From Semantic Integration to Semantics Management:
Case Studies and a Way Forward

Arnon Rosenthal

The MITRE Corporation
Bedford, MA, USA
arnie@mitre.org

1. Introduction

For meaningful information exchange or
integration, providers and consumers need
compatible semantics between source and target
systems. It is widely recognized that achieving this
semantic integration is very costly. Nearly all the
published research concerns how system integrators
can discover and exploit semantic knowledge in
order to better share data among the systems they
already have. This research is very important, but to
make the greatest impact, we must go beyond after-
the-fact semantic integration among existing
systems, to actively guiding semantic choices in
new ontologies and systems — e.g., what concepts
should be used as descriptive vocabularies for
existing data, or as definitions for newly built
systems. The goal is to ease data sharing for both
new and old systems, to ensure that needed data is
actually collected, and to maximize over time the
business value of an enterprise’s information
systems.

The shift from semantic integration to
semantics management requires the following:

e We need to proactively produce new areas of
useful semantic agreement, and not simply
document correspondences among existing
systems. This will help the enterprise satisfy
new requirements—e.g., to collect new data or
establish new data sharing arrangements. This
will also reduce costs by reducing unneeded
semantic and representation diversity.

e We must consider more than the needs of
technology-savvy system integrators. We also
must assist people in many roles—e.g.,
enterprise owners, architects, end users, as well
as developers—to have a greater shared
understanding of what the data means. Without
this, it is impossible to evolve information
systems which truly meet the business needs of
the enterprise.

e We must broaden our definition of “semantics”
to describe what data instances are collected and
desired (as in publish/subscribe advertisements),
not just concept definitions and relationships.
For example, we may agree on the meaning of
“Aircraft” (say “fixed wing, not including

SIGMOD Record, Vol. 33, No. 4, December 2004

Len Seligman
The MITRE Corporation
McLean, VA, USA
seligman @mitre.org

Scott Renner
The MITRE Corporation
Bedford, MA, USA
sar@mitre.org

helicopters or balloons”), yet if we do not
manage the scope of data collected, our
applications will not usefully share data. For
example, you may provide data on aircraft
operated by U.S. airlines, while I want data on
all aircraft that regularly use U.S. airports. To
properly interpret the data, I must understand
what portion of my information need you can
actually satisfy. We must also manage desired
instance populations (i.e., the subscriber side),
to guide future data collection and exploitation.

To be successful, an approach to semantics
management must tolerate organizational realities
that are often ignored: e.g., limited central authority
(for example, of the Chief Information Officer), and
the difficulty of enforcing management directives
to supply rich, accurate metadata (and to update it
with each system change).

The managers’ task is not to build a “perfect”
system in which each participant can seamlessly
share information with every other participant, or to
build an entirely new system. Their goal is to use
their levers of limited influence (e.g. policy, money,
reusable metadata, free tools, consulting support) to
steer the enterprise from the imperfect status quo to
a better (but still imperfect) future state.

To enable the new management approaches,
technologists must advise on methodologies (and
the architectures implicit in many of them), provide
formal models to express managers’ decisions, and
tools to help make and analyze these decisions. As
consultants, technologists also often identify
unintended consequences or incentives of proposed
mandates. In this way, we help -create
implementable guidance (specific advice or
required products) to managers, developers, and
administrators.

This paper makes the following contributions:

e We describe a reference model for
characterizing data standards, particularly
semantic agreements.

e We present data standardization case studies,
lessons learned, and implications for effective
semantics management.

e We introduce a semantics management
approach based on “communities of interest”

45

that we believe respects organizational realities

that are too often ignored.

e We describe research challenges that can
advance tools and methodologies for the
community of interest approach.

Large organizations will undoubtedly use a
variety of formalisms, some traditional and some
emerging (e.g., semantic web). For wide
applicability, we thus make our main points
formalism neutral, where possible.

2. Reference Model for Comparing
Types of Data Standards

We now present a set of axes for describing a
standardization approach. This helps us understand
essential features of previous approaches, and also
helps frame questions about what to standardize
and how to proceed.

We begin with terminology from the ISO
11179 metadata registries standard [ISO99], which
distinguishes a data element concept (i.e., meaning)
from its value’s representation (i.e., datatype,
domain, units of measure); the combination of
meaning and representation is called a data
element.!

