Optimization of Data Stream Processing

Janusz R. Getta
School of Information Technology and Computer
Science
University of Wollongong
Wollongong, NSW, Australia

jrg@uow.edu.au

ABSTRACT

Efficient processing of unlimited and continuously expand-
ing sequences of data items is one of the key factors in
the implementations of Data Stream Management Systems
(DSMS). Analysis of stream processing at the dataflow level
reveals execution plans which are not visible at a logical
level. This work introduces a new model of data stream pro-
cessing and discusses a number of optimization techniques
applicable to this model and its implementation. The opti-
mization techniques include applications of containers with
intermediate results, analysis of data processing rates, and
efficient synchronization of elementary operations on data
streams. The paper also describes the translation of logical
level expressions on data streams into the sets of dataflow
level expressions, syntax based optimization of dataflow ex-
pression, and scheduling of concurrent computations of the
dataflow expressions.

Keywords

data stream, dataflow, scheduling, optimization

1. INTRODUCTION

In the last few years Data Stream Management Systems
(DSMS) emerged as a new important research area [7, 1,
2]. A data stream is a theoretically unlimited sequence of
data items that may originate from the sensor devices [10],
financial organizations, network monitoring systems, satel-
lite systems, etc. DSMS is a specialized software capable of
storing and processing data streams. Experiments show that
data processing techniques developed for the conventional
database management systems cannot be directly reused
for implementation of DSMS [15]. Data stream processing
techniques should be reactive, continuous, adaptable, and
effictent. Reactivity means that processing of a data item
starts as soon as an item is appended to a stream. Continu-
ity requires the periodic recomputations of applications in
order to keep up with the changing contents of the streams.
Adaptability allows for the dynamic modifications of data
processing plans in a response to an external event such as,
rapidly changing frequency of a stream, or the congestion of
an internal queue, etc. Efficiency means that data stream
processing rates should be higher than data transmission
rates. This work proposes a new data stream processing
model that satisfies the principles listed above and allows
for a more comprehensive optimization of data stream pro-
cessing. We show that computations on data streams can be
implemented as the flows of data items between the elemen-
tary operations and that logical level expressions on data

Ehsan Vossough
Department of Computing and Information
Technology
University of Western Sydney, Campbelltown
NSW, Australia

e.vossough@uws.edu.au

streams can be translated into networks of elementary op-
erations. The optimization techniques include the optimal
organizations of data flows among the operations and an
efficient implementation and scheduling of the operations.

The origins of data stream processing techniques can be
traced to the pipelined [17],adaptive [9], continuous [13], on-
line, and interactive query processing [12, 8]. A comprehen-
sive review of many works that contributed to the present
state of data stream processing can be found in [5].

Majority of the data stream processing systems use pipes
or queues to build the networks of elementary operations
on data streams. Typical examples include Fjords [11] and
Aurora [6, 1], and STREAM project [2, 4]. Synchronization
of the operations in these systems is usually controlled by a
central scheduler that is responsible for the order of execu-
tion, amount of time available for each operation, and mem-
ory management. CACQ system [11] treats data streams as
infinite relational tables. The system uses the "eddy” oper-
ator [3] to dynamically process the items appended to data
streams. Adaptive query optimization in DSMS through
tuple routing between the distributed ”eddies” has been
recently proposed in [14]. Implementation of ”distributed
eddy” as a network of simple operators seems to be concep-
tually close to dataflow expressions proposed in this work.
Optimization of stream processing described in [15] applies
a model of computations where the relational algebra oper-
ations are linked via queues and data items flow from one
operation to another.

The systems listed above define the computations on data
streams as the expressions built over the symbols of logical
operations and names of data streams. We call such level
of computations as a logical level of data stream process-
ing. The optimizations at the logical level do not reveal
all execution plans that are possible when a new data ele-
ment is appended to one of the input streams. More exe-
cution plans are visible at a level where each operation acts
on a single data item from a stream with static collection
of windows on the remaining streams. We call such level
of computations as a dataflow level of stream processing.
For example a rate-based optimization [15] of an expression
(r(ab) M, s(bc)) Mqe t(ac) over the streams r, s, and ¢ re-
veals 3 execution plans. The first plan is given above and
two others can be obtained from the associativity of join
operation. At the data flow level, a data item d, appended
to d can be processed in two different ways. In one way, d,

is joined with a window on s and the results are joined with
a window on ¢. In the other, the joins are performed in the
opposite order. Hence, for 3 input data streams we get 6
execution plans. Analysis of the execution plans at the log-
ical level does not reveal the plans visible at the data flow
level. For example, it is impossible to have an execution
plan where an item d, is joined with a window on s, and
item d; is joined with a window on ¢. It suggests that com-
prehensive analysis of execution plans should be performed
at the dataflow level.

