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ABSTRACT

XML queries differ from relational queries in that the for-
mer are expressed as path expressions. The efficient han-
dling of structural relationships has become a key factor in
XML query processing. Many index-based solutions have
been proposed for efficient structural join in XML queries.
This work explores the state-of-the-art indexes, namely, B*-
tree, XB-tree and XR-tree, and analyzes how well they sup-
port XML structural joins. Experiment results indicate that
all three indexes yield comparable performances for non-
recursive XML data, while the XB-tree outperforms the rest
for highly recursive XML data.

1. INTRODUCTION

The growth of XML repositories on the Web has led to
much research on storing and indexing for efficient querying
and updates of XML data. XML data are viewed as an
ordered tree structure, and queries are specified using path
expressions. The structural join is a core operation that
evaluates containment relationships of the XML elements in
the path expression query.

The state-of-the-art structural join solution, Stack-Tree
[5], takes as input two ordered lists of elements that are in-
volved in the join, and utilizes a sort-merge based algorithm
to find all the pairs of elements that satisfy the containment
relationship. By maintaining an in-memory stack, the two
ordered lists are scanned once. This greatly improves the
performance of structural join. However, the algorithm will
incur unnecessary 1/O cost for low selectivity queries since
every element in the lists must be accessed before the join
can be carried out.

A simple yet effective approach to skip the unnecessary
data during the scanning process is to construct indexes on
the input lists. These indexes aim to efficiently support
functions such as findDescendants and findAncestors that
are needed in structural joins. Major index-based solutions
for structural joins are the B*-tree [2], the XB-tree [1], and
the XR-tree [3].

Contributions. This work presents a comprehensive
comparative study of these index-based solutions. We im-
plement the BT -tree, the XR-tree and the XB-tree solutions,
and perform experiments to evaluate their query and update
costs, as well as their storage requirements.

The XB-tree is proposed primarily for evaluating holistic
twig joins [1]. While the focus of the work in [1] is not
on the index itself, nonetheless, the XB-tree has many nice
properties that can be exploited for structural joins. We
carry out an in-depth study of the XB-tree, and introduce

the notion of a walid path that guarantees the efficiency of
the multi-path findAncestors search in the XB-tree.

For the XR-tree, we observe that there is a tradeoff be-
tween the update cost and query performance. Thus, we
also investigate two variants of the XR~tree: one that min-
imizes the update cost, and the other that minimizes the
query and storage costs.

2. INDEX STRUCTURES

An example XML document for file systems is shown in
Figure 1. The interval-based labelling scheme [4, 6] has been
used to label the element nodes. The containment relation-
ship between two XML elements can be quickly determined
by the containment of their intervals. Figure 2 shows the
most basic approach which constructs a BT -tree on the start
points of the directory element intervals [2].

The XR-tree [3] is essentially a B*-tree that is built on the
start points of the element intervals. Figure 3 shows the XR-
tree that has been constructed for the directory elements in
Figure 1. Every non-leaf node in the XR-tree is associated
with a stab list. The stab list stores the intervals of element
entries that can cover any key in the non-leaf node. To
facilitate searching in the stab lists, each key in the non-leaf
node is also associated with the first element interval in the
primary stab list that contains the key. Note that besides
storing an element e in the leaf node, the XR-tree also stores
the element in the stab list of the top-most internal node
that contains a key k such that e.start < k < e.end.

Additional costs are incurred to maintain the stab lists in
the XR-tree. [3] shows that the update costs for insertion
and deletion are O(log}v + Cpp) and O(log}v + 3Cpp) re-
spectively where Cpp denotes the cost for one displacement
of a stabbed element.

The XR-tree is unable to handle recursive XML elements
well. When the XML data is highly recursive, the possible
number of pages for one stab list is 2hg4, where hq is the
maximum number of nestings of the element nodes indexed.
This increases the update costs and storage requirements.