1. What types of objects are being standardized?

e What is the proper granule of semantics to
standardize (e.g., data element concept, data
element, a full schema)?

e Does the standard specify representation(s)?
How many representations can one specify for
a concept (0, 1, multiple). When there is only
one, conformance is harder, but data is plug
compatible — values need no mediation.

e What kinds of constraints and relationships
among elements does the standard capture?
Answers range from dictionaries of stand-alone
element definitions, through XML or object
schemas with constraint constructs, to
ontologies with richer assertions and logical
inference.

e If the standard defines schemas or ontologies,
does it also specify instance sets? (E.g., what
are country code values and their associated
countries)?

2. How will the standard structures (ontologies or
schemas) be used?

e Is the standard solely a descriptive vocabulary
(e.g., an ontology) that expresses semantics, or

! The case studies below do not exploit (and
sometimes predate) the ISO standard, which rather
recently added APIs for tool vendors. Without
supporting tools, the standard has little payback.

is it also a schema to be instantiated? If the
latter, then is the schema:.

Implemented natively within a system?

An additional interface that a system should
support? If so, what operations should that
interface support—e.g., the operations a typical
DBMS supports on views)?

e Aninterchange format—i.e., the standard
defines a structure for exported objects (files or
messages), which will be physically
materialized and then delivered to consumers?

3. What are the characteristics of the community
developing the standard?

e Is there one primary stakeholder with most or
all of the decision making authority (e.g., the
Internal Revenue Service for U.S. tax
submission formats) or is authority distributed?

e What are participants’ obligations to support
the standard? (e.g., use it for all new
development, use it as one of multiple
interfaces, map all legacy systems to the
standard within a certain time period)

e s there a pre-existing shared understanding of
the domain? Standardization is easier where
this exists (e.g., purchase orders).

3. Case Studies

We present three examples of semantics
management, drawn from our experience with the
U.S. Department of Defense (DoD). (This paper
expresses the authors’ views, not MITRE or
government positions.)

3.1 DoD Data Administration Program

Like any giant organization, the DoD is
plagued with data interoperability problems caused
by differences in data semantics and representation.
The DoD is now in the process of replacing its data
administration policy and procedures. The previous
effort (officially running from 1991 until 2003) was
an attempt at enterprise data standardization. It
attempted to eliminate these problems by
eliminating the differences, DoD-wide. In the
terms of our framework, the former data
administration program:

o Standardized individual data elements, for
publisher and subscriber systems

e Did not support agreement on data element
concepts (independent of representation).

e Allowed only one standard representation for
each concept.”

2 The above choices allow a standard data element
to be passed between systems, without extra

SIGMOD Record, Vol. 33, No. 4, December 2004

e Captured no structural semantics. The official
standard addresses just data elements. However,
organizations registered conceptual schemas (in
IDEFIX, an extended entity-relationship
formalism). These schemas were not maintained
as the actual systems evolved. Occasionally they
were used to educate new staff, and developers
of new systems borrowed portions unofficially.

e Provided no formalism for describing the
instances a publisher offers, or a consumer
wants. Information needed for mediated
publish/subscribe was deferred.

o Defined standards intended to be implemented
internally, by each system, for all data.

The DoD data standardization effort aimed to
produce a single, logical, fully-attributed data
model of immense scale, probably exceeding 10’
entities and 10° attributes. Today it seems
impossible that such an effort could ever succeed,
and in fact, by 2000, the need for a new approach
was widely recognized. The program was costly,
and the ~12,000 registered data elements were
infrequently reused, and so did little to promote
interoperability.

The process charged with deconflicting data
elements in the standard was ineffective for several
predictable reasons. Sometimes there are legitimate
needs for several forms (e.g., to trade precision
versus bandwidth). Other times, existing
communities (e.g.., Army, Navy) wanted to
continue using their own standards. In addition, the
process introduced delays for developers. Most
important, the process created a disincentive to
agree on semantics, since agreement usually meant
that somebody had to change implementation.’

However, within the overall program we have
found several pockets of success. For example, the

validation or conversion. However, it gave little
help in shipping data between systems that already
used different representations (e.g., feet versus
meters, GIF versus JPG, 32 versus 64 bits). An
unfortunate side effect is that each participant
contributed their own definition to the standard
independently, differing only in representation
details. The registry captured no similarity between
notions like Fuel_Load in liters, or gallons.

