the LSS given in figure 3(a)
and a HSA h = A.avg(C.min(E.sum(v))), where v
some attribute of E’s description or the event’s schema.
According to definition 3.1 we have: SAP(h)=(A,B,C),
first(h)=A, last(h)=C, HSA(h,C)=C.min(E.sum(v)),
StreamHandler(h)=E.sum(v). We also have that A’s,
B’s and C’s descriptions are extended to have an at-
tribute named h_value.
O

Observation 3.1: Stream handlers have special status
during evaluation of HSAs because they can be imple-
mented as object methods and not as HSAs. As a
result, they can be evaluated along with other methods



in a session, without propagating results up as the Back
Propagation algorithm (described below) dictates. This
is a frequent case in many applications. O

Another issue has to do with aggregate semantics.
Some aggregate functions have to be updated only
when a session instance closes out while others require
continuous update. Consider for example a HSA h1l =
C.avg(E.sum(v)) defined on figure 3(a). E’s value with
respect to hl (E.hl_value) has to propagate up to the
corresponding C instance, only when E’s instances close
out, otherwise the result is erroneous. For example, in
figure 3(b), c2.hl_value changes only when one of the
e4, eb5, e6, e7 E instances closes out. On the other
hand, if we have an HSA h2 = C.min(E.sum(v)), we
may want to update C’s value with respect to h2 as
soon as E.h1l value changes. So both semantics could
be desirable. To handle this in a uniform way in our al-
gorithm, we mark each object’s value with respect to an
HSA h (i.e. 0.h_value) with a tag that states when this
value becomes available to previous(O) in the SAP list
of the HSA (possible values: on_open, continuous,
on_close). This tag depends on the semantics of the
aggregate function of previous(O) session object. If
the tag of 0.h_value is on_open, then 0.h_value is
reported once to higher levels and then it reports NULL.
This could be used for count aggregates. If the tag is
on_close, then 0.h_value reports its real value when
the instance closes out. All the other times it reports
NULL. This could be used for average aggregates.
Since NULL values do not participate in aggregate
computations, the algorithm presented below computes
HSAs correctly.

The following algorithm, given a HSA h, a session
instance s and a value v, propagates changes up from

ObjectOf(s) to first(h).
Algorithm 3.2: The Back-Propagation Algorithm:

BPA (HSA h, session s, value v) {
if (v !'= NULL) {

0 = Object0f(s);

if (0 € SAP(h)) {
UpdateHSA(s,h,v);
if (0 !'= first(h))

BPA(h, parent(s),
reported(s.hvalue));

}

else if ((0 !'= first(h))
BPA(h, parent(s), v);

}
jim

We assume that BPA has access to a data dic-
tionary containing information about declared HSAs.
The algorithm uses as parameters a HSA h, a session
instance s and a value v. The algorithm computes

only part of the HSA h, namely from ObjectOf(s) to
first(h) - it considers that the partial stream aggregate
HSA(h,next(ObjectOf(s)) has already been computed
and its value is v. This assumption is useful in most of
the cases (e.g. stream handlers compute their values
as object methods and not implementing the above
algorithm) and allows for greater flexibility in using the
algorithm.

If the class of s is part of the SAP of h, then it uses
value v to compute s’ value with respect to h (s.h_value)
and propagates the reported result to the parent of s2.
In case of ObjectOf(s) is not part of SAP(h), then BPA
propagates up v with no changes.

This algorithm can be modified to propagate changes
up to a specific session object O in SAP(h), not neces-
sarily to first(h). This is useful in some cases to opti-
mize performance in the presence of extra information
or simply to compute an approximate value.

In NESTREAM system, stream handlers are imple-
mented as object methods so they are updated when-
ever the session attributes/methods are updated/called
(with the update() method of algorithm 3.1.) The
remaining part of an HSA is computed whenever a
session instance closes out, by calling BPA() on that
session 3. The Close () function given in algorithm 3.1
is modified in NESTREAM to the following;:

Close (session s) {
foreach subsession obj 0 in ObjectOf(s)
foreach child s’ of s in O
Close(s);
foreach h in HSAs
if (Object0f(s) € SPA(h))
BPA(h,parent(s),s.hvalue);
s.destructor();

Example 3.2: Consider example 3.1 and an instance
tree, as depicted in figure 3. When session e4 closes out,
it calls BPA(h,d3,e4.h value), since d3=parent (e4)
and ObjectOf (e4)=E and E € SAP(h).
Since Object0f(d3)=D and D ¢ SAP(h) there is a re-
cursive call to BPA(h,c2,e4.h_value). At that level,
if e4.h_value is less than c2.h_value, the later
changes to the former and there is a new invocation of
BPA with parameters (h,bl,reported(c2.hvalue)).
Since reported(c2.hvalue) is NULL (because A’s
aggregate function is avg) the call to BPA is
BPA(h,b1,NULL). At that level, since v. == NULL,
recursion stops there. O

2reported is a function that checks the tag of s.h_value and
returns either the actual value of s.h_value or NULL.

3Note that this implies that computation of count becomes
available when a session instance closes and not when it opens.



4 NESTREAM Implementation

NESTREAM is a stream prototype that incorporates
many of the ideas described above. It has been de-
veloped in C/C++ and all preliminary testing was
performed on a Pentium 4 2GHz machine running Linux
OS. The front end is a textual interface, where the user
can define session objects in C++-like notation or XML,
specify data sources and configure the DMI. Session
object specifications follow definition 2.6. Once the LSS
has been defined, the user can compile the schema to a
C++ program that links to the FDA engine. All object
functions are implemented using callbacks coded in C.
All object instances are maintained by the FDA engine
inside linked lists. Hashing is used for speeding-up all
searches using primary keys and © p¢ constraints.

