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ABSTRACT
The Web has been rapidly “deepened” by the prevalence of databases
online. With the potentially unlimited information hidden behind
their query interfaces, this “deep Web” of searchable databases is
clearly an important frontier for data access. This paper surveys
this relatively unexplored frontier, measuring characteristics perti-
nent to both exploring and integrating structured Web sources. On
one hand, our “macro” study surveys the deep Web at large, in April
2004, adopting the random IP-sampling approach, with one million
samples. (How large is the deep Web? How is it covered by current
directory services?) On the other hand, our “micro” study surveys
source-specific characteristics over 441 sources in eight represen-
tative domains, in December 2002. (How “hidden” are deep-Web
sources? How do search engines cover their data? How complex
and expressive are query forms?) We report our observations and
publish the resulting datasets to the research community. We con-
clude with several implications (of our own) which, while necessar-
ily subjective, might help shape research directions and solutions.

1. INTRODUCTION
In the recent years, the Web has been rapidly “deepened” by

the massive networked databases on the Internet: While the sur-
face Web has linked billions of static HTML pages, it is believed
that a far more significant amount of information is “hidden” in the
deep Web, behind the query forms of searchable databases. Us-
ing overlap analysis between pairs of search engines, a July-2000
white paper [1] estimated at least 43,000-96,0001 “deep Web sites,”
and claimed 550 billion hidden pages in the deep Web, or 550 times
larger than the surface Web.

These databases are often also referred to as the hidden or invis-
ible Web: The perception naturally arises: Since such information
cannot be accessed directly through static URL links, they are only
available as responses to dynamic queries submitted through the
query interface of a database. Because current crawlers cannot
effectively query databases, such data are invisible to traditional
search engines, and thus remain largely hidden from users.

This paper surveys databases on the Web, for characteristics per-
tinent to their exploration and integration. The survey is based
on our experiments in April 2004 for the deep Web at large (Sec-
tion 3) and December 2002 for source-specific characteristics (Sec-
tion 4). With its massive sources, this deep Web is an important
∗This material is based upon work partially supported by NSF
Grants IIS-0133199 and IIS-0313260. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the
funding agencies.
1The white paper [1] then claimed 200,000 sites to account for “un-
der count due to lack of randomness.”

yet largely-unexplored frontier for data integration. While our re-
search community has actively studied integration techniques, such
large-scale integration is not a traditional focus. We hope a real-
ity check will help identify the challenges and sketch the landscape,
for motivating and guiding our future research efforts.

Specifically, our survey focuses on structured databases on the
Web, which return structured objects with attribute-value pairs
(e.g., a Book source like amazon.com returns books with au-
thor, title, etc.). Thus, our focus essentially distinguishes un-
structured databases, which provide data objects as unstructured
media (e.g., texts, images, audio, and video). We believe such dis-
tinction is both desired and necessary: First, such structured or “re-
lational” data are traditionally of greater interest to the database
community. Second, structured sources necessarily imply different
paradigms and techniques from unstructured sources.

We design our survey to center around the essential tasks for ef-
fectively accessing the deep Web: That is, while there are myriad
useful databases, how can a user find the right sources and query
them in a right way? Consider user Amy, who just joined a univer-
sity as a new professor. To find a house, where can she look for real
estate listings in her town? (Realtor.com.) Where can she study
for buying a new car? (Cars.com, Edmunds.com.) To plan her
research agenda, how can she find emerging topics in databases?
(Try DBLP Bibliography Search.) After surviving source hunt-
ing, Amy will realize that she has to learn the grueling details of
querying, which can be a major headache especially when there
are multiple sources.

Our survey thus studies issues related to these dual essential
tasks: First, for exploration (i.e., to help Amy find sources), our
macro study surveys the deep Web at large: What is its scale? How
many databases are there? Where to find “entrance” to them? How
many are structured databases? What is the coverage of deep-Web
directories? What is the category distribution of sources? Second,
for integration (i.e., to help Amy query sources), our micro study
surveys source characteristics: How “hidden” are Web sources?
How do search engines cover their data? How complex are their
query interfaces? How complex are their queries?

To our knowledge, this survey is the first “open-source,” fully
documented study of the deep Web, with a specific focus on struc-
tured databases, for both the macro and micro perspectives. Most
Web scale characterization efforts have focused on the surface Web,
e.g., [2]. The pioneering study [1] of the deep Web has since
opened wide interests in this area; however, in comparison, it dif-
fers in several aspects: 1) It studies Web “search sites” in a seem-
ingly broader sense, without giving explicit qualification of such
sites. 2) It uses proprietary methods, which result in much unex-
plained detail. 3) It studies mainly about the “macro” but lacks the
“micro” perspective.



domain sources domain sources

Airfares 50 Hotels 39
Automobiles 97 Jobs 52
Books 59 Movies 69
CarRentals 24 MusicRecords 51

Figure 1: Domain-specific dataset: 441 sources in 8 domains.