[1] put forth a preliminary proposal of the XB-tree which
combines the structural features of both the BT -tree and the
R-tree. The XB-tree first indexes the pre-assigned intervals
of elements in a tree structure. From this perspective, the
XB-tree is similar to a one-dimensional R-tree. Next, the
XB-tree organizes the start points of the intervals in the
same way as the Bt-tree.

Figure 4 illustrates the XB-tree that is constructed for the
directory elements in Figure 1. Each internal node maintains
a set of regions that completely include all the regions in
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their child nodes. The regions in the nodes of the XB-tree
may overlap partially. However, it differs from the R-tree
in that the start points are sorted in a strictly increasing
order. In contrast to the XR-tree, the XB-tree does not
store duplicate copies of data. This leads to lower update
costs and more efficient space utilization.

3. BASIC SEARCH

The structural join operation requires two basic search:
findDescendants and findAncestors. We will discuss how
the three index-based solutions carry out these search pro-
cedures. We also investigate the conditions under which the
findAncestors search in the XB-tree is optimal.

The findDescendants procedure retrieves all the data en-
tries that can be covered by an interval. The BT-tree,
XR-tree, and XB-tree all utilize the efficient BT -tree range
search to find matching descendant occurrences. Suppose
we want to find all the files which are contained in a partic-
ular directory element. We first traverse down the various
index trees for the file element by comparing the start points
of the keys in the index nodes. Next, a sequential scan on
the leaf nodes is carried out until we encounter a data en-
try whose interval lies beyond the given ancestor directory
element interval.

On the other hand, the findAncestors procedure looks for
all the data entries that can cover an given interval. Con-
sider Figure 1 again. Suppose we want to search for all the
directory elements that contain the file element with the
interval (90,92). The B*t-tree has to perform a sequential
scan on the list of directory elements to find the elements
whose intervals contain the interval of the given file element.
That is, the search commences from the first element in the
ancestor list, and ends when the start point of an ancestor
element is greater than the start point of the descendant
element. Thus, the directory elements labeled with the in-
tervals (2,95) and (60,94) would be retrieved (see Figure 2).
Clearly, this solution is not effective for the low ancestor-
selectivity data.

The XR-tree uses the BT -tree equality search to traverse
down the index tree for the ancestor directory element. The
search key is the start point of the given descendant file ele-
ment. During the search process, all the directory elements
in the result set can be collected from the stab lists of the
non-leaf nodes, and finally from the leaf page. Consider the
index tree for the directory element in Figure 3. Suppose
we want to find all the directory elements which are the an-
cestors of the file element (90,92). Using 90 as the search
key, we will retrieve the element intervals (2,95) and (60,94)
from the stab lists of the non-leaf nodes in the search path.
All the elements in the result set will be obtained when we
finally reach the leaf page (the first leaf page from the right).
The search path is highlighted in Figure 3.

3.1 Optimal Search in the XB-Tree

To process the findAncestors queries, the XB-tree starts
from the root node and descends to the leaf nodes in a man-
ner that is similar to the R-tree, that is, only the paths
with the intervals that can cover the given interval would be
searched. Finally, the data entries in the leaf nodes whose
intervals can cover the given interval are output as results.
In the worst case, the findAncestors operation may need to
search the entire XB-tree.

The findAncestors operation in the XB-tree is optimal



when the intervals in the index nodes in the XB-tree are the
minimum bounding intervals of the intervals in their child
nodes. This is because every search path, except for the last
search path, will yield at least one ancestor element that
contains the given descendant element.

Definition (Valid Path): A root-to-leaf search path in
an XB-tree for a findAncestors operation is a valid path
if the leaf node of the path contains at least one ancestor
element interval that covers the given descendant interval.

To illustrate, let us search the XB-tree in Figure 4 for
the ancestors of the file element (90,92) in Figure 1. Both
the root-to-leaf search paths (2,95) — (2,95) — leaf and
(20,102) — (60,94) — leaf are valid paths since they lead
to leaf nodes that contain the desired data entries. On the
other hand, the search path (20,102) — (80, 102) — leaf is
not a valid path.