The rest of this paper is organized as follows. Section 2
defines a data stream processing model, the systems of op-
erations at a logical and dataflow level, and scheduling of
concurrently running dataflow operations. The optimization
of data stream processing at a dataflow level is presented in
Section 3.1. The optimal scheduling of dataflow expressions
is discussed in Section 3.2. Section 4 concludes the paper.

2. DATA STREAM PROCESSING MODEL

This section introduces a simple model of data streams and
defines the systems of operations on data streams at the
logical and dataflow levels.

2.1 Datastreams

A data stream is a theoretically unlimited and continuously
expanding sequence of homogeneous data items. A win-
dow over a data stream is a time varying collection of sub-
sequences in the stream. A new data item appended to a
stream triggers a relocation of the window accordingly to a
predefined strategy. Each data item obtains a unique times-
tamp when it is recorded in a window on an input stream.
A data item has a status indicator whose value is either pos-
itive or negative. The items appended to the streams have a
positive status. The negative data items originate from the
relocations of windows and specific operations that remove
data items from the windows, e.g. set difference operation.
All other operations generate the positive data items. The
status indicator allows for a uniform treatment of the inser-
tions and deletions from the windows.

2.2 Elementary operations

The system of logical level operations on data streams con-
sidered in this work is very similar to a slightly general-
ized and extended relational algebra. It includes join(X),
generalized difference(—), union(U), aggregation (7),

split(<), selection(o), and transformation(o) operations.

The semantics of join and selection are the same as the
semantics of the same relational operations. An operation of
generalized difference r —; s removes from a window w,
data items which have the same attribute values in x as at
least one data item in a window ws. An union merges two
windows on data streams. An aggregation partitions an in-
put stream according to the values of selected attributes and
applies aggregation functions to each partition. A split op-
eration r <4, ¢, (,t) sends all data items from a stream r
that evaluate a formula ¢, to true to a stream s and all data
items that evaluate a formula ¢ to true to a stream ¢. A
transformation gr(r) applies a function 7' that transforms
the data items in a stream r, e.g. projects the data items
on a given set of attributes. The logical level expressions
are constructed in the same way as the expressions of rela-
tional algebra. The evaluation of a logical level expression

out
dS »
>
Sout

Figure 1: The inputs and outputs of dataflow oper-
ation «

at time to is equal to the evaluation of the expression over
the contents of windows on the input data streams at to.

The system of logical operations on data streams has the
respective system of elementary operations at the dataflow
level, later on referred to as dataflow operations. A dataflow
operation « takes on input a data item ds from a stream s
and all data items with the timestamps lower than times-
tamp of ds and included in a window w; over a data stream
t. A dataflow operation sends its results to a number of
output streams Sout;, .- -, Sout, , see Figure 1. As a simple
example consider a pseudo-code specification of generalized
difference —;cs¢. The operation computes {d, } —x ws.

if Vs € wy d,[X] # s[X] then
if positive(d,) then d;” — sout else d, — Sout endif
endif

A term d} — wout (d; — wWout) Tepresents an operation
that appends d, to a window on the output stream wyy: as
a positive (negative) data item.

2.3 Expressions

We considers a class of logical level expressions where each
operation has no more than two input data streams and pro-
duces only one output stream. Let a(w) denote a dataflow
operation « that processes a data item against the static
contents of window w. A dataflow expression consists of a
stream identifier §, followed by a sequence of dataflow oper-
ations «;(wg) ... aj(wm). We assume that the first dataflow
operation in the sequence processes the input data items of
stream s and that each next dataflow operation processes
the outputs produces by the previous operation in the se-
quence. A recorder operation —(w) writes an input data
item d to a window w, relocates the position of the window
when necessary, and outputs the removed data items from
the window as negative data items followed by the input
data item d. For example, a dataflow expression §,: —(w;),
M(ws), M(wt), = (wout) records a data item appended to a
stream 7 in a window w,, and then joins the results from
the latter operation with the contents of window ws, and
then joins the results with the contents of window w;, and
records the final results in a window wgy¢.