Finally, based on our findings, we suggest several likely implica-
tions. While our interpretation of the results and our conjectures are
necessarily subjective, we believe they are at least well motivated
by the survey, and are likely to shed insights for our future research.
Our main conclusions are– 1) in terms of problems: large-scale
integration is a real challenge, which likely will mandate dynamic
and ad-hoc integration requirements; and 2) in terms of solutions:
holistic-integration approaches, which discover integration seman-
tics by globally exploiting shallow clues across many sources, are
likely to be a key technique for enabling large-scale integration.

We start in Section 2 by discussing our experimental setup and
methodologies. Section 3 reports the results of our macro study,
and Section 4 our micro study. We then discuss our implications in
Section 5. Finally, Section 6 reviews the related work and Section 7
concludes the paper.

2. EXPERIMENTAL SETUP
Our survey intended to study both the “macro” characteristics of

the deep Web at large and the “micro” characteristics of sources
in some representative domains. We thus configured two groups
of experiments, each with different datasets. First, we adopted the
random IP-sampling approach to acquire Web sites from a sample
of 1 million randomly-generated IP (Internet Protocol) addresses.
These sampled sources constitute the dataset for our macro survey.
Second, for our micro study, we manually collected 441 sources in
8 representative domains.

2.1 Randomly-Sampled Dataset
We performed our “macro” experiments in April 2004 to study

the deep Web at large: its scale in particular. There are mainly two
approaches for such Web size characterization. The first scheme,
overlap analysis, estimates the Web size by extrapolating from
the overlap size between two independently and randomly sampled
collections, e.g., search engines. Such estimates, as [1, 2] show,
tend to result in great inconsistencies when different search en-
gines are used, because the independent and random sampling as-
sumptions may not hold. We thus adopt the random IP-sampling
method, which estimates the Web size by testing randomly-sampled
IP addresses. This scheme assumes that Web servers are uniformly
distributed in the entire IP space. The assumption seems more re-
alistic, and the results are in fact more consistent and stable.

Our experiment sampled 1,000,000 unique randomly-generated
IPs, from the 2,230,124,544 valid IP addresses (the entire space
after removing the reserved and unused IP ranges according to [3]).
For each IP, we used an HTTP client, the GNU free software wget
[4], to make an HTTP connection to it and download HTML pages.
The results show that among these 1,000,000 IPs, 2256 IPs have
publicly accessible Web sites, by responding to our HTTP requests.
These sources constitute our sample of the Web, based on which we
further examined the presence of Web databases. Section 3 reports
our survey on this sampled dataset.

2.2 Domain-Specific Dataset
We performed our “micro” experiments in December 2002 to

study per-source characteristics of deep Web sources. To inspect

the deep Web site Bn.com

book 
database

music
database

advanced search simple search advanced search simple search

Figure 2: Site, database, and interface.
any potential domain-specific implications, we took a domain-
centered approach, in which we studied sources in several repre-
sentative domains. We manually collected deep web sources using
Web directories (e.g., InvisibleWeb.com, BrightPlanet.com, Web-
File.com) and search engines (e.g., Google.com). In particular,
we collected 441 sources in eight domains: Airfares, Automobiles,
Books, Car Rentals, Hotels, Jobs, Movies and Music Records. Fig-
ure 1 summarizes our dataset. We have released this dataset, as part
of the UIUC Web Integration Repository [5], available online
at http://metaquerier.cs.uiuc.edu/repository. In particular, the
dataset gives the complete list of sources we studied in this survey.

3. THE MACRO: DEEP WEB AT LARGE
This section presents our macro survey of the deep Web at large.

Our focus is centered around the challenge of exploring databases
on the Web, i.e., finding where they are (as Section 1 introduced).
Our survey thus intended to address both the scale of the deep Web,
and the coverage of current directory services, with an emphasis
on structured databases (although we also measured unstructured
sources). For this set of experiments, we adopted the IP-sampling
approach (Section 2.1).

In our survey, we distinguished three related notions for access-
ing the deep Web– site, database, and interface: A deep-Web site
is a Web server that provides information maintained in one or more
back-end Web databases, each of which is searchable through one
or more HTML forms as its query interfaces. For instance, as Fig-
ure 2 shows, bn.com is a deep-Web site, providing several Web
databases (e.g., a book database, a music database, among others)
accessed via multiple query interfaces (e.g., “simple search” and
“advanced search”). Note that, our survey considered only unique
interfaces and removed duplicates– Many Web pages contain the
same query interfaces repeatedly, e.g., in bn.com, the simple book
search in Figure 2 is present in almost all pages.

As our survey specifically focuses on online databases, we dif-
ferentiated and excluded non-query HTML forms (which do not
access back-end databases) from query interfaces. In particular,
HTML forms for login, subscription, registration, polling, and mes-
sage posting are not query interfaces. Similarly, we also excluded
“site search,” which many Web sites now provide for searching
HTML pages on their sites– These pages are statically linked at
the “surface” of the sites; they are not dynamically assembled from
an underlying database.