Theorem 1: Let the intervals of the index nodes in an
XB-tree be the minimum bounding intervals. Given an ele-
ment interval, every search path of the findAncestors oper-
ation must be a valid path except for the last search path.

\ keyi | ci

Figure 5: Multi-path Search

Proof: An index entry in an XB-tree consists of an in-
terval and a child node pointer. Let K; and Kj; be two
consecutive keys (or intervals) in an XB-tree index node.
Let C; be the child node that is pointed to by the pointer
associated with K; (see Figure 5). Suppose the intervals
K; and K; overlap and the given descendant element in-
terval Iy lies in the overlap. Then the path K; — C; is
not the last path in the XB-tree. Since this is a XB-tree
with minimum bounding intervals, there must exist a key
key; in the child node C; such that key;.e = K;.e. Con-
sider K;.e > Ig.e and key;.s < Kj.s < Ij.s. We have
keyi.s < Iq.s < Ilq.e < key;.e, which implies that C; has
at least the interval key; which can contain the descendant
element interval I;. The same reasoning applies as we con-
tinue to traverse down the XB-tree from the child node C;.
Thus, we can guarantee that every search path, except for
the last path, will yield at least one ancestor element that
contains [4.0

Note that the last search path of a findAncestors operation
is not necessary a valid path because its leaf node entry
with the maximum end point may have a start point that
is greater than the start point of the descendant element
interval.

4. STRUCTURAL JOIN

Algorithm 1 shows a generic index-based structural join
algorithm. It takes as input two lists of element intervals A
and D. The lists are sorted by the start points (ascending
order). These lists are scanned with the help of the indexes
and merged to obtain all the pairs (a;, d;), a; € A d; € D,
such that a; contains d;.

A stack which stores a sequence of ancestor intervals is
maintained. Each interval in the stack is a descendant of

Algorithm 1 Ancestor-Descendant Structural Join

Input: Lists A and D
Output: All matching (a4, d;), such that a; covers d;

1: a= A.first

2: d = D.first

3: stack =0

4: while leof(D) and !(eof(A) and isEmpty(stack))
5. pop all a; from stack, such that a; can’t cover d
6:  let a; be the last element (if any) popped

71 next = Max(aj.e,a.s)

8: if stack = 0 and d.s < a.s then

9: d = first d; in D, such that d;.s > a.s
10:  else
11: if d;.s > a.s then
12: push findAncestors(Ta,d, next) into stack
13: a = first ay, in A, such that a,.s > d.s
14: output (a;,d) for all a; € stack
15: d = D.getnext()

the interval below it. Two cursors a and d are used to track
the current elements being processed in the input lists A and
D respectively. The stack is initially empty and the cursors
are first set to point to the first element in the lists (Lines
1-3).

In each iteration, the algorithm checks whether the cur-
rent descendant element d has ancestors. If it is impossible
for d to have ancestors, then we update d to point to the
first element interval in the list D whose start point is greater
than the start point of current ancestor element a (Line 8-9).
Otherwise, we retrieve the set of ancestor intervals for the
current descendant element d that is not already in the stack.
This is accomplished by calling the function findAncestors.
The results obtained are pushed into the stack (Lines 12).
The cursor a is updated to point to the next possible posi-
tion that is likely to have descendants elements (Line 13).
The new elements intervals that are pushed into the stack,
together with the element intervals that are already in the
stack, constitute all the ancestors of the current d (Line 14).
Finally, d is advanced to the next element interval in D.

