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1 Introduction

Continuous queries over data streams are an impor-
tant new class of queries motivated by a number of
applications [BBDT02, Geh03, GOO03], and several
languages for continuous queries have been proposed
recently [ABW03, CC*T02, CCT03, WZL03]. To date
the semantics of these languages have been specified
fairly informally, sometimes solely through illustra-
tive examples.

Semantics of continuous queries can be surprisingly
tricky, and the exact meaning of all possible queries
often is not obvious from an informal description.
For example, one approach for defining a continuous
query language is to modify a conventional relational
language: treat streams as append-only relations and
produce answer tuples as soon as they are available.
This approach yields queries with easily understood
semantics when the corresponding relational queries
are monotonic, but the semantics become murky for
more complex queries, e.g., queries with aggregation
or windowing constructs.

A formal semantic specification assigns an unam-
biguous meaning to every query in the language. Fur-
thermore, a formal semantics enables us to reason
about the language as a whole, e.g., it can be used
to prove equivalences of queries in the language. Ex-
tensive motivation for defining a formal semantics is
provided in [Sch97]. In database research, an example
can be found in [Wid92], which presents a formal se-
mantics specification for an active database rule lan-
guage.

This paper presents a formal denotational seman-
tics for a generic continuous query language that
we proposed in earlier work [ABWO03]. The generic
language consists of two data types—streams and
relations—and three classes of operators over these
data types: operators that produce a relation from a
stream (stream-to-relation), operators that produce
a relation from other relations (relation-to-relation),
and operators that produce a stream from a relation
(relation-to-stream). There are no stream-to-stream
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operators in the language—they are composed from
operators belonging to the three classes above. The
three classes of operators are “black box” components
of the generic language, and specific continuous query
languages can be derived by instantiating the black
boxes in different ways. Reference [ABWO03] discusses
one instantiation in detail.

A denotational semantics [Sch97, Sto77] for a query
language is specified by defining a meaning function
M. Function M takes any query ) belonging to
the language and returns the “input-output” func-
tion, denoted M[Q], computed by Q. For the generic
continuous query language we consider in this paper,
M]Q] takes as input the streams and relations refer-
enced in @, along with a time instant 7, and produces
as output the new relation values or stream tuples
corresponding to time .

The remainder of this short paper consists of two
primary sections. In Section 2 we define terms and
present a brief, informal description of the generic
continuous query language we consider. In Section 3
we specify a formal denotational semantics for the
language. Examples are sprinkled throughout, and
we conclude in Section 4.

2 Informal Description

Our generic continuous query language, hereafter de-
noted L, contains two data types: streams and re-
lations. Each stream and relation has an associated
schema, which is a set of named attributes as in the
standard relational model. Streams and relations are
defined based on some discrete, ordered time domain
T. A time instant (or simply instant) is a value be-
longing to 7. Further, each instant of 7 € 7 has a
unique and well-defined successor, which is the small-
est instant in 7 larger than 7. For concreteness, we
represent 7 as the set {0,1,...}. Note that 0 stands
for the earliest time instant in this representation.

Definition 2.1 (Stream) A stream S is a possibly
infinite bag (multiset) of elements (s, T), where s is
a tuple belonging to the schema of S and 7 € 7 is
the timestamp of the element. There is a finite but



unbounded number of stream elements for any given
timestamp 7 € 7. O

Definition 2.2 (Relation) A relation R is a map-
ping from 7 to a finite but unbounded bag of tuples
belonging to the schema of R. O

A stream is a collection of timestamped tuples. Intu-
itively, the element (s, 7) of stream S indicates that
tuple s arrives on S at time 7. A relation is a time-
varying bag of tuples. For a relation R, R(7) denotes
the bag of tuples in the relation at time instant 7.
Note that our definition of relation is different from
the standard one: In the standard interpretation, a
relation is simply a set (or bag) of tuples with no
notion of time as far as the semantics of standard
relational query languages are concerned.