(Q1) Where to find “entrances” to databases? To access a
Web database, we must first find its entrances– i.e., query inter-
faces. How does an interface (if any) locate in a site– i.e., at which
depths? For each query interface, we measured the depth as the
minimum number of hops from the root page of the site to the inter-
face page. For this study, as it required deep crawling of Web sites,
we analyzed 1

10
of our total IP samples, i.e., a subset of 100,000

IPs. We tested each IP, by making HTTP connections, and found
281 Web servers. Exhaustively crawling these servers to depth 10,
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Figure 3: Distribution of Web databases over depth.

Sampling Results Total Estimate
Deep Web sites 126 307,000
Web databases 190 450,000

– unstructured 43 102,000
– structured 147 348,000

Query interfaces 406 1,258,000

Figure 4: Sampling and estimation of the deep-Web scale.

we found 24 of them are deep Web sites, which contained a total of
129 query interfaces representing 34 Web databases.

We found that query interfaces tend to locate shallowly in their
sites– None of the 129 query interfaces had depth deeper than 5. To
begin with, 72% (93 out of 129) interfaces were found within depth
3. Further, since a Web database may be accessed through multiple
interfaces, we measured its depth as the minimum depths of all
its interfaces: 94% (i.e., 32 out of 34) Web databases appeared
within depth 3; Figure 3 reports the depth distribution of the 34
Web databases. Finally, 91.6% (i.e., 22 out of 24) deep Web sites
had their databases within depth 3. (We refer to these ratios as
depth-three coverage, which we will guide our further larger-
scale crawling in Q2.)

(Q2) What is the scale of the deep Web? We then tested and
analyzed all of the 1,000,000 IP samples to estimate the scale of the
deep Web. As just identified, with the high depth-three coverage,
almost all Web databases can be identified within depth 3– We thus
crawled to depth 3 for these 1 million IPs.

The crawling found 2256 Web servers, among which we iden-
tified 126 deep Web sites, which contained a total of 406 query
interfaces representing 190 Web databases. Extrapolating from the
s = 1, 000, 000 unique IP samples to the entire IP space of t =
2, 230, 124, 544 IPs, and accounting for the depth-three coverage,
we estimate the number of deep Web sites as 126× t

s
÷91.6% =

307, 000, the number of Web databases as 190 × t

s
÷ 94% =

450, 000, and the number of query interfaces as 406× t

s
÷72% =

1, 258, 000 (the results are rounded to 1000). Table 4 summarizes
the sampling and the estimation results. By their ratios, we also
observed the “multiplicity” of access on the deep Web. In aver-
age, each deep Web site provides 1.5 databases, and each database
supports 2.8 query interfaces.

The earlier survey of [1] estimated 43,000 to 96,000 deep Web
sites by overlap analysis between pairs of search engines. Although
the white paper has not explicitly qualified what it measured as a
“search site,” by comparison, it is still evident that the scale of the
deep Web is well on the order of 105 sites. Further, it has been
expanding, resulting in 3-7 times increase in 4 years (2000-2004).

Number of Web Databases Coverage
completeplanet.com 70,000 15.6%
lii.org 14,000 3.1%
turbo10.com 2,300 0.5%
invisible-web.net 1,000 0.2%

Figure 5: Coverage of deep-Web directories.

(Q3) How “structured” is the deep Web? While information
on the surface Web is mostly unstructured HTML text (and im-
ages), how is the nature of the deep-Web data different? We clas-
sified Web databases into two types: 1) unstructured databases,
which provide data objects as unstructured media (e.g., texts, im-
ages, audio, and video), and 2) structured databases, which pro-
vide data objects as structured “relational” records with attribute-
value pairs. For instance, cnn.com has an unstructured database
of news articles, while amazon.com has a structured database for
books, which returns book records (e.g., title = “gone with the
wind”, format = “paperback”, price = $7.99).

By manual querying and inspection of the 190 Web databases
sampled, we found 43 unstructured and 147 structured. We sim-
ilarly estimate their total numbers to be 102,000 and 348,000 re-
spectively, as Table 4 also summarizes. Thus, the deep Web fea-
tures mostly structured data sources– with a dominating ratio of
3.4:1 versus unstructured sources.

(Q4) What is the coverage of deep-Web directories? Be-
sides traditional search engines, several deep-Web portal services
have emerged online, providing deep-Web directories which clas-
sify Web databases in some taxonomies. To measure their cover-
age, we surveyed four popular deep-Web directories, as Figure 5
summarizes. For each directory service, we recorded the number
of databases it claimed to have indexed (on their Web sites). As a
result, completeplanet.com was the largest such directory, with
over 70,000 databases2 . As Figure 5 reports, compared to our es-
timate, it covers only 15.6% of the total 450,000 Web databases.
However, other directories covered even less, in the mere range of
0.2% − 3.1%. We believe this extremely low coverage suggests
that, with their apparently manual classification of Web databases,
such directory-based indexing services can hardly scale for the deep
Web.