A logical level expression E(s1, ..., sx) over the streams
$1,...,S; is implemented at the dataflow level as a set of
dataflow expressions {ds,, ..., ds, }. For example, a set of
dataflow expressions {d,: —(w.), —iefe(ws), = (Wout), Os:
—(ws), —right(wr), =(wout)} (see Figure 2) implements a
logical operation of generalized difference r —x s. A pseudo-
code specification of an operation —,;gn¢ on data item d,

Figure 2: A dataflow level implementation of differ-
ence operation

and window w, is as follows.

if Ir € w, r[X] = ds[X] then
if positive(d,) then d, — Sout else df = Sou: endif
endif

A logical level expression E(si, ..., si) is translated into
a set of dataflow expressions in the following way. Let Tr
be a syntax tree of the expression. For each leaf node s;,
i =1,...,n, perform the following steps.

(1) Create an empty dataflow expression ds;.

(2) Let A1, ..., A, be a sequence of logical operations along
a path from a leaf node s; to the root node of Tz. Replace
Ai(si,s;) with a dataflow operation ai(w;) where a; im-
plements A, ({d;}, w;) and w; is a window over a stream s;.
For all k = 2, ..., n replace A, with aj(wyr) where ay
implements (Ax(Ar—1(...),T") where T" is a root of subex-
pression being the second argument of Ay.

(3) Append the path obtained in step(2) to ds; and insert
into the path the recorder operations — (w7) whenever wpr
is used in any dataflow expression.

(4) Append a recorder operation —(woy¢) at the end of each
dataflow expression.

For example, the translation of a logical level expression
(r(ab) My s(bc)) Mge t(ac) produces a set of dataflow expres-
sions:

{002 = (wr), Mp(ws), Mac(we), = (wout),
st _>(w5)) Mb(wT)7 Mac(wt)) _>(w0ut))
de: —(we), Mp(ws), Mac(wr), —>(wout)}-

A graphical representation of the expressions is given in Fig-
ure 3. An expression ¢; comes from a transformation of the
logical level expression into r(ab) M, (s(bc)) Mye t(ac))

Correctness of the transformation above depends on the
properties of operations involved. Consider a data element
d; appended to a stream s;. The transformation produces
an execution path ¢; that represents the computations of
AE(ws,, ..., {di}, ..., ws,) where ws,, ..., wy, are the
windows over the input streams. The transformation is cor-
rect if it is possible to use AE to update the result of E(ws, ,

.y Ws;y - .., Ws,) to the result of E(ws,, ..., ws; U{d;},

., ws,,). The above is true if for each operation a(w,, ws))
used in E it is possible to compute a(w, U {d}, ws) using
the values of a(w,,ws)) and Aa({d}, ws) where d denote an
element appended or removed from a window w,. Such in-
cremental computations are always possible for the system
of operations defined in 2.2. For example, (w,U{d}) X w, =
(w, Xw,) U ({d} M w,).

o

t Sl e M
B
O fiel e [@

3, S R |
=5 =

Figure 3: A dataflow implementation of (r(ab) X,
s(be)) Mg t(ac)

2.4 Scheduling

Order preservation of stream processing means that serial
processing of a sequence of data items <d,,,d,, ..., dr, >
should output the results in an order consistent with the in-
put sequence, i.e. <out(d,,),out(d,), ..., out(d,,)>. If an
input sequence is processed concurrently then the schedul-
ing of dataflows is conceptually similar to the scheduling
of database transactions. A hypothetical transaction starts
when a data item is written to a window and ends when the
final results are recorded in all output windows or when a
dataflow operation returns no values. To enforce the correct-
ness and order preservation the executions of transactions
representing the dataflows must be order-preserving serial-
izable [16]. However, scheduling of data flow expressions in
the same way as scheduling of database transactions is not
feasible because of the following reasons. All operations of
dataflow expressions are known in advance and their execu-
tion is always sequential and deterministic. It is possible to
anticipate all conflicts between the dataflow operations. The
computations of dataflow expressions cannot be aborted and
restarted. Order preservation and serializability do not need
to be strictly enforced.