It is interesting to compare DoD’s flat concept
space with the ontology of Cyc [Lenat95]. The
careful structure and separation of concept and
representation are helpful. Still, Cyc’s goal is more
for semantic integration than active management of
semantics. If one allows developers to choose
freely from Cyc’s 10° concepts, their systems will
have too many inconsistent semantic choices.

SIGMOD Record, Vol. 33, No. 4, December 2004

US Strategic Command successfully reengineered

their war-planning systems to use a single data

model. In almost every success, we found:

e A standard data model of reasonable size; the
largest plausible success has =1,000 tables.

e A cohesive local enterprise, with relatively few,
well-defined interfaces to the external world

e A single authority exercising effective control
over the system requirements, the funding, the
developers, and the users.

3.2 Meteorology Data Standard

This is a DoD-wide standard for meteorology
(weather) and oceanography data. It contains on
the order of 1,000 attributes, and was developed
over a period of five years, at a total cost easily
exceeding $1M. It was developed as a part of the
data administration program described above, and
in our framework it has almost the same
description; the difference is that this is a
conceptual model intended to specify interfaces and
data exchange formats and was not intended to be
implemented natively by participating systems.
The standard is successfully used by several
systems that exchange weather data. This is an
exception to the single-authority pattern described
above, because these systems are not built or
operated under any single authority. We explain
this in part by observing the pre-existing shared
understanding of the domain. Concepts like “dry
adiabatic lapse rate” are the same everywhere for
everyone, and graduate students have spent years
acquiring this shared body of knowledge.

3.3 “Cursor-On-Target”” Schema

Cursor on Target is an XML schema for
documents that describe the time and geographic
location of an event of interest. The underlying
model is very simple: 3 entities, 13 attributes. It is
used to share targeting information between
automated systems. In terms of our framework,
this particular effort:

e Standardized an entire schema

e Did not define free-floating data elements
independently of the schema structure

e Specified a single representation for each data
element

e Captured the relationship constraints that XML
schemas could express

e Made no mention of instance populations

e Defined an interchange format

This effort has been judged a huge success,
going from concept to operations in under 18

46

47

months. Many systems in many organizations
have implemented the standard — another exception
to our single-authority rule. We observe that it is
feasible to get fairly widespread agreement (e.g.,
among approximately 40 systems) on a very small
set of definitions, especially when the end-user
demand is strong. Nevertheless, many other
systems will not implement this schema, preferring
standards produced by other communities.

3.4 Lessons

The first lesson seems obvious: a very large
enterprise cannot hope to construct a single data
model (or even a single set of universally-
understood concept definitions) for all the data it
requires. The “eliminate diversity” approach
promised simplicity, abstracted into a hub and
spokes model. But such simplicity could not be
delivered, and the hub and spokes model gave little
help in dealing with messy realities. Approaches
that require perfect coordination and altruism are of
no practical interest.

The second lesson explains the first. Semantic
agreement comes at a cost, and that cost is driven
both by the number of people who require a shared
understanding, and the number of concepts they
must all understand. The cost element appears to
be the person-concept. We are aware of many
examples of small numbers of participants agreeing
on large, complex standards (e.g., meteorology) and
of larger numbers of participants agreeing on
modest standards (e.g., cursor on target), but we
have seen few successes where large numbers of
autonomous participants agreed to a large, complex
standard.

Third, practical semantics management must
recognize the limited ability of managers to enforce
conformance to standards. Clearly, this is true in
megasystems—i.e., “enterprises” where no person
has authority over all parts of a system (e.g., Health
Care, and decentralized institutions like the DoD or
Intelligence Community). But enforcing data
standards is problematic even at a smaller scale
where there is centralized authority.

The problem is that a good manager’s
preferences are not absolute—he must recognize that
some systems in his community may have good
reasons not to conform. For example, in MITRE, a
5000-person company, the CIO can select standards
for the company’s operational systems. Signing a
mandate (e.g., to select a data standard or an
architecture) constitutes (only) an influence on

* Development often takes several years in similar
military systems, in part because of rigorous test
and certification procedures.

future actions by our own enterprise. He cannot
decree that the legacy data and systems will be
instantly upgraded. He cannot affect the standards
of our government partners or of the important
packages that we buy (e.g., Microsoft Outlook,
PeopleSoft). There may also be applications with
special requirements (e.g., extreme precision, host
country rules, close integration with a customer or
COTS or legacy system) for which he must allow
violations of the organizational standard, even for
new development.