(Q5) What is the subject distribution of Web databases? With
respect to the top-level categories of the yahoo.com directory as
our “taxonomy,” we manually categorized the sampled 190 Web
databases. Figure 6 shows the distribution of the 14 categories:
Business & Economy (be), Computers & Internet (ci), News & Me-
dia (nm), Entertainment (en), Recreation & Sports (rs), Health (he),
Government (go), Regional (rg), Society & Culture (sc), Education
(ed), Arts & Humanities (ah), Science (si), Reference (re), and Oth-
ers (ot). The distribution indicates great subject diversity among
Web databases, suggesting that the emergence and proliferation of
Web databases are spanning well across all subject domains.

4. THE MICRO: DOMAIN STUDIES
Beyond our macro study, we also investigated 441 sources (Sec-

tion 2.2) to survey per-source characteristics. These sources were
from 8 representative domains– Our study also intended to identify,
if any, domain-specific implications. For this set of experiments,
we focus on the challenge of integrating databases on the Web,
i.e., accessing and querying them (as Section 1 introduced).

We performed two groups of experiments. First, in [Q6–7] we

2However, we noticed that completeplanet.com also indexed “site
search,” which we have excluded; thus, its coverage could be over-
estimated.
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Figure 6: Distribution of Web databases over subject category.
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Figure 7: Hiddenness: Ratio of sources with browse interfaces.

studied the accessibility of sources: How hidden are their data?
How search engines have crawled their data? Second, in [Q8–11],
we studied the various aspects about querying sources – by inves-
tigating the “complexity” of their query interfaces. We believe for
any attempt to integrate structured databases (e.g., query media-
tion), it is essential to cope with these query interfaces, since data
must be retrieved with queries.

(Q6) How “hidden” are data on the deep Web?
The deep Web is often referred to as the “hidden” or “invisible”

Web. The impression has naturally arisen from that data can “only”
be accessed through query interfaces, and thus are hidden from
any typical crawlers that follow hyperlinks. This “query-only” ac-
cess mode essentially distinguishes databases on the Web (the deep
Web) from the rest of the link-based contents (the surface Web). To
verify the restrictions as well as alternatives, we validated whether
the deep Web is mostly hidden.

We examined, for each source, whether there are navigational
paths to reach its data, which essentially “surface” the data. Such
navigational paths are typically provided by a browse interface
for accessing data by navigating some data-classification hierarchy
(e.g., Amazon.com allows browsing books in a subject hierar-
chy). Thus we measured the hiddenness of the deep Web sources
by checking the availability of browse interfaces. Such naviga-
tional access, when available, provides link-based access to data.
(However, we did not further measure if such navigational access
indeed reaches all the data that the corresponding query-based ac-
cess does.) Figure 7 reports, for each domain, the ratio of such
“open” sources.

The results seem somewhat surprising: The deep Web is not
“entirely” hidden; for some domains, there often exists naviga-
tional access to data. That is, the hiddenness varies across domains:

74%

21%

5%

NotCrawled Stale Fresh
Figure 8: Coverage and freshness of Google cache.

While some domains (e.g., Airfares, CarRentals) usually do not
support browse interfaces, others (e.g., Books, Movies) tend to be
quite “open.” Such variation might have resulted naturally from
the “dynamism” of data. For instance, Airline reservation data are
highly dynamic and seasonal, thus making them harder to maintain
in static links than other relatively more static data (e.g., Books).
Another possible reason is the “browsability” of data, i.e., whether
there exist some natural, commonly-accepted organizational hier-
archies to browse the data (e.g., Books, Movies).

(Q7) How do search engines cover deep-Web sources? As a
consequence of [Q6], since deep-Web sources may not be hidden,
is it possible to “crawl-and-warehouse”as search engines do for the
surface Web? To answer this question, we investigated how a typ-
ical search engine “warehouses” such data, for both coverage and
freshness. In particular, we use Google (google.com) because
it supports access to the “cached” pages.

We randomly chose 10 sources in each domain. For each source,
first, we manually selected some objects (result pages) as test data
(without any particular bias) by querying the data source (e.g.,
Amazon.com). We then, for each object collected, used Google’s
“advanced search” to check if Google crawled its page and if the
page contained up-to-date information. We formulated a query and
submitted to Google to match the test object. (For instance, we
used distinctive phrases occurred in the object page as keywords
and limited the search to only the source site.) For a cached page,
we further checked if it was fresh, by comparing its information to
the source object (e.g., the price may change).

Figure 8 reports the distribution of objects that were not-crawled,
crawled-but-stale, and fresh. First, most deep-Web data are simply
not covered by Google. Second, even covered, most cached data are
stale. The freshness is only 5%. Thus, the “crawl-and-warehouse”
approach might not work well for deep-Web data.

(Q8) How large is query-interface schema? Each query inter-
face supports queries on some attributes (e.g., title for Books);
these attributes form the “schema” aspect of query interfaces. As
our survey focuses on structured databases, such schema informa-
tion is essential. We thus measured the number of attributes, as the
schema size, for each source query interface.