The loop in the algorithm terminates when any of the
following conditions is met:

1. List D is exhausted, indicating that the element d no
longer contributes to the result set;

2. List A is exhausted and the stack is empty, indicating
that there is no more element a available to match d.

4.1 Consecutive FindAncestors Search

In Algorithm 1, we need to process findAncestors(D;) and
findAncestors(D;+1) consecutively, where D; and D;41 are
the descendant element intervals. Figure 6 illustrates how
the BT-tree, XR-tree and XB-tree process these two con-
secutive findAncestors search. The two gray areas labelled
D; and D;y1 denote the the interval ranges of the ancestor
elements in the leaf pages that contain the descendant ele-
ment intervals D; and D;4+1 respectively. The search paths
for the two consecutive search are denoted by dashed and
solid lines respectively.

We observe that the Bt -tree can support consecutive fin-
dAncestors search efficiently. This is because the sequential
scan for the second findAncestors search continues from the
leaf page after the first search ends.

In contrast, the XR-tree cannot distinguish the ancestor
elements which have been retrieved in the first findAncestors



Figure 6: Consecutive FindAncestors Search for D; and D41

search when it evaluates the second findAncestors search.
This is because the majority of the matching ancestor el-
ements are obtained from the stab lists. We observe that
multiple access of the element intervals in the stab lists is
not a serious problem for the XR-tree when there is no re-
cursion. However, its performance degrades with increasing
levels of nesting, that is, when the data is highly recursive.

The XB-tree can also support consecutive queries effi-
ciently since it stores the interval information in the index
nodes. We extend the findAncestors search in the XB-tree
to a consecutive multiple findAncestors search. We observe
that all the ancestor element intervals of the current descen-
dant element d before the start point of the ancestor element
a are already captured in the stack (Line 5 in Algorithm 1).
Therefore, we only need to retrieve the ancestor results of d
after a.s. We use an additional parameter next to restrict
the values of the start points of ancestor element intervals
to be greater than the value of next (Line 12). Since the
common ancestors for both D; and D;1, are retrieved only
once, this leads to much savings in I/O costs.

5. EXPERIMENTAL EVALUATION

In this section, we present the results of our experiments
to evaluate the three index structures for XML structural
joins. We implement the B*-tree [2], XR-tree [3] and XB-
tree [1] structural join algorithms in Java. We also imple-
ment a variant of the XR-tree that decreases the update
cost, and call it XR-v. In the original XR-tree [3], all the
elements that are stabbed by the keys in one index node are
stored in the stab list of this index node. Since the stab
list is an ordered element list, the cost to maintain a large
stab list is high. In the XR-v, we store the elements that
are stabbed by a key in separate lists. Although XR-v may
increase the query cost compared to the original XR-tree,
it is able to decrease the update cost when the stab list is
large.

We generate synthetic XML documents that contain a set
of uniformly distributed elements. A structural join is car-
ried out on the elements “Ancestor” and “Descendant”. We
fix the number of “Ancestor” and “Descendant” elements
at 120,000 and 240,000 respectively, and vary the selectivity
values and levels of nestings. Table 1 shows the character-
istics of the data set generated, and the range of values for
the parameters. All the experiments are carried out on a
Pentium IV 2.4 GHz CPU with 1 gigabyte RAM. We record
the average results of 5 runs.

5.1 Query Performance

This set of experiments evaluates the query performance

Element Number | Selectivity | Nesting
Ancestor 120,000 | 1%-70% 1-220
Descendant | 240,000 1%-80% 1-140

Table 1: Characteristics of Dataset

of the various indices. The I/O cost incurred by the struc-
tural join is used as the performance metric. All the index
structures are built by bulkloading the elements. The node
occupancy, except for the root node, is kept at 50%.

Ancestor Selectivity. We first investigate the effect of
low ancestor selectivity. The ancestor selectivity is limited
to the range of 1%-5%, while the ancestor and descendent
nesting levels, and descendant selectivity are fixed at 50, 5
and 10% respectively. Figure 7(a) shows the results when
we keep the root nodes of the various indices in the buffer,
while Figure 7(b) presents the results when a 100 KB buffer
is used. The XB-tree gives the best performance in both
situations by avoiding the sequential scans needed in the
BT -tree.