Currently, registration of HSAs require recompilation
of the schema and restart of the engine. Another alter-
native was to introduce a simple programming language
for defining both the LSS and the HSAs. The stream
language would then be compiled into some form of
bytecode and executed inside a virtual machine. The
obvious advantage to this approach is the ability to dy-
namically modify the HSAs during runtime, which is a
natural approach when dealing with continuous streams
compared to a stop-recompile-run process. Unfortu-
nately, such an approach would consume a great deal
of development time for a functioning prototype and it
would narrow the gap for successful optimizations.

We are in the process of building a GUI on top of
the textual front-end. Users will be able to define all
objects, their relationships and HSAs graphically, using
drag and drop operations. A GUI will also provide the
user with an intuitive interface to view the HSAs results
in real-time by clicking on each session object.

Figure 4 presents some preliminary performance re-
sults. We used a LSS of four levels (similar to fig-
ure 3 with levels A, B, C, and D). The first level
has just one instance (e.g. System), while the other
levels may have up to a hundred instances per node

(i.e. level B may have 10% instances, level C 10%
instances and level D 10%). We experimented with
three HSAs. HI1 involves aggregates of all levels

(A.avg(B.avg(C.avg(D.value)))), H2 involves aggre-
gates of two levels (A.avg(B.avg(C.value))) and H3
involves a single-level aggregate. The tuple size was 40
bytes.

The graph in figure 4 shows the stream rate when
the average lifetime size of session instances at level two
ranges from 10 to 1000 tuples with a step of 10. Recall
that when a high-level instance closes-out, all descen-
dants also close out, calling BPA recursively. Longer
session lifetimes at level two means larger number of
sub-sessions at lower levels and thus, greater number
of BPA invocations when a second-level session closes
out. This explains the degradation in performance as
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Figure 4: Stream rate vs. lifetime size of sessions

the average lifetime size increases up to 100. When
lifetime reaches 100 performance improves somehow,
since on average most instances at level three are open,
so additional tuples do not translate to more instances.
This graph indicates that the main performance bot-
tleneck is the number of BPA invocations (which relates
to the opening and closing rate of session instances) and
not the back propagation process (which relates to the
number of levels). We are in the process of conducting a
full set of experiments, varying the complexity of session
methods, number of levels and number of instances.

5 Future Work

This research work is just at the beginning. = There
are several interesting research questions we have not
discussed either due to lack of space or simply because
they are not mature enough.

A Complete Session-Oriented Data Model. In
this paper we have given the basic definitions for session
objects and we have identified a common and useful
relationship among them, hierarchies. However, in
an object-oriented framework (e.g. UML class dia-
grams [3]) there are other interesting relationships, such
as associations and aggregations (whole-part associa-
tions). What do these mean (semantically) for a session-
oriented framework? What multiple inheritance would
mean?

Query Language Issues. Although we have intro-
duced the concept of hierarchical stream aggregates as
means of a query language, we have not touched upon
other issues, such as selections or projections, creating
thus a complete query language. We are aware of appli-
cations that require some kind of conditional selection
of session instances. In example 3.1, we may want only



E sessions that have sum(v) > 30 to participate in the
computation of the minimum for C' instances. Opening
and closing conditions may involve HSAs allowing thus
a greater flexibility in defining when a session instance
closes out.

Optimization. There is plenty of room for optimizing
the two basic algorithms 3.1 and 3.2. For example, FDA
can avoid flowing down stream data if it can deduce
that it will not affect session instances lower in the tree.
Similarly, BPA does not need to propagate up computed
aggregates if it can deduce that these will not change
aggregates further up in the HSA SAP. Multiple HSAs
can be computed in the same invocation of BPA.

6 Conclusions & Related Work

In this paper we introduced a class of applications
dealing with nested stream processing and argue that
this class includes many interesting and common real-
life problems. Our experience shows that these appli-
cations require high level constructs to describe com-
plex relationships between stream processing nodes (e.g.
hierarchies) and ad hoc computations (e.g. peculiar
manipulation of incoming stream data). We have imple-
mented many of these concepts in a system prototype
called NESTREAM. Our goal is to make NESTREAM a
useful tool in managing data streams in practical ways.

Fundamental properties and assumptions of data
stream management systems can be found in [2]. The
need for defining substreams in an infinite stream is
identified in [13] by Tucker et.al. This is achieved by a
punctuation mechanism. Punctuations denote the end
of a subset of data and can be seen as predicates over
data in a stream. This is something to consider for
our opening and closing conditions. Hierarchical stream
aggregates are similar in spirit to correlated aggregates,
either in traditional databases [6, 11] or continual data
streams [9]. The difference between the two worlds
is the requirement of one pass. In [10], Lerner and
Shasha present a framework to query ordered data
and discuss the problem of inter-tuple communication.
Many issues on sequence databases ([12]) are similar to
those presented here. Wang and Zaniolo argue for user-
defined aggregates (UDAs) [14]. Our approach for a
stream system is similar to theirs, identifying the rich
procedural semantics and the individual needs of stream
applications. But UDAs lack coupling with structural
relationships, such as hierarchies. Finally, there are
similarities with well-known stream projects ([4, 7, 1,
5]), particularly Aurora, where tuples also flow through
a loop-free directed graph of processing boxes. The key
difference is in state and semantics (e.g. instances and
hierarchies).
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