Figure 9 shows the distribution of schema sizes across all do-
mains (individually and overall). For instance, consider the most
frequent sizes: for Jobs, 25% sources had 5 attributes, and for Car
Rentals 28% had 8. What’s the overall most-frequent size? 18%
interfaces had size 4.

Figure 10 shows the smallest, largest, and average schema sizes
for each domain and overall. First, some domains tend to be more
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complex: Airfares and Car Rentals have an average schema size of
9, which is larger than the overall average. Second, some domains
show a more significant difference across sources (i.e., larger dif-
ference between the smallest and largest), such as Books and Music
Records; others are more uniform, such as Car Rentals. Overall,
across all sources, the smallest size of schema is 1, the largest 18,
and the average 6.

(Q9) How complex are the “schema vocabularies” for query
interfaces? Consider attributes for querying as the schema vo-
cabulary for query interfaces– Do sources in the same domain
somehow share a schema vocabulary? How complex is such an
aggregate vocabulary? Here we report our analysis of our sources
for this schema complexity.

For attribute comparison, as preprocessing, we applied several
simple and common normalization steps to identify the same at-
tributes with slightly different textual appearances. Each attribute
is normalized by three steps: stopwords removal (e.g., “the”, “of”),
stemming (authors becomes author), and alphabetical ordering
(book titles and title of books both become book title).

First, we see the clustering behavior among the schema at-
tributes. An attribute tends to relate to certain others, and they
together form a locality of co-occurring attributes (e.g., author
tends to cluster with title, and make with model). Further, these
natural localities quite precisely correspond to the structural do-
mains of their sources (e.g., Books, Automobiles). Figure 11 plots
how attributes (the y-axis) occur in sources (the x-axis), so that
a dot at (x, y) indicates that the schema of source x contains at-
tribute y. Note that sources are ordered according to their do-
mains, and attributes according to their order of first-occurrence
along these ordered sources. Observe that each densely-dotted tri-
angle along the diagonal represents an attribute locality, which is
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Figure 11: Attribute distributions over source domains.

also squarely aligned with the domain boundaries of sources on the
x-axis.

Second, we observe the convergence behavior: The aggregate
schema vocabulary of sources in the same domain tends to con-
verge at a relatively small size. Figure 12(a) analyzes the growth
of vocabularies as sources increase in numbers for each domain.
The curves indicate the convergence of vocabularies– Since the vo-
cabulary growth rates (i.e., the slopes of these curves) decrease,
as sources proliferate, their vocabularies will tend to stabilize. For
instance, for Automobiles, 80% (103/129) attributes are observed
at 63th sources out of 97 sources. Such convergence effects will
be more obvious, if we weight the vocabulary growth by the “im-
portance” of a new attribute– For the purpose of integration, an
attribute that occurs in many sources will be more important. We
thus further analyze the growth of frequency-weighted vocabu-
lary size for each domain, as shown in Figure 12(b). To quantify,
let the frequency of an attribute be the number of sources in which
it occurs. When counting the vocabulary size, each attribute is now
weighted by its frequency in the corresponding domain. We see a
very rapid convergence– In other words, as we see more sources,
the addition of attributes tends to be rather insignificant.

Third, we see extremely non-uniform Zipf-like distributions of
attribute frequencies. (Thus some attributes are much more “signif-
icant” than others.) Figure 13 orders the frequencies of attributes
over their ranks. It is interesting but perhaps not surprising to ob-
serve that the distribution obeys the Zipf’s law [6]: The frequen-
cies are inversely proportional to their ranks. Many low-ranked
attributes thus rarely occur; in fact, 61% (368/607) attributes occur
in only one source. Further, frequent attributes dominate: we ob-
serve that the top-20 attributes, or 3.3% (20/607) attributes, consti-
tute 38.4% (953/2484) of all the occurrences. What are the most
“popular” attributes across all these sources? The top 5 frequent
attributes are, in this order, title, keyword, price, make, and
artist.

Finally, we see the linking behavior. As shown in Figure 11 the
attributes from different domains are not isolated, but related– as
manifested by the horizontal dotted lines below the diagonal tri-
angles (i.e., outside the localities), which span across several do-
mains. Such “linkages” indicate natural semantics connections be-
tween different domains, reflected by their common attributes. Fur-
ther, the linkages capture the natural “proximity” of domains very
well– i.e., some domains are more related than others. For instance,
Movies and Music Records are heavily linked (by several horizon-
tal lines), which indicates their intrinsic proximity. Similarly, Air-
fares, Hotels, and Car Rentals form another related “cluster.”

Overall, the findings seem to shed light in coping with the myr-
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Figure 12: Convergence of schema vocabularies.
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iad sources on the deep Web– by leveraging their potential regu-
larities (as Section 5 will discuss). We have observed that, while
sources proliferate, their aggregate “complexity” does not grow
indefinitely, but instead demonstrates certain statistical regulari-
ties. In particular, their schema “vocabularies” tend to cluster, con-
verge, and interlink, revealing some hidden structures. The Zipf-
distribution also hints an effective strategy using the classic 80-20
rule– that a few perhaps dominate all.