A scheduler described below should be considered as a for-
mal model for concurrent processing of data streams and not
as a hypothetical implementation. We say that dataflow op-
erations «; and a; conflict if both of them operate on the
same window and least one of them modifies the window.
The conflicts between the operations of dataflow expressions
01,...,0n are recorded in a binary matrix Cpxm. All ele-
ments ¢;; € C, ¢ = 1, ..., m are set to 1. The elements
cij, © # j are set to 1 if a; conflicts with «;. All other ele-
ments c;; are set to 0. A state of running computations is
represented by a scheduling graph G =<N, E> where N is
a set of nodes labelled with the names of elementary oper-
ations and E is a set of edges that consists of solid edges
(Es) and dashed edges (Eg). A scheduling graph is dynam-
ically created and maintained during the computations of
dataflow expressions. Whenever a new data element trig-
gers the execution of dataflow expression d;: «,,..., 4, a
solid linked list of the nodes ..., qy, is appended to the
graph. Then, C is used to find what new dashed edges should
be added the graph. An operation «;; is allowed to start
its computations when the computations of a;;_, are com-
pleted and there is no dashed edge <a, o;;> in the schedul-
ing graph. When the computations of «;; are completed
then a node Qi and all dashed and solid edges <ai;,a>

Figure 4: A sample instance of scheduling graph.

are removed from the scheduling graph. Figure 4 shows an
instance of a scheduling graph G for the concurrent compu-
tations of dataflow expressions given in Figure 2 after the
data items d..,d,d) have been appended to the streams r, s
and after the computations triggered by d.. have reached op-
eration aa. The formal model of scheduling described above
allows for the evaluation of different implementation meth-
ods. The quality of implementation depends on a number
of dashed edges in a scheduling graph. In the perfect case,
no conflicts between dataflow operations means no dashed
arrows in the graph and no operations are blocked.

3. OPTIMIZATION TECHNIQUES

Optimization of data streams processing is performed at the
logical, dataflow, and scheduling levels. Optimization at the
logical level is very similar to the traditional syntax based
optimization of relational algebra expressions that pushes
the most selective operations down a syntax tree and merges
unary operations with binary operations. The rate based op-
timization [15] extends this technique with the transforma-
tions of logical level expressions that maximize the stream
processing rates. This section concentrates on the optimiza-
tions performed at the dataflow and scheduling levels. The
optimization techniques include reduction of conflicts over
the accesses to the intermediate results, transformations of
dataflow expressions to maximize the processing rates, and
efficient implementation of scheduling.

3.1 Optimization of dataflow expressions

The objective of optimization is to find a set of dataflow

expressions that maximizes the processing rates. One of

the optimization questions addresses the possibilities and
benefits from elimination of containers with the interme-
diate results. As a simple example consider the follow-
ing dataflow implementation of a logical level expression

(r(ab) My s(bc)) Mue t(ac):

{67’: _>(w7“)7 Mb(w5)7 _>(w7’5)7 Mac(wt)) _>(w0ut))
ds: = (ws), My (wr), =(wrs), Mac(we), =(wout),
b2 = (we), Mae(wrs), —(wout)}

The expressions 0, and Js perform two extra write oper-

ations to a window w,s when compared with the earlier

translation given in Figure 3. As a consequence a subex-
pression Xp(ws), Mge(wy) is replaced in d; with one oper-

ation Mgc(wrs). The analysis of stream frequencies is a

key to the selection of the best translation. To simplify

the problem, we assume that all elementary operations are
computed in a block mode, i.e. such that an operation is
initiated only when its predecessor in the same dataflow
expression completes the computations. The average time

T: spent on processing of item d; appended to a stream ¢
includes the time spent on processing the dataflow opera-
tions and the time spent on waiting for access to w;s, i.e.
T = T wy + T}wne + Twait- A data item d; must wait when
it arrives at the operation Mw, s before the earlier processed
data items from the streams r and s are written to w,s. Al-
ternatively, if we do not use a window w,s (see Figure 3)
then the average time spent on the processing of d; is equal
t0 T} = T—yw; + Toaw, + fs * Txw,. Where fs is an average num-
ber of data items produced by Mw, from one input item.
We benefit from the existence of w,s if T} < T}, i.e.