Queries in £ are composed from operators belong-
ing to three classes: stream-to-relation, relation-to-
relation, and relation-to-stream.

e A stream-to-relation operator takes an input
stream and produces a relation. The bag of tu-
ples in the output relation at time instant 7 de-
pends only on input stream elements with times-
tamps < 7.

e A relation-to-relation operator takes one or more
relations as input and produces another relation
as output. The bag of tuples in the output rela-
tion at time 7 depends only on the bag of tuples
in the input relations at 7.

e A relation-to-stream operator takes an input re-
lation and produces a stream. The elements of
the stream with timestamp 7 depend only on the
relation state at time instants < 7.

Conceptually, a query or operator runs continuously
within the time domain. When time advances from
7—1to 7, the query or operator produces new output
corresponding to 7: either a new value for its output
relation at 7, or the elements of its output stream
with timestamp 7. (We refer the reader to [ABWO03,
SWO04] for discussions of the subtleties of time in data
stream systems.)

Language £ does not prescribe specific operators
belonging to the three classes—the three classes are
“black boxes” of the language, and they can be in-
stantiated using any set of operators as long as the
operators satisfy the properties mentioned above.
We have designed and implemented one concrete in-
stantiation: a language called CQL (for Continuous
Query Language) [ABWO03]. Briefly, the stream-to-
relation operators of CQL are derived from the slid-
ing window operators of SQL-99. The relation-to-

relation operators of CQL are the standard SQL op-
erators. There are three relation-to-stream operators:
Istream, which streams inserts to its input relation,
Dstream, which streams deletes from its input rela-
tion, and Rstream, which streams the entire bag of
tuples in its input relation at every time instant.

Example 2.1 Consider a hypothetical network
monitoring application. The application has one
input stream, Packet(srcIp,destIp,len,router),
which represents a stream of network packets, and
one input relation DomainOf (ip,domainName), which
contains domain names corresponding to IP ad-
dresses. Note that the relation is time-varying: new
domain names might be added, or the domain names
of existing IP addresses might change. The fol-
lowing example CQL query, explained below, pro-
duces the stream of packets originating from domain
“stanford.edu”:

Select Rstream(srcIp, destIp, len, router)
From Packet [Now], DomainOf
Where srcIp = ip and

domainName = "stanford.edu"

Consider any time instant 7. The query ap-
plies a “Now” window over the Packet stream,
which is a stream-to-relation operator that selects
those packet tuples with current timestamp 7, i.e.,
packets arriving at the current timestep. The
Select-From-Where clause effectively performs a
semijoin of these packet tuples with the current state
of the DomainOf relation, to identify packets belong-
ing to the “stanford.edu” domain. Finally, the
Rstream operator streams the current packet tuples
satisfying the semijoin filter. O

Although language L is fairly generic, some high-
level choices have been made. For example, we chose
to have two data types in £L—streams and relations—
rather than, say, just streams. Also, the structure
of the operators is fixed to some extent: relation-
to-relation operators can take multiple inputs, while
operators of the other two classes take just one in-
put. These issues are discussed and justified in detail
in [ABWO03].

3 Formal Semantics

Before presenting the denotational semantics in Sec-
tion 3.2, we first specify a syntax for our generic lan-
guage and list the domains used in the semantic spec-
ification.



3.1 Abstract Syntax and Domains

Figure 1 presents an abstract syntax for our generic
language £ using BNF-style rules. This syntax is
specified solely for the purpose of presenting the se-
mantics; the actual syntax of a language derived from
L could be significantly different, e.g., the syntax of
CQL queries as in Example 2.1. The syntax is best
understood by reading the accompanying table that
describes the terms used in the syntax. (The Do-
main column of the table will be used in Section 3.2.)