(Q10) How complex are the “constraint vocabularies” for
queries? We have just seen in [Q9] the regularities of schema
vocabularies– To what extent can we see such concerted complex-
ity on the deep Web? To further validate, we also analyzed the
“building blocks” for query interfaces– i.e., the constraint pat-
terns that express atomic conditions in query forms. For exam-
ple, as Figure 14 shows, the query interface of barnesandno-
ble.com has seven constraints (e.g., on title and price, etc.) and
autos.msn.com five (e.g., on make, model, etc.). We simi-
larly refer to these constraints as the constraint vocabulary for
queries. (Any query language, such as SQL, has such a vocabulary
for formulating queries, e.g., [age > 18].) Observe that these con-
straints can be abstracted to share some common syntactic patterns
of expression: For instance, the format constraint of barnesand-
noble.com, the category of autos.msn.com, among others, all
share the pattern of [attribute equal enumeration].

This observation again reveals that the query vocabulary of on-
line sources might not be entirely chaotic. What is this vocabulary?
How large? For these questions, we manually surveyed 3 domains
(from our dataset): Books, Automobiles, and Airfares. We chose
these domains because they are schematically dissimilar and se-

mantically unrelated.
We found that the concerted-complexity behavior seems perva-

sive on the deep Web. Our survey found that this vocabulary again
reveals some concerted structures. There are only 25 constraint pat-
terns overall– which is surprisingly small as a vocabulary for online
queries. Figure 15(c) shows several frequently-used patterns: e.g.,
Pattern 1 is often used to search for keywords contained in a tex-
tual attribute (e.g., [author contains "knuth"]), and Patter 2
expresses a condition for selecting among multiple enumerated val-
ues (e.g., {"round trip","one way"}). The distribution
is again extremely non-uniform: Figure 15(b) ranks the patterns ac-
cording to their frequencies (and omits 4 rare attributes in the tail,
which occur only once), for each domain and overall. We observe
again a characteristic Zipf-distribution, which confirms that a small
set of top-ranked patterns will dominate.

We also observe the convergence of constraint vocabularies, both
within and across domains. Figure 15(a) summarizes the occur-
rences of patterns. (To simplify, it similarly omits the rare “only-
once” patterns.): The figure marks (x, y) with a “+” if pattern y

occurs in source x. Like Figure 12(a), as more sources are seen
(along the x-axis), the growth (along y) of the vocabulary slows
down and thus the curve flattens rapidly.

However, the constraint vocabulary is more “universal” than the
schema counterpart. Unlike Figure 12(a), we observe that the con-
vergence generally spans across different domains (i.e., Automo-
biles and Airfares are mostly reusing the patterns from Books),
which indicates that most constraint patterns are quite generic and
not domain specific. Put in a different way, constraint patterns form
no localities– we do not observe “dense triangles” in 15(a), unlike
in Figure 11. The observation might suggest that “semantics” (e.g.,
schema attributes) is likely domain-specific, while “syntax” (e.g.,
constraint patterns) may be more uniform across domains.

(Q11) How complex are possible queries? As queries are now
formulated through query “forms” (unlike arbitrary SQL queries),
is querying becoming “trivial” on the deep Web? To address this
question, we examined each source manually for its maximum
query expressiveness. To ensure “maximum,” we need to find the
most “advanced” query forms in a source. Thus, for each source,
we manually searched the pages within 3 hops from the root page
for such a query form. (Our experience and preliminary experi-
ments show 3 hops are sufficient to find advanced query interfaces
if they exist at all.)

We measured the expressiveness of a query in two dimensions:
First, we counted the number of constraints allowed in a query–



(a) barnesandnoble.com (b) autos.msn.com

(c) booksinprint.com (d) coolsiteofday.com
Figure 14: Example query interfaces.

the larger, the more complex a query is. Second, we identified the
types of connectives between constraints. We distinguished three
different types: 1) conjunctive where queries are constructed by
conjunction of constraints (e.g., constraints shown in Figure 14(a)
barnesandnoble.com); 2) disjunctive where constraints can be
combined by both or and and (e.g., constraints shown in Fig-
ure 14(c) booksinprint.com); 3) exclusive where there are mul-
tiple constraints but not all of them can used together (e.g., Fig-
ure 14(b) autos.msn.com).

Figure 16(a) reports the average number of constraints allowed
in a query for each domain, and Figure 16(b) the frequency distri-
bution of the three connectives. The average number of constraints
are larger than 4 across all domains. The result shows that, while
sources tend to share a small number of constraint patterns [Q10],
they often allow complex large queries to be constructed.