Twait < (TNws + f * TN?-UT) — THwps (1)

This means that faster processing of Mw,, compensates for
the blocking time 7,4+ because operation Mw,, does not
need to recompute the join of w, and ws. The only compo-
nent of (1) that depends on the frequencies of input streams
iS Twait- Assume that the processing of d; is blocked by the
processing of item d, from a stream s. Then

Twait = T—wg + T w,. + Towps — (At + T—th) (2)

where At represents a time slot between the arrivals of ds
and d;. If the time slots 7w, , TMwy,. , Towys , A T ey, dO nOL
depend on the frequencies of input streams then the value of
Twait Wwould depend only on At. If the frequencies of r and
s are lower than the frequency of ¢ then A; will be longer,
the blocking time will be shorter, (1) will be true, and as
a consequence we will benefit from the existence of w,s. In
the extreme case, when the frequencies of r and s are equal
to zero i.e. r and s are the static data containers, joining
of the latter containers performed before the processing of
any item from ¢ will be the optimal solution. Elimination of
the intermediate results requires the transformations of the
syntax tree of logical level expression into left- or right-deep
syntax trees such that after each transformation at least one
of the arguments is at left- or right-deep position in a syntax
tree.

The next group of optimizations addresses the processing
rates. Consider a dataflow expression d:a1, ..., @, and
assume that each operation a; needs the average time 7; to
process a single data item and that «; generates on average
fi data items from the processing of one input item. The
total time 7 spent on computations of ¢ is equal to

T5=T1+,81*T2+...+,8n_1*7'n (3)

where B; = fi % fo # ... % f; when the operations run in a
block mode and 3; = (1 + f1 * fo * ... * f;)/2 when the
operations run in an item mode, i.e. an operation starts
processing a data item as soon as the item is appended to
operator’s input. The execution of operation «; in a block
mode is delayed relatively to the start of a;_1 by a time
slot needed for processing of a;—1 and equals to B;_2 * 75_1.
The execution of «; in an item mode is delayed relative to
the start of a;—1 by a time slot used for processing of ei-
ther one, or two or ... f1 x fo % ... % f;_» data items. An
average delay is ((1 + f1 # fo * ... % fi—2)/2) * i—1. The
objective of optimization is to find the order of operations
Qi ...ap that minimizes a value of (3). A simple solution is
to permute the commutative dataflow operations in expres-
sion ¢ and to pick a sequence of operations that minimizes
Ts. As an example, consider the implementation of logical
level expression (r(ab) M, s(bc)) —c t(cd) as the following set

of dataflow expressions:

{0r: = (wr), My(ws), —c(we), = (wour),

65: —>(’LU5), Mb(w’f)7 _C(wt)7 _>(wout),

0er = (we), —c(ws), Mo (wr), = (wout)}

If we assume that the frequencies of input data streams are
more or less the same then, a dataflow expression ds can
be transformed to an equivalent form d,: —(ws), —c(wy),
My (wr), »Wout. The new expression is better than d be-
cause operation —(w¢) returns on output no more than one
data item in reply to one input data item.

3.2 Optimization of the scheduling
Optimization of scheduling is achieved through elimination
of conflicts between the simultaneously processed dataflow
operations. Scheduling quality is measured in a number of
dashed edges in the scheduling graph. No dashed edges
means no conflicts and no blocking of data-flow operations.
We propose to use timestamps to eliminate some of the
conflicts over access to the windows and to abolish order-
preservation and serializability. Assume, that unique times-
tamps are attached to data items when recorded in the win-
dows on input data streams. Then, read/write conflicts dis-
appear when each data flow operation processing a data item
d; reads from a window only the data items with timestamps
lower than timestamp of d;. For example, the comparison of
timestamps eliminates all dashed edges between the nodes
a1, a2, az, and a4 in a graph given in Figure 4.