4. Progressing via “Communities of
Interest”

Having learned from previous experiences, the
DoD recently published a new data strategy
[DoD03]. Semantics are to be managed “within
communities of interest (COls) rather than
standardizing data elements across the
Department.” The strategy defines a COI as a set of
stakeholders “who must exchange information in
pursuit of their shared goals, interests, missions, or
business processes and who therefore must have
shared vocabulary for the information they
exchange.” Community stakeholders include users
that participate in information exchanges,
developers that build systems for these users,
enterprise architects that define requirements based
on mission needs, and managers that acquire
systems on behalf of the users.

The above is just a first step toward defining
the COI approach. As yet, it says nothing about
how communities are formed, who should be
included, what authority do they have, how do they
collaborate with other communities, and (perhaps
most important to specify carefully) what do they
produce. DoD is working to address these
questions; in this section, we give our own
(emerging) proposals.

We focus on defining community concepts and
tasks that should be useful in many different
methodologies. We anticipate that communities
will be run in many different ways, depending on
size, culture, time available, and so forth.
Following the UML approach, we define
conceptual categories, and products to be produced,
rather than the detailed process that produces the
product. Communities will be loosely coupled —
each can choose its internal processes, and groups
of them can choose how they collaborate to form
new communities. The focus on products also
should enable research ideas and tools to be used in
many settings.

Three basic tasks that communities must
accomplish to enable data sharing are create
definitions, adopt definitions (or more generally,

SIGMOD Record, Vol. 33, No. 4, December 2004

state preferences), and form agreements. One

innovation here is to allow a different community

to be formed for each type of task. This enables
each community to be concerned with different sets
of information, e.g., “DoD spatial data” versus

“data required to plan an air transport mission”.

We now examine the three types (identified by their

products) in more detail.

1. Definition-development communities. These
produce concept definitions, element
definitions, ontologies, and schemas. They
seem best organized by subject matter area,
spanning organizational boundaries (including
external organizations). They have free speech
(e.g., to publish their proposals), but no
command authority, because the span of useful
data sharing greatly exceeds the span of
organizational control. They merely publish
definitional resources (e.g., ontologies,
schemas), and may express preferences among
alternatives. The Cursor-on-Target effort
(section 3.3) is an example. Diverse
participants contributed to development of the
interchange standard, but they had no authority
to impose the use of that standard on anyone
else.

2. Custodial / Authority communities. Each aspect
of a data object’s semantics (conceptual
meaning, instance set) has a custodian.
Custodians have two kinds of responsibility:

e To describe the systems currently in place.
For this they need to choose a descriptive
vocabulary. For example, an organization
might tell its system managers “Describe
spatial data using the OGIS ontology, or
(second choice) the ARC-INFO GIS
schema. Describe measurement data using
NIST’s measurement ontology or ISO”.
Even with alternatives, descriptions may
be imperfect.

e To guide (semantic and other) choices on
future data collections or software
development.

Other authorities may be able to express
preferences that the custodian considers (e.g.,
partners, higher and lower management levels).

3. Agreement communities. These are groups of
participants who agree to provide or consume
information using certain definitions.
Agreements must specify semantic concepts
(so the recipient will be sure that they can
understand the data they receive). Often they
specify instance sets, e.g., FuelNeeded for all
units at a given Airbase. (One does not leave it
to chance that someone is tasked to obtain the
information their downstream successors

SIGMOD Record, Vol. 33, No. 4, December 2004

need). Agreements can also include

representations (to reduce mediation effort).

Agreement areas beyond data semantics

(services, workflows, secure handling) will not

be discussed here.

Organizations and consortia often function as
more than one type of community. For example, a
standards group may both develop definitions and
secure agreement from participants to use those
definitions. Some participants may also have
authority to express a preference that their
subordinates use the standard. However, we find it
useful to identify these distinct community roles to
guide what products they should produce and how
they should operate.

Across communities, reuse is essential, to
avoid unnecessary definitional differences. Many
concepts (and organizations) belong to multiple
communities. Definitions should be published in
small granules—i.e., data element concepts,
independent of representation. COIs can also
publish standard structures (e.g., an XML exchange
schema), but there must be a way for other
communities to reference and reuse individual
concepts independent of these structures.