5. IMPLICATIONS
Sections 3 and 4 reported our observations– Then, what are the

likely implications? To further interpret the findings, we discuss
our conjectures. They are certainly our own– We believe that, while
necessarily subjective, these implications are well motivated by the
observations, and might help shape our research directions and so-
lutions for exploring and integrating the deep Web.

(I1) Large scale integration is a real and pressing challenge.
While information integration has been actively studied, scalability
has not been a main objective. Our community has observed the
scalability limitations [7, 8, 9] of current techniques– As sources
are proliferating, the deep Web has only made this challenge be-
come real and concrete. Can our techniques “integrate,” in a broad
sense, heterogeneous Web sources on the order of magnitude of
105 [Q2]? With the limited coverage of current directory services,
such need seems tantalizing [Q4].

Large-scale integration also implies new problems, such as build-
ing a deep Web “search engine” for automatic source discovery,

modeling, and selection, beyond more traditional issues of query
mediation and data mapping. Some of these issues have been sim-
ilarly studied for meta-search for text databases [10, 11, 12, 13,
14]. The 3.4 : 1 relative prevalence of structured sources on the
Web urges more attentions on these issues. [Q3]

(I2) Dynamic and ad-hoc integration becomes necessary. As
large scale [I1] also entails, integration will desirably and perhaps
even necessarily be dynamic and ad-hoc: Imagine users of our en-
visioned deep Web “search engine”: Each query will dynamically
select various ad-hoc sources (e.g., consider Amy’s three queries
in Section 1). Such dynamic nature had not been so real before:
the research community has mostly focused on traditional scenar-
ios of static systems where sources and mediators are configured a
priori for specific tasks (say, Books comparison shopping); e.g.,
[15, 9] survey two main configuration schemes, “global” or “local”
as views, for such environments. However, on the deep Web, the
new challenges of dynamism and ad-hocness will likely imply hard
problems– such as ad-hoc query translation to access new sources
without pre-configured semantic annotations. (Is it even possible?)

(I3) Crawling techniques for source discovery are likely to
be different from surface-Web crawlers. Large-scale integra-
tion needs to start with discovering and indexing sources. Specif-
ically, the scale and diversity of Web sources call for automatic
‘crawlers” [Q2,5] (while more precise, manual compilation is un-
likely to scale, as witnessed by the coverage of directory services
[Q4]). Such a crawler will likely be different from that for surface
Web– For instance, query interfaces tend to be shallow [Q1] in a
site, motivating a site-based shallow crawling (which focuses on
promising sites and combs only their top-level pages). The crawler
must be more sophisticated to “understand” a query form and ex-
tract its key parameters.

(I4) The deep Web is not entirely hidden– The hiddenness
varies across domains. Link-based navigational access, if avail-
able, will surface the deep Web content and thus blur its distinc-
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Figure 16: Complexity of queries.

tion from the current surface Web. As [Q6] concluded, such hid-
denness varies across domains– While some domains (e.g., Air-
fares and CarRental) remain rather “closed” to be accessed only
through query interfaces, others (e.g., Books, Movies) tend to be
open, providing browse interfaces as alternative access paths. For
such “open” domains, while query-based access will remain impor-
tant, we can also leverage navigational interfaces (which are more
“crawler friendly”) in enabling data access and integration.

(I5) Structure-based integration will be essential. What is the
key “semantics” for Web source integration? In meta-search over
text sources, subject topics are naturally the central notion. In
contrast, for structured sources, the notion of schema (embedded
in queries and results) is clearly essential. As we observed, struc-
tured sources dominate on the Web [Q3], their structures are char-
acteristic [Q9], and such structures can often be easily acquired,
say, from query interfaces [Q9]. Thus, structured-based integration
will likely be both essential and promising for Web databases.

(I6) Query mediation remains necessary and challenging.
Query mediation has been a traditional focus for integrating hetero-
geneous sources (e.g., [15]); the problem remains for Web sources:
While browse interfaces may sometimes be available, such avail-
ability is rather domain-dependent and not universal [Q6]. Query

interfaces thus are clearly the primary “access entrance” to sources,
universally supported. To avoid online querying, can we take a
“warehousing” approach to crawl data offline from sources? While
possible, the poor coverage of search-engine caching [Q7] indicates
such warehousing unattractive for the deep Web.

Online querying through query forms does not trivialize this “art”
[Q11]. The complexity of Web query forms (in terms of number of
constraints or attributes) reveals that query mediation in this con-
text does not get much easier. The common focus on conjunctive
queries (e.g., [15]) seems well justified by their prevalence.