The XR-tree and its variant shows the worst performance
as they need to access the stab lists multiple times in Fig-
ure 7(a). The XR-tree (XR-v) benefits the most from the
increasing buffer size. With sufficient buffers, we can pin
the stab list pages in the buffer, and the performance of the
XR-tree (XR-v) will improve dramatically.

Figure 8 shows the results for higher values of ancestor se-
lectivity: 10%-70%. Since the “Ancestor” elements involved
in the join are uniformly distributed, we need to access most
of the leaf pages in the index structures. Thus, it is not
surprising that both the I/O costs for the XB-tree and the
Bt-tree are almost the same.

When the buffer size is increased, and the ancestor se-
lectivity is above 40%, the XR-tree and XR-v outperforms
the XB-tree and BT -tree (see Figure 8(b)). Unlike the B-
tree and the XB-tree which need to access most of the leaf
pages, the XR-tree and the XR-v only access the leaf page
that contains the last ancestor element that covers the de-
scendant element. The rest of the ancestor elements that
contains the descendant element can be obtained from the
stab lists which are most likely to be in the buffer.

Descendant Selectivity. Next, we examine the effect
of varying the descendant selectivity. The results are shown
in Figure 9. Again, the performance of the XR-tree and the
XR-v largely depends on the buffer size for the same reasons
given above.

The I/O costs do not increase when the descendant se-
lectivity is above 10% for all of index structures in both
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graphs. The “Descendant” elements involved in the join are
uniformly distributed in the entire “Descendant” element
set. Hence, the increasing number of elements involved in
the join would not lead to additional I/O costs.

Nesting Levels. In this experiment, we examine the ef-
fect of varying levels of ancestor and descendant nesting.
Only the root nodes of the index structures are kept in the
buffer. Figure 10(a) shows that increasing the levels of an-
cestor nesting will increase the size of the stab lists and con-
tribute to the rapid performance deterioration of the XR-
tree (and the XR-v). In contrast, the curves for the B*-tree
and the XB-tree are almost flat. Figure 10(b) shows that
the various index structures are independent of the levels of
descendant nesting.

5.2 Update Performance

This set of experiments examines the insertion and dele-
tion costs. The buffer is turned off here. The index struc-
tures are initially empty, and we randomly insert 160,000
element intervals. Figure 11(a) shows the insertion results.
The XR-tree has the highest I/O cost since it has to main-
tain a set of ordered stab lists. Compared to the XR-tree,
XR-v performs better due to its smaller individual stab lists.

Next, we randomly delete 160,000 elements from the index
trees and record the number of I/Os. Figure 11(b) shows
the deletion costs. The performance of deletion comes very
near to that of insertion. Considering the characteristics
of the different index structures, the results of the update
experiments are as expected.

5.3 Space Utilization

Finally, we investigate the space consumption of the var-
ious index structures. Each index is built by bulkloading
240,000 elements, and every node in the index is 50% full
except for the root node. We only vary the number of nest-
ing levels, since this is the only parameter that may affect
the space utilization. Figure 12 indicates that the XR-v
requires the most storage space due to its individual stab
lists. As the number of nesting levels increases, the space
consumption of the XR-tree and XR-v will increase slightly
while the sizes of the XB-tree and BT -tree remain stable.

6. CONCLUSION

In this paper, we have compared and analyzed the per-
formance of the BF-tree, XB-tree and XR-tree for XML
structural join. We examined the conditions under which
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Figure 12: Space Consumption

the FindAncestor search in the XB-tree is optimal. We also
extended the XB-tree to efficiently evaluate multiple con-
secutive FindAncestors search. Experiment results indicate
that all three indexes give comparable performances for non-
recursive XML data, while the XB-tree outperforms the rest
for highly recursive XML data.
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