Summary of Pragmatic Advice

In terms of our standardization framework
(Section 2), and based on the experiences described
in Section 3, we believe successful methodologies
will adopt the following:

° Standardize in small granules—i.e., data
element concepts, but assert conformance in
biggest feasible chunks [CDFP98].

e Specify representation separate from meaning.
Allow alternative representations, and provide
mechanisms for expressing preferences
(Section 5.2).

e Describe explicitly the set of instances
managed by systems and desired by users, to
ensure that needed data is actually collected
and exported.

e Be robust with both simple and rich modeling
formalisms. Capturing richer constraints and
relationships (e.g., in RDF or OWL) will be
useful. However, organizations must be
allowed to govern technology change based on
staff expertise and tool support.

e Focus on interfaces and exchanged
information, not systems’ internal
representations.

5. Related Work and Research Agenda

Most research assumes that higher authority is
either all powerful (centralized) or absent (peer to

48

49

peer). However, there has been little research on
enterprises, where managers have partial influence.

Schema matching research is active and
promising, and is covered in other articles in this
issue. Commercially, many tools can capture
semantic relationships graphically and generate
code. Unfortunately, they lock the knowledge into
that vendor’s suite by using proprietary schemas
and representation ontologies.

Reuse and incentives have been emphasized in
only a few papers. In [RS94, RSRMO1], we
emphasized reuse, because it bypassed the many
difficult research problems of matching. We also
advocated learning the lessons of the industrial
revolution, 1i.e., separation of different tasks,
incentives, parts usable in different finished
products within a product line.

More recent research has explored particular
reuse techniques in more depth. Both schema
matching and semantic web researchers have noted
that transitive laws enable new matches to be
inferred from older ones. [HEDIO3] advocated
incentives (“instant gratification”) for individual
users, and [MDKVO03] explored the effectiveness of
P2P approaches to gathering information, for
matching a consumer application to many sources
for the same domain.

There are many areas where researchers could
help put the Community of Interest approach on a
firmer footing, with better abstractions and
automated support.

5.1 Methodologies and Tools

The conceptual modeling literature is
extensive, but rarely stresses reuse, separate models
of semantics and representation, and other enablers
of data sharing. Schema integration techniques also
fit poorly for designing standard models — one
rarely has clear consensus on what the future
“standard” should model, or integrates entire
schemas that are all available in advance. A
principled reformulation is needed, to identify
characteristics of a “good” model, perhaps with
different answers for interchange schemas versus
descriptive ontologies.

The technical problem is not “provide a
process that can be carried out by omniscient
saints”. The process must be robust against
imperfection, such as participants who expertly
evade directives that hurt their budgets. For that
reason, one needs model-driven tools that repay
metadata providers by supporting auto-generation
of needed software interfaces.

Enterprise scale semantics management
requires new kinds of tools. Imagine a metadata
registry with 0(10% schemas, O(10%) data element

concepts, and thousands of assertions about
mappings, preferences, and data quality. What tools
are necessary to make it all useful—e.g., how does
one find definitions, schemas, etc. relevant to one’s
information need? Today’s point-to-point schema
matchers are a first step; P2P approaches are
intriguing but make it difficult to assign contractor
responsibility. Research breakthroughs are needed.

52 How to Transmit Authority --
“Preferences” as a Primitive

Any large scale management process will often
assert preferences rather than absolute constraints
and split decisions among definitional,
custodial/authority, and agreement communities
(and roles within them, e.g., data collectors,
software builders). What formalisms, theories and
tools are needed for their cooperation?

Can researchers devise a single construct for all
“Preferences”?—e.g., a community’s preferences
among overlapping standards, a manager’s
preferences to be communicated to
suborganizations, or the set of definitions used by a
system. Opinions will need to be aggregated, and
differences negotiated. Precision is less important
than minimizing administrative burdens.
Preferences could then drive tools, e.g., to select
defaults or order the responses from a discovery
tool.

5.3 Metrics

Metrics are important for demonstrating and
measuring progress. Even imperfect metrics can
guide tools that assist humans (e.g., to suggest
definition choices that minimizes a metric of
community diversity). Metrics collection must be
largely automated.

Useful system metrics might include:

e amount of data sharing enabled

e amount of glue code needed to handle
representation diversity (lines of code, info
loss, by conversion, time for conversion)

e quality of data shared -- closeness of definition
match, plus precision, recency, etc. (Quality is

a widely underestimated difficulty.)

5.4 Helping Subscribers Understand the
Responses

Semantics management also includes steps to
guarantee that someone collects the data that
applications need. In difficult cases, there may be a
shortfall, which managers, application developers,
and in some cases the user receiving the response
need to understand.