The write/write conflicts over access to the windows on out-
put streams are eliminated or reduced by the total or partial
relaxation of the order-preservation principle. The principle
can be relaxed when the frequencies of input data streams
are too high to observe all modifications of the outputs. Let
a dataflow expressions E = {d1,...,d,} processes the input
streams s1, ..., $Sp. Let D = di,d2,ds, ... be a sequence of
data items appended to the streams. We say that computa-
tion of E over the data items in D is serial if the processing
of each data item d;, i = 1,2,3,... starts as soon as it is
recorded in a window on its input stream and immediately
after the results of d;_; are recorded in wyy:. We say that
computation of E over the data items in D is concurrent if
the processing of each data item d;, i = 1,2,3,... D starts
as soon as the item is recorded in a window on its input
stream. Let w1, w2, ws, ... be asequence of states of the win-
dow wyy: Obtained from the serial computations of dataflow
expressions E over D. A concurrent computation of E over
D is order-preserving if, for each i € {1,2,3,...}w; = w;
where w, wh, w}, ... is a sequence of states of window wous
recorded during the concurrent computation. A concurrent
computation of E over D is weak order preserving if there
exists i € {1,2,3,...} such that w; = w;. It means that only
some states of the output window are correct.

A weak order preservation adopted as a correctness crite-
rion has an important consequence on the implementation
of an effective scheduling technique. Let Dy be a finite sub-
sequence of D. We call a dataflow expression E as order
wnwvariant if for any order of data elements in Dy the com-
putations of E over Dy provide exactly the same result.
For example, a dataflow expression given in Figure 3 is or-
der invariant because for any permutation of a given finite
sequence of input data items the results produced by the
expression are always the same. It means that implementa-

tion of weak order preserving computations of dataflow ex-
pressions that satisty order tnvariant property and do not
access the windows on intermediate streams does not need
run-time maintenance of scheduling graph. This is because
the read/write conflicts over access to the windows on in-
put streams, are sorted out by the timestamp comparisons,
write/write conflicts over access to the output window are
immaterial due to weak order preservation, and write/read
conflicts never happen because no intermediate results are
stored.

It is possible to extend timestamping on a class of dataflow
expressions that satisfy an invariant property and perform
write and read operations on the intermediate results of
computations. Such extension requires the dynamic mod-
ification of timestamps when the data items are recorded
in the windows on intermediate streams. We associate with
each window on intermediate data stream the highest times-
tamp of a data item whose timestamp was compared against
all items in the window. For instance, an operation Mg (w;s)
in the first example in Section 3.1 produces new items with a
higher timestamp than existing item in w,,. Then, all data
items written to window (wrs) obtain a higher timestamp
associated with the items in w;s.

If in the same example the operations —(w,s) change a
timestamp of an item written to a window w,s if the times-
tamp is lower than a timestamp associated with the window.
This technique virtually reorders the intermediate results
and eliminates all conflicts from the respective scheduling
graph.

Weak order preserving computations do not determine pre-
cisely whether the results are correct at any moment in time.
K-level order preserving computations ensure that, after at
least, k data items appended to the input streams the out-
puts are consistent with a hypothetical serial execution. The
implementation of k-level order preserving computations re-
quires synchronization of the system every k write opera-
tions to a window on the output data stream. The pro-
cessing of input data items is delayed until the results from
processing of the last data item in a sequence of k items is
received on output.

4. SUMMARY AND CONTRIBUTIONS

This work investigates the optimization of data stream pro-
cessing at the dataflow and scheduling levels. We extend
a standard append-only model of data streams with a con-
cept of negative data items to uniformly represent the re-
sults of non-monotonic operations, e.g. stream difference
and relocations of windows over data streams. Our ap-
proach identifies the logical, dataflow, and scheduling levels
of data stream processing. The optimizations at a dataflow
level include the optimal translation of logical level expres-
sions into the sets of dataflow expressions, the optimization
of individual dataflow expressions, the elimination and re-
duction of blocking, and analysis of benefits and costs of
intermediate data streams. The optimizations at a schedul-
ing level include efficient implementation of concurrent com-
putations with dataflow expressions, possible relaxation of
order-preservation principle, and the scheduling of stream
processing in the presence of the intermediate data streams.