The following domains are used in the semantics
specification:

o Time domain (T): T = {0,1,...} as described
in Section 2.

o Tuple domain (TP): The domain of tuples. A
tuple is a finite sequence of atomic values. We
do not need to distinguish among tuples with
different schemas for our semantics.

o Tuple multiset domain (X): The domain of finite,
but unbounded, bags of tuples.

e Relation domain (R): R = T — %, ie., the
domain of functions that map time instants to
bags of tuples (Definition 2.2).

o Stream domain (S): The domain of (possibly in-
finite) multisets over 7P x T (Definition 2.1).

o Relational operator domain (Rep): Rop = X X
<o+ X X — X, i.e., the domain of functions that
produce a bag of tuples from one or more bags of
tuples. For example, the standard relational al-
gebra operators (e.g., o, T, X) and SQL queries
belong to this domain.

e Syntactic domains: The domains associated with
the syntactic terms listed in Figure 1. For exam-
ple, Query denotes the domain of valid continu-
ous queries according to the syntax in Figure 1,
and R2ROp denotes the domain of relation-to-
relation operators.

e Relation Lookup domain (RelLookup): The do-
main of functions that map an identifier (re-
lation name) to its corresponding relation, i.e.,
RelLookup = Identifier — R.

e Stream Lookup domain (StrLookup): The do-
main of functions that map an identifier
(stream name) to its corresponding stream, i.e.,
StrLookup = Identifier — S.

3.2 Denotational Semantics

Recall from Section 1 that a denotational seman-
tics for a query language specifies a meaning func-
tion M that maps queries in the language to the
input-output function that they compute. Following
convention, we specify the meaning function recur-
sively, using subsidiary meaning functions for sub-
components of a query. Figure 2 lists the meaning
functions that we use in our specification. M is
the “main” meaning function, which assigns a mean-
ing to the entire query. The other functions assign
meaning to (sub)components of a query; for exam-
ple, M ror maps a relation-to-relation operator to a
function over conventional relations.

We use lambda calculus [Pie97] for defining func-
tions. The expression Az;....Ax,.E defines a func-
tion that takes arguments vy, ..., v,, and returns the
result of evaluating expression F with all free occur-
rences of x; in F replaced by v;, 1 < i < n. The ar-
guments v; and the returned result could themselves
be functions, i.e., lambda calculus expressions.

The semantics of L treats the semantics of the
three classes of operators as black boxes. In other
words, we assume that the meaning functions Mgapg,
Mpgor, and Mpgas are given. Section 3.3 specifies
these meaning functions for some example operators.

Figure 3 contains the specifications of the remain-
ing three meaning functions. Each meaning function
is specified in separate parts, one part for each BNF
rule for its corresponding syntactic term (Figure 1).
For example, M is specified in two parts: one cor-
responding to the derivation of Q from Qz and the
other to the derivation from Qs. The complete mean-
ing function can be thought of as a combination of its
parts using appropriate “if-then-else” statements. In
these functions, and the remainder of the paper, we
use the € symbol as if we are considering sets rather
than multisets. In the presence of duplicates, each
duplicate must be considered separately when eval-
uating €—in all cases the interpretation is obvious
from context.

We briefly elaborate on the specification of M,
Mg, and Mg:

o M The input-output function M[Q] pro-
duced by M for a query Q takes three pa-
rameters: the first two parameters are func-
tions that are used to map relation or stream
names in the query to corresponding relations
and streams, and the third parameter is a time
instant. M][Q](r, s, T) specifies the output pro-
duced by Q at time instant 7. M[Q](r,s,7) in-
vokes Mg[Qe](r,s,7) if @ = Qg produces a re-
lation as output, or it invokes Mg[Qs](r, s, ) if



Symbol | Description Domain
Continuous Query (CQ) in £ Query
Q = Qrl0Qs Qr CQ producing a relation RelQuery
Qe = RName | S2R-Op(Qs) | CQ producing a stream StrQuery
R2R-0p(Q,...,QR) S2R-0p | Stream-to-Relation Operator S2ROp
Qs ::= SName | R2S-0p(Qg) R2R-0p | Relation-to-Relation Operator | R2ROp
RName := 1Id R2S-Op | Relation-to-Stream Operator R2S0p
SName == 1Id RName | Relation Name Identifier
SName | Stream Name Identifier
Id Identifier Identifier