SIGMOD Record, Vol. 33, No. 4, December 2004

The “constraint” model explored in [FKMPO03]
can describe what instances should be in a query
response—namely all “certain” answers. This
criterion is appealing to theoretically inclined CS
PhDs, but how do we tell others (e.g., a doctor
asking about dangerous drug interactions, or a
military planner who needs to know about friendly
forces near a target) what they can rely on about a
response’s completeness? What if their query goes
outside the classes (e.g., conjunctive) that are well
behaved?

A second problem is communicating the
answer the theory gives. Even CS PhDs obtain little
insight from reading the difference between two
complicated SQL queries. = What should be
presented to application developers, or end users?
Perhaps they should be shown examples, or an
easy-to-understand bound, with option for more, or
a union of simple parameterized cases? Queries to a
warehouse may not receive answers as complete as
sources might provide. How can one help an
application developer decide whether it is important
to drill down to the original sources? (We
conjectured about this phenomenon in [RSRMO1],
and it was shown to occur in [FKMPO03].)

5.5 Optimization

As noted above, model-driven tools can reward
participants for providing the accurately maintained
metadata that will enable progress. The goal is to
generate needed code and interfaces from
declarative models. This will require advances in
query optimization for complex, multisystem
environments. How can one model the capabilities
of rich (multilingual, multiprotocol) systems in
ways a query processor can understand? We
anticipate mixes of SQL views, XSLT, XQuery,
and libraries of transformation functions, to execute
in DBMSs, application servers, gateways, Extract-
Transform-Load tools, and replicators. Can existing
techniques for characterizing and discovering
servers’ capabilities and efficiency (e.g.,
[BFMVO00]) be applied at this scale?

Also, optimization in this environment is
currently performed at design time by skilled
distributed systems programmers. How can we
introduce automation gradually?

e How do you automatically generate partial
solutions that will be convenient for the human
expert who must complete the job?

e Where does control of the optimization process
lie?

e How should compilation units be managed, from
clusters of knowledge (metadata and mappings)?

SIGMOD Record, Vol. 33, No. 4, December 2004

References

[BFMVO0O0] L. Bouganim, F. Fabret, C. Mohan, P.
Valduriez, “A Dynamic Query Processing
Architecture for Data Integration Systems,” Data
Engeineering, 23(2), June 2000

[CDFP98] S. Castano, V. deAntonellis, M. Fugini,
B. Pernici, “Conceptual Schema Analysis:
Techniques and Applications”, ACM Transactions
on Database Systems, 23(3), Sept. 1998

[DoDO03] Department of Defense Net-Centric Data
Strategy, May 9, 2003,
http://diides.ncr.disa.mil/mdreg/user/index.cfm?id=48

[FKMPO3] R. Fagin, P. Kolaitis, R. Miller, L. Popa
“Data Exchange: Semantics and Query Answering”
ICDT, 2003.

[HEDIO3] A. Halevy, O. Etzioni, A. Doan, Z. Ives,
J. Madhavan, L. McDowell and 1. Tatarinov,
“Crossing the Structure Chasm,” Proc. First Conf.
on Innovative Data Systems Research, 2003

[ISO99] ISO 11179-1, “Information technology —
Specification and standardization of data elements,
Part 1: Framework for the specification and
standardization of data elements,” First edition,
International Standards Organization, Dec. 1999

[Lenat95] D. Lenat, “Cyc: A Large-Scale
Investment in Knowledge Infrastructure,”
Communications of the ACM, 38(11), Nov. 1995

[MDKV] R. McCann, A. Doan, A. Kramnik, V.
Varadarajan.. “Building Data Integration Systems
via Mass Collaboration”, WebDBO03 at SIGMODO03

[RSRMO1] A. Rosenthal, L. Seligman, S. Renner,
F. Manola, “Data Integration Needs an Industrial
Revolution,” International Workshop on
Foundations Of Models For Information
Integration (FMII), Viterbo Italy, 2001

[RSO1] A. Rosenthal, L. Seligman, “Scalability
Issues in Data Integration”, AFCEA Federal
Database Conference, 2001

[RS94] A. Rosenthal, L. Seligman, “Data
Integration in the Large: The Challenge of Reuse”,
Conf. on Very Large Data Bases, Sept. 1994

Acknowledgments

The authors thank the very helpful comments
of the special issue editors, Ken Laskey, James
Caverlee, Joe DeRosa, Joe Wood, and Mike Kuras.

50