The major contribution of this work is a clear separation of
the logical and dataflow levels of stream processing. Stream
processing at the dataflow level captures the execution plans
which are not visible at a logical level or which are buried
in the implementations of logical level operations. A sam-
ple system of dataflow operations and expressions provides
a formal tool for detailed analysis of logical level computa-
tions on data streams. The model in which all elementary
dataflow operations have only one input queue, and the
operations read from a set of windows on remaining data
streams captures the processing of single data items more
precisely than the systems of operations with many input
queues. The other important contributions of this work in-
clude transformation of logical level expressions into sets of
dataflow expressions, analysis of the costs and benefits from
intermediate data streams, and optimization of dataflow ex-
pressions. This paper also contributes to the development
of a formal model of scheduling and to an efficient imple-
mentation of a model for a given set of sample operations.

5. REFERENCES

[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, C. Erwin, E. Galvez, M. Hatoun,
A. Maskey, A. Rasin, A. Singer, M. Stonebraker,
N. Tatbul, Y. Xing, R. Yan, and S. Zdonik. Aurora: A
data stream management system. In Proceedings of
the 2003 ACM SIGMOD Intl. Conf. on Management
of Data, pages 663—663, San Diego, California, June
9-12 2003.

[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
I. Nishizawa, J. Rosensstein, and J. Widom. Stream:
The stanford stream data manager (demonstration
descrioption). In Proceedings of the 2003 ACM
SIGMOD Intl. Conf. on Management of Data, pages
662662, San Diego, California, June 9-12 2003.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. In Proceedings of the 2000
ACM SIGMOD Intl. Conf. on Management of Data,
pages 261-272, 2000.

[4] B. Babcock, S. Babu, M. Datar, and R. Motwani.
Chain: Operator scheduling for memory minimization
in data stream systems. In Proceedings of the 2003
ACM SIGMOD Intl. Conf. on Management of Data,
pages 253-264, San Diego, California, June 9-12 2003.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 1-16, 2002.

[6] D. Carney, U. Cetintemel, M. Cherniak, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring streams a new class of data
management applications. In Proceedings of Intl.
Conf. on Very Large Databases(VLDB), Homg Kong,
China, August 2002.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and
M. Shah. Telegraphcq: Continuous dataflow

[8]

[12]

[17]

processing. In Proceedings of the 2003 ACM SIGMOD
Intl. Conf. on Management of Data, pages 665—665,
San Diego, California, June 9-12 2003.

J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In SIGMOD 1997, Proceedings ACM
SIGMOD Intl. Conf. on Management of Data, pages
171-182, 1997.

A. Levy. Special issue on adaptive query processing.
Bulletin of the Technical Committee on Data
Engineering, 23(2), June 2001.

S. Madden and M. J. Franklin. Fjording the stream:
An architecture for queries over streaming sensor
data. In 18th Intl. Conf. on Data Engineering, 2002.

S. Madden, M. Shah, J. M. Hellerstein, and

V. Raman. Continuously adaptive continuous queries
over streams. In Proceedings of the 2002 ACM
SIGMOD Intl. Conf. on Management of Data, pages
49-60, 2002.

V. Raman, B. Raman, and J. M. Hellerstein. Online
dynamic reordering for interactive data processing. In
VLDB’99, Proceedings of 25th Intl. Conf. on Very
Large Data Bases, pages 709-720, 1999.

D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki.
Continuous queries over append-only databases. In
Proceedings of the 1992 ACM SIGMOD Intl. Conf. on
Management of Data, pages 321-330, 1992.

F. Tian and D. J. DeWitt. Tuple routing strategies for
distributed eddies. In VLDB’2003, Proceedings of 29th
Intl. Conf. on Very Large Data Bases, 2003.

S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
Proceedings of the 2002 ACM SIGMOD Intl. Conf. on
Management of Data, pages 37-48, 2002.

G. Weikum and G. Vossen. Transactional Information
Systems:theory, algorithms and the practice of
concurrency control and recovery. Morgan Kaufmann,
2002.

A. N. Wilschut and P. M. G. Apers. Dataflow query
execution in a parallel main-memory environment. In
Proceedings of the First Intl. Conf. on Parallel and
Distributed Information Systems (PDIS 1991), pages
68-77, 1991.