(I7) Holistic integration holds promises.
Our survey apparently indicates dual phenomena that together

uniquely characterize the deep-Web frontier: First, as a challenge:
Sources online are virtually unlimited; even for a specific domain
of interest, there is often an overwhelming number of alternative
sources (the proliferating sources phenomenon) [Q2]. Thus, large-
scale integration is a real challenge [I1]. Second, as an opportu-
nity: However, while sources proliferate, in aggregate, their com-
plexity tends to be “concerted,” revealing some underlying “struc-
ture.” In particular, we observe such concerted structure on the
attribute vocabularies [Q9] and query patterns [Q10] across Web
sources. Such aggregate vocabularies are clustering in localities
and converging in sizes.
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The dual phenomena seems to hint at a “holistic” approach for
integration. By holistic, we mean to pursue integration at a large
scale and take a holistic view to account for many sources together
in integration, by globally exploiting observable clues across all
sources for resolving the underlying “semantics” of interest– The
concerted structure, or the hidden regularity, will likely provide
such global clues for semantics discovery. Thus, holistic integra-
tion is to apply certain “reverse analysis” for discovering semantics
from the observable clues.

For instance, as initial “evidences” for such holistic integration,
we have applied this insight to two integration tasks: First, for
query-interface extraction, as [16] reported, the observation of
concerted query patterns motivates us to hypothesize the existence
of hidden syntax– Such hidden syntax explains the regularity ob-
served. Specifically, we conceptually hypothesize that, as Figure
17(a) shows, the hypothetical syntax (as hidden regularity) guides
a syntactic composition process (as connection) from query con-
ditions (as semantics) to their visual patterns (as presentations).
This hidden syntax effectively transforms the problem: We view
query interfaces as a visual language; their extraction is precisely
the reverse analysis– or visual-language parsing.

Second, for query-schema matching, as [17, 18] reported, the
observation of converging attributes leads us to hypothesize a hid-
den generative behavior, which probabilistically generates, from a
finite vocabulary, the schemas we observed– Such generative be-
havior explains the regularity observed. As Figure 17(b) shows,
the hidden generative behavior (as hidden regularity) guides a
statistic generation process (as connection) from attribute match-
ing (as semantics) to their occurrences in interfaces (as presen-
tations). This generative behavior constrains how attributes may
occur in interfaces–e.g., grouping attributes tend to positively co-
occur while synonym attributes negatively. The reverse analysis
to find attribute matchings is thus the “mining” of correlated at-
tributes, and thus a correlation mining approach.

We believe such holistic integration promising for large scale
integration– by essentially leveraging the challenge of scale as an
opportunity, with two main advantages. First, scalability: By inte-
grating a large number of sources holistically, rather than individ-
ually or pairwise, we will be able to cope with the scale of inte-
gration. Second, solvability: The large scale can itself be a crucial
leverage to solve integration tasks. The holistic approach can take
advantage of the large scale (with sufficient “samples”) for identi-
fying hidden regularities and applying principled holistic analysis.

6. RELATED WORK
As this paper surveys structured databases on the Web, we dis-

cuss several closely related areas. (Note that Section 1 discussed
related Web characterization surveys.) Traditionally, information
integration (for structured, relational sources) has mainly focused
on relatively small-scaled pre-configured systems [15, 9] (e.g., In-

formation Manifold [19], TSIMMIS [20], Clio [21]). Since our
interest is the large scale integration of databases on the Web, we
will focus on works related to this area. In particular, we discuss
text and structured databases integration, for large scale scenarios.

First, for text databases, there has been much effort in large scale
distributed “meta-search” (e.g., [22]). Research in this area fo-
cuses on constructing “models” for source characterization (e.g.,
[11]), database selection for query routing (e.g., [14]), collection
fusion for merging ranks from different databases (e.g., [23]).

Second, although structured databases dominate on the Web as
we surveyed, relatively less work has been done for large scale in-
tegration of such sources, as compared with text databases. The
same challenges (as we discussed above for text databases), which
are equally important and difficult (if not more), exist for structured
databases. Some techniques have been proposed to address such
challenges: Reference [24] proposes techniques for modeling the
query capability of interactive Web sources. Reference [25] intro-
duces an approach for crawling Web databases. References [26, 27,
28] discuss data extraction techniques (or “wrappers”), targeting at
HTML pages generated by backend databases.

7. CONCLUSION
This paper presents our survey of databases on the Web, or the so

called “deep Web.” Our survey was motivated by issues related to
exploring and integrating these massive networked databases. On
one hand, our “macro” study surveys the deep Web at large, adopt-
ing the random IP-sampling approach, with one million samples.
We found that the deep Web measured 450,000 Web databases,
among which 348,000 were structured. The current representa-
tive directory service covered a mere 15.6% of these databases.
On the other hand, our “micro” study surveys source-specific char-
acteristics over 441 sources in eight representative domains. We
found that deep-Web sources were not entirely hidden– Such hid-
denness was domain dependent. Overall, the representative search
engine covered only 5% fresh data from these sources. We also
observed several interesting “concerted complexities” across deep-
Web sources.

We conclude with several implications which, while necessar-
ily subjective, might help shape research directions and solutions.
Our main conclusions are– 1) in terms of problems: large-scale
integration is a real challenge, which likely will mandate dynamic
and ad-hoc integration requirements; and 2) in terms of solutions:
holistic-integration approaches, which discover integration seman-
tics by globally exploiting shallow clues across many sources, are
likely to be a key technique for enabling large-scale integration.
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