Figure 1: Abstract syntax of £; symbol descriptions and domains

| Query component | Meaning Function |

Signature |

Q M Query — (RelLookup x StrLookup x T — (X US))
Qr Mg RelQuery — (RelLookup x StrLookup x T — X)
Qs Ms StrQuery — (RelLookup x StrLookup x T — §S)

S2R-0p Mgor S2ROp — (S x T — %)

R2R-0p Mpr2r R2ROp — Rop

R2S-0p Mpas R250p - (R xT — S)

Figure 2: Meaning functions in the denotational semantics

Q = Qs produces a stream as output. An addi-
tional filtering operation is required for the latter
case since Mg[Qs](r, s, 7) returns all elements of
its output stream with timestamp < 7. (See the
definition of Mg.)

Mp @ If Qg is a (sub)query producing a re-
lation, MRr[Qg]J(r,s,7) specifies the bag of tu-
ples in the output relation at time 7. Param-
eters r and s, as before, are stream and rela-
tion lookup functions. Mg calls functions Mg
(recursively), Mg, Mpar, Mszr, and/or r, de-
pending on the structure of Qg. For example, if

z = RName, Mg[Qr](r,s,T) uses function r to
look up the time-varying relation corresponding
to RName, and applies the relation to identify the
bag of tuples at time 7.

Mg : If Qs is a (sub)query producing a stream,
Ms[Qs](r, s, 7) specifies the bag of stream el-
ements in the output stream with timestamp
< 7. In the specification of Mg[Qs] for the case
Qs = R2S-0p(Qr), the lambda calculus expression
Mo MR[QR](r,s,7")” defines a function that
takes a single parameter 7/ and returns the bag
of tuples at time 7’ in the relation produced by
subquery Qg, which is just a formal representa-

tion for the relation produced by Qz.

There are a variety of choices in the details of how
we specify the denotational semantics, all adhering to
the meaning of the language. For example, we could
have presented the semantics so that Mg[Qs](r, s, T)
specifies the bag of output stream elements with
timestamp equal to 7, instead of those with times-
tamp < 7. However, doing so would have made the
semantics specification for stream-to-relation opera-
tors more complicated. Overall, we considered sev-
eral alternatives and picked the ones that we felt most
intuitive and easy to understand.

3.3 Semantics for Example Operators

This section presents formal semantics for several of
the instantiated operators in the CQL language. Fig-
ure 4 lists the example operators we consider and
their abstract syntax using the same BNF-style rules
we used for £. (We emphasize that the abstract syn-
tax is for illustrative purposes only—it does not cor-
respond to the actual syntax of these operators in
CQL.)

Figure 5 contains the denotational semantics for
the example operators of Figure 4, which we briefly
elaborate:



M M[R] = MAsAT.MEg[Q](r,s,T)
M[Qs] = M AsAr{{e, ™) : (e,7") € Ms[Qs](r,s,7) AT =7}
M g [RName] = Ar.As.A7.r(RName)(T)
Mg | Mg[R2R-0p(QL,...,Q0)] = ArAsAT.Mp2r[R2R-0p](MR[Qi](r,s,7), ..., Mr[QR](r,s,T))
Mg [S2R-0p(Qs)] = Ar.AsAT.Mgar[S2R-0p](Ms[Qs](r, s, ), T)
M M[SName] = M As At {{e,7’) : (e, ') € s(SName) A 7' < 7}
S Mg[R28-0p(Qr)] = M AsAT.Mpas[R2S-0p]((AT'. MRg[Q](r, s, 7)), T)

Figure 3: Denotational Semantics of £

S2R-0p u=
R2R-0p
R25-0p ==

Now | Range(T") | Row(NN)
SemiJoin(i, j) | Filter(i,v)

IStream | DStream | RStream

Figure 4: Abstract syntax for example operators

o Mgor: We consider three kinds of sliding win-
dows as examples of stream-to-relation opera-
tors. All three operators take a stream S and a
timestamp 7 as input and return a bag of tuples
as output: the Now window operator returns the
tuples of S with timestamp 7; the Range window
operator, specified using a parameter T, returns
the tuples of S with timestamps in the range
[t =T, 7]; the Row window operator, specified us-
ing an integer parameter N, returns the N most
recent tuples of S with timestamps < 7.1

e Mpor: We present formal semantics for re-
stricted versions of two standard relational
operators:  semijoin and filter (selection).
SemiJoin(i, j) performs a semijoin on the i*" at-
tribute of its first input with the j** attribute of
its second input, where both inputs are bags of
tuples. Filter(i,v) returns all tuples from its
input bag having value v in the i*" attribute. In
the definitions, e.i abuses standard notation to
denote the value in the i*" attribute of a tuple e.

e Mpgss: We present formal semantics for the
three relation-to-stream operators in CQL. The
IStream operator takes a (time-varying) relation
R and a time instant 7, and streams the new tu-

1If the stream has duplicate timestamps, our formal speci-
fication of the Row window operator may return fewer than N
elements. An alternative definition (used in our CQL imple-
mentation) introduces nondeterminism for Row-based windows
in the presence of duplicate timestamps.

ples inserted into R at time 7, i.e., tuples that
appear in R(7) but not in R(7—1). Analogously,
the DStream operator streams the tuples that
were deleted from R at time 7, i.e., tuples that
appear in R(7 — 1) but not in R(7). Finally,
the RStream operator (for “relation stream”)
streams all the tuples in R(7). In the definitions,
assume R(—1) = ¢.

Example 3.1 Figure 6 expresses the CQL query
from Example 2.1 using the abstract syntax of Fig-
ures 1 and 4. Tt then shows the meaning of the query
using our semantics after some simplifications. O

4 Conclusions

We specified a complete formal semantics for a
generic continuous query language over streams and
relations. Our semantics resolves any ambiguities
present in informal language descriptions—it assigns
an exact meaning to any query in the language, at any
point in time, for any possible input streams and re-
lations. Our generic language is built from a number
of “black box” operators, whose semantics must be
instantiated for a specific concrete language. As ex-
amples we instantiated a portion of CQL [ABWO03], a
language that includes SQL constructs, sliding win-
dows over streams, and special-purpose relation-to-
stream operators.

In addition to clarifying the potentially subtle
meaning of continuous queries, our formal semantics



Mo [Now] = ASAr{e: (e, )€ S}
Msz2r | Mgar[Range(T)] = ASAr{e: (e, 7)€ SAmax(r —T,0) <7 <7}
Mgor[Row(N)] = ASArfe:{e,7) e SA(T <T)AN> |[{{e,7Ye S:7 <" <7}])}
M MRQR[[SemiJoin(i,j)ﬂ = /\El./\EQ.{el ep € B4 N (3 es € By ie1.0= eg.j)}
et Mpor[Filter(i,v)] = ME{e:e€ EAei=v}
Mpos[IStream] = ARA.{{e,7"): 7" <TAe€R(T)Neé¢ R(r—1)}
MRzs Mpgs[DStream] = ARAM{{e,7):7 <7Ae€ R(t—1)ANe¢ R(7)}
Mpgs[RStream] = ARAM.{(e,7):7 <7TAe€ R(7)}
Figure 5: Denotational Semantics for Example Operators
Q = RStream(SemiJoin(l,1)(Now(Packet),Filter(2, “stanford.edu”)(Domain0f)))
MQ] = MrAdsAr{{e,7') : (e,7") € s(Packet) AT/ =TA

(3¢’ € r(DomainOf)(7) : €’.2 = “stanford.edu” Ae’.1 =e.l)}

Figure 6: Query Q from Example 2.1 and its meaning.

provides a tool for discovering and reasoning about
equivalences within a given continuous query lan-
guage, and for comparing expressiveness across dif-

ferent proposed languages. [Geh03